en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

石浩,男,1988年出生,博士,硕士研究生导师。主要研究方向为金属腐蚀与防护。E-mail:shihao@sdust.edu.cn

通讯作者:

宋立英,女,1987年出生,博士,硕士研究生导师。主要研究方向为金属腐蚀与防护。E-mail:songliying0520@163.com

中图分类号:TG176

DOI:10.11933/j.issn.1007−9289.20221223001

参考文献 1
MONTEMOR M F.Functional and smart coatings for corrosion protection:A review of recent advances[J].Surface & Coatings Technology,2014,258:17-37.
参考文献 2
睢文杰,赵文杰,秦立光,等.铜合金表面防腐涂层研究进展[J].腐蚀科学与防护技术,2016,28(1):88-94.SUI Wenjie,ZHAO Wenjie,QIN Liguang,et al.Research progress of anti-corrosion coatings on copper alloys[J].Corrosion Science and Protection Technology,2016,28(1):88-94.(in Chinese)
参考文献 3
PAREEK S,JAIN D,BEHERA D,et al.Effective anticorrosive performance of benzo-imidazo-pyrimidineg-graphene oxide composite coating for copper in natural and artificial sea water[J].Surfaces and Interfaces,2021,22 100828.
参考文献 4
李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐蚀性能[J].中国表面工程,2020,33(5):1-9.LI Yufeng.,GAO Wenbo,SHI Lingzhi,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)
参考文献 5
王兆程,程瑾,王宜迪,等.铜腐蚀防护及缓蚀剂研究进展[J].材料保护,2021,54(11):160-166.WANG Zhaocheng,CHENG Jin,WANG Yidi,et al.Research progress of copper corrosion protection and corrosion inhibitors[J].Materials Protection,2021,54(11):160-166.(in Chinese)
参考文献 6
MUNIZ-MIRANDA M,MUNIZ-MIRANDA F,CAPORALI S.SERS and DFT study of copper surfaces coated with corrosion inhibitor[J].Beilstein Journal of Nanotechnology,2014,5:2489-2497.
参考文献 7
XI X Y,NAN Q L,ZHOU Y M,et al.Polyether modified benzimidazole as corrosion inhibitor for copper in sodium chloride solution[J].Desalination and Water Treatment,2020,191:51-63.
参考文献 8
WANG M,LIU X,WANG J H,et al.Preparation,corrosion resistance and self-healing behavior of Cu-MBT@HNTs/epoxy coating[J].Reactive and Functional Polymers,2021,160:104826.
参考文献 9
SHARMA S B,MAURICE V,KLEIN L H,et al.Local inhibition by 2-mercaptobenzothiazole of early stage intergranular corrosion of copper[J].Journal of the Electrochemical Society,2020,167(16):161504.
参考文献 10
VIJAYAN P P,AL-MAADEED M.Self-repairing composites for corrosion protection:A review on recent strategies and evaluation methods[J].Materials,2019,12(17):2754.
参考文献 11
欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)
参考文献 12
程庆利,董邯海,宋立英,等.纳米纤维包覆 3,4,5-三羟基苯甲酸丙二醇酯自修复涂层防腐蚀机理的研究[J].涂料工业,2022,52(5):11-17,23.CHENG Qingli,DONG Hanhai,SONG Liying,et al.Corrosion prevention mechanism of self-healing coatings with core-shell electrospun fibres containing 3,4,5-trihydroxybenzoate propylene glycol ester[J].Paint & Coatings Industry,2022,52(5):11-17,23.(in Chinese)
参考文献 13
PIRHADY TAVANDASHTI N,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.
参考文献 14
RAO B,IQBAL M Y,KUMAR K C,et al.Corrosion protection of copper by self assembled nano film of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone[J].Indian Journal of Chemical Technology,2014,21(3):188-198.
参考文献 15
JOSHI A,ABDULLAYEV E,VASILIEV A,et al.Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors[J].Langmuir,2013,29(24):7439-7448.
参考文献 16
吕家杰,吴彬瑞,邢素丽,等.改性环氧树脂基纳米氧化铝超疏水涂层的制备及其耐久性[J].中国表面工程,2019,32(5):144-150.LÜ Jiajie,WU Binrui,XING Suli,et al.Preparation and durability of modified epoxy resin-based nano-alumina superhydrophobic coating[J].China Surface Engineering,2019,32(5):144-150.(in Chinese)
参考文献 17
BORISOVA D,AKCAKAYIRAN D,SCHENDERLEIN M,et al.Nanocontainer-based anticorrosive coatings:effect of the container size on the self-healing performance[J].Advanced Functional Materials,2013,23(30):3799-3812.
参考文献 18
ABDEEN D H,EL HACHACH M,KOC M,et al.A Review on the corrosion behaviour of nanocoatings on metallic substrates[J].Materials,2019,12(2):210.
参考文献 19
BORISOVA D,MOHWALD H,SHCHUKIN D G.Mesoporous silica nanoparticles for active corrosion protection[J].Acs Nano,2011,5(3):1939-1946.
参考文献 20
ZEA C,ALCANTARA J,BARRANCO-GARCIA R,et al.Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection[J].Nanomaterials,2018,8(7):478.
参考文献 21
OLIVIERI F,CASTALDO R,COCCA M,et al.Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings:A critical review[J].Nanoscale,2021,13(20):9091-9111.
参考文献 22
霍胜娟,陈利红,祝卿,等.2-巯基苯并噻唑对铜缓蚀行为的表面增强红外光谱研究[J].物理化学学报,2013,29(12):2565-2572.HUO Shengjuan,CHEN Lihong,ZHU Qing,et al.Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-mercaptobenzothiazole on copper[J].Acta Physico-Chimica Sinica,2013,29(12):2565-2572.(in Chinese)
参考文献 23
FINSGAR M,MERL D K.An electrochemical,long-term immersion,and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution[J].Corrosion Science,2014,83:164-175.
参考文献 24
KAZANSKY L P,SELYANINOV I A,KUZNETSOV Y I.Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions[J].Applied Surface Science,2012,258(18):6807-6813.
参考文献 25
ZHANG Y Y,ANG C Y,LI M H,et al.Polymer-coated hollow mesoporous silica nanoparticles for tripleresponsive drug delivery[J].Acs Applied Materials & Interfaces,2015,7(32):18179-18187.
参考文献 26
ZHOU Y M,XU Q N,LI C H,et al.Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy:A review[J].Frontiers of Materials Science,2020,14(4):373-386.
参考文献 27
LI Y H,LI N,PAN W,et al.Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery[J].Acs Applied Materials & Interfaces,2017,9(3):2123-2129.
参考文献 28
FANG X L,ZHAO X J,FANG W J,et al.Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery[J].Nanoscale,2013,5(6):2205-2218.
参考文献 29
梁家妮.负载缓蚀剂的介孔二氧化硅微球的制备及其在涂料中的应用[D].广州:华南理工大学,2019.LIANG Jiani.Preparation of mesoporous silica microspheres loaded with corrosion inhibitor and its application in coatings[D].Guangzhou:South China University of Technology,2019.(in Chinese)
参考文献 30
XU J B,CAO Y Q,FANG L,et al.A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings[J].Corrosion Science,2018,140:349-362.
参考文献 31
赵婷.超疏水-自愈合双效智能涂层的制备及失效机理[D].上海:上海大学,2021.ZHAO Ting.Preparation and failure mechanism of superhydrophobic and self-healing double-effect intelligent coating[D].Shanghai:Shanghai University,2021.(in Chinese)
参考文献 32
卫元坤,张优,张政,等.基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J].材料导报,2023(8):1-18.WEI Yuankun,ZHANG You,ZHANG Zheng,et al.Smart self-healing coatings based on corrosion inhibitor micro-/nanocontainers:A review[J].Materials Reports,2023(8):1-18.(in Chinese)
参考文献 33
MA L,CHEN F F,LI Z T,et al.Preparation and anticorrosion property of poly(2,3-dimethylaniline)modified by nano-SiO2[J].Composites Part BEngineering,2014,58:54-58.
参考文献 34
TAVANDASHTI N P,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.
参考文献 35
YANG S S,CHEN Z,CHEN T Q,et al.Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of mg alloys[J].Acs Applied Nano Materials,2020,3(5):4542-4552.
参考文献 36
NOR N,ISMAIL L,JAMARI S,et al.Electrochemical impedance spectroscopy study of CuO and Cu coating systems[J].Pigment & Resin Technology,2014,43(6):371-378.
参考文献 37
GARCIA-VERGARA S J,SKELDON P,THOMPSON G E,et al.Enrichment of alloying elements in aluminum:A scanning kelvin probe approach[J].Journal of The Electrochemical Society,2012,159(9):C428-C433.
参考文献 38
刘大杨,魏开金,李文军,等.铜合金在海水中暴露4年的腐蚀行为[J].材料开发与应用,1993(6):9-14.LIU Dayang,WEI Kaijin,LI Wenjun,et al.Corrosion behavior of copper alloy exposed to seawater for 4 years[J].Development and Application of Materials,1993(6):9-14.(in Chinese)
参考文献 39
DEMIRKAN K,DERKITS G E,FLEMING D A,et al.Corrosion of cu under highly corrosive environments[J].Journal of The Electrochemical Society,2010,157(1):C30-C35.
目录contents

    摘要

    涂层技术广泛应用于金属设备腐蚀防护,而针对传统涂层服役过程中的微损伤难以及时探测并修复,导致损伤后涂层防腐性能失效、金属腐蚀进程加速等问题。开发一种中空介孔 SiO2微球包覆 2-巯基苯并噻唑的自修复涂层,并对涂层的自修复性能进行全面表征测试。将包覆 2-巯基苯并噻唑的 SiO2微球作为填料,添加到无溶剂环氧树脂涂层中制备自修复涂层,在质量分数为 3.5%的 NaCl 溶液中探查受损涂层在铜基体表面的自修复过程。采用多种测试表征方法测试 SiO2 微球包覆 2-巯基苯并噻唑的可行性,对涂层的自修复机理进行深入分析,综合评价自修复涂层的防腐性能。采用溶胶-凝胶法对 SiO2 微球进行制备,制备的 SiO2微球具有中空结构,微球直径约为 623 nm。通过 XDR、FTIR 与 TG 等测试表征技术验证 SiO2微球实现对 2-巯基苯并噻唑的包覆,且负载量良好;通过 EIS 阻抗测试对自修复涂层的修复性能进行测试,经对照实验测试自修复涂层具有较为良好的防腐性能,并在 6 d 时防腐性能达到最大;通过 SEM、EDS 以及 SKP 等测试技术,从微观角度验证包覆 2-巯基苯并噻唑的 SiO2微球对损伤涂层的修复性能以及对铜基体的防腐性能。当涂层被划伤后,2-巯基苯并噻唑缓慢释放并通过强化学吸附与铜基体结合,在裸露金属基体表面形成一层保护膜,阻滞外部环境的腐蚀性介质对铜腐蚀,实现了涂层对损伤处的主动修复,在浸泡 6 d 后防腐效果显著。制备的包覆 2-巯基苯并噻唑 SiO2微球对损伤涂层具有一定的修复能力,能够有效延长涂层的服役寿命。

    Abstract

    In view of the corrosion of metal equipment in the marine environment, coating technology has been widely adopted to prevent metal corrosion. Microdamage to traditional coatings is difficult to detect and repair in time. Once microdamage has occurred, the failure of anti-corrosion performance follows, accelerating the corrosion process. To address this issue, a self-repairing coating has been developed that could adapt to the complex marine environment and repair microdamage intelligently. The self-repairing performance of the coating was comprehensively evaluated. Hollow mesoporous silica microspheres(HMSN) were selected as carriers for storing 2-mercaptobenzothiazole(MBT). The self-repairing coating was prepared with the addition of MBT-loaded HMSN. In this study, HMSNs were prepared and characterized using scanning electron microscopy and transmission electron microscopy. The prepared HMSN, by definition, had a hollow mesoporous structure, and the diameter of the microspheres was about 623 nm. The self-repairing coating was prepared by adding the MBT-loaded HMSN, accounted for 18 wt.% of the coating mass, as fillers to solvent-free epoxy resin coatings. The self-repairing process of the prepared coating was simulated on a damaged copper substrate in 3.5 wt.% NaCl solution. When the scratched coating was immersed in a corrosive environment, the MBT in each exposed HMSN was slowly released. The MBT was subsequently combined with the copper substrate through strong chemical adsorption, and an adsorption film was formed on the surface of the bare metal substrate. The film prevented the corrosion of copper from the corrosive medium in the external environment, and hence active repair of the coating damage was realized. As the immersion time increased, the scale of the adsorption film became larger, and the corrosion resistance increased. On the sixth day of the immersion, the corrosion resistance of the coating reached its maximum resistance value, and the coating repair was complete. Compared with the beginning of the immersion, the copper content decreased from 80.233 wt.% to 2.548 wt.% after the coating repair. The performance of the MBT-loaded HMSN coating was tested using various test and characterization methods. Firstly, X-ray diffraction spectrum characterization proved that the prepared HMSNs were amorphous, and the loading of MBT did not change the crystal structure of the HMSN. Secondly, infrared characterization confirmed that MBT was able to be loaded into the HMSN. Thirdly, thermogravimetric analysis showed that HMSN, as excellent nanocarriers, were used to encapsulate MBT with a 14 wt.% loading rate. Next, the anti-corrosion performance of the self-repairing coating was evaluated by electrochemical impedance spectroscopy, and was further confirmed by the scanning Kelvin probe microscopy. At the end of the study, the self-repairing mechanism was summarized and clarified, and process was described. The self-repair performance of the prepared coating was excellent according to a variety of test characterizations. In the complex corrosion environment, the self-repairing coating had the ability to repair coating damage, and thus has a high practical value. The service life of metal equipment coated with the proposed coating can be effectively prolonged because of the remarkable anti-corrosion effect of the coating, enabling working equipment to realize long-term operation.

  • 0 前言

  • 铜作为人类最早使用的金属之一,在电气、化工、机械以及制造等领域早已得到了广泛应用。然而在使用过程中,以铜为基础的设备或构件无时无刻不在遭受腐蚀的破坏[1-2],造成财产经济损失甚至人身安全威胁等诸多问题。目前,在铜的诸多防腐措施中,涂层和缓蚀剂技术已成为其免受外部环境腐蚀最有效的选择[3-5]

  • 涂层和缓蚀剂技术的联合使用能够有效避免外部环境对金属带来的影响。若将缓蚀剂直接添加到涂层系统中,缓蚀剂活性成分连续且不可控的析出,会导致缓蚀剂的快速耗尽以及涂层聚合物薄膜的渗透起泡,从而缩短涂层的保护寿命[6-8]。且当金属设备传统表面涂层遇到不可逆损伤时,即使是微米级别的破损也会为金属与外部腐蚀环境之间腐蚀介质提供传输通道,传统涂层并不能为金属提供足够的防护。由此可将微纳米容器包覆缓蚀剂后添加到涂层中,赋予涂层自主修复微裂缝的能力,此方向也是目前延长涂层服役寿命研究的热点[9-11]

  • 自修复涂层研究中,通过纳米容器对缓蚀剂进行封装处理,将其作为填料添加到涂层中的外援型自修复涂层,避免了缓蚀剂与金属基体之间的不良相互作用,具有较好的应用前景[12-15]。纳米容器的种类、特性以及尺寸往往限制着涂层的自修复性能[16-18]。典型性纳米容器空心微球的内部可对各类缓蚀剂进行密封,小分子缓蚀剂可以通过微球外表面形成的微通道进入纳米容器内部,形成纳米容器对缓蚀剂的包覆。大量研究表明中空介孔 SiO2 微球 (HMSN)[19-21]除具有纳米空心微球的优点外,还具备孔径可控以及易于实现表面功能化等良好性能,是一种良好的分子负载材料。

  • 2-巯基苯并噻唑(MBT)作为铜最有效的缓蚀剂之一,除其中分子结构中的 S、N 能与金属配位形成稳定聚合物膜外,还能够在铜与界面之间形成强吸附膜[22-24]。通过其环外 S 原子在金属表面形成直立吸附,隔绝外部腐蚀环境对铜基体的影响。

  • 目前,国内外更多的研究是将 SiO2 微球用于负载药剂[25-28],借助其负载特性能够实现对缓蚀剂较为良好的包覆与吸收。尽管针对 SiO2微球包覆缓蚀剂的自修复涂层已有部分研究[29-30],但对其负载的各类缓蚀剂以及对各类基体的自修复效果研究相对较少。在纳米容器的研究中,用于释放缓蚀剂的空微纳米胶囊或纤维一旦破裂则会在涂层中产生纳米孔洞,为腐蚀介质的渗入提供了新的途径,选用中空介孔 SiO2 微球作为包覆载体则会避免这个问题[31-32]

  • 本文选用 2-巯基苯并噻唑作为负载缓蚀剂,制备合成中空介孔 SiO2 微球作为纳米容器,对 2-巯基苯并噻唑进行包覆。同时采用多种表征技术评价含有 2-巯基苯并噻唑的 SiO2 微球自修复涂层的性能,并对此自修复涂层的自修复机理进行研究。

  • 1 试验准备

  • 1.1 样品制备

  • 试验使用的药品有四乙氧基硅烷(TEOS)、聚乙烯吡咯烷酮(PVP,K30)、十六烷基三甲基溴化铵(CTAB)、氢氧化钠(上海麦克林生化有限公司,分析纯);无溶剂环氧涂层(海洋化学研究所有限公司,分析纯);氯化钠和乙醇(国药集团化学试剂有限公司,分析纯);2-巯基苯并噻唑(上海阿拉丁生化科技有限公司,分析纯);以及铜电极(99.99%, 10 mm×10 mm×10 mm,滨州阳信县晟鑫腐蚀检测设备试件加工中心)。所有试验中使用的水都是蒸馏水。

  • (1)中空 SiO2 微球的制备

  • 利用溶胶-凝胶法制备中空 SiO2 微球,取 100 mL 烧杯,加入 15 mL 乙醇和 25.5 mL 水,制成混合液后,加入 0.5 mL TEOS(正硅酸乙酯)、0.08 g CTAB (十六烷基三甲基溴化铵)和 0.5 mL NH3·H2O,使用磁性搅拌器,以 100 r / min 的速度连续搅拌 3 h,搅拌后进行离心洗涤(至少 5 次),真空干燥,将产物在马弗炉中以 5℃ / h 的升温速度进行焙烧,在 200℃下保持 2 h 后升温至 600℃ 下焙烧 6 h。

  • (2)中空 SiO2 微球对 2-巯基苯并噻唑的包覆

  • 在室温下将 0.004 g 的 2-巯基苯并噻唑加入 100 mL 乙醇溶液中搅拌,搅拌 30 min 直到 2-巯基苯并噻唑完全溶解。随后向 2-巯基苯并噻唑乙醇溶液中加入 0.4 g 的 SiO2 微球,超声分散 30 min 后,利用磁力搅拌装置搅拌 48 h,随后离心洗涤得到沉淀,在 80℃下真空干燥 48 h,干燥后得到包覆 2-巯基苯并噻唑的 SiO2 微球。

  • (3)自修复涂层的制备

  • 将无溶剂环氧涂层 A、B 组分 1∶1 混合,同时按照质量分数 18%的比例在涂料中加入包覆 2-巯基苯并噻唑的 SiO2 微球,将制备好的涂层涂覆铜电极表面,涂覆涂层厚度约为 100 μm,随后将涂覆好的电极在室温下固化 14 d,制备得到包覆 2-巯基苯并噻唑的 SiO2微球涂层电极,命名为 HMSN-MBT 涂层。按照相同制备条件,制备不添加包覆 2-巯基苯并噻唑的 SiO2 微球的涂层电极,并将其命名为不添加 HMSN-MBT 涂层。

  • 在腐蚀浸没试验之前,使用手术刀片在制备的两组涂层上制造宽度约为 50 μm 的划痕。

  • 1.2 结构表征与防腐性能测试

  • 采用 X 射线衍射(XRD)测量对 SiO2 微球结构进行表征,在 Ultima IV 衍射仪(日本)上进行,使用 Cu Kα 辐射(λ=1.541 8 Å,管电压:40 kV,管电流:40 mA),室温下 2θ 范围为 10°~80°。2-巯基苯并噻唑和 SiO2 微球的化学官能团通过傅里叶变换红外光谱(FTIR,Nicolet IS10,Thermo Fisher Scientific Inc,USA)进行表征。采用 KBr 粉末压制技术,光谱范围为 400~4 000 cm−1,扫描速率为 4 cm−1。使用扫描电子显微镜(SEM,JSM-7500F; JEOL)对制备的 SiO2 微球以及涂层表面进行扫描电子显微镜图像测试。能谱分析(EDS)用于表征铜电极愈合前后划痕的表面形貌和成分分析。对包覆前后的SiO2微球和2-巯基苯并噻唑进行热重分析 (TG,STA449C,Netzsch Gerätebau GmbH,Germany)。测试温度范围 30~800℃,气氛为空气环境。电化学阻抗谱(EIS)测试在质量分数为 3.5%的 NaCl 溶液中进行,使用三电极电池系统。铜 / 涂层电极用作工作电极,Ag / AgCl(饱和 KCl)电极作为参比电极,尺寸为 2 cm×2 cm×1 mm 的铂箔用作对电极。EIS 测试在 CS350 恒电位仪(中国武汉科思特仪器有限公司)上进行,测试频率为10−2~105 Hz,交流电压幅值为 10 mV。通过扫描开尔文探针 (SKP)分析愈合前后 HMSN-MBT 涂层划痕电压的变化。SKP 测试使用 PAR Model370 电化学工作站,测试区域覆盖划痕的 2 mm×2 mm 区域,扫描步长为 100 μm。

  • 2 结果与讨论

  • 2.1 XDR 图谱对比

  • 对制备的中空 SiO2 微球与包覆 2-巯基苯并噻唑的 SiO2微球晶体结构进行表征。图1 为包覆 2-巯基苯并噻唑的 SiO2微球与中空 SiO2微球的 XRD 图谱。从图1 可以看包覆 2-巯基苯并噻唑的 SiO2 与中空 SiO2 微球均在 2θ=22°附近有一个宽弥散峰,表明实验中制备的中空 SiO2 微球为无定形,且 2-巯基苯并噻唑的负载并未改变 SiO2微球的晶型结构。

  • 图1 中空 SiO2微球与包覆 2-巯基苯并噻唑的 SiO2微球 XRD 图谱

  • Fig.1 XRD patterns of HMSN and HMSN-MBT

  • 2.2 红外表征

  • 对 SiO2 微球与包覆 2-巯基苯并噻唑后 SiO2 微球的官能团进行表征,SiO2 微球与包覆 2-巯基苯并噻唑后的傅里叶变换红外光谱如图2 所示, 3 124 cm−1 处为巯基 S—H 的伸缩振动峰;1 627 cm−1 处的弱峰是 H2O 的特征峰;峰值在 1 124 cm−1、 800 cm−1 及 460 cm−1 处是 SiO2微球中 Si—O 的伸缩振动峰[33];962 cm−1 处为噻唑环的对称伸缩振动吸收峰[34]

  • 图2 SiO2微球与包覆2-巯基苯并噻唑的SiO2微球的红外光谱

  • Fig.2 Infrared spectra of, HMSN and HMSN-MBT

  • 比较图2 中的红外光谱,证实了 2-巯基苯并噻唑被 SiO2 微球包覆。

  • 2.3 SEM 与 TEM 分析

  • 对 SiO2 微球的形貌及微观结构进行表征,结果如图3 所示。在 SiO2 微球制备工艺的选择时,本次试验采用溶胶凝胶法,所制备的 SiO2微球大小分布较均匀,平均直径为 623 nm。且通过 TEM 结果可以看出,成功制备的 SiO2 微球具有明显的中空结构。

  • 图3 中空介孔 SiO2微球的 SEM 与 TEM 图像

  • Fig.3 SEM and TEM images of HMSN

  • 2.4 TG 测试

  • TG 分析可用于测试 SiO2微球对 2-巯基苯并噻唑的包覆能力[35],在 30~800℃温度范围内、加热速率 5℃ / min 时 SiO2微球、2-巯基苯并噻唑以及包覆后的 SiO2 微球热重分析曲线如图4 所示。

  • 图4 SiO2微球、2-巯基苯并噻唑以及包覆后热重分析图

  • Fig.4 Thermal gravimetric analysis of HMSN, MBT and HMSN-MBT under air atmosphere

  • 由图4 可知,2-巯基苯并噻唑的质量损失在大约 230℃时开始,然后持续减少,大约 650℃时质量变为零,由此证明 2-巯基苯并噻唑在选定的温度范围内完全热解。SiO2 微球质量损失的起始温度为 50℃,这是由 SiO2 微球中的水蒸发导致质量减小。随着温度持续升高,SiO2 微球质量继续减少,最终的质量损失约为 6%。

  • 通过 TG 测试后,包覆 2-巯基苯并噻唑的 SiO2 微球的最终质量损失约为 20%。计算后可得 SiO2 微球和包覆2-巯基苯并噻唑的SiO2微球之间的质量差为 14%,即 SiO2 微球对 2-巯基苯并噻唑的质量负载约为 14%。

  • 2.5 EIS 测试

  • 采用 EIS 测试评价 HMSN-MBT 涂层的自修复能力,将划伤的不添加 HMSN-MBT 涂层电极与 HMSN-MBT涂层电极在质量分数3.5%的NaCl溶液中进行为期 20 d 的浸没试验,并对阻抗的变化趋势进行观测[36]。为了使在阻抗谱测试的整个频率范围内的数据有更为良好的拟合结果,采用如图5 所示的等效电路。其中 Rs为溶液电阻;Rct为电荷转移电阻;Rpo 为涂层电阻;RctRpo 的和为 Rt,能够代表涂层的防腐性能。在拟合过程中,使用常相位角元件 Q 代替电容 CQc 为涂层的常相位角元件;Qdl 表示双层电容的常相位角元件;n 是与频率无关的参数。

  • 图5 EIS 测试拟合等效电路图

  • Fig.5 EIS test fitting equivalent circuit diagram

  • 图6 为 HMSN-MBT 涂层划伤后,浸泡 0、3、 6、10、20 d 的 Nyquist 图和 Bode 图。从图6a 可以看出,在浸泡初期,涂层体系的划痕使得腐蚀介质很容易从溶液进入到金属铜表面,此时涂层容抗弧半径较小,铜基体发生阳极溶解,腐蚀较易发生。随着浸泡时间的延长,容抗弧半径迅速增大,到 6 d 达到最大,随后开始减小,直至试验结束。产生如此变化的原因主要是浸泡初期,划痕处会迅速被 NaCl 溶液充满,暴露 SiO2 微球包覆的 2-巯基苯并噻唑迅速从微球内部流入 NaCl 溶液中。2-巯基苯并噻唑通过其环外 S 原子与裸露铜基体形成强化学吸附,在铜基体表现形成一层保护膜,隔绝了外部腐蚀环境与铜基体间的接触,阻止了铜基体的进一步腐蚀。HMSN-MBT 涂层的拟合阻抗参数见表1。

  • 图6 HMSN-MBT 涂层划伤后浸泡 0、3、6、10、20 d 的 EIS 谱

  • Fig.6 EIS Spectrum of coating with HMSN-MBT after scratch soaking for 0, 3, 6, 10 and 20 d

  • 通过表1 数据可以看出,HMSN-MBT 涂层在浸泡 0 d 时,由于涂层被划伤,因此划痕处的铜基体直接与溶液中的腐蚀离子接触,此时 Rct 约为 0.78 MΩ·cm 2,数值较小,腐蚀进程较快。当涂层浸泡 3 d 时,涂层体系的 Rct 增大,主要是因为 SiO2 微球中的 2-巯基苯并噻唑得到释放且在铜基体表面形成吸附膜,将铜基体与外部环境隔绝。随着浸泡时间的延长,在 6 d 时 2-巯基苯并噻唑得到进一步释放,吸附膜逐渐完整,从 0 d 到 6 d 的自修复过程 Rct 迅速增加,最终在 6 d 时达到 2.44 MΩ·cm 2,修复膜对金属基体的保护能力最佳。Rpo 代表涂层的防腐蚀性能,在 0 d 时约为 4.42 kΩ·cm 2,涂层防腐能力较弱。随着浸泡时间的增加,Rpo 开始增大,且上涨迅速。6 d 时,由于 2-巯基苯并噻唑释放量增大,迅速与铜基体形成强化学吸附, Rpo 达到0.17 3 MΩ·cm 2,此时自修复涂层的防腐性能达到最强。而在 6 d 以后,由于缓蚀剂的包覆量有限, RctRpo 开始缓慢减小,修复膜在长期的浸泡过程中逐渐失效,涂层的整体防护性能下降。

  • 表1 HMSN-MBT 涂层拟合阻抗数据

  • Table1 Fitting impedance data of coating with HMSN-MBT

  • 为进一步验证涂层在引入包覆 2-巯基苯并噻唑的 SiO2 微球后的自修复效果,同步进行涂覆不添加 HMSN-MBT 涂层的浸没试验,所得 EIS 数据如图7 所示,采用图5 的等效电路进行拟合,拟合数据列于 2。

  • 图7 不添加 HMSN-MBT 涂层划伤后浸泡 0、3、6、10、20 d 的 EIS 谱

  • Fig.7 EIS Spectrum of coating without HMSN-MBT after scratch soaking for 0, 3, 6, 10 and 20 d

  • 图7 为不添加 HMSN-MBT 涂层划伤后,浸泡 0、3、6、10、20 d 的 Nyquist 图和 Bode 图。从图7a 可以看出,在浸泡初期,腐蚀介质开始与金属铜表面接触,铜基体发生阳极溶解。随着浸泡时间的延长,涂层容抗弧半径不断减小,腐蚀进程加快。产生如此变化的原因主要是铜基体发生腐蚀时,由于不添加 HMSN-MBT 涂层存在划痕,外部腐蚀环境与铜基体直接接触,涂层整体的防腐能力持续减弱。

  • 通过表2 数据可以明显看出,将受损的不添加 HMSN-MBT 涂层进行浸没试验后,其对铜基体的防腐作用急剧减弱。0 d 时,RctRpo为最大值,分别为 3.99 MΩ·cm 2 和 3.13 kΩ·cm 2。随着浸泡时间的延长,腐蚀不断加剧,涂层防腐能力也逐渐减弱。RctRpo 都随时间呈单调递减趋势,于 20 d 时 RctRpo 达到最小,分别为 0.125 MΩ·cm 2 和 0.536 kΩ·cm 2。由于划痕是人为制造,无法保证不添加 HMSN-MBT 涂层与 HMSN-MBT 涂层样品上的划痕宽度跟深度的精确一致,因此在浸泡初期出现了不添加 HMSN-MBT 涂层的 Rct 高于 HMSNMBT 涂层的现象。

  • 本文主要目的是探查 HMSN-MBT 涂层的自主修复能力,通过阻抗数据可知,HMSN-MBT 涂层的 RctRpo 阻抗数值呈现先增加后减小的趋势,而不添加 HMSN-MBT 涂层的 RctRpo 阻抗数值持续减小。通过对比不同涂层体系阻抗数值的变化趋势,可知添加包覆 2-巯基苯并噻唑的 SiO2 微球对涂层损伤具有较好的修复能力。

  • 表2 不添加 HMSN-MBT 涂层拟合阻抗数据

  • Table2 Fitting impedance data of coating without HMSN-MBT

  • 2.6 涂层 SEM 表征及 EDS 测试

  • 如图8所示为自修复涂层划痕区域的SEM图像及 EDS 数据。试验开始时,由于外科手术刀的划伤,涂层表面出现约为 40 μm 的划痕,铜基体暴露在外部环境内,因此划痕处的铜含量高。在 0 d 时,划痕处底部的铜含量约为总质量的 80.233%。随后,由于 HMSN-MBT 涂层开始了对涂层的修复,2-巯基苯并噻唑逐渐被释放。最终在 6 d 时,划痕被 2-巯基苯并噻唑所形成的保护膜覆盖,修复后的涂层将基体与外部环境隔绝,铜的质量占比降为 2.548%,由铜含量的显著降低可得,涂层被缓蚀剂修复。

  • 图8 HMSN-MBT 涂层划痕区域的 SEM 图像以及 EDS 数据

  • Fig.8 SEM image and EDS data of coating scratch area

  • 2.7 SKP 测试

  • 在室温下空气氛围中,对在质量分数 3.5%的 NaCl 溶液中浸泡 0 d 和 6 d 的涂层进行 SKP 测试,评价 2-巯基苯并噻唑对划痕的修复性能。 HMSN-MBT 涂层在 NaCl 溶液中浸泡 0 d 和 6 d 的 SKP 电位分布如图9 所示。从图9a 可以观察到第 0 d 时出现一个宽而深的电势谷,这是由于涂层划痕处金属基体裸露,划痕深处电位较低,体系易发生腐蚀[37]。随着浸没时间的增加,SiO2微球包覆的 2-巯基苯并噻唑与损伤处形成强吸附。如图9b 所示,在浸没 6 d 后涂层修复趋近完成,这一电势谷消失。 SKP 测试与阻抗测试结果一致,证实了 HMSN-MBT 涂层的自修复效果。

  • 图9 HMSN-MBT 涂层在质量分数 3.5%的 NaCl 溶液中浸泡 0 d 和 6 d 的 SKP 图像

  • Fig.9 SKP test of coating with HMSN-MBT immersed in 3.5 wt.% NaCl solution for 0 d and 6 d

  • 2.8 自修复机理

  • 图10 为不添加 HMSN-MBT 涂层图10a、10b的腐蚀机理图,以及 HMSN-MBT 涂层图10c、10d 的自修复机理图。当铜基体表面涂层受到损伤时,铜基体暴露在 NaCl 溶液中,腐蚀介质迅速覆盖金属,此时铜发生腐蚀,生成 Cu+ 和以 Cu2O 为主的腐蚀产物膜[38]。由于其致密性存在缺陷[39],无法与基体进行紧密结合,也无法阻止铜基体的进一步腐蚀。对比不添加 HMSN-MBT 涂层与 HMSN-MBT 涂层的阻抗测试也可以看出,不添加 HMSN-MBT 涂层的阻抗数值一直在下降,铜的腐蚀产物膜并未起到保护作用。而 HMSN-MBT 涂层划痕处的 SiO2 微球暴露在腐蚀介质中,SiO2 微球受到腐蚀环境刺激,其包覆的 2-巯基苯并噻唑得到释放。随后在受损区域 2-巯基苯并噻唑与基体结合,与铜基体以及 Cu+ 结合生成强吸附膜修复涂层,形成的稳定吸附膜如图10d 所示,阻止了铜与腐蚀环境的接触,对金属基体起到了保护作用。

  • 图10 自修复机理图

  • Fig.10 Self repair mechanism

  • 3 结论

  • (1)设计并制备中空介孔 SiO2 微球包覆 2-巯基苯并噻唑的自修复涂层,并对此涂层进行多种结构表征和防腐性能测试。

  • (2)制备具有中空结构的 SiO2微球;采用 XDR、 FTIR 与 TG 表征技术验证 SiO2 微球对 2-巯基苯并噻唑实现包覆。

  • (3)通过 HMSN-MBT 涂层在质量分数 3.5%的 NaCl 溶液中的模拟试验,以及 EIS、SEM、EDS 与SKP 等测试手段,验证涂层的自修复效果。证明包覆的 2-巯基苯并噻唑迅速从微球中心流入 NaCl 溶液中,其环外 S 原子与裸露铜基体形成强化学吸附,在铜基体表现形成一层保护膜,防止了铜基体进一步腐蚀。划痕自修复后能够在一定时间内保证良好的防腐性能,在浸泡 6 d 后防腐效果显著。自修复涂层对铜基体涂层的破损处起到了修复作用,有效延长了涂层的服役寿命。

  • 参考文献

    • [1] MONTEMOR M F.Functional and smart coatings for corrosion protection:A review of recent advances[J].Surface & Coatings Technology,2014,258:17-37.

    • [2] 睢文杰,赵文杰,秦立光,等.铜合金表面防腐涂层研究进展[J].腐蚀科学与防护技术,2016,28(1):88-94.SUI Wenjie,ZHAO Wenjie,QIN Liguang,et al.Research progress of anti-corrosion coatings on copper alloys[J].Corrosion Science and Protection Technology,2016,28(1):88-94.(in Chinese)

    • [3] PAREEK S,JAIN D,BEHERA D,et al.Effective anticorrosive performance of benzo-imidazo-pyrimidineg-graphene oxide composite coating for copper in natural and artificial sea water[J].Surfaces and Interfaces,2021,22 100828.

    • [4] 李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐蚀性能[J].中国表面工程,2020,33(5):1-9.LI Yufeng.,GAO Wenbo,SHI Lingzhi,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)

    • [5] 王兆程,程瑾,王宜迪,等.铜腐蚀防护及缓蚀剂研究进展[J].材料保护,2021,54(11):160-166.WANG Zhaocheng,CHENG Jin,WANG Yidi,et al.Research progress of copper corrosion protection and corrosion inhibitors[J].Materials Protection,2021,54(11):160-166.(in Chinese)

    • [6] MUNIZ-MIRANDA M,MUNIZ-MIRANDA F,CAPORALI S.SERS and DFT study of copper surfaces coated with corrosion inhibitor[J].Beilstein Journal of Nanotechnology,2014,5:2489-2497.

    • [7] XI X Y,NAN Q L,ZHOU Y M,et al.Polyether modified benzimidazole as corrosion inhibitor for copper in sodium chloride solution[J].Desalination and Water Treatment,2020,191:51-63.

    • [8] WANG M,LIU X,WANG J H,et al.Preparation,corrosion resistance and self-healing behavior of Cu-MBT@HNTs/epoxy coating[J].Reactive and Functional Polymers,2021,160:104826.

    • [9] SHARMA S B,MAURICE V,KLEIN L H,et al.Local inhibition by 2-mercaptobenzothiazole of early stage intergranular corrosion of copper[J].Journal of the Electrochemical Society,2020,167(16):161504.

    • [10] VIJAYAN P P,AL-MAADEED M.Self-repairing composites for corrosion protection:A review on recent strategies and evaluation methods[J].Materials,2019,12(17):2754.

    • [11] 欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)

    • [12] 程庆利,董邯海,宋立英,等.纳米纤维包覆 3,4,5-三羟基苯甲酸丙二醇酯自修复涂层防腐蚀机理的研究[J].涂料工业,2022,52(5):11-17,23.CHENG Qingli,DONG Hanhai,SONG Liying,et al.Corrosion prevention mechanism of self-healing coatings with core-shell electrospun fibres containing 3,4,5-trihydroxybenzoate propylene glycol ester[J].Paint & Coatings Industry,2022,52(5):11-17,23.(in Chinese)

    • [13] PIRHADY TAVANDASHTI N,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.

    • [14] RAO B,IQBAL M Y,KUMAR K C,et al.Corrosion protection of copper by self assembled nano film of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone[J].Indian Journal of Chemical Technology,2014,21(3):188-198.

    • [15] JOSHI A,ABDULLAYEV E,VASILIEV A,et al.Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors[J].Langmuir,2013,29(24):7439-7448.

    • [16] 吕家杰,吴彬瑞,邢素丽,等.改性环氧树脂基纳米氧化铝超疏水涂层的制备及其耐久性[J].中国表面工程,2019,32(5):144-150.LÜ Jiajie,WU Binrui,XING Suli,et al.Preparation and durability of modified epoxy resin-based nano-alumina superhydrophobic coating[J].China Surface Engineering,2019,32(5):144-150.(in Chinese)

    • [17] BORISOVA D,AKCAKAYIRAN D,SCHENDERLEIN M,et al.Nanocontainer-based anticorrosive coatings:effect of the container size on the self-healing performance[J].Advanced Functional Materials,2013,23(30):3799-3812.

    • [18] ABDEEN D H,EL HACHACH M,KOC M,et al.A Review on the corrosion behaviour of nanocoatings on metallic substrates[J].Materials,2019,12(2):210.

    • [19] BORISOVA D,MOHWALD H,SHCHUKIN D G.Mesoporous silica nanoparticles for active corrosion protection[J].Acs Nano,2011,5(3):1939-1946.

    • [20] ZEA C,ALCANTARA J,BARRANCO-GARCIA R,et al.Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection[J].Nanomaterials,2018,8(7):478.

    • [21] OLIVIERI F,CASTALDO R,COCCA M,et al.Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings:A critical review[J].Nanoscale,2021,13(20):9091-9111.

    • [22] 霍胜娟,陈利红,祝卿,等.2-巯基苯并噻唑对铜缓蚀行为的表面增强红外光谱研究[J].物理化学学报,2013,29(12):2565-2572.HUO Shengjuan,CHEN Lihong,ZHU Qing,et al.Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-mercaptobenzothiazole on copper[J].Acta Physico-Chimica Sinica,2013,29(12):2565-2572.(in Chinese)

    • [23] FINSGAR M,MERL D K.An electrochemical,long-term immersion,and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution[J].Corrosion Science,2014,83:164-175.

    • [24] KAZANSKY L P,SELYANINOV I A,KUZNETSOV Y I.Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions[J].Applied Surface Science,2012,258(18):6807-6813.

    • [25] ZHANG Y Y,ANG C Y,LI M H,et al.Polymer-coated hollow mesoporous silica nanoparticles for tripleresponsive drug delivery[J].Acs Applied Materials & Interfaces,2015,7(32):18179-18187.

    • [26] ZHOU Y M,XU Q N,LI C H,et al.Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy:A review[J].Frontiers of Materials Science,2020,14(4):373-386.

    • [27] LI Y H,LI N,PAN W,et al.Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery[J].Acs Applied Materials & Interfaces,2017,9(3):2123-2129.

    • [28] FANG X L,ZHAO X J,FANG W J,et al.Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery[J].Nanoscale,2013,5(6):2205-2218.

    • [29] 梁家妮.负载缓蚀剂的介孔二氧化硅微球的制备及其在涂料中的应用[D].广州:华南理工大学,2019.LIANG Jiani.Preparation of mesoporous silica microspheres loaded with corrosion inhibitor and its application in coatings[D].Guangzhou:South China University of Technology,2019.(in Chinese)

    • [30] XU J B,CAO Y Q,FANG L,et al.A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings[J].Corrosion Science,2018,140:349-362.

    • [31] 赵婷.超疏水-自愈合双效智能涂层的制备及失效机理[D].上海:上海大学,2021.ZHAO Ting.Preparation and failure mechanism of superhydrophobic and self-healing double-effect intelligent coating[D].Shanghai:Shanghai University,2021.(in Chinese)

    • [32] 卫元坤,张优,张政,等.基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J].材料导报,2023(8):1-18.WEI Yuankun,ZHANG You,ZHANG Zheng,et al.Smart self-healing coatings based on corrosion inhibitor micro-/nanocontainers:A review[J].Materials Reports,2023(8):1-18.(in Chinese)

    • [33] MA L,CHEN F F,LI Z T,et al.Preparation and anticorrosion property of poly(2,3-dimethylaniline)modified by nano-SiO2[J].Composites Part BEngineering,2014,58:54-58.

    • [34] TAVANDASHTI N P,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.

    • [35] YANG S S,CHEN Z,CHEN T Q,et al.Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of mg alloys[J].Acs Applied Nano Materials,2020,3(5):4542-4552.

    • [36] NOR N,ISMAIL L,JAMARI S,et al.Electrochemical impedance spectroscopy study of CuO and Cu coating systems[J].Pigment & Resin Technology,2014,43(6):371-378.

    • [37] GARCIA-VERGARA S J,SKELDON P,THOMPSON G E,et al.Enrichment of alloying elements in aluminum:A scanning kelvin probe approach[J].Journal of The Electrochemical Society,2012,159(9):C428-C433.

    • [38] 刘大杨,魏开金,李文军,等.铜合金在海水中暴露4年的腐蚀行为[J].材料开发与应用,1993(6):9-14.LIU Dayang,WEI Kaijin,LI Wenjun,et al.Corrosion behavior of copper alloy exposed to seawater for 4 years[J].Development and Application of Materials,1993(6):9-14.(in Chinese)

    • [39] DEMIRKAN K,DERKITS G E,FLEMING D A,et al.Corrosion of cu under highly corrosive environments[J].Journal of The Electrochemical Society,2010,157(1):C30-C35.

  • 参考文献

    • [1] MONTEMOR M F.Functional and smart coatings for corrosion protection:A review of recent advances[J].Surface & Coatings Technology,2014,258:17-37.

    • [2] 睢文杰,赵文杰,秦立光,等.铜合金表面防腐涂层研究进展[J].腐蚀科学与防护技术,2016,28(1):88-94.SUI Wenjie,ZHAO Wenjie,QIN Liguang,et al.Research progress of anti-corrosion coatings on copper alloys[J].Corrosion Science and Protection Technology,2016,28(1):88-94.(in Chinese)

    • [3] PAREEK S,JAIN D,BEHERA D,et al.Effective anticorrosive performance of benzo-imidazo-pyrimidineg-graphene oxide composite coating for copper in natural and artificial sea water[J].Surfaces and Interfaces,2021,22 100828.

    • [4] 李玉峰,高文博,史凌志,等.超疏水涂层的制备及其对 Mg-Li 合金的防腐蚀性能[J].中国表面工程,2020,33(5):1-9.LI Yufeng.,GAO Wenbo,SHI Lingzhi,et al.Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J].China Surface Engineering,2020,33(5):1-9.(in Chinese)

    • [5] 王兆程,程瑾,王宜迪,等.铜腐蚀防护及缓蚀剂研究进展[J].材料保护,2021,54(11):160-166.WANG Zhaocheng,CHENG Jin,WANG Yidi,et al.Research progress of copper corrosion protection and corrosion inhibitors[J].Materials Protection,2021,54(11):160-166.(in Chinese)

    • [6] MUNIZ-MIRANDA M,MUNIZ-MIRANDA F,CAPORALI S.SERS and DFT study of copper surfaces coated with corrosion inhibitor[J].Beilstein Journal of Nanotechnology,2014,5:2489-2497.

    • [7] XI X Y,NAN Q L,ZHOU Y M,et al.Polyether modified benzimidazole as corrosion inhibitor for copper in sodium chloride solution[J].Desalination and Water Treatment,2020,191:51-63.

    • [8] WANG M,LIU X,WANG J H,et al.Preparation,corrosion resistance and self-healing behavior of Cu-MBT@HNTs/epoxy coating[J].Reactive and Functional Polymers,2021,160:104826.

    • [9] SHARMA S B,MAURICE V,KLEIN L H,et al.Local inhibition by 2-mercaptobenzothiazole of early stage intergranular corrosion of copper[J].Journal of the Electrochemical Society,2020,167(16):161504.

    • [10] VIJAYAN P P,AL-MAADEED M.Self-repairing composites for corrosion protection:A review on recent strategies and evaluation methods[J].Materials,2019,12(17):2754.

    • [11] 欧宝立,汪雨微,段俊,等.BTA@SPANI-POSS 环氧涂层的制备及防腐性能[J].中国表面工程,2022,35(4):161-171.OU Baoli,WANG Yuwei,DUAN Jun,et al.Preparation and anticorrosive performance of BTA@SPANI-POSS epoxy coating[J].China Surface Engineering,2022,35(4):161-171.(in Chinese)

    • [12] 程庆利,董邯海,宋立英,等.纳米纤维包覆 3,4,5-三羟基苯甲酸丙二醇酯自修复涂层防腐蚀机理的研究[J].涂料工业,2022,52(5):11-17,23.CHENG Qingli,DONG Hanhai,SONG Liying,et al.Corrosion prevention mechanism of self-healing coatings with core-shell electrospun fibres containing 3,4,5-trihydroxybenzoate propylene glycol ester[J].Paint & Coatings Industry,2022,52(5):11-17,23.(in Chinese)

    • [13] PIRHADY TAVANDASHTI N,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.

    • [14] RAO B,IQBAL M Y,KUMAR K C,et al.Corrosion protection of copper by self assembled nano film of 4-amino-3-(octadecylthio)-6-methyl-1,2,4-triazinone[J].Indian Journal of Chemical Technology,2014,21(3):188-198.

    • [15] JOSHI A,ABDULLAYEV E,VASILIEV A,et al.Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors[J].Langmuir,2013,29(24):7439-7448.

    • [16] 吕家杰,吴彬瑞,邢素丽,等.改性环氧树脂基纳米氧化铝超疏水涂层的制备及其耐久性[J].中国表面工程,2019,32(5):144-150.LÜ Jiajie,WU Binrui,XING Suli,et al.Preparation and durability of modified epoxy resin-based nano-alumina superhydrophobic coating[J].China Surface Engineering,2019,32(5):144-150.(in Chinese)

    • [17] BORISOVA D,AKCAKAYIRAN D,SCHENDERLEIN M,et al.Nanocontainer-based anticorrosive coatings:effect of the container size on the self-healing performance[J].Advanced Functional Materials,2013,23(30):3799-3812.

    • [18] ABDEEN D H,EL HACHACH M,KOC M,et al.A Review on the corrosion behaviour of nanocoatings on metallic substrates[J].Materials,2019,12(2):210.

    • [19] BORISOVA D,MOHWALD H,SHCHUKIN D G.Mesoporous silica nanoparticles for active corrosion protection[J].Acs Nano,2011,5(3):1939-1946.

    • [20] ZEA C,ALCANTARA J,BARRANCO-GARCIA R,et al.Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection[J].Nanomaterials,2018,8(7):478.

    • [21] OLIVIERI F,CASTALDO R,COCCA M,et al.Mesoporous silica nanoparticles as carriers of active agents for smart anticorrosive organic coatings:A critical review[J].Nanoscale,2021,13(20):9091-9111.

    • [22] 霍胜娟,陈利红,祝卿,等.2-巯基苯并噻唑对铜缓蚀行为的表面增强红外光谱研究[J].物理化学学报,2013,29(12):2565-2572.HUO Shengjuan,CHEN Lihong,ZHU Qing,et al.Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-mercaptobenzothiazole on copper[J].Acta Physico-Chimica Sinica,2013,29(12):2565-2572.(in Chinese)

    • [23] FINSGAR M,MERL D K.An electrochemical,long-term immersion,and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution[J].Corrosion Science,2014,83:164-175.

    • [24] KAZANSKY L P,SELYANINOV I A,KUZNETSOV Y I.Adsorption of 2-mercaptobenzothiazole on copper surface from phosphate solutions[J].Applied Surface Science,2012,258(18):6807-6813.

    • [25] ZHANG Y Y,ANG C Y,LI M H,et al.Polymer-coated hollow mesoporous silica nanoparticles for tripleresponsive drug delivery[J].Acs Applied Materials & Interfaces,2015,7(32):18179-18187.

    • [26] ZHOU Y M,XU Q N,LI C H,et al.Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy:A review[J].Frontiers of Materials Science,2020,14(4):373-386.

    • [27] LI Y H,LI N,PAN W,et al.Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery[J].Acs Applied Materials & Interfaces,2017,9(3):2123-2129.

    • [28] FANG X L,ZHAO X J,FANG W J,et al.Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery[J].Nanoscale,2013,5(6):2205-2218.

    • [29] 梁家妮.负载缓蚀剂的介孔二氧化硅微球的制备及其在涂料中的应用[D].广州:华南理工大学,2019.LIANG Jiani.Preparation of mesoporous silica microspheres loaded with corrosion inhibitor and its application in coatings[D].Guangzhou:South China University of Technology,2019.(in Chinese)

    • [30] XU J B,CAO Y Q,FANG L,et al.A one-step preparation of inhibitor-loaded silica nanocontainers for self-healing coatings[J].Corrosion Science,2018,140:349-362.

    • [31] 赵婷.超疏水-自愈合双效智能涂层的制备及失效机理[D].上海:上海大学,2021.ZHAO Ting.Preparation and failure mechanism of superhydrophobic and self-healing double-effect intelligent coating[D].Shanghai:Shanghai University,2021.(in Chinese)

    • [32] 卫元坤,张优,张政,等.基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J].材料导报,2023(8):1-18.WEI Yuankun,ZHANG You,ZHANG Zheng,et al.Smart self-healing coatings based on corrosion inhibitor micro-/nanocontainers:A review[J].Materials Reports,2023(8):1-18.(in Chinese)

    • [33] MA L,CHEN F F,LI Z T,et al.Preparation and anticorrosion property of poly(2,3-dimethylaniline)modified by nano-SiO2[J].Composites Part BEngineering,2014,58:54-58.

    • [34] TAVANDASHTI N P,GHORBANI M,SHOJAEI A,et al.Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J].Corrosion Science,2016,112:138-149.

    • [35] YANG S S,CHEN Z,CHEN T Q,et al.Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of mg alloys[J].Acs Applied Nano Materials,2020,3(5):4542-4552.

    • [36] NOR N,ISMAIL L,JAMARI S,et al.Electrochemical impedance spectroscopy study of CuO and Cu coating systems[J].Pigment & Resin Technology,2014,43(6):371-378.

    • [37] GARCIA-VERGARA S J,SKELDON P,THOMPSON G E,et al.Enrichment of alloying elements in aluminum:A scanning kelvin probe approach[J].Journal of The Electrochemical Society,2012,159(9):C428-C433.

    • [38] 刘大杨,魏开金,李文军,等.铜合金在海水中暴露4年的腐蚀行为[J].材料开发与应用,1993(6):9-14.LIU Dayang,WEI Kaijin,LI Wenjun,et al.Corrosion behavior of copper alloy exposed to seawater for 4 years[J].Development and Application of Materials,1993(6):9-14.(in Chinese)

    • [39] DEMIRKAN K,DERKITS G E,FLEMING D A,et al.Corrosion of cu under highly corrosive environments[J].Journal of The Electrochemical Society,2010,157(1):C30-C35.

  • 手机扫一扫看