en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张优,女,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为金属腐蚀与防护。E-mail:youzhang@bipt.edu.cn

通讯作者:

文陈,男,1985年出生,博士,高工。主要研究方向为材料腐蚀与失效分析及功能涂层。E-mail:13552907280@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221104001

参考文献 1
CHEN F,YU P H,ZHANG Y.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys and Compounds,2017,711:342-348.
参考文献 2
ECHAVE F J,SANZ O,ALMEIDA L C,et al.Highly porous hydrotalcite-like film growth on anodised aluminium monoliths[J].Studies in Surface Science and Catalysis,2010,175(175):639-642.
参考文献 3
CHEN J H,LIU P S,WANG Y Q,et al.Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength[J].Journal of Alloys and Compounds,2022,910:164911-164922.
参考文献 4
高培云.锆盐封孔对建筑铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(5):40-49.GAO Peiyun.Effect of zirconium salt sealing on corrosion resistance of anodic oxide film on aluminium alloy used in construction[J].Plating and Finishing,2022,44(5):40-49.(in Chinese)
参考文献 5
李利.铝及铝合金阳极氧化膜的绿色封闭工艺研究进展[J].材料开发与应用,2012,27(1):75-82.LI Li.Development of green sealing technology of anodized aluminum alloys[J].Development and Application of Materials,2012,27(1):75-82.(in Chinese)
参考文献 6
YANG Y S,CHEN J,LIU S L,et al.Effect of NaAlO2 sealing on corrosion resistance of 2024 aluminum alloy anodized film[J].Materials and Corrosion,2019,70(1):120-127.
参考文献 7
薛文斌.SiC 颗粒增强体对铝基复合材料微弧氧化膜生长的影响[J].金属学报,2006,42(4):350-354.XUE Wenbin.Effect of SiC reinforcement on growth of microarc oxidation film on aluminum matrix composite[J].Acta Metallurgica Sinica,2006,42(4):350-354.(in Chinese)
参考文献 8
王英君,刘洪雷,王国军,等.新型高强稀土 Al-ZnMg-Cu-Sc 铝合金的阳极氧化及其抗腐蚀性能研究[J].中国腐蚀与防护学报,2020,40(2):131-138.WANG Yinjun,LIU Honglei,WANG Guojun,et al.Investigation of anodic film on a novel RE-containing Al-alloy Al-Zn-Mg-Cu-Sc[J].Journal of Chinese Society for Corrosion and Protection,2020,40(2):131-138.(in Chinese)
参考文献 9
YANG D,OD D G,RAMU A G,et al.Fabrication of enhanced corrosion protection of PEO/PFOTES nanocomposite film coatings on aluminum alloy deposited by plasma electrolytic oxidation[J].Materials Letters,2022,315:131898-131902.
参考文献 10
WANG S Q,WEN L,WANG Y M,et al,One-step fabrication of double-layer nanocomposite coating by plasma electrolytic oxidation with particle addition[J].Applied Surface Science,2022.592:153043-153054.
参考文献 11
HINTON B.The inhibition of aluminum alloy corrosion by cerous cations[J].Metals Forum,1985,10(3):11-18.
参考文献 12
颜建辉,刘锦平.稀土元素在铝合金阳极氧化后处理中的应用[J].电镀与精饰,2002,21(1):19-22.YAN Jianhui,LIU Jinping.Application of rare earth element in post treatment of aluminum anodizing[J].Plating and Finishing,2002,21(1):19-22.(in Chinese)
参考文献 13
顾宝珊,宫丽,杨培燕.铝合金表面稀土转化膜性能与耐蚀机理研究[J].稀有金属材料与工程,2014,43(2):429-434.GU Banshan,GONG Li,YANG Peiyan.Study on performance and corrosion resistance mechanism of rare earth metal conversion coating on Al alloy surface[J].Rare Metal Materials and Engineering,2014,43(2):429-434.(in Chinese)
参考文献 14
李凌杰,李荻,张胜涛,等.稀土盐对铝合金阳极化过程的影响[J].中国稀土学报,2001,19(4):350-353.LI Lingjie,LI Di,ZHANG Shengtao,et al.Effect of rare earth salts on anodizing of aluminum alloy[J].Journal of the Chinese Rare Earth Society,2001,19(4):350-353.(in Chinese)
参考文献 15
王春涛,王国平,龚雅萍.铈盐和镧盐对铝合金阳极氧化膜性能的影响[J].腐蚀与防护,2003,24(6):244-248.WANG Chuntao,WANG Guoping,GONG Yaping.Effects of rare-earth salts on properties of anodizing film of aluminum alloy[J].Corrosion and Protection,2003,24(6):244-248.(in Chinese)
参考文献 16
李松梅,吴昊,刘建华,等.Ce 在钛合金阳极化中作用的研究[J].航空学报,2002,23(1):91-93.LI Songmei,WU Hao,LIU Jianhua,et al.Study on effect of Ce on Ti-alloy anodization[J].Acta Aeronautica et Astronautica Sinica,2002,23(1):91-93.(in Chinese)
参考文献 17
LI Y,LI S,YOU Z,et al.Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy[J].Journal of Alloys and Compounds,2015,630:29-36.
参考文献 18
HUANG J,ZHAO D Z,GONG Y,et al.Improved corrosion resistance of PEO-coated 7085Al alloy via a novel organic and inorganic sealing-treatment combination[J].Surface and Coatings Technology,2022,441:128566-128580.
参考文献 19
TAKAICHI H,MORIGUCHI T,HORIKAWA M,et al.Sealing liquid for anodic oxide coating films of aluminum alloy,concentrated liquid and sealing method[P].United States Patent,US2019/0112726Al,2019,04-18.
参考文献 20
HAO X L,ZHAO N,JIN H H,et al.Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature[J].Rare Metals,2020,6:1-7.
参考文献 21
QIN G M,ZHANG Y C,YANG E H,et al.Effect of post-sealing treatment with different concentrations of NaH2PO4 on corrosion resistance of MAO coating on 6063 aluminum alloy[J].Surface and Coatings Technology,2022,443:128604-128615.
参考文献 22
况先银,金少强,曹艳辉,等.铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J].电化学,2021,27(6):624-636.KUANG Xianyin,JIN Shaoqiang,CAO Yanhui,et al.Effect of aluminum alloy surface modification on adhesion of the modified polyurethane coating and its corrosion protective performance[J].Journal of Electrochemistry,2021,27(6):624-636.(in Chinese)
参考文献 23
王雨顺,丁毅,马立群.铝及铝合金阳极氧化膜的封孔工艺研究进展[J].表面技术,2010,39(4):87-90,109.WANG Yushun,DING Yi,MA Liqun,et al.Development of sealing technology of anodized aluminum and aluminum alloys[J].Surface Technology,2010,39(4):87-90,109.(in Chinese)
参考文献 24
KIM M,YOO H,CHOI J.Non-nickel-based sealing of anodic porous aluminum oxide in NaAlO2[J].Surface and Coatings Technology,2017,310:106-112.
参考文献 25
张述林,王晓波,陈世波.LY12 铝合金阳极氧化膜沸水封孔工艺条件的优化[J].腐蚀与防护,2007,28(6):307-309.ZHANG Shulin,WANG Xiaobo,CHEN Shibo.Boiling seal process of anodized films on aluminum alloy LY12[J].Corrosion and Protection,2007,28(6):307-309.(in Chinese)
参考文献 26
骆骢,马硕.无铬封闭处理对ZL101A铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(2):46-50.LUO Cong,MA Shuo.Effect of chromium-free sealing treatment on corrosion resistance of anodic oxide films on ZL101A aluminum alloy[J].Plating and Finishing,2022,44(2):46-50.(in Chinese)
参考文献 27
DOU Z,ZHANG Y,SHULHA T,et al.Insight into chelating agent stimulated in-situ growth of MgAl-LDH films on magnesium alloy AZ31:the effect of initial cationic concentrations[J].Surface and Coatings Technology,2022,439:128414-128423.
参考文献 28
KUZNETSOV B,SERDECHNOVA M,TEDIM J,et al.Sealing of tartaric sulfuric(TSA)anodized AA2024 with nanostructured LDH layers[J].Royal Society of Chemistry,2016,6:13942-13952.
参考文献 29
ZHANG Y,YU P H,ZUO Y,et al.Investigating the growth behavior of LDH layers on MAO-coated aluminum alloy:influence of microstructure and surface element[J].International Journal of Electrochemical Science,2018,13(1):610-620.
参考文献 30
MATA D,SERDECHNOVA M,MOHEDANO M,et al.Hierarchically organized Li-Al-LDH nano-flakes:A low-temperature approach to seal porous anodic oxide on aluminum alloys[J].RSC Advances,2017,7(56):35357-35367.
参考文献 31
ZHANG Y,YU P H,WANG J P,et al.LDHs/graphene film on aluminum alloys for active protection[J].Applied Surface Science,2018,433:927-933.
参考文献 32
张玉圣,王友彬,李纯民,等.6061 铝合金表面 ZnAl-LDHs 层的制备及其耐腐蚀性能[J].金属学报,2018,54(10):1417-1427.ZHANG Yusheng,WANG Youbin,LI Chunmin,et al.Preparation and corrosion resistance of the ZnAl-LDHs film on 6061 Al alloy surface[J].Acta Metallurgica Sinica,2018,54(10):1417-1427.(in Chinese)
参考文献 33
李松梅,尹晓琳,刘建华,等.Zn-Al-[V10O28] 6-双层氢氧化物掺杂对LY12铝合金表面溶胶-凝胶涂层性能的影响[J].物理化学学报,2014,30(11):2092-2100.LI Songmei,YIN Xiaolin,LIU Jianhua,et al.Effect of doping with Zn-Al-[V10O28] 6- layered double hydroxide on the properties of hybrid Sol-Gel coatings on the LY12 aluminum surface[J].Acta Physico-Chimica Sinica,2014,30(11):2092-2100.(in Chinese)
参考文献 34
YOGANANDAN G,BALARAJU J N,LOW C H C,et al.Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy(AA2024)[J].Surface and Coatings Technology,2016,288:115-125.
目录contents

    摘要

    普通阳极氧化膜难以对铝合金形成有效的防护作用,须进行封孔处理以改善膜层耐蚀性差问题。采用原位生长法制备的层状双金属氢氧化物(LDH)膜对阳极氧化(AAO)膜进行封闭,得到 LDH / AAO 复合膜层,研究阳极氧化电解液中三价铈盐浓度对 AAO 膜层及 LDH / AAO 复合膜层耐蚀性影响。利用扫描电子显微镜(SEM)、能谱仪(EDS)、辉光放电发射光谱仪(GDOES)分别表征膜层的微观形貌和元素组成,通过电化学交流阻抗(EIS)、动电位极化曲线和酸性盐雾试验检测膜层的耐蚀性。结果表明,在阳极氧化电解液中添加铈盐能够提高 AAO 膜层的致密性和耐蚀性,并改善后续 LDH 膜层在 AAO 膜表面的生长。LDH 可以在 AAO 孔洞和缺陷中生长,并完全覆盖 AAO 层,耐蚀性明显优于铈盐封闭,铈盐浓度为 0.03 mol / L 时 AAO 膜层与 LDH / AAO 复合膜层耐蚀性更好。通过对 LDH 层负载钒酸根缓蚀剂,进一步优化了复合膜层的耐蚀性能。复合膜层的耐蚀作用主要归因于电解液中添加铈盐提高了 AAO 内层的物理阻隔性能,负载钒酸根的 LDH 外层对腐蚀性离子的捕获及对层间缓蚀剂的释放双重作用为基体铝合金提供了长效保护。提出层状双金属氢氧化物 / 阳极氧化复合膜层,并采用“纳米容器”负载缓蚀剂策略进一步提升复合膜层耐蚀性能。

    Abstract

    It is difficult for a common anodic oxidation(AAO) coating to protect an aluminum alloy; sealing treatment or adding a corrosion-inhibitor to the AAO electrolyte is required to improve the poor corrosion-resistance of the coating. Rare-earth cerium salt is a green and efficient cathodic corrosion-inhibitor for aluminum alloys. It can increase the thickness of the anodic oxide coating, extend corrosion pathways, and improve the pitting-resistance of the coating. A layered double-hydroxide(LDH) is a type of host–guest two-dimensional nano-layered hydroxide material. As a nano-container, it can load a large number of corrosion inhibitors, with intelligent release on the surface of aluminum alloy. In this paper, an AAO coating containing Ce3+ was obtained by adding cerium salt to the electrolyte. On this basis, an LDH coating was prepared using an in situ growth method to seal the AAO, resulting in an LDH / AAO composite coating. The effect of trivalent cerium salt concentration in the anodic oxidation electrolyte on the corrosion-resistance of AAO film and LDH / AAO composite film was studied. The corrosion-resistance of the LDH / AAO composite coating was further improved by loading a vanadate inhibitor on the outer LDH layer for active anti-corrosion of the coating. The microscopic morphology and elemental composition of the films were characterized by scanning electron microscopy (SEM), energy spectrometry(EDS), and glow discharge emission spectrometry(GDOES). The corrosion-resistance of the films was examined by electrochemical alternating current impedance(EIS), kinetic potential polarization curve analysis, and an acid salt spray test. The results show that the corrosion-resistance of the coating was improved by adding cerium salt as a corrosion inhibitor in the anodic oxidation electrolyte. The porous anodic oxide layer was sealed by LDH and improved the growth of the LDH coating on the AAO coating surface. LDH can grow in AAO holes and defects, and completely cover the AAO layer. The corrosion-resistance was significantly better than that of cerium-salt sealing. When the concentration of cerium salt was 0.03 mol / L, the corrosion-resistance of the LDH / AAO composite coating had the highest impedance and better resistance to acid salt spray. It was demonstrated that 0.03 mol / L cerium salt can effectively improve the corrosion-resistance of the coatings. After loading vanadate in the LDH layer, the self-corrosion current density decreased by more than two orders of magnitude and the corrosion rate decreased significantly compared with that of AAO samples. The corrosion-resistance of the composite coating was further optimized by adding vanadate corrosion-inhibitor to the LDH layer. The corrosion-resistance of the composite coating is mainly attributed to addition of cerium salt to the electrolyte to improve the physical barrier properties of the AAO inner layer. Thus, addition of cerium salt to the anodic oxidation electrolyte can improve the density and corrosion-resistance of the AAO coating and improve the growth of the LDH coating on the AAO coating surface. The dual effects of LDH loaded with vanadate to trap corrosive ions in the outer layer and release the interlayer corrosion inhibitor provide long-lasting protection of the substrate aluminum alloy. A layered bimetallic hydroxide anodic oxidation composite coating was proposed and a “nano-container” was successfully used to load the vanadate corrosion-inhibitor.

  • 0 前言

  • 铝合金阳极氧化膜(Aluminum anodic oxidation,AAO)具有优异的耐热性、耐蚀性、绝缘性和对基体的结合力[1-3],在建筑业、航空航天业、交通运输业及许多高尖端领域得到了广泛应用[4-5]。阳极氧化膜由靠近铝基体的薄阻挡层和外部厚的多孔层组成[6]。在腐蚀环境中,腐蚀性离子很容易从氧化膜的外部多孔层渗入,并穿过非常薄的阻挡层,因此普通阳极氧化膜难以对铝合金形成有效的防护作用。通常采用向电解液中添加缓蚀剂、纳米粒子等添加剂或进行封孔处理来提高氧化膜的耐蚀性能[7-10]

  • 稀土铈盐是一种铝合金绿色、高效缓蚀剂[11]。铈离子属于阴极缓蚀剂,对腐蚀介质有包裹作用,铈离子暴露在空气中后可以在铝表面形成 CeO2·H2O,在酸性溶液中能微量溶解,游离的 Ce4+ 很容易被金属铝还原为 Ce3+,并且在溶液中 Ce3+会和金属铝反应生成 Ce(OH)3与 Al(OH)3发生共沉积,因此可以共同填充铝合金阳极氧化膜的微孔[11-12]。铈盐转化膜覆盖在表面使得氧和电子在金属 / 电解质的界面迁移受到阻碍,即电化学反应中阴极过程受到抑制[13]。此外,铈盐添加到阳极氧化电解液中,能够加快氧化膜的生长速率,提高阻挡层厚度,改善多孔层的致密性,从而提高氧化膜的耐蚀性[14]。王春涛等[15]在阳极氧化电解液中添加了硫酸高铈制备的氧化膜就具备以上优点,认为可能原因是稀土金属具有较高的价态和较正的氧化还原电位,具有催化效果,有利于提高氧化膜的生长速率,促进氧化膜致密度。李松梅等[16]研究了铈元素在钛合金阳极氧化中的作用,发现铈元素能增加氧化膜厚度并提高氧化膜抗点蚀的能力。

  • 铝合金阳极氧化后进行封孔处理可以提高阳极氧化膜的耐蚀性[17],沸水封孔、蒸汽封孔、重铬酸盐封孔、氟化镍封孔、无镍封孔、高分子树脂封孔等工艺已经广泛应用于工业生产[18-22]。我国目前主要采用重铬酸盐和氟化镍封孔工艺[23],对环境污染较大并损害人身体健康[24]。沸水封孔和蒸汽封孔是最早使用的工艺,但由于耗能高等因素已被淘汰[25]。无镍封孔和高分子树脂封孔技术日趋成熟,对环境友好,应用也逐渐增多,但技术不成熟、操作工艺复杂[51926]。层状双金属氢氧化物(Layered double hydroxides,LDH)是一种主客体二维纳米层状结构材料,具有层板组成和结构可调性、层间离子可交换性等性能特点。近年来 LDH 材料被发现其结构可以作为“纳米容器”负载缓蚀剂离子,特别是 LDH 的离子交换能力,当感知到环境介质中存在侵蚀性离子(如 Cl-)时,能够释放层间缓蚀剂阴离子并吸附介质中的 Cl-,是一种新型高效的智能防护材料。LDH 薄膜制备工艺简单,与金属基体结合力强,耐蚀性良好,已成为合金转化膜的研究热点[2127]。阳极氧化膜主要成分是氧化铝,可作为内部阳离子源,在阳极氧化膜表面原位生长制备 LDH 可以形成偏铝酸根(Al(OH)4),将溶液中二价金属的氢氧化物吸附到基体表面形成 LDH,封闭了阳极氧化膜层的纳米孔道,有效抑制腐蚀性离子的渗透[28-29]

  • 此外,LDH 作为一种纳米容器,可负载大量的缓蚀剂的同时实现智能释放,对铝合金基体实现协同主动防腐[130-31]。有研究报道,将缓蚀性阴离子 (例如钒酸盐和苯甲酸盐)负载到 LDH 中可以增强对膜层的保护[32]。负载缓蚀剂离子 VOxn-的 LDH 纳米容器对铝合金阳极氧化膜进行低温封闭,封闭的效果可以与提高氧化铝耐蚀性最常用的沸水封闭方法相当[30]。负载 VOxn的 LDH 与渗透进膜层中的 Cl-离子交换后释放出[V10O28] 6−,[V10O28] 6−在中性溶液中会转变为 VO3,在溶液中钒酸根作用下,被腐蚀的区域重新氧化,从而达到修复氧化膜及缓蚀作用,对铝合金基体起到主动防护作用 [33]。 KUZNETSOV 等[28]通过在含 Zn2+和 NO3的溶液中进行水热处理,在阳极氧化层的孔中及其顶部形成了 LDH-VOx,盐雾测试结果表明采用 LDH-VOx 封闭的阳极氧化膜具有长期主动保护作用。LI 等[17] 在铝合金阳极氧化表面原位生长 LDH,通过阴离子交换反应将钒酸盐的阴离子缓蚀剂插入到 LDH 的层间通道中,负载钒酸盐的 LDH 对成膜的铝合金基材表现出相当长的保护期。

  • 本文采用原位生长法制备 LDH 对铝合金多孔阳极氧化膜进行封闭,得到 LDH / AAO 复合膜层,探究阳极氧化电解液中三价铈盐浓度对 AAO 膜层及 LDH / AAO 复合膜层耐蚀性影响,并与稀土铈盐封闭效果进行对比。通过对 LDH 层负载钒酸根缓蚀剂,进一步优化复合膜层的耐蚀性能。

  • 1 试验准备

  • 1.1 阳极氧化过程

  • 试验采用 2A12 铝合金,其化学成分(质量分数,wt.%)为 Si 0.5 %、Cu 4.23、Mn 0.55 %、Cr 0.1 %、 Zn 0.1 %、Zr 0.1 %,余量为 Al。试样规格为 30 mm ×30 mm×5 mm。

  • 对试样进行前处理操作。主要流程如下:试样钻孔后打磨至 2000 #使试样呈镜面,首先将试样置于 2 wt.% Na3PO4、1 wt.% Na2CO3、0.5 wt.% NaOH 的混合液中浸泡脱脂 30~60 s;其次将试样置于 40~50℃的 40~60 g / L NaOH 溶液中碱洗 30~120 s;最后使用 200~400 g / L HNO3溶液在 40~50℃酸洗至表面除尽。

  • 本试验采用的阳极氧化基础电解液的配比为: 50 g / L H2SO4、6.19 g / L HOOC(CH24 COOH(己二酸)、7.2 g / L Na2MoO4(钼酸钠),阳极氧化过程采用恒压模式,电压为 15 V,阳极氧化时间为 30 min,试验温度为 15℃。阳极氧化试样命名为 AAO。分别在阳极氧化电解液中添加 0.001、0.005、0.01、0.02 和 0.03 mol / L Ce(NO33·6H2O 进行阳极氧化,制备的试样分别命名为 AAO0.001Ce、AAO0.005Ce、 AAO0.01Ce、AAO0.02Ce 和 AAO0.03Ce。此外,为了进一步对比,阳极氧化试样垂直放入 0.1 mol / L Ce(NO33·6H2O-C2H5OH 溶液中进行铈盐封闭,室温下浸泡 6 h 后取出,洗净吹干,试样命名为 Sealing-AAO。

  • 1.2 LDH 生长过程

  • 配置 0.05 M Zn(NO3)·6H2O 和 0.3 M NaNO3 的混合溶液,然后配置 1 wt.%氨水将上述溶液 pH 值调至 6.3 附近。将阳极氧化试样垂直放入溶液,在恒温 50℃匀速搅拌,密闭生长 24 h。取出后依次用去离子水、乙醇将试样洗净吹干,试样命名为 LDH / AAO。AAO0.001Ce、AAO0.005Ce、AAO0.01Ce、 AAO0.02Ce 和 AAO0.03Ce 试样密闭生长 LDH 后,分别命名为 LDH / AAO0.001Ce、 LDH / AAO0.005Ce、 LDH / AAO0.01Ce、LDH / AAO0.02Ce和LDH / AAO0.03Ce。为了进一步对比, LDH / AAO 试样垂直放入 0.1 mol / L Ce(NO33·6H2O-C2H5OH 溶液中进行铈盐封闭,浸泡 6 h 后取出,洗净吹干,试样命名为 Sealing-LDH / AAO。

  • 配置 0.1 mol / L Na3VO4溶液,用硝酸滴定至 pH 值为 8.8 附近。将 LDH / AAO 试样和 LDH / AAO0.03Ce 试样垂直放入溶液,恒温 50℃水浴 2 h,取出后用去离子水洗净。试样分别命名为 LDH-V / AAO 和 LDH-V / AAO0.03Ce。此工艺示意图如图1 所示。

  • 图1 制备 LDH / AAO 复合膜层的工艺示意图

  • Fig.1 Schematical illustration of preparing LDH / AAO composite coating

  • 1.3 表征测试

  • 采用JEOL JSM-7800型扫描电子显微镜(SEM) 观察膜层的表面与截面形貌,并用其附带的能谱仪 (EDS)检测膜层的元素组成。采用 HORIBA GD-Profiler 2 型辉光放电光谱(GDOES)检测膜层的元素分布与元素成分。采用 SINGLETON 公司的 SCCH-21 型盐雾试验箱对样品进行盐雾试验,参照 ISO 9227:2006 乙酸盐雾试验(AASS)方案,记录暴露在酸性盐雾中不同时间的表面宏观形貌。采用 CS350 型电化学工作站进行交流阻抗测试与动电位扫描测试,试验采用三电极体系,以试样作为工作电极,Ag / AgCl 电极作为参比电极,铂网作为辅助电极。腐蚀介质为 3.5 wt.%的 NaCl 溶液,测试面积为 1 cm2。进行电化学测试前先稳定开路电位,待开路电位稳定后进行交流阻抗测试和动电位扫描测试。交流阻抗扫描频率扫描范围为 10 mHz~100 kHz,振幅为 10 mV。极化测试扫描速率为 0.5 mV / s。

  • 2 结果与讨论

  • 2.1 铈盐对 AAO 膜层的影响

  • AAO 试样、铈盐封闭 AAO 试样及电解液中添加不同浓度铈盐所制备 AAO 试样的 SEM 表面微观形貌和 EDS 能谱分析如图2 所示。从 AAO 与 Sealing-AAO 试样均能看到阳极氧化膜层分布着微小孔洞。当添加不同浓度的铈盐之后降低了膜层表面的孔隙率,致密性增加,有助于提高膜层耐蚀性。当 Al2O3 的生成速度大于电解液对其的溶解速度时,氧化膜便会生长,而阳极氧化溶液中加入铈盐会使氧化膜的生成速度加快[15]。膜层的主要元素均为 O、Al、Si 和 Mo,其中 Al 元素来源于基体,O、 Si 和 Mo 元素主要来源于电解液。添加铈盐后,膜层中还检测到铈元素的存在,说明铈盐参与了膜层的生长过程。

  • 图2 试样的 SEM 表面微观形貌和 EDS 能谱分析

  • Fig.2 SEM surface micromorphology and EDS energy spectrum analysis of coatings

  • 图3a 为 AAO 试样、铈盐封闭 AAO 试样及电解液中添加不同浓度铈盐所制备 AAO 试样在 3.5 wt.% NaCl 溶液中的 EIS 结果。研究认为,低频区可以反映阳极氧化阻挡层的电阻和电容,中频区可以反映多孔层的电阻,通常可以简单地采用低频区(0.01 Hz)的阻抗模值(|Z|0.01 Hz)反映整个阳极氧化膜层的耐蚀性[34]。可以看到,电解液中添加不同浓度铈盐所制备试样较原始 AAO 试样在低频区 (100~10−2 Hz)的阻抗模值|Z|有明显提升,而仅铈盐封闭试样较原始 AAO 提高,但是提升效果有限。一方面可能是由于硝酸铈浓度过低,与氢氧根结合差,难以形成致密且连续的铈盐转化膜,另一方面可能是温度过低导致铈盐形成转化膜的反应驱动力较弱。而电解液中添加铈盐后,阻抗值|Z|0.01 Hz明显增大,AAO0.03Ce试样的|Z|0.01 Hz值比 AAO 试样高了近一个数量级。可见在阳极氧化电解液中添加铈盐可有效改善膜层的耐蚀性,与前人研究一致[14]。由于铈盐有较高的价态和较正的氧化还原电位,对阳极氧化膜的生长具有催化效果,有效提高生长效率,使得氧化膜致密度提高,进而提高了膜层耐蚀性[15]

  • 图3 试样在 3.5 wt.% NaCl 溶液中的电化学测试

  • Fig.3 Electrochemical testing of coated samples in 3.5 wt.% NaCl solution

  • 2.2 铈盐对 LDH / AAO 复合膜层的影响

  • LDH / AAO 试样、LDH / Sealing-AAO 试样、电解液中添加不同浓度铈盐制备 LDH / AAO 试样的 SEM 表面微观形貌和 EDS 能谱分析如图4 所示。可以看出,LDHs纳米片垂直于AAO试样表面生长,显示出鸟巢状结构,且在所有 AAO 试样表面覆盖均匀完整。以往研究表明,LDH 纳米片可优先在多孔阳极氧化膜层的微孔或裂纹中形成,有效修复膜层缺陷[1]。相比 LDH / AAO 试样,铈盐封闭后的 AAO 试样表面 LDH 膜层更加均匀。而电解液中添加不同浓度的铈盐后, LDH 膜层更加均匀致密。从 EDS 数据(图4)可以看出,复合膜层的主要元素均为 O、Al、Si、Zn、Mo 和 Ce,对比封孔前的 EDS 数据(图2),阳极氧化膜经过 LDH 封孔后,额外检测到了 Zn 元素,这是形成 Zn-Al LDH 层板的主要元素。

  • 图4 试样的 SEM 表面微观形貌和 EDS 能谱分析

  • Fig.4 SEM surface micromorphology and EDS energy spectrum analysis of coatings

  • 图5 为 LDH / AAO 试样、LDH / Sealing-AAO 试样、电解液中添加不同浓度铈盐制备 LDH / AAO 试样在3.5 wt.% NaCl溶液中的EIS结果。可以看出, LDH / AAO 复合膜层、铈盐封闭的 LDH / Sealing-AAO 复合膜层及电解液中添加不同浓度铈盐制备 LDH / AAO 复合膜层的|Z|0.01Hz 值均高于对应的 AAO 膜层,说明复合膜层具有更优异的耐蚀性,LDH 对 AAO 膜层起到良好的封闭作用。此外,铈盐对 LDH / AAO 复合膜层的作用与对 AAO 试样类似,当阳极氧化电解液中添加 0.03 mol / L 浓度的铈盐时,膜层低频区阻抗值最高,表现出最佳的耐蚀性能。因此,在此基础上,对 LDH 层负载钒酸根缓蚀剂,得到 LDH-V / AAO0.03Ce复合膜层,进一步优化复合膜层的耐蚀性能。

  • 图5 试样在 3.5 wt.% NaCl 溶液中的电化学测试

  • Fig.5 Electrochemical testing of coated samples in 3.5 wt.% NaCl solution

  • 2.3 铈盐对负载钒酸根的 LDH / AAO 复合膜层的影响

  • LDH-V / AAO0.03Ce试样的 SEM 表面微观形貌、 EDS 能谱如图6 所示。AAO 膜层被 2~3 μm 垂直交联的 LDH 纳米片完全覆盖,负载钒酸根后并没有改变 LDH 膜层的微观形貌。EDS 能谱中检测到 O、 Zn、Al、Si、Mo 和 Ce 等元素,O、Al 元素存在于 AAO 内层和 LDH 外层中,Si、Mo、Ce 元素来源于 AAO 内层,Zn 元素来源于 LDH 外层。此外,在 EDS 能谱额外检测到 V 元素,说明钒酸根被负载到了 LDH 膜层中,得到负载钒酸根的 LDH / AAO 复合膜层。

  • 图6 LDH-V / AAO0.03Ce试样的 SEM 表面微观形貌和 EDS 能谱

  • Fig.6 SEM surface micromorphology and EDS energy spectrum of LDH-V / AAO0.03Ce samples

  • 图7 为 LDH-V / AAO0.03Ce 试样的 GDOES 图谱。根据元素的强度变化将膜层分为了Ⅰ(LDH 层)、Ⅱ(AAO 层)、Ⅲ(AAO 与基体的过渡层) 和Ⅳ(基体)四层。LDH 层检测到 H、O、Al、 V 和 Zn 等元素,O 元素的信号相对较高,主要由于最外层 LDH 层有 H2O 和 OH-。V 元素信号在 LDH 层出现,进一步说明 VOxn 负载到了 LDH 膜层中,与 EDS 测试的结果一致(图6b)。在 AAO 层中也观察到了少量的 Zn 和 V 元素,很可能是 LDH 纳米片已在 AAO 孔洞和缺陷中生长,说明LDH 对多孔 AAO 膜起到了良好的封闭作用。此外,从图中可以看出,LDH 层为 2~3 μm,AAO 层约为 2 μm,LDH-V / AAO0.03Ce 复合膜层的总厚度约 5 μm。

  • 图7 LDH-V / AAO0.03Ce试样的 GDOES 图谱

  • Fig.7 GDOES spectra of the LDH-V / AAO0.03Ce sample

  • LDH-V / AAO 和 LDH-V / AAO0.03Ce 试样经一定时间的酸性盐雾试验后,其宏观表面和 SEM 微观表面形貌如图8 所示。LDH / AAO 复合膜层经钒酸根负载后的膜层表面呈黄色,主要是钒酸根 VOxn 颜色(图8a、8b)。经 120 h 酸性盐雾后,LDH-V / AAO 试样出现大面积的黑色腐蚀区域,而 LDH-V / AAO0.03Ce 试样未出现明显的腐蚀迹象,只是膜层颜色逐渐变浅,说明钒酸根逐渐从膜层中释放出来。经 300 h 酸性盐雾后,相比 LDH-V / AAO0.03Ce 试样,LDH-V / AAO 试样表面腐蚀更为严重,并且膜层有剥落的趋势。从酸性盐雾 300 h 后试样的 SEM 微观表面形貌 (图8c、8d)可以看出,LDH-V / AAO 试样膜层表面疏松,膜层出现大量不同程度的裂纹;而 LDH-V / AAO0.03Ce 膜层表面均匀,没有出现明显腐蚀开裂,表现出对基体铝合金更长久的腐蚀防护作用,说明了阳极氧化电解液中添加铈盐能够进一步提高负载钒酸根缓蚀剂 LDH / AAO 复合膜层的耐蚀性。

  • 图8 酸性盐雾试样后试样的宏观形貌和 SEM 微观形貌

  • Fig.8 Macroscopic surface and SEM morphology of samples after acid salt spray

  • 试样在3.5 wt.% NaCl溶液下的EIS图谱和动电位极化曲线如图9 所示。使用 Tafel 外推法得到表2 中的相关电化学参数,并使用电流密度法(式(1)) 计算其腐蚀速率,计算结果见表2。腐蚀速率用式 (1)计算:

  • v=MnFρJcorr =3.27×10-3MnρJcorr
    (1)
  • 式中,v 为腐蚀速度,mm / a;M 为相对原子质量; n 为金属电极反应中的得失电子数,M / n 可用该金属或合金的化学当量表示,对于 2A12 型铝合金,取 M / n = 9;Jcorr为材料的自腐蚀电流密度,A / cm2F 为法拉第常数,取 96 500 C / mol;ρ 为材料的密度,g / cm3,对于 2A12 型铝合金,取 ρ = 2.73 g / cm3

  • 从图9a 的 Bode 图及表1 可看出,LDH / AAO 复合膜层在低频区(0.01 Hz)的阻抗值比 AAO 单一膜层提高近一个数量级,另外电解液添加铈盐的 AAO 膜层和 LDH / AAO 复合膜层与未添加铈盐的试样相比阻抗值均有所提高,说明铈盐对改善 AAO 膜层耐蚀性具有促进作用。结合图9b 和表2 可知,AAO 试样自腐蚀电位为−1.104 V,自腐蚀电流密度为 5.354× 10−5 A·cm−2,腐蚀速率为 0.578 mm·a −1。相比纯 AAO 试样,AAO0.03Ce自腐蚀电位负移约 0.1 V,自腐蚀电流密度明显降低。LDH-V / AAO 试样自腐蚀电流密度比 AAO 和 AAO0.03Ce试样降低了约一个数量级,腐蚀速率也有所降低(0.036 mm·a −1)。而 LDH-V / AAO0.03Ce 试样自腐蚀电位正移到 −0.922 V,自腐蚀电流密度降低 2 个数量级(4.537× 10−7 A·cm−2),腐蚀速率降低到 0.005 mm·a−1,此时腐蚀倾向减弱,腐蚀难度增大,复合膜层的耐蚀性能得到优化。

  • 表1 EIS 低频区阻抗值(|Z|0.01 Hz

  • Table1 Impedance value at low frequency (|Z|0.01 Hz)

  • 表2 动电位极化曲线拟合结果

  • Table2 Fitting results of potentiodynamic polarization curves

  • 图9 试样在 3.5 wt.% NaCl 溶液中的电化学测试

  • Fig.9 Electrochemical testing of the samples exposed in 3.5 wt.% NaCl solution

  • 3 缓蚀机理分析

  • 在不同溶液中膜层的生长及腐蚀环境中 LDH-V / AAO0.03Ce试样的缓蚀机理如图10 所示。前述分析结果显示,阳极氧化电解液中添加铈盐能加快氧化膜的生长速度。这可能是铈盐较高的价态和较正的氧化还原电位使其对氧化膜的生长具备了催化效果。此外,对多孔阳极氧化膜进行封孔处理也能提高耐蚀性,且 LDH 封闭效果较铈盐封闭更好。铈盐封闭时,Ce3+与 OH 结合形成 Ce(OH)3 沉淀沉积在 AAO 表层,对多孔膜层进行封闭,抑制腐蚀物质从孔洞渗入基体,但沉积膜层较薄,不能形成良好保护;而 LDH 较厚,能完全覆盖多孔表面,形成致密的阻挡层有效抑制腐蚀产物的侵蚀。由 EIS 分析、极化曲线和盐雾分析结果可知,负载钒酸根缓蚀剂后,LDH-V / AAO0.03Ce 试样的耐蚀性得到明显优化。LDH-V / AAO0.03Ce 复合膜层的耐蚀作用主要可归纳为两个方面:一方面,电解液中添加铈盐后,Ce3+具有较高的价态和较正的氧化还原电位,可能对氧化膜的生长具有催化效果[15],提高了 AAO 内层的致密性,加强膜层的物理阻隔性能;另一方面,负载钒酸根(VOxn)的 LDH 外层在遇到腐蚀介质中的 Cl-后,LDH 层间能够释放钒酸根离子,在腐蚀区域形成保护膜。此外,LDH 在释放钒酸根离子的同时可捕获 Cl-,阻止腐蚀性离子向铝合金基体的侵蚀[32]。改性 AAO 膜层与智能 LDH 膜层的协同作用,为基体铝合金提供长效保护。

  • 图10 在不同溶液中膜层的生长及腐蚀环境中 LDH-V / AAO0.03Ce试样的缓蚀机理

  • Fig.10 Corrosion inhibition mechanism of LDH-V / AAO0.03Ce sample in different solution and corrosion environment

  • 4 结论

  • (1)在阳极氧化电解液中添加铈盐能够提高 AAO 膜层的致密性和耐蚀性,并改善后续 LDH 膜层在 AAO 膜表面的生长。

  • (2)对 LDH 层负载钒酸根缓蚀剂,得到 LDH-V / AAO0.03Ce 复合膜层,进一步优化了复合膜层的耐蚀性能,腐蚀速率显著降低。复合膜层的耐蚀作用主要归因于电解液中添加铈盐提高了 AAO 内层的物理阻隔性能,以及负载钒酸根的 LDH 外层对腐蚀性离子(Cl-)的捕获及对层间缓蚀剂(VOx n-) 的释放双重作用,从而为基体铝合金提供长效保护。

  • (3)制备层状双金属氢氧化物 / 阳极氧化复合膜层,并成功采用“纳米容器”负载缓蚀剂钒酸盐,能够在阳极氧化膜层基础上进一步提高耐蚀性,为改善阳极氧化膜层普遍耐蚀性差问题提供新的研究方向,对提高铝合金的应用性能有重要应用价值。

  • 参考文献

    • [1] CHEN F,YU P H,ZHANG Y.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys and Compounds,2017,711:342-348.

    • [2] ECHAVE F J,SANZ O,ALMEIDA L C,et al.Highly porous hydrotalcite-like film growth on anodised aluminium monoliths[J].Studies in Surface Science and Catalysis,2010,175(175):639-642.

    • [3] CHEN J H,LIU P S,WANG Y Q,et al.Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength[J].Journal of Alloys and Compounds,2022,910:164911-164922.

    • [4] 高培云.锆盐封孔对建筑铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(5):40-49.GAO Peiyun.Effect of zirconium salt sealing on corrosion resistance of anodic oxide film on aluminium alloy used in construction[J].Plating and Finishing,2022,44(5):40-49.(in Chinese)

    • [5] 李利.铝及铝合金阳极氧化膜的绿色封闭工艺研究进展[J].材料开发与应用,2012,27(1):75-82.LI Li.Development of green sealing technology of anodized aluminum alloys[J].Development and Application of Materials,2012,27(1):75-82.(in Chinese)

    • [6] YANG Y S,CHEN J,LIU S L,et al.Effect of NaAlO2 sealing on corrosion resistance of 2024 aluminum alloy anodized film[J].Materials and Corrosion,2019,70(1):120-127.

    • [7] 薛文斌.SiC 颗粒增强体对铝基复合材料微弧氧化膜生长的影响[J].金属学报,2006,42(4):350-354.XUE Wenbin.Effect of SiC reinforcement on growth of microarc oxidation film on aluminum matrix composite[J].Acta Metallurgica Sinica,2006,42(4):350-354.(in Chinese)

    • [8] 王英君,刘洪雷,王国军,等.新型高强稀土 Al-ZnMg-Cu-Sc 铝合金的阳极氧化及其抗腐蚀性能研究[J].中国腐蚀与防护学报,2020,40(2):131-138.WANG Yinjun,LIU Honglei,WANG Guojun,et al.Investigation of anodic film on a novel RE-containing Al-alloy Al-Zn-Mg-Cu-Sc[J].Journal of Chinese Society for Corrosion and Protection,2020,40(2):131-138.(in Chinese)

    • [9] YANG D,OD D G,RAMU A G,et al.Fabrication of enhanced corrosion protection of PEO/PFOTES nanocomposite film coatings on aluminum alloy deposited by plasma electrolytic oxidation[J].Materials Letters,2022,315:131898-131902.

    • [10] WANG S Q,WEN L,WANG Y M,et al,One-step fabrication of double-layer nanocomposite coating by plasma electrolytic oxidation with particle addition[J].Applied Surface Science,2022.592:153043-153054.

    • [11] HINTON B.The inhibition of aluminum alloy corrosion by cerous cations[J].Metals Forum,1985,10(3):11-18.

    • [12] 颜建辉,刘锦平.稀土元素在铝合金阳极氧化后处理中的应用[J].电镀与精饰,2002,21(1):19-22.YAN Jianhui,LIU Jinping.Application of rare earth element in post treatment of aluminum anodizing[J].Plating and Finishing,2002,21(1):19-22.(in Chinese)

    • [13] 顾宝珊,宫丽,杨培燕.铝合金表面稀土转化膜性能与耐蚀机理研究[J].稀有金属材料与工程,2014,43(2):429-434.GU Banshan,GONG Li,YANG Peiyan.Study on performance and corrosion resistance mechanism of rare earth metal conversion coating on Al alloy surface[J].Rare Metal Materials and Engineering,2014,43(2):429-434.(in Chinese)

    • [14] 李凌杰,李荻,张胜涛,等.稀土盐对铝合金阳极化过程的影响[J].中国稀土学报,2001,19(4):350-353.LI Lingjie,LI Di,ZHANG Shengtao,et al.Effect of rare earth salts on anodizing of aluminum alloy[J].Journal of the Chinese Rare Earth Society,2001,19(4):350-353.(in Chinese)

    • [15] 王春涛,王国平,龚雅萍.铈盐和镧盐对铝合金阳极氧化膜性能的影响[J].腐蚀与防护,2003,24(6):244-248.WANG Chuntao,WANG Guoping,GONG Yaping.Effects of rare-earth salts on properties of anodizing film of aluminum alloy[J].Corrosion and Protection,2003,24(6):244-248.(in Chinese)

    • [16] 李松梅,吴昊,刘建华,等.Ce 在钛合金阳极化中作用的研究[J].航空学报,2002,23(1):91-93.LI Songmei,WU Hao,LIU Jianhua,et al.Study on effect of Ce on Ti-alloy anodization[J].Acta Aeronautica et Astronautica Sinica,2002,23(1):91-93.(in Chinese)

    • [17] LI Y,LI S,YOU Z,et al.Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy[J].Journal of Alloys and Compounds,2015,630:29-36.

    • [18] HUANG J,ZHAO D Z,GONG Y,et al.Improved corrosion resistance of PEO-coated 7085Al alloy via a novel organic and inorganic sealing-treatment combination[J].Surface and Coatings Technology,2022,441:128566-128580.

    • [19] TAKAICHI H,MORIGUCHI T,HORIKAWA M,et al.Sealing liquid for anodic oxide coating films of aluminum alloy,concentrated liquid and sealing method[P].United States Patent,US2019/0112726Al,2019,04-18.

    • [20] HAO X L,ZHAO N,JIN H H,et al.Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature[J].Rare Metals,2020,6:1-7.

    • [21] QIN G M,ZHANG Y C,YANG E H,et al.Effect of post-sealing treatment with different concentrations of NaH2PO4 on corrosion resistance of MAO coating on 6063 aluminum alloy[J].Surface and Coatings Technology,2022,443:128604-128615.

    • [22] 况先银,金少强,曹艳辉,等.铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J].电化学,2021,27(6):624-636.KUANG Xianyin,JIN Shaoqiang,CAO Yanhui,et al.Effect of aluminum alloy surface modification on adhesion of the modified polyurethane coating and its corrosion protective performance[J].Journal of Electrochemistry,2021,27(6):624-636.(in Chinese)

    • [23] 王雨顺,丁毅,马立群.铝及铝合金阳极氧化膜的封孔工艺研究进展[J].表面技术,2010,39(4):87-90,109.WANG Yushun,DING Yi,MA Liqun,et al.Development of sealing technology of anodized aluminum and aluminum alloys[J].Surface Technology,2010,39(4):87-90,109.(in Chinese)

    • [24] KIM M,YOO H,CHOI J.Non-nickel-based sealing of anodic porous aluminum oxide in NaAlO2[J].Surface and Coatings Technology,2017,310:106-112.

    • [25] 张述林,王晓波,陈世波.LY12 铝合金阳极氧化膜沸水封孔工艺条件的优化[J].腐蚀与防护,2007,28(6):307-309.ZHANG Shulin,WANG Xiaobo,CHEN Shibo.Boiling seal process of anodized films on aluminum alloy LY12[J].Corrosion and Protection,2007,28(6):307-309.(in Chinese)

    • [26] 骆骢,马硕.无铬封闭处理对ZL101A铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(2):46-50.LUO Cong,MA Shuo.Effect of chromium-free sealing treatment on corrosion resistance of anodic oxide films on ZL101A aluminum alloy[J].Plating and Finishing,2022,44(2):46-50.(in Chinese)

    • [27] DOU Z,ZHANG Y,SHULHA T,et al.Insight into chelating agent stimulated in-situ growth of MgAl-LDH films on magnesium alloy AZ31:the effect of initial cationic concentrations[J].Surface and Coatings Technology,2022,439:128414-128423.

    • [28] KUZNETSOV B,SERDECHNOVA M,TEDIM J,et al.Sealing of tartaric sulfuric(TSA)anodized AA2024 with nanostructured LDH layers[J].Royal Society of Chemistry,2016,6:13942-13952.

    • [29] ZHANG Y,YU P H,ZUO Y,et al.Investigating the growth behavior of LDH layers on MAO-coated aluminum alloy:influence of microstructure and surface element[J].International Journal of Electrochemical Science,2018,13(1):610-620.

    • [30] MATA D,SERDECHNOVA M,MOHEDANO M,et al.Hierarchically organized Li-Al-LDH nano-flakes:A low-temperature approach to seal porous anodic oxide on aluminum alloys[J].RSC Advances,2017,7(56):35357-35367.

    • [31] ZHANG Y,YU P H,WANG J P,et al.LDHs/graphene film on aluminum alloys for active protection[J].Applied Surface Science,2018,433:927-933.

    • [32] 张玉圣,王友彬,李纯民,等.6061 铝合金表面 ZnAl-LDHs 层的制备及其耐腐蚀性能[J].金属学报,2018,54(10):1417-1427.ZHANG Yusheng,WANG Youbin,LI Chunmin,et al.Preparation and corrosion resistance of the ZnAl-LDHs film on 6061 Al alloy surface[J].Acta Metallurgica Sinica,2018,54(10):1417-1427.(in Chinese)

    • [33] 李松梅,尹晓琳,刘建华,等.Zn-Al-[V10O28] 6-双层氢氧化物掺杂对LY12铝合金表面溶胶-凝胶涂层性能的影响[J].物理化学学报,2014,30(11):2092-2100.LI Songmei,YIN Xiaolin,LIU Jianhua,et al.Effect of doping with Zn-Al-[V10O28] 6- layered double hydroxide on the properties of hybrid Sol-Gel coatings on the LY12 aluminum surface[J].Acta Physico-Chimica Sinica,2014,30(11):2092-2100.(in Chinese)

    • [34] YOGANANDAN G,BALARAJU J N,LOW C H C,et al.Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy(AA2024)[J].Surface and Coatings Technology,2016,288:115-125.

  • 参考文献

    • [1] CHEN F,YU P H,ZHANG Y.Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy[J].Journal of Alloys and Compounds,2017,711:342-348.

    • [2] ECHAVE F J,SANZ O,ALMEIDA L C,et al.Highly porous hydrotalcite-like film growth on anodised aluminium monoliths[J].Studies in Surface Science and Catalysis,2010,175(175):639-642.

    • [3] CHEN J H,LIU P S,WANG Y Q,et al.Mechanical properties of a new kind of porous aluminum alloy composite from ceramic hollow spheres with high strength[J].Journal of Alloys and Compounds,2022,910:164911-164922.

    • [4] 高培云.锆盐封孔对建筑铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(5):40-49.GAO Peiyun.Effect of zirconium salt sealing on corrosion resistance of anodic oxide film on aluminium alloy used in construction[J].Plating and Finishing,2022,44(5):40-49.(in Chinese)

    • [5] 李利.铝及铝合金阳极氧化膜的绿色封闭工艺研究进展[J].材料开发与应用,2012,27(1):75-82.LI Li.Development of green sealing technology of anodized aluminum alloys[J].Development and Application of Materials,2012,27(1):75-82.(in Chinese)

    • [6] YANG Y S,CHEN J,LIU S L,et al.Effect of NaAlO2 sealing on corrosion resistance of 2024 aluminum alloy anodized film[J].Materials and Corrosion,2019,70(1):120-127.

    • [7] 薛文斌.SiC 颗粒增强体对铝基复合材料微弧氧化膜生长的影响[J].金属学报,2006,42(4):350-354.XUE Wenbin.Effect of SiC reinforcement on growth of microarc oxidation film on aluminum matrix composite[J].Acta Metallurgica Sinica,2006,42(4):350-354.(in Chinese)

    • [8] 王英君,刘洪雷,王国军,等.新型高强稀土 Al-ZnMg-Cu-Sc 铝合金的阳极氧化及其抗腐蚀性能研究[J].中国腐蚀与防护学报,2020,40(2):131-138.WANG Yinjun,LIU Honglei,WANG Guojun,et al.Investigation of anodic film on a novel RE-containing Al-alloy Al-Zn-Mg-Cu-Sc[J].Journal of Chinese Society for Corrosion and Protection,2020,40(2):131-138.(in Chinese)

    • [9] YANG D,OD D G,RAMU A G,et al.Fabrication of enhanced corrosion protection of PEO/PFOTES nanocomposite film coatings on aluminum alloy deposited by plasma electrolytic oxidation[J].Materials Letters,2022,315:131898-131902.

    • [10] WANG S Q,WEN L,WANG Y M,et al,One-step fabrication of double-layer nanocomposite coating by plasma electrolytic oxidation with particle addition[J].Applied Surface Science,2022.592:153043-153054.

    • [11] HINTON B.The inhibition of aluminum alloy corrosion by cerous cations[J].Metals Forum,1985,10(3):11-18.

    • [12] 颜建辉,刘锦平.稀土元素在铝合金阳极氧化后处理中的应用[J].电镀与精饰,2002,21(1):19-22.YAN Jianhui,LIU Jinping.Application of rare earth element in post treatment of aluminum anodizing[J].Plating and Finishing,2002,21(1):19-22.(in Chinese)

    • [13] 顾宝珊,宫丽,杨培燕.铝合金表面稀土转化膜性能与耐蚀机理研究[J].稀有金属材料与工程,2014,43(2):429-434.GU Banshan,GONG Li,YANG Peiyan.Study on performance and corrosion resistance mechanism of rare earth metal conversion coating on Al alloy surface[J].Rare Metal Materials and Engineering,2014,43(2):429-434.(in Chinese)

    • [14] 李凌杰,李荻,张胜涛,等.稀土盐对铝合金阳极化过程的影响[J].中国稀土学报,2001,19(4):350-353.LI Lingjie,LI Di,ZHANG Shengtao,et al.Effect of rare earth salts on anodizing of aluminum alloy[J].Journal of the Chinese Rare Earth Society,2001,19(4):350-353.(in Chinese)

    • [15] 王春涛,王国平,龚雅萍.铈盐和镧盐对铝合金阳极氧化膜性能的影响[J].腐蚀与防护,2003,24(6):244-248.WANG Chuntao,WANG Guoping,GONG Yaping.Effects of rare-earth salts on properties of anodizing film of aluminum alloy[J].Corrosion and Protection,2003,24(6):244-248.(in Chinese)

    • [16] 李松梅,吴昊,刘建华,等.Ce 在钛合金阳极化中作用的研究[J].航空学报,2002,23(1):91-93.LI Songmei,WU Hao,LIU Jianhua,et al.Study on effect of Ce on Ti-alloy anodization[J].Acta Aeronautica et Astronautica Sinica,2002,23(1):91-93.(in Chinese)

    • [17] LI Y,LI S,YOU Z,et al.Enhanced protective Zn-Al layered double hydroxide film fabricated on anodized 2198 aluminum alloy[J].Journal of Alloys and Compounds,2015,630:29-36.

    • [18] HUANG J,ZHAO D Z,GONG Y,et al.Improved corrosion resistance of PEO-coated 7085Al alloy via a novel organic and inorganic sealing-treatment combination[J].Surface and Coatings Technology,2022,441:128566-128580.

    • [19] TAKAICHI H,MORIGUCHI T,HORIKAWA M,et al.Sealing liquid for anodic oxide coating films of aluminum alloy,concentrated liquid and sealing method[P].United States Patent,US2019/0112726Al,2019,04-18.

    • [20] HAO X L,ZHAO N,JIN H H,et al.Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature[J].Rare Metals,2020,6:1-7.

    • [21] QIN G M,ZHANG Y C,YANG E H,et al.Effect of post-sealing treatment with different concentrations of NaH2PO4 on corrosion resistance of MAO coating on 6063 aluminum alloy[J].Surface and Coatings Technology,2022,443:128604-128615.

    • [22] 况先银,金少强,曹艳辉,等.铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J].电化学,2021,27(6):624-636.KUANG Xianyin,JIN Shaoqiang,CAO Yanhui,et al.Effect of aluminum alloy surface modification on adhesion of the modified polyurethane coating and its corrosion protective performance[J].Journal of Electrochemistry,2021,27(6):624-636.(in Chinese)

    • [23] 王雨顺,丁毅,马立群.铝及铝合金阳极氧化膜的封孔工艺研究进展[J].表面技术,2010,39(4):87-90,109.WANG Yushun,DING Yi,MA Liqun,et al.Development of sealing technology of anodized aluminum and aluminum alloys[J].Surface Technology,2010,39(4):87-90,109.(in Chinese)

    • [24] KIM M,YOO H,CHOI J.Non-nickel-based sealing of anodic porous aluminum oxide in NaAlO2[J].Surface and Coatings Technology,2017,310:106-112.

    • [25] 张述林,王晓波,陈世波.LY12 铝合金阳极氧化膜沸水封孔工艺条件的优化[J].腐蚀与防护,2007,28(6):307-309.ZHANG Shulin,WANG Xiaobo,CHEN Shibo.Boiling seal process of anodized films on aluminum alloy LY12[J].Corrosion and Protection,2007,28(6):307-309.(in Chinese)

    • [26] 骆骢,马硕.无铬封闭处理对ZL101A铝合金阳极氧化膜耐蚀性能的影响[J].电镀与精饰,2022,44(2):46-50.LUO Cong,MA Shuo.Effect of chromium-free sealing treatment on corrosion resistance of anodic oxide films on ZL101A aluminum alloy[J].Plating and Finishing,2022,44(2):46-50.(in Chinese)

    • [27] DOU Z,ZHANG Y,SHULHA T,et al.Insight into chelating agent stimulated in-situ growth of MgAl-LDH films on magnesium alloy AZ31:the effect of initial cationic concentrations[J].Surface and Coatings Technology,2022,439:128414-128423.

    • [28] KUZNETSOV B,SERDECHNOVA M,TEDIM J,et al.Sealing of tartaric sulfuric(TSA)anodized AA2024 with nanostructured LDH layers[J].Royal Society of Chemistry,2016,6:13942-13952.

    • [29] ZHANG Y,YU P H,ZUO Y,et al.Investigating the growth behavior of LDH layers on MAO-coated aluminum alloy:influence of microstructure and surface element[J].International Journal of Electrochemical Science,2018,13(1):610-620.

    • [30] MATA D,SERDECHNOVA M,MOHEDANO M,et al.Hierarchically organized Li-Al-LDH nano-flakes:A low-temperature approach to seal porous anodic oxide on aluminum alloys[J].RSC Advances,2017,7(56):35357-35367.

    • [31] ZHANG Y,YU P H,WANG J P,et al.LDHs/graphene film on aluminum alloys for active protection[J].Applied Surface Science,2018,433:927-933.

    • [32] 张玉圣,王友彬,李纯民,等.6061 铝合金表面 ZnAl-LDHs 层的制备及其耐腐蚀性能[J].金属学报,2018,54(10):1417-1427.ZHANG Yusheng,WANG Youbin,LI Chunmin,et al.Preparation and corrosion resistance of the ZnAl-LDHs film on 6061 Al alloy surface[J].Acta Metallurgica Sinica,2018,54(10):1417-1427.(in Chinese)

    • [33] 李松梅,尹晓琳,刘建华,等.Zn-Al-[V10O28] 6-双层氢氧化物掺杂对LY12铝合金表面溶胶-凝胶涂层性能的影响[J].物理化学学报,2014,30(11):2092-2100.LI Songmei,YIN Xiaolin,LIU Jianhua,et al.Effect of doping with Zn-Al-[V10O28] 6- layered double hydroxide on the properties of hybrid Sol-Gel coatings on the LY12 aluminum surface[J].Acta Physico-Chimica Sinica,2014,30(11):2092-2100.(in Chinese)

    • [34] YOGANANDAN G,BALARAJU J N,LOW C H C,et al.Electrochemical and long term corrosion behavior of Mn and Mo oxyanions sealed anodic oxide surface developed on aerospace aluminum alloy(AA2024)[J].Surface and Coatings Technology,2016,288:115-125.

  • 手机扫一扫看