en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

畅为航,男,1979年出生,博士研究生,讲师。主要研究方向为表面技术与多元合金涂层。E-mail:nycwh2009@163.com

通讯作者:

薛玉君,男,1971年出生,博士,教授,博士研究生导师。主要研究方向为特种加工与表面工程。E-mail:xue_yujun@163.com

中图分类号:TG135

DOI:10.11933/j.issn.1007−9289.20221104002

参考文献 1
罗大微,周青,叶雯婷,等.NbMoWTa/Ag 自润滑纳米多层膜的力学性能及摩擦学行为[J].中国表面工程,2021,34(5):161-168.LUO Dawei,ZHOU Qing,YE Wenting,et al.Mechanical and tribological behaviors of NbMoWTa/Ag selflubricating nanomultilayers[J].China Surface Engineering,2021,34(5):161-168.(in Chinese)
参考文献 2
常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progresses of damage and protection fo surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)
参考文献 3
SHARMA A.High entropy alloy coatings and technology[J].Coatings,2021,11(4):372.
参考文献 4
卢思颖,苗军伟,卢一平.多主元高熵合金的强韧化[J].稀有金属,2021,45(5):530-540.LU Siying,MIAO Junwei,LU Yiping.Strengthening and toughening of multi-principal high-entropy alloys[J].Chinese Journal of Rare Metals,2021,45(5):530-540.(in Chinese)
参考文献 5
张毅勇,张志彬,姚雯,等.高熵合金薄膜研究现状与展望[J].表面技术,2021,50(1):117-129.ZHANG Yiyong,ZHANG Zhibin,YAO Wen,et al.Research status and prospects of high-entropy alloy thin film[J].Surface Technology,2021,50(1):117-129.(in Chinese)
参考文献 6
罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)
参考文献 7
YAN X H,LI J S,ZHANG W R,et al.A brief review of high-entropy films[J].Materials Chemistry and Physics,2018,210:12-19.
参考文献 8
鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)
参考文献 9
BAPTISTA A,SILVA F,PORTEIRO J,et al.Sputtering physical vapour deposition(PVD)coatings:A critical review on process improvement and market trend demands[J].Coatings,2018,8(11):402.
参考文献 10
SENKOV O N,WILKS G B,MIRACLE D B,et al.Refractory high-entropy alloys[J].Intermetallics,2010,18(9):1758-1765.
参考文献 11
刘一帆,常涛,刘秀波,等.高熵合金涂层的摩擦学性能研究进展[J].表面技术,2021,50(8):156-169.LIU Yifan,CHANG Tao,LIU Xiubo,et al.Research progress on tribological properties of high-entropy alloy coatings[J].Surface Technology,2021,50(8):156-169.(in Chinese)
参考文献 12
LIN C H,Duh J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.
参考文献 13
XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.
参考文献 14
HUANG P K,YEH J W.Effects of substrate bias on structure and mechanical properties of(AlCrNbSiTiV)N coatings[J].Journal of Physics D Applied Physics,2009,42(11):115401-115407.
参考文献 15
LO W L,HSU S Y,LIN Y C,et al.Improvement of high entropy alloy nitride coatings(AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias[J].Surface and Coatings Technology,2020,401:126247.
参考文献 16
JIN G,CAI Z,GUAN Y,et al.High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating[J].Applied Surface Science,2018,445:113-122.
参考文献 17
徐进,朱昊,周仲荣,等.稀土表面工程及其摩擦学应用的研究现状[J].中国表面工程,2001,1:20-23.XU Jin,ZHU Hao,ZHOU Zhongrong,et al.The State-of-art of researches on rare earth surface engineering and its tribological applications[J].China Surface Engineering,2001,1:20-23.(in Chinese)
参考文献 18
徐向荣,黄拿灿,杨少敏.表面改性中稀土提高材料抗高温氧化及耐蚀性能的作用[J].材料保护,2005,8:35-38.XU Xiangrong,HUANG Nacan,YANG Shaomin.Effect of rare earth in surface modification on high temperature oxidation resistance and corrosion resistance of materials[J].materials Protection,2005,8:35-38.(in Chinese)
参考文献 19
杨珍,鲁金涛,赵新宝,等.稀土元素对合金高温氧化的影响[J].中国稀土学报,2014,32(6):641-649.YANG Zhen,LU Jintao,ZHAO Xinbao,et al.Effect of rare earth elements on high temperature oxidation of metals[J].Journal of the Chinese Society of Rare Earths,2014,32(6):641-649.(in Chinese)
参考文献 20
薛茂权,熊党生,闫杰.稀土润滑材料的摩擦学研究[J].稀有金属,2004,28(1):248-252.XUE Maoquan,XIONG Dangshen,YAN Jie.Tribological study of rare earth lubricating materials[J].Chinese Journal of Rare Metals,2004,28(1):248-252.(in Chinese)
参考文献 21
何忠义,刘棉玲,章家立,等.稀土在高温摩擦中的应用研究概况[J].华东交通大学学报,2001,18(1):62-65.HE Zhongyi,LIU Mianling,ZHANG Jiali,et al.A survey on high temperature tribology research of the rare earth[J].Journal of East China Jiaotong University,2001,18(1):62-65.(in Chinese)
参考文献 22
马明星,王志新,梁存,等.CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J].材料工程,2019,47(7):106-111.MA Mingxing,WANG Zhixin,LIANG Cun,et al.Effect of CeO2 doping on microstructure,friction and wear properties of AlCoCrCuFe high-entropy alloys[J].Journal of Materials Engineering,2019,47(7):106-111.(in Chinese)
参考文献 23
李俊魁,彭竹琴,马明星,等.CeO2对AlCoCuFeMnNi高熵合金涂层组织和硬度的影响[J].金属热处理,2017,42(11):19-23.LI Junku,PENG Zhuqin,MA Mingxing,et al.Effect of CeO2 on microstructure and hardness of AlCoCuFeMnNi high-entropy alloy coating[J].Heat Treatment of Metals,2017,42(11):19-23.(in Chinese)
参考文献 24
XU W J,LIAO M D,LIU X H,et al.Microstructures and properties of(TiCrZrVAl)N high entropy ceramics films by multi-arc ion plating[J].Ceramics International,2021,47(17):24752-24759.
参考文献 25
刘昊,高强,郜文鹏,等.激光熔覆 CoCrFeNiNbx高熵合金涂层的高温摩擦磨损性能[J].摩擦学学报,2022,42(5):966-977.LIU Hao,GAO Qiang,GAO Wenpeng,et al.High temperature tribological properties of CoCrFeNiNbx high-entropy alloy coatings by laser cladding[J].Tribology,2022,42(5):966-977.(in Chinese)
参考文献 26
SONG B A,YANG Y,RABBANI M,et al.In situ oxidation studies of high-entropy alloy nanoparticles[J].ACS Nano,2020,14(11):15131-15143.
参考文献 27
XU C,GAO W.Pilling-Bedworth ratio for oxidation of alloys[J].Materials Research Innovations,2000,3(4):231-235.
参考文献 28
HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.
参考文献 29
KIM H,HEO S,KIM W R,et al.Effect of vanadium addition on the high-temperature friction behavior in nanostructured Al-Cr-V-N films prepared by UBMS[J].Journal of Nanoscience and Nanotechnology,2020,20(7):4271-4275.
目录contents

    摘要

    高熵合金涂层作为航空发动机轴承防护涂层有重大的潜在应用价值,鉴于其服役环境日益严苛复杂,进一步提高涂层的高温摩擦学性能是十分必要的。通过非平衡射频磁控溅射技术制备含 Ce 元素的(AlCrNbTiVCe)N 涂层,利用扫描电子显微镜(SEM)、X 射线衍射仪(XRD)和 X 射线光电子能谱仪(XPS)表征涂层磨损后的微观形貌、物相和价态,用纳米压痕仪、球盘式摩擦磨损试验机测试涂层的力学性能和摩擦学性能,探讨 Ce 对涂层微观结构、高温稳定性和摩擦磨损的影响与机制。结果表明,(AlCrNbTiVCe)N 涂层主要由多元金属氮化物和单质 Ce 相组成。引入 Ce 元素改善了涂层组织结构,提高了高温抗软化能力,有助于涂层摩擦磨损性能的改善。与不含 Ce 的涂层相比,500 ℃下(AlCrNbTiVCe)N 涂层的摩擦因数和磨损率分别下降 27.5%和 45.6%,其氧化磨损占主要磨损机制。该涂层高温摩擦学性能的提升主要是由于高温摩擦过程中涂层表面生成了氧化铈,增强了高温稳定性;氧化铈具有润滑特性,起到了减磨耐磨作用。在磁控溅射制备高熵涂层中,引入稀土元素,可为提高涂层高温摩擦学性能的提供借鉴。

    Abstract

    Advanced surface-modification technology with magnetron sputtering of a several-micron-thick hard ceramic coating has been widely used in industry owing to its high hardness and toughness, good oxidation and corrosion resistance, wear resistance, and excellent adhesion to substrates. High-entropy alloy coatings have high hardness and outstanding wear resistance and corrosion resistance, with broad applications in material protection of aviation engine bearings. With the increasingly harsh and complex service environment, it is necessary to further improve the high-temperature tribological performance of the coatings. (AlCrNbTiVCe)N coatings with added Ce were prepared by unbalanced magnetron sputtering. The sputtering targets were AlCrNbTiV (1:1:1:1:1) and CeAl alloy (5:5 Ce: Al); 9Cr18 steel was selected as the substrate. A Cr transition layer was deposited for 20 min to improve the adhesion of the coating to the substrate. The main process parameters were set as follows: the vacuum pressure was 5×10−4 Pa; the deposition temperature was 300 °C; the total coating-deposition time was 180 min. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were used to characterize the microstructure, phases, and bonding states of the coatings. The mechanical properties and friction and wear properties of the coatings were tested using nano-indentation and a tribometer. The wear rates were used to evaluate the wear performances of the coatings; three tests were averaged to reduce the error. The effects of cerium on microstructure and high-temperature friction were investigated. The results showed that the (AlCrNbTiVCe)N coating consisted of multiple metal nitrides and Ce phases. The addition of Ce played a role in refining grains, increasing density and hardness, and improving high-temperature stability and friction and wear performance. At high temperature, the H and E of the (AlCrNbTiVCe)N coating were 29.8 GPa and 259.6 GPa, respectively. The friction coefficient of the (AlCrNbTiVCe)N coating was as low as approximately 0.29, and the wear rate was as low as 4.1×10‒6 mm3 / (N·m). The friction coefficient and wear rate of the (AlCrNbTiVCe)N coating at 500 ℃ decreased by 27.5% and 45.6%, respectively, compared with a free-Ce coating. Addition of Ce improved the microstructure of the coating, enhanced the high-temperature softening resistance, and improved the high-temperature friction and wear properties of the coating. In the (AlCrNbTiVCe)N coating, Ce atoms have a strong attraction to the electrons of the atoms around them, especially for O atoms, compared with Al, Cr, Nb, Ti, and V. The Gibbs free energy is very low for formation of cerium-based oxides. With diffusion of O atoms into the coating, the energy is sufficient for Ce to form cerium oxide, easily generating CeO2 and reducing the outward diffusion rate of Al and Cr cations along the grain boundary of the oxide film. The oxidation rate slows, and the lifespan of Al2O3 and Cr2O3 oxide films is extended, enhancing self-healing ability and improving resistance to softening and thermal stability. The CeO2 generated at the wear mark has a lubricating effect, which is beneficial for reducing the adhesion between the friction pairs and reducing friction. The wear mechanism is mainly formation of the lubricating film and oxidation wear. The improved high-temperature tribological performance of the (AlCrNbTiVCe)N coating is mainly due to formation of cerium oxide on the surface of the coating during high-temperature friction, which enhances high-temperature stability, has lubricating properties, and plays a role in reducing wear. Introduction of rare-earth elements in preparation of high-entropy coatings can provide a reference for improving the high-temperature tribological properties of coatings using magnetron sputtering.

  • 0 前言

  • 高熵合金是由 5 种或 5 种以上的等原子比或者近似等原子比的元素组成,各元素的原子比在 5%~35%,形成独特的晶体结构,具有优异的力学、物理和化学性能,在装备制造、航空航天等高端装备领域具有重要潜在应用价值[1-2]。高熵合金涂层不仅继承了合金块状体的物理化学性能,还因其尺寸较小易形成纳米晶,在一些性能上优于块状材料[3],具有传统二元或三元涂层无法比拟的高硬度、耐磨损和耐腐蚀等特性,因而可作为机械零部件磨损表面防护材料的不错选择[4-6]。研究发现,高熵合金涂层在高温下结构稳定,抗软化效应明显,扩宽了其在不同高温条件下的应用场景[7]。在高温、重载工况下,镀覆高熵合金涂层于传动件表面,将可能减轻接触界面的摩擦磨损,是提升高温服役性能的有效途径[58]。为获得具有应用价值的涂层,高熵合金涂层制备主要采用激光熔覆、热喷涂、磁控溅射等表面处理技术,其中磁控溅射工艺具有沉积温度低、膜层厚度可控、膜基结合好等特点[69]。采用磁控溅射工艺制备微米级的高熵合金涂层,应用在高温轴承表面作为防护层显示出良好的潜力[810]

  • 高温环境下,高熵合金涂层因其特殊效应,具有良好的热硬性和抗氧化性等,表面生成的氧化物具有润滑、抗磨作用[11]。研究发现,(AlCrSiTiV)N[12]、(AlCrTiVZr)N[13]、(AlCrNbSiTiV)N[14]和(AlCrNbSiTiMo)N[15] 等涂层体系大都呈现出高硬度(18~48 GPa),并且具有良好的高温稳定性和化学惰性,然而,这些涂层的摩擦因数较高,尚不能完全满足零部件的性能要求。因此,学者通过改变元素种类,一定程度改善了高温摩擦性能。如 Jin 等[16]研究 FeNiCoAlCu 涂层发现在高温下具有较好的结构稳定性,在 600℃时,摩擦因数出现大幅降低,归因于表面形成具有润滑性的 CuO。但高温摩擦性能取决于涂层表面元素的氧化程度,过高温度又有引起氧化膜性质改变与基体结合能力减弱的可能,而表面氧化往往又会对涂层表面质量产生较大的影响,单一涂层难以满足工业发展的需求。

  • 近年来,研究者通过调控涂层组元,引起结构与性能上的变化,并辅以其他元素以实现特定性能的提升[611]。近期研究表明[5-7],Al、Cr、Nb 元素具有良好的抗氧化性;Ti、V 元素在高温形成的氧化物具有润滑作用;选择这 5 种元素以期形成高温性能良好的 AlCrNbTiV 高熵合金体系,通过溅射获得 AlCrNbTiVN 涂层。利用稀土元素独特的化学活性可以直接作用于晶界,改善涂层界面质量,提高涂层性能[17-18]。除此之外,稀土元素还有助于解决涂层在高温环境中力学、氧化和摩擦学的问题[19-20]。稀土 Ce 元素及其氧化物已应用于材料表面改性以形成耐磨损涂层[21],对提高零部件的表面性能具有积极作用。有关稀土 Ce 调控高熵合金涂层性能的研究中,AlCoCrCuFe[22] 和 AlCoCuFeMnNi[23]高熵合金涂层中引入 CeO2,细化了晶粒,提高了硬度,改善了摩擦学性能。因此,以 AlCrNbTiV 多元合金为主元,稀土 Ce 作为共沉积元素,期望能改善多元金属氮化物涂层的高温摩擦磨损性能。然而,采用磁控溅射技术制备(AlCrNbTiVCe)N 涂层,并研究 Ce 对其高温摩擦学性能影响机理的相关报道偏少。为此,本文采用 AlCrNbTiV 合金靶材和 CeAl 合金靶材,通过磁控溅射分别制备(AlCrNbTiV)N 涂层和(AlCrNbTiVCe)N 涂层,考察涂层的微观结构、力学性能和摩擦磨损特性,进而探讨 Ce 对涂层高温摩擦磨损的影响机理。

  • 1 试验准备

  • 1.1 样品制备

  • 采用中科院沈阳科仪生产的磁控溅射沉积系统制备涂层,该系统由真空系统、磁控溅射靶和电源等组成,其圆柱形真空室尺寸为φ450×350 mm,3 个永磁靶按 120°均匀分布在真空室下部,共同折向上面的样品中心,预镀件安装于腔室上方可旋转工作台。使用粉末冶金工艺制备等摩尔比的 AlCrNbTiV 高熵合金块材,经机械加工成φ50 mm ×3 mm 靶材。同方法制备 CeAl 合金(原子比为 1∶1) 靶材。试验中采用 9Cr18 钢(φ30 mm×3 mm)和 Si 片(7 mm×7 mm×50 μm)为基体。使用 Ar(纯度 99.99%)为工作气体,N2(纯度 99.99%)为反应气体。

  • 1.2 沉积过程

  • 镀层前,采用 SiC 砂代磨 9Cr18 钢,并在酒精、丙酮中超声清洗。沉积 15 min 的 Cr 过渡层以提高涂层的膜基结合力。沉积过程中,两个溅射靶同时工作,工作台以 20 r / min 的速度转动,样品依次通过两个溅射靶制备涂层。试验先通过优化磁控溅射工艺,获得了高硬度、耐磨损的(AlCrNbTiV)N 涂层,再引入 Ce 元素制备(AlCrNbTiVCe)N 涂层。主要工艺参数:本底真空度为 0.5 mPa,氮气和氩气流量均为 20 mL / min,沉积温度 300℃,沉积时间为 3 h,沉积压力为 0.3 Pa。调节 AlCrNbTiV 合金溅射靶直流功率为 150 W,制备(AlCrNbTiV)N 涂层,标记为 A1 样品;保持工艺参数不变,同时调控 CeAl 合金溅射靶射频功率为 100 W,获得 (AlCrNbTiVCe)N 涂层,标记为 A2 样品。

  • 1.3 结构表征及性能测试

  • 利用德国蔡司 Sigma300 场发射扫描电镜观测涂层的表面及磨痕形貌,并使用其配置的 EDS 能谱仪分析化学成分;用日本电子 Smartlab RIGAKU X 射线衍射仪分析涂层的物相;利用美国 ThermoFischer ESCALAB 250Xi X 射线光电子能谱仪表征磨痕表面生成物的价态。

  • 采用 iNano 纳米压痕仪测试涂层的硬度、弹性模量,为避免误差,Berkovich 压头在单晶硅片上随机选取 5 个不同位置测试,结果取平均值。测试载荷为 50 mN,最大压入深度不超过膜厚的 1 / 10。

  • 在 HT-1000 型高温摩擦磨损试验机上测试涂层的摩擦磨损性能,选用 GCr15(φ6 mm)钢球为对磨球,摩擦半径为 5 mm,载荷为 10 N,对磨时间为 30 min,速度为 10.6 m / min,测试条件为室温和 500℃,摩擦方式为滑动干摩擦。利用白光干涉三维形貌仪测试磨痕截面轮廓。通过对截面轮廓进行积分得出磨损面积,再乘以摩擦距离得到磨损体积,根据公式(1)计算出磨损率:

  • W=V/(LF)
    (1)
  • 式中,W 为磨损率,mm 3 /(N·m);V 为磨痕磨损体积,mm 3F 为施加法向载荷,N;L 为摩擦总行程,m。原始涂层标记为 A1、A2 样品,在 500℃ 高温摩擦后分别标记为 A1-500℃、A2-500℃。每种条件下试验重复 3 次,最终摩擦因数和磨损率为 3 次试验数据的平均值,并以摩擦因数和磨损率作为本试验摩擦学性能的衡量指标。

  • 2 结果与讨论

  • 2.1 涂层高温摩擦试验后的微观分析

  • 图1 呈现了涂层在室温和 500℃摩擦试验后的表面形貌。室温下,A1 涂层表面晶粒粗大,出现局部团聚现象,A2 涂层表面晶粒均匀细小;500℃试验后,A1 与 A2 涂层的表面晶粒均发生了不同程度的变化,A2 涂层表面晶粒比 A1 的较为细而均匀,致密性更好,表明引入 Ce 元素改善了涂层的高温性能。这可能是因为 Ce 作为表面活性元素,阻碍了晶粒长大,细化了组织结构,易于与 O 反应形成 CeO2,可细化晶粒,提高形核率,改善涂层的微观组织[1723]

  • 图1 室温和 500℃下涂层的表面形貌

  • Fig.1 SEM morphologies of coatings at RT and 500℃

  • 图2 为 500℃摩擦试验后 A2 涂层的 EDS 分析结果。可见,Al、Cr、Nb、Ti、V、Ce 和 N 各元素在涂层中分布均匀,未出现成份偏析现象,其他涂层的元素分布也有类似现象。因此,样品结构是均匀的。

  • 图2 500℃下 A2 涂层的面扫描元素分布图

  • Fig.2 Scanning element distribution of A2 coating after 500℃

  • 表1 列出了涂层在室温和 500℃摩擦试验后的元素组成。可知,原始涂层中 Al、Cr、Nb、Ti、 V 元素含量的原子比在 7.27%~19.47%,与高熵合金的元素组成(5%~35%)相符,Ce 含量为 4.25%。在高温摩擦后,相比 A1 涂层的氧含量, A2 的较低,说明 Ce 元素的引入能够提高涂层的抗氧化能力。

  • 表1 涂层的元素组成(at.%)

  • Table1 Elemental composition of coatings (at.%)

  • 图3 为室温和 500℃摩擦试验后涂层的 XRD 图谱。研究表明,在无主元素的条件下,溅射高熵合金涂层易形成简单的面心或体心立方结构[6]。由图3 可见,A1 涂层没有出现单物质的衍射峰,具有单一的 FCC 固溶体结构,这是由于涂层中金属元素形成的氮化物都是 FCC 结构[1124]。A1 和 A2 涂层均在 45°附近出现了(200)晶面的衍射峰。室温下,对比分析可知:A2 涂层(200)晶面的衍射峰比 A1 涂层的有所增强,在 37°附近出现了(111)晶面衍射峰,Ce(002)、(110)和(200)晶面的衍射峰呈现在 37°、43°、78°附近,CeO2(104)和(404) 晶面的衍射峰位于 37°、63°附近。这表明 Ce 元素主要存在晶界处,有利于抑制 O 等物质在晶界处的偏聚,提高了晶界连续性,结晶度增强[17]

  • 图3 室温和 500℃下涂层的 XRD 图谱

  • Fig.3 XRD pattern of coatings at RT and 500℃

  • 500℃试验后,A1 和 A2 涂层(111)、(200) 晶面的衍射峰相比室温下的位置未发生变化而强度有所提升,说明涂层表面的主成份未变,产生的一定程度相变利于晶粒细化,这与涂层表面形貌分析一致,对比分析高温后的衍射峰可知,A2 涂层在 (200)晶面的衍射峰比 A1 涂层的强。这可能是 Ce的原子半径较大,使得涂层晶格畸变严重,没有足够的自由体积空间进行扩散,减少了元素扩散动力,导致了衍射峰的强度变化。A2 涂层表面在 37°、43°、78°附近展现了 CeO2 的衍射峰,金属氧化物的衍射峰比A1涂层的弱,说明其氧化物较少,表明 Ce 增元素强了 A2 涂层的抗氧化能力。推测原因是,Ce 及其氧化物易偏聚于晶界,堵塞缺陷、氧化空位,抑制涂层次表层的金属离子扩散,减缓氧化过程,降低了氧化速率,提高了涂层的高温稳定性。

  • 2.2 涂层的热硬性分析

  • 图4 呈现了室温和 500℃摩擦试验后涂层的力学性能变化趋势。高温摩擦后,由图4 可见,A2 涂层的硬度下降幅度比 A1 涂层的小,相比室温时基本保持不变。说明 A2 涂层在高温下能保持较高的硬度,具有抗高温软化性。原因可能是:①Ce 的原子半径比于其他元素的大,易产生晶格畸变,导致材料内能增加,微区应力增大,阻碍位错滑移变形,提高了涂层的硬度[17]。②高温下生成的 CeO2 可以起到细化晶粒作用,有利于提升涂层的硬度[19]。正是 Ce 及其氧化物的细晶强化效应和晶格畸变效应赋予了 A2 涂层高温后的热硬性[11]

  • 图4 室温和 500℃下涂层的 HE 变化趋势

  • Fig.4 H and E value of coatings at RT and 500℃

  • 2.3 涂层高温摩擦磨损性能

  • 图5 为室温和 500℃下涂层的摩擦因数和磨损率。对比分析可知:室温下,A2 涂层的摩擦因数和磨损率分别下降至 A1 涂层的 66.7%和 82.9%;高温下,A2 涂层的摩擦因数和磨损率分别下降到 A1 涂层的 72.5%和 54.4%,表明引入 Ce 提升了涂层的摩擦磨损性能。推测原因是 Ce 的加入起到细化晶粒、提高致密度,进而提高硬度,因此改善了高温稳定性能和摩擦磨损性能[20-21]

  • 图5 室温和 500℃下涂层的摩擦因数与磨损率

  • Fig.5 Friction factor and wear rate of coatings at RT and 500℃

  • 2.4 高温摩擦磨损机制

  • 图6 为涂层磨痕形貌的 SEM 图,表2 为磨痕表面的能谱结果。室温下,由图6a、6b 看出,磨痕表面产生刮擦和梨沟,并伴有粘着性剥落;能谱结果表明(表2)磨痕区域发生了一定程度氧化。表明在摩擦过程中,一方面产生了磨粒磨损和粘着磨损,另一方面磨损表面由于摩擦热的影响而发生了摩擦氧化反应[11]。对比 A1、A2 涂层的磨损痕迹可知:随着 Ce 的引入,A2 涂层磨痕宽度小和磨损程度轻,这是由于引入 Ce 元素细化晶粒,涂层更致密度,增强了硬度,提高了涂层的摩擦性能。

  • 图6 涂层磨痕的 SEM 图 (a)(b)室温下 A1、A2 涂层 c)(d)500℃下 A1、A2 涂层

  • Fig.6 SEM image of the wear scar on coatings. (a) , (b) A1 and A2 coatings at RT; (c) , (d) A1 and A2 coatings at 500℃.

  • 500℃下,从图6c、6d 可以看出,A1、A2 涂层的磨损表面产生剥落、犁沟和严重塑性变形,由能谱结果可知(表2),氧的含量明显高于室温。研究表明,环境温度和摩擦热是影响摩擦氧化反应的两个重要因素[15]。高温和摩擦热都会降低合金元素的氧化活化能,从而加速接触表面的摩擦氧化反应速率[11]。因此认为,室温下的轻微氧化磨损是因为摩擦热降低了金属元素的氧化活化能,进而发生了摩擦氧化反应,氧化轻微。在高温下,因环境温度和摩擦热的作用,导致了摩擦氧化反应程度提高,氧化物增多。这说明高温下磨痕区域形成了氧化层,氧化层通常硬度较高,在磨损表面可以防止材料表面与摩擦副直接接触,起到一定的保护作用,提升了摩擦性能。对比 A1、A2 涂层高温下的磨痕及其成份可知:A2 涂层的磨损程度比 A1 涂层的轻,A2 磨痕的氧含量高于 A1 的,表明 A2 磨痕中氧化物高于 A1 的,而 XRD 结果显示高温下 A2 涂层的氧化物少于 A1 的。表明了 Ce 的引入一方面减缓了高温氧化速率,另一方面在高温摩擦过程中降低了氧化物的损耗。这可能是引入 Ce 元素,高温摩擦过程中 A2 涂层表面形成 CeO2,易在界面附近发生偏聚,减缓了氧化物的消耗速率,使涂层表面保持稳定、连续的氧化膜,提高了硬度,增强了氧化层与基体的粘附力;CeO2 具有润滑作用,利于降低摩擦磨损,进一步改善了摩擦性能[1720-21]

  • 表2 涂层磨痕内的化学成分(at.%)

  • Table2 Chemical composition of coatings in the wear scar (at. %)

  • 为判断高温下氧化物的影响,测试了高温试验后对磨球磨斑的形貌和能谱图。如图7 可见,A1 涂层的磨斑表面形成宽度不等的梨沟,边缘存在磨损碎片,宽度为1.56 mm,图A2 涂层的磨斑表面相对平整,部分边缘区域因标记被污染,宽度为 1.33 mm。由图7b、7d 的能谱结果可知,磨斑区域的 O 含量明显升高,这说明在磨损过程中磨斑表面发生氧化。由此认为,接触区显示出涂层的材料发生转移,转移层的组成与涂层磨痕表面上的氧化物膜组份相似(表1),摩擦过程中转移的氧化物能够降低摩擦。A2 的磨斑形成了含 Ce 摩擦层,铈基氧化物转移并粘附至对磨球表面,具有润滑减摩作用,一定程度上避免了配副间的直接接触,在高温下对减小摩擦因数起到积极作用[2122]

  • 为了进一步分析磨痕表面氧化物的形成和演变,探讨摩擦化学反应,阐明高温减摩耐磨机制,对涂层高温磨痕表面进行了 XPS 分析。如图8 可见,A1 痕表面出现了明显的氧化,仅存微量氮化物,呈现了 Al2O3、Cr2O3和微量的 AlN、CrN 特征价态,而 Nb、 Ti、V 化合物的特征价态在 XPS 图谱中无明显特征峰,说明在高温摩擦试验中几乎耗尽。A2 磨痕表面不仅有氧化物的存在,还有少量氮化物,呈现了AlN与Al2O3、 CrN 与 Cr2O3、NbN 与 Nb2O5、TiN 与 TiO2和 V2O5 共存的特征价态,Ce 的 XPS 谱峰表明磨痕处其存在形式为 CeO2、Ce2O3

  • 对比 A1、A2 磨痕的 XPS 结果可知: A2 磨痕的氮化物高于 A1 涂层的,其氧化物也高于 A1 的,说明稀土 Ce 元素的引入,一方面减缓了涂层中其他金属元素的氧化速率,另一方面降低了其他氧化物的消耗速率。分析原因可能是,磨痕处生成的铈基氧化物(CeO2 和 Ce2O3),起到了钉扎作用,增强了高温稳定性,改善了涂层的致密性、硬度和结合力[1719]。同时,CeO2 为六方晶体结构,近似层状,具有润滑作用[20]

  • 图7 500℃下对磨球表面磨损形貌和能谱 (a)、(c)A1、A2 涂层的磨损形貌 (b)、(d)A1、A2 涂层的能谱

  • Fig.7 SEM morphologies and EDS of the counter-grinding balls at 500℃. (a) , (c) SEM morphologies of A1 and A2 coatings; (b) , (d) EDS of A1 and A2 coatings.

  • 图8 500℃下涂层磨痕表面的 XPS 分析谱图

  • Fig.8 XPS spectra of coatings in the wear scar at 500℃

  • 根据 XPS 分析结果,可推测涂层在高温摩擦磨损过程中发生了氧化反应[25],可由式(2)~(6) 表示:

  • AlN+O2Al2O3
    (2)
  • CrN+O2Cr2O3
    (3)
  • NbN+O2Nb2O5
    (4)
  • TiN+O2TiO2
    (5)
  • VN+O2V2O5
    (6)
  • 在摩擦和高温中涂层容易被氧化,在表面覆盖一层氧化膜是不可避免的,而这层氧化膜的性质一定程度决定了涂层的摩擦学性能。研究表明,高熵合金在氧化时金属会同时偏析形成各类金属的氧化混合物[26]。所以通过(Pilling-Bedworth Ratio)理论,计算这层氧化膜的性质,得到氧化膜的生长应力σ,以判定氧化膜是否完整,有助于解释涂层的摩擦学性能。由式(7)表示[27]

  • σ=VomVM=M×DMm×Dom×B
    (7)
  • 式中,Vom为氧化物体积,VM 为相应金属体积,Dom 为氧化物密度, DM 为相应金属密度, M 为氧化物分子量,m 为氧化物原子量,B 为相应金属原子量。得到 Al2O3、TiO2、Cr2O3、Nb2O5、V2O5σ 值分别为 1.28、1.78、2.07、2.81、3.19。可知,Al2O3、 Cr2O3和 TiO2σ 值在 1~2 附近,说明生成氧化物的结构致密,氧化膜不易开裂,这有利于涂层表面形成连续覆盖材料,进一步阻碍 O 元素扩散,提升涂层的高温稳定性[527]。Nb2O5 与 V2O5σ值均大于 2,说明相应氧化物的体积大、易破裂,这与 A1磨痕的SEM和XPS结果一致。磨痕处生成的Al2O3、 Cr2O3和 Nb2O5 增强了承载能力,提升了高温耐磨损性能[1428];TiO2 和 Magnéli 相的 V2O5 具有润滑效应[29],这都对改善涂层高温摩擦磨损性能起到了辅助作用。而 A2 磨痕的 SEM 与 XPS 结果表明,引入 Ce 元素,高温下摩擦过程形成 CeO2,一方面促进了金属氧化膜的连续性与完整性[19],另一方面其本身具有润滑作用,更利于提升高温下涂层的减磨耐磨性能。

  • 稀土 Ce 原子的 4f 壳层未被电子充满,电子与轨道磁力巨大,表现出极其活跃的特点[20]。分析认为,在(AlCrNbTiVCe)N 涂层中,Ce 原子与 Al、 Cr、Nb、Ti、V 相比,对其周围原子的电子有较强吸引力,尤其对 O 原子有很强亲和力,形成铈基氧化物的吉布斯自由能非常低,随着 O 原子向涂层内部扩散,同时 Ce 向外形成氧化铈的原动力非常大,易生成 CeO2,降低了 Al、Cr 等阳离子沿氧化膜晶界的向外扩散速率,从而减缓了氧化速率,延长了 Al2O3、Cr2O3等氧化膜的寿命,增强了其自愈能力,提高了抗软化能力和热稳定性。磨痕处生成的 CeO2 具有润滑作用,利于减轻摩擦副间的粘着,降低摩擦力,这是涂层在 500℃摩擦磨损性能提升的原因,磨损机理主要为润滑膜的形成与氧化磨损。

  • 3 结论

  • (1)Ce 元素的添加使(AlCrNbTiVCe)N 涂层表面晶粒细化、组织结构得到改善,500℃下,涂层仍保持较高的硬度,具有良好的热硬性。

  • (2)引入 Ce 元素提高了(AlCrNbTiVCe)N 涂层高温稳定性,在高温磨损过程,涂层表面形成的 CeO2 减缓了其他金属元素的氧化速率,促进了氧化膜的完整性与连续性。

  • (3)Ce 元素的加入使(AlCrNbTiVCe)N 涂层磨损表面形成层状的氧化铈,起到了良好的减摩作用,利于摩擦因数减小,涂层的磨损机制是由室温下的磨粒磨损为主转向高温的氧化磨损为主。

  • 参考文献

    • [1] 罗大微,周青,叶雯婷,等.NbMoWTa/Ag 自润滑纳米多层膜的力学性能及摩擦学行为[J].中国表面工程,2021,34(5):161-168.LUO Dawei,ZHOU Qing,YE Wenting,et al.Mechanical and tribological behaviors of NbMoWTa/Ag selflubricating nanomultilayers[J].China Surface Engineering,2021,34(5):161-168.(in Chinese)

    • [2] 常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progresses of damage and protection fo surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)

    • [3] SHARMA A.High entropy alloy coatings and technology[J].Coatings,2021,11(4):372.

    • [4] 卢思颖,苗军伟,卢一平.多主元高熵合金的强韧化[J].稀有金属,2021,45(5):530-540.LU Siying,MIAO Junwei,LU Yiping.Strengthening and toughening of multi-principal high-entropy alloys[J].Chinese Journal of Rare Metals,2021,45(5):530-540.(in Chinese)

    • [5] 张毅勇,张志彬,姚雯,等.高熵合金薄膜研究现状与展望[J].表面技术,2021,50(1):117-129.ZHANG Yiyong,ZHANG Zhibin,YAO Wen,et al.Research status and prospects of high-entropy alloy thin film[J].Surface Technology,2021,50(1):117-129.(in Chinese)

    • [6] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)

    • [7] YAN X H,LI J S,ZHANG W R,et al.A brief review of high-entropy films[J].Materials Chemistry and Physics,2018,210:12-19.

    • [8] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [9] BAPTISTA A,SILVA F,PORTEIRO J,et al.Sputtering physical vapour deposition(PVD)coatings:A critical review on process improvement and market trend demands[J].Coatings,2018,8(11):402.

    • [10] SENKOV O N,WILKS G B,MIRACLE D B,et al.Refractory high-entropy alloys[J].Intermetallics,2010,18(9):1758-1765.

    • [11] 刘一帆,常涛,刘秀波,等.高熵合金涂层的摩擦学性能研究进展[J].表面技术,2021,50(8):156-169.LIU Yifan,CHANG Tao,LIU Xiubo,et al.Research progress on tribological properties of high-entropy alloy coatings[J].Surface Technology,2021,50(8):156-169.(in Chinese)

    • [12] LIN C H,Duh J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.

    • [13] XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.

    • [14] HUANG P K,YEH J W.Effects of substrate bias on structure and mechanical properties of(AlCrNbSiTiV)N coatings[J].Journal of Physics D Applied Physics,2009,42(11):115401-115407.

    • [15] LO W L,HSU S Y,LIN Y C,et al.Improvement of high entropy alloy nitride coatings(AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias[J].Surface and Coatings Technology,2020,401:126247.

    • [16] JIN G,CAI Z,GUAN Y,et al.High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating[J].Applied Surface Science,2018,445:113-122.

    • [17] 徐进,朱昊,周仲荣,等.稀土表面工程及其摩擦学应用的研究现状[J].中国表面工程,2001,1:20-23.XU Jin,ZHU Hao,ZHOU Zhongrong,et al.The State-of-art of researches on rare earth surface engineering and its tribological applications[J].China Surface Engineering,2001,1:20-23.(in Chinese)

    • [18] 徐向荣,黄拿灿,杨少敏.表面改性中稀土提高材料抗高温氧化及耐蚀性能的作用[J].材料保护,2005,8:35-38.XU Xiangrong,HUANG Nacan,YANG Shaomin.Effect of rare earth in surface modification on high temperature oxidation resistance and corrosion resistance of materials[J].materials Protection,2005,8:35-38.(in Chinese)

    • [19] 杨珍,鲁金涛,赵新宝,等.稀土元素对合金高温氧化的影响[J].中国稀土学报,2014,32(6):641-649.YANG Zhen,LU Jintao,ZHAO Xinbao,et al.Effect of rare earth elements on high temperature oxidation of metals[J].Journal of the Chinese Society of Rare Earths,2014,32(6):641-649.(in Chinese)

    • [20] 薛茂权,熊党生,闫杰.稀土润滑材料的摩擦学研究[J].稀有金属,2004,28(1):248-252.XUE Maoquan,XIONG Dangshen,YAN Jie.Tribological study of rare earth lubricating materials[J].Chinese Journal of Rare Metals,2004,28(1):248-252.(in Chinese)

    • [21] 何忠义,刘棉玲,章家立,等.稀土在高温摩擦中的应用研究概况[J].华东交通大学学报,2001,18(1):62-65.HE Zhongyi,LIU Mianling,ZHANG Jiali,et al.A survey on high temperature tribology research of the rare earth[J].Journal of East China Jiaotong University,2001,18(1):62-65.(in Chinese)

    • [22] 马明星,王志新,梁存,等.CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J].材料工程,2019,47(7):106-111.MA Mingxing,WANG Zhixin,LIANG Cun,et al.Effect of CeO2 doping on microstructure,friction and wear properties of AlCoCrCuFe high-entropy alloys[J].Journal of Materials Engineering,2019,47(7):106-111.(in Chinese)

    • [23] 李俊魁,彭竹琴,马明星,等.CeO2对AlCoCuFeMnNi高熵合金涂层组织和硬度的影响[J].金属热处理,2017,42(11):19-23.LI Junku,PENG Zhuqin,MA Mingxing,et al.Effect of CeO2 on microstructure and hardness of AlCoCuFeMnNi high-entropy alloy coating[J].Heat Treatment of Metals,2017,42(11):19-23.(in Chinese)

    • [24] XU W J,LIAO M D,LIU X H,et al.Microstructures and properties of(TiCrZrVAl)N high entropy ceramics films by multi-arc ion plating[J].Ceramics International,2021,47(17):24752-24759.

    • [25] 刘昊,高强,郜文鹏,等.激光熔覆 CoCrFeNiNbx高熵合金涂层的高温摩擦磨损性能[J].摩擦学学报,2022,42(5):966-977.LIU Hao,GAO Qiang,GAO Wenpeng,et al.High temperature tribological properties of CoCrFeNiNbx high-entropy alloy coatings by laser cladding[J].Tribology,2022,42(5):966-977.(in Chinese)

    • [26] SONG B A,YANG Y,RABBANI M,et al.In situ oxidation studies of high-entropy alloy nanoparticles[J].ACS Nano,2020,14(11):15131-15143.

    • [27] XU C,GAO W.Pilling-Bedworth ratio for oxidation of alloys[J].Materials Research Innovations,2000,3(4):231-235.

    • [28] HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [29] KIM H,HEO S,KIM W R,et al.Effect of vanadium addition on the high-temperature friction behavior in nanostructured Al-Cr-V-N films prepared by UBMS[J].Journal of Nanoscience and Nanotechnology,2020,20(7):4271-4275.

  • 参考文献

    • [1] 罗大微,周青,叶雯婷,等.NbMoWTa/Ag 自润滑纳米多层膜的力学性能及摩擦学行为[J].中国表面工程,2021,34(5):161-168.LUO Dawei,ZHOU Qing,YE Wenting,et al.Mechanical and tribological behaviors of NbMoWTa/Ag selflubricating nanomultilayers[J].China Surface Engineering,2021,34(5):161-168.(in Chinese)

    • [2] 常可可,王立平,薛群基.极端工况下机械表面界面损伤与防护研究进展[J].中国机械工程,2020,31(2):206-220.CHANG Keke,WANG Liping,XUE Qunji.Progresses of damage and protection fo surfaces and interfaces in machinery under extreme operating conditions[J].China Mechanical Engineering,2020,31(2):206-220.(in Chinese)

    • [3] SHARMA A.High entropy alloy coatings and technology[J].Coatings,2021,11(4):372.

    • [4] 卢思颖,苗军伟,卢一平.多主元高熵合金的强韧化[J].稀有金属,2021,45(5):530-540.LU Siying,MIAO Junwei,LU Yiping.Strengthening and toughening of multi-principal high-entropy alloys[J].Chinese Journal of Rare Metals,2021,45(5):530-540.(in Chinese)

    • [5] 张毅勇,张志彬,姚雯,等.高熵合金薄膜研究现状与展望[J].表面技术,2021,50(1):117-129.ZHANG Yiyong,ZHANG Zhibin,YAO Wen,et al.Research status and prospects of high-entropy alloy thin film[J].Surface Technology,2021,50(1):117-129.(in Chinese)

    • [6] 罗朋,王晓波,巩春志,等.磁控溅射制备高熵合金薄膜研究进展[J].中国表面工程,2021,34(5):53-66.LUO Peng,WANG Xiaobo,GONG Chunzhi,et al.Research progress of high entropy alloy thin films prepared by magnetron sputtering[J].China Surface Engineering,2021,34(5):53-66.(in Chinese)

    • [7] YAN X H,LI J S,ZHANG W R,et al.A brief review of high-entropy films[J].Materials Chemistry and Physics,2018,210:12-19.

    • [8] 鞠鹏飞,张达威,吉利,等.苛刻环境下材料表面防护技术的研究进展[J].中国表面工程,2019,32(4):1-16.JU Pengfei,ZHANG Dawei,JI Li,et al.Progress in research of surface protection technology of materials in harsh environment[J].China Surface Engineering,2019,32(4):1-16.(in Chinese)

    • [9] BAPTISTA A,SILVA F,PORTEIRO J,et al.Sputtering physical vapour deposition(PVD)coatings:A critical review on process improvement and market trend demands[J].Coatings,2018,8(11):402.

    • [10] SENKOV O N,WILKS G B,MIRACLE D B,et al.Refractory high-entropy alloys[J].Intermetallics,2010,18(9):1758-1765.

    • [11] 刘一帆,常涛,刘秀波,等.高熵合金涂层的摩擦学性能研究进展[J].表面技术,2021,50(8):156-169.LIU Yifan,CHANG Tao,LIU Xiubo,et al.Research progress on tribological properties of high-entropy alloy coatings[J].Surface Technology,2021,50(8):156-169.(in Chinese)

    • [12] LIN C H,Duh J G,YEH J W.Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter[J].Surface and Coatings Technology,2007,201(14):6304-6308.

    • [13] XU Y,LI G,LI G,et al.Effect of bias voltage on the growth of super-hard(AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering[J].Applied Surface Science,2021,564:150417.

    • [14] HUANG P K,YEH J W.Effects of substrate bias on structure and mechanical properties of(AlCrNbSiTiV)N coatings[J].Journal of Physics D Applied Physics,2009,42(11):115401-115407.

    • [15] LO W L,HSU S Y,LIN Y C,et al.Improvement of high entropy alloy nitride coatings(AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias[J].Surface and Coatings Technology,2020,401:126247.

    • [16] JIN G,CAI Z,GUAN Y,et al.High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating[J].Applied Surface Science,2018,445:113-122.

    • [17] 徐进,朱昊,周仲荣,等.稀土表面工程及其摩擦学应用的研究现状[J].中国表面工程,2001,1:20-23.XU Jin,ZHU Hao,ZHOU Zhongrong,et al.The State-of-art of researches on rare earth surface engineering and its tribological applications[J].China Surface Engineering,2001,1:20-23.(in Chinese)

    • [18] 徐向荣,黄拿灿,杨少敏.表面改性中稀土提高材料抗高温氧化及耐蚀性能的作用[J].材料保护,2005,8:35-38.XU Xiangrong,HUANG Nacan,YANG Shaomin.Effect of rare earth in surface modification on high temperature oxidation resistance and corrosion resistance of materials[J].materials Protection,2005,8:35-38.(in Chinese)

    • [19] 杨珍,鲁金涛,赵新宝,等.稀土元素对合金高温氧化的影响[J].中国稀土学报,2014,32(6):641-649.YANG Zhen,LU Jintao,ZHAO Xinbao,et al.Effect of rare earth elements on high temperature oxidation of metals[J].Journal of the Chinese Society of Rare Earths,2014,32(6):641-649.(in Chinese)

    • [20] 薛茂权,熊党生,闫杰.稀土润滑材料的摩擦学研究[J].稀有金属,2004,28(1):248-252.XUE Maoquan,XIONG Dangshen,YAN Jie.Tribological study of rare earth lubricating materials[J].Chinese Journal of Rare Metals,2004,28(1):248-252.(in Chinese)

    • [21] 何忠义,刘棉玲,章家立,等.稀土在高温摩擦中的应用研究概况[J].华东交通大学学报,2001,18(1):62-65.HE Zhongyi,LIU Mianling,ZHANG Jiali,et al.A survey on high temperature tribology research of the rare earth[J].Journal of East China Jiaotong University,2001,18(1):62-65.(in Chinese)

    • [22] 马明星,王志新,梁存,等.CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J].材料工程,2019,47(7):106-111.MA Mingxing,WANG Zhixin,LIANG Cun,et al.Effect of CeO2 doping on microstructure,friction and wear properties of AlCoCrCuFe high-entropy alloys[J].Journal of Materials Engineering,2019,47(7):106-111.(in Chinese)

    • [23] 李俊魁,彭竹琴,马明星,等.CeO2对AlCoCuFeMnNi高熵合金涂层组织和硬度的影响[J].金属热处理,2017,42(11):19-23.LI Junku,PENG Zhuqin,MA Mingxing,et al.Effect of CeO2 on microstructure and hardness of AlCoCuFeMnNi high-entropy alloy coating[J].Heat Treatment of Metals,2017,42(11):19-23.(in Chinese)

    • [24] XU W J,LIAO M D,LIU X H,et al.Microstructures and properties of(TiCrZrVAl)N high entropy ceramics films by multi-arc ion plating[J].Ceramics International,2021,47(17):24752-24759.

    • [25] 刘昊,高强,郜文鹏,等.激光熔覆 CoCrFeNiNbx高熵合金涂层的高温摩擦磨损性能[J].摩擦学学报,2022,42(5):966-977.LIU Hao,GAO Qiang,GAO Wenpeng,et al.High temperature tribological properties of CoCrFeNiNbx high-entropy alloy coatings by laser cladding[J].Tribology,2022,42(5):966-977.(in Chinese)

    • [26] SONG B A,YANG Y,RABBANI M,et al.In situ oxidation studies of high-entropy alloy nanoparticles[J].ACS Nano,2020,14(11):15131-15143.

    • [27] XU C,GAO W.Pilling-Bedworth ratio for oxidation of alloys[J].Materials Research Innovations,2000,3(4):231-235.

    • [28] HE N R,LI H X,JI L,et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J].Tribology International,2016,98:133-143.

    • [29] KIM H,HEO S,KIM W R,et al.Effect of vanadium addition on the high-temperature friction behavior in nanostructured Al-Cr-V-N films prepared by UBMS[J].Journal of Nanoscience and Nanotechnology,2020,20(7):4271-4275.

  • 手机扫一扫看