en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王海楠,男,1993年出生,博士研究生。主要研究方向为高速激光熔覆技术。E-mail:lyufei11@foxmail.com

通讯作者:

程延海,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为激光熔覆。E-mail:chyh1007@cumt.edu.cn

中图分类号:TG156

DOI:10.11933/j.issn.1007−9289.20221203003

参考文献 1
袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.YUAN Liang.Study on the development strategy of coal mine safety in China[J].China Coal,2021,47(6):1-6.(in Chinese)
参考文献 2
中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2020.National Bureau of Statistics of China.China statistical yearbook[M].Beijing:China Statistical Yearbook,2020.(in Chinese)
参考文献 3
李秀云,牛曙光.单体液压支柱防腐蚀研究[J].煤矿机械,2004,36(8):36-37.LI Xiuyun,NIU Shuguang.Study hydraulic prop prevention of corrosion not single[J].Coal Mine Machinery,2004,36(8):36-37.(in Chinese)
参考文献 4
王志华.液压支架立柱的腐蚀机理及其防护[J].矿山机械,2011,39(9):16-19.WANG Zhihua.Corrosion mechanism and protection techniques of columns of hydraulic supports[J].Mining and Processing Equipment,2011,39(9):16-19.(in Chinese)
参考文献 5
SHAO Q,LI S,LIU L,et al.The influence on the corrosion of hydraulic support system of chloride ions in the transmission medium and preventive measures[J].Procedia Engineering,2011,26:1214-1219.
参考文献 6
ZENG Z X,WANG L P,CHEN L,et al.The correlation between the hardness and tribological behaviour of electroplated chromium coatings sliding against ceramic and steel counterparts[J].Surface and Coatings Technology,2006,201(6):2282-2288.
参考文献 7
PODGORNIK B,MASSLER O,KAFEXHIU F,et al.Crack density and tribological performance of hardchrome coatings[J].Tribology International,2018,121:333-340.
参考文献 8
唐伟,杜亚飞.基于激光辅助冷喷涂的立柱耐蚀涂层研究[J].煤矿机械,2019,40(10):41-44.TANG Wei,DU Yafei.Study on corrosion resistant coating of column based on laser-assisted cold spraying[J].Coal Mine Machinery,2019,40(10):41-44.(in Chinese)
参考文献 9
高锋,万滋雄,黄昭明.激光熔覆液压支架立柱工艺特点分析[J].矿山机械,2013,41(6):125-126.GAO Feng,WAN Zixiong,HUANG Zhaoming.Analysis of technical characteristics of laser cladding hydraulic support column[J].Mining and Processing Equipment,2013,41(6):125-126.(in Chinese)
参考文献 10
United States Environmental Protection Agency.Chromium electroplating:National Emission Standards for hazardous air pollutants[EB/OL].[2012-09-19].https://www.epa.gov/stationary-sources-air-pollution/chro mium-electroplating-national-emission-standards-hazardo us-air.
参考文献 11
李胜会,戎芳毅.中国制造业绿色转型升级:政策、实践与趋势[J].全球化,2021(5):103-114.LI Shenghui,RONG Fangyi.Green transformation and upgrading of China’ s manufacturing industry:policies,practices and trends[J].Globalization,2021(5):103-114.(in Chinese)
参考文献 12
邹斌华.超高速激光熔覆技术在液压支柱上的应用[J].中国表面工程,2020,33(6):2.ZOU Binhua.Application of ultra-high speed laser cladding technology on hydraulic prop[J].China Surface Engineering,2020,33(6):2.(in Chinese)
参考文献 13
SCHOPPHOVEN T,GASSER A,WISSENBACH K,et al.Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying[J].Journal of Laser Applications,2016,28(2):022501.
参考文献 14
郭永明,叶福兴,祁航.超高速激光熔覆技术的研究现状及发展趋势[J].中国表面工程,2022,35(6):39-50 GUO Yongming,YE Fuxing,QI Hang.Research status and development of ultra-high speed laser cladding[J].China Surface Engineering,2022,35(6):39-50.(in Chinese)
参考文献 15
娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)
参考文献 16
KUMBHAR N N,MULAY A V.Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies:A review[J].Journal of the Institution of Engineers(India):Series C,2018,99(4):481-487.
参考文献 17
ZHONG Z.Machining of thermally sprayed WC-Co coatings[J].Materials and Manufacturing Processes,2001,16:103-112.
参考文献 18
ZHONG Z,PENG Z,LIU N.Surface roughness characterization of thermally sprayed and precision machined WC-Co and Alloy-625 coatings[J].Materials Characterization,2007,58:997-1005.
参考文献 19
ZHAO Y H,SUN J,LI J F.Study on chip morphology and milling characteristics of laser cladding layer[J].The International Journal of Advanced Manufacturing Technology,2015,77(5-8):783-796.
参考文献 20
ZHAO Y,JIE S,LI J.Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling[J].Applied Surface Science,2014,321(1):387-395.
参考文献 21
王胜,郑志谊,周明安,等.45 钢表面激光熔覆316不锈钢涂层的工艺参数对熔覆层车削性能的影响[J].激光与光电子学进展,2021,58(21):214-221.WANG Sheng,ZHENG Zhiyi,ZHOU Mingan,et al.Influence of laser cladding parameters on turning performance of laser-cladded 316 stainless steel coating on 45 steel surface[J].Laser & Optoelectronics Progress,2021,58(21):214-221.(in Chinese)
参考文献 22
GUO Y B,WARREN A W.The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact[J].Surface and Coatings Technology,2008,203:291-299.
参考文献 23
LIU X B,ZHANG B,DENG Z H.Grinding of nanostructured ceramic coatings:surface observations and material removal mechanisms[J].International Journal of Machine Tools and Manufacture,2002,42(15):1665-1676.
参考文献 24
刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo,et al.Effect of ultrasonic surface rolling extrusion on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high-entropy alloy coatings[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)
参考文献 25
CUI Z,QIN Z,DONG P,et al.Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment[J].Materials Letters,2020,259:126769.
参考文献 26
ALMANGOUR B,YANG J.Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing[J].Materials and Design,2016,110:914-924.
参考文献 27
HIEGEMANN L,WEDDELING C,KHALIFA N B,et al.Prediction of roughness after ball burnishing of thermally coated surfaces[J].Journal of Materials Processing Technology,2015,217:193-201.
参考文献 28
TEKKAYA A E,KLEINER M,BIERMANN D,et al.Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding[J].Production Engineering,2013,7:601-610.
参考文献 29
TILLMANN W,HOLLINGSWORTH P,BAUMANN I,et al.Thermally sprayed fine structured WC-12Co coatings finished by ball burnishing and grinding as an innovative approach to protect forming tools against wear[J].Surface and Coatings Technology,2015,268:134-141.
参考文献 30
CHAUDHARI P,AWARI G K,KHANDARE S S.Investigation of effectiveness of combined turning and burnishing operations performed on lathe machine on an aluminium alloy for the modification of surface texture[J].International Research Journal of Engineering and Technology,2015,2(6):1316-1320.
参考文献 31
ZHANG P,LIU Z.Enhancing surface integrity and corrosion resistance of laser cladded Cr–Ni alloys by hard turning and low plasticity burnishing[J].Applied Surface Science,2017,409:169-178.
参考文献 32
MAIß O,DENKENA B,GROVE T.Hybrid machining of roller bearing inner rings by hard turning and deep rolling[J].Journal of Materials Processing Technology,2016,230:211-216.
参考文献 33
OUTEIRO J C,PINA J C,M'SAOUBI R,et al.Analysis of residual stresses induced by dry turning of difficultto-machine materials[J].CIRP Annals,2008,57(1):77-80.
参考文献 34
WALTER R,KANNAN M B.Influence of surface roughness on the corrosion behaviour of magnesium alloy[J].Materials & Design,2011,32(4):2350-2354.
参考文献 35
张培荣.Cr/Ni 合金激光熔覆层车—滚复合加工表面完整性及耐腐蚀性研究[D].济南:山东大学,2018.ZHANG Peirong.On surface integrity and corrosion resistance of laser cladded Cr/Ni alloy finished by hybrid turning and burnishing[D].Jinan:Shandong University,2018.(in Chinese)
参考文献 36
PU Z,SONG G L,YANG S,et al.Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J].Corrosion Science,2012,57:192-201.
参考文献 37
ZHANG Q,HU Z,SU W,et al.Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J].Surface and Coatings Technology,2017,321:64-73.
目录contents

    摘要

    液压立柱表面镀铬涂层易出现微小裂纹并导致涂层剥落,对煤矿生产造成安全隐患。为强化液压立柱表面性能、提高液压立柱使用寿命,利用高速激光熔覆技术在 27SiMn 钢表面制备铁基耐腐蚀熔覆层,并对熔覆层进行车-滚后处理提升强化熔覆层表面性能。使用扫描电子显微镜、形状测量激光显微镜、显微硬度计、电化学工作站等对高速激光熔覆层、车削及不同滚压力作用后的熔覆层微观组织、表面粗糙度、残余应力、显微硬度、耐腐蚀性能进行研究分析。结果表明:初始熔覆层显微组织致密,无明显孔隙、裂纹等缺陷,从结合处到表面依次为平面晶、树枝晶、等轴晶;滚压加工的“削峰填谷”效应使熔覆层表面发生塑性变形,滚压力为 2.8 MPa 时,表面轮廓平整,表面粗糙度降低至 0.768 µm;熔覆层硬度随滚压力的增大而增加,熔覆层顶部出现明显的塑性变形区和硬化层;车-滚复合加工使熔覆层表面残余应力由拉应力状态转变为压应力,滚压力增大,残余压应力先增大后减小;车-滚复合加工使熔覆层表层晶粒细化,增强 Cr 元素扩散,提高耐蚀能力,但过大的滚压力使熔覆层表面损伤,耐蚀能力下降。车-滚后处理工艺有效提升了熔覆层表面性能,可为高速激光熔覆高效低成本的后处理工艺研发提供参考。

    Abstract

    Electroplating is widely used to strengthen the surfaces of hydraulic columns. However, chromium plating is sensitive to minor cracks, causing the coating to peel or even flake off in the harsh and humid underground working environment of coal mines. As a result, the hydraulic column easily corrodes and seriously threatens the safety of coal mine production. High-speed laser cladding, an emerging environmentally friendly surface technology, is one of the most promising surface coating technologies as an alternative to hard chrome plating. To strengthen the surface properties and increase the service life of the hydraulic column, high-speed laser cladding technology was employed to prepare Fe-based corrosion-resistant coatings on the surface of 27SiMn steel in this study. This was followed by post-treatment involving turning and rolling the cladding layer to enhance and improve the surface properties of the coating. The microstructure, surface roughness, residual stresses, microhardness, and corrosion resistance of the coatings were analyzed using scanning electron microscopy(SEM), profiling laser microscopy, microhardness testing, and an electrochemical workstation for high-speed laser cladding, turning, and rolling. The results show that the initial coating has a dense microstructure with no obvious defects such as pores and cracks, and that planar crystals, dendrites, and equiaxed crystals exist sequentially from the bond to the surface. The high overlap rate of the high-speed laser cladding causes the coating surface to form a multilayer cladding and promotes the formation of small, reticular, equiaxed crystals at the overlap. After turning, the surface profile of the coating was wavy, the wave crests were sharp, and sharp depressions appeared at the troughs that were centrally symmetrical to the wave crests. The surface grains of the coating exhibited obvious plastic deformation, but the degree of deformation of the grains in the respective area was nonuniform. The surface of the coating was plastically deformed by the peak-averting and valley-filling effect of the rolling process. When the rolling pressure is 2.8 MPa, the surface profile is flat with the surface roughness reduced to 0.768 µm. However, as the rolling pressure is increased to 3.8 MPa, scratches appear in some areas of the coating surface with the surface roughness increasing to 0.988 µm. The coating hardness increased with the rolling pressure, with a significant plastic deformation zone and a hardened layer appearing at the top of the coating, increasing to 525.1 HV at 3.8 MPa. However, rolling strengthening has almost no effect on the bonding area between the coating and substrate, and the hardness value of the coating is close to the change in the rolling pressure. The residual stress on the coating surface was transformed from tensile to compressive by a combination of turning and rolling processes. As the rolling pressure increased, the residual compressive stress on the coating surface initially increased and then decreased. The maximum surface residual compressive stress was 846.3 MPa at the rolling pressure of 2.8 MPa. The combination of the turning and rolling processes causes plastic deformation of the coating surface, resulting in grain refinement and work hardening. Grain refinement improves the diffusion of Cr and forms a dense passivation film on the coating surface, preventing an increase in corrosion and improving the corrosion resistance. At rolling pressures up to 3.8 MPa, the work-hardening effect is significant. However, the surface of the coating deformed because of the large bending and deflection of the crystal structure, causing surface damage and increasing the surface roughness, which ultimately reduces the corrosion resistance of the coating. The post-treatment processes of turning and rolling effectively enhanced the surface properties of the coating, and provides a reference for the research and development of high-efficiency and low-cost post-treatment processes for high-speed laser claddings.

  • 0 前言

  • 煤炭在我国一次能源消费中,居绝对主导地位,对我国经济发展具有至关重要的意义[1-2]。但是煤炭开采条件复杂,灾害威胁严重,采煤工作面和巷道相对湿度大,氧气供应充足,水中含有大量 Cl 离子且成分复杂,液压支架作为长壁综采工作面的关键设备,其主要部件之一的立柱表面易产生相当严重的腐蚀和磨损,发生泄漏导致液压支架失效,严重威胁煤矿生产安全[3-5]

  • 传统的液压立柱表面强化加工广泛采用电镀-车磨工艺链。自 20 世纪 30 年代以来,电镀硬铬涂层在高磨损的工程应用中迅速推广,在腐蚀性环境中具有高硬度和出色的耐磨性、低摩擦和良好的腐蚀保护能力[6-7]。但是,镀铬层对微小裂纹敏感,容易出现起皮甚至剥落现象[8],并且电镀铬技术存在的环境和健康问题被国际社会广泛关注,电镀铬技术的发展与应用受到了严格限制[9-10]。因此,液压立柱的表面强化加工逐渐采用一种绿色制造技术进行产业升级[11-12]。高速激光熔覆技术[13-15]改变了光路和粉路的汇聚点,使合金粉末在基材上方熔化进入熔池,形成稀释率极低、与基体冶金结合的致密熔覆层。高速激光熔覆技术采用的逐层堆积增材成形方式导致了“台阶效应”[16]必然存在,使熔覆层表面粗糙度增大,需要进行后续的机加工才能使用。当前工业上大量采用铣削、磨削、滚压以及“粗车-精车-磨削”工艺链等工艺进行油缸类旋转件的加工,以获得精度较高的表面。ZHONG 等[17-18]分别采用磨削、车削以及抛光工艺对喷涂层表面进行加工,对比分析三种工艺下喷涂层的表面质量及加工效率,抛光表面质量高但效率最低,车削表面质量低但效率高,磨削表面质量和加工效率处于两种工艺之间,给出了先粗磨或车削、然后精磨或抛光的喷涂层精密加工方法。ZHAO 等[19-20]对激光熔覆 FeCr 涂层的铣削加工机理进行了深入探究,在相同的切削参数下,熔覆层的切削力和加工振动加速度均高于基体,加工振动在层与层中间位置最大,在层与层接合面处最小,铣削中存在加工振动可能导致较低的生产率和较差的表面完整性。王胜等[21]探究了不同工艺参数下 316 激光熔覆层的车削性能,实现了液压立柱的高质量修复。然而车削、铣削和磨削等硬加工技术有其局限性,无法改善熔覆层的应力状态和孔隙率,并且高硬度熔覆层铣削、车削、磨削加工难度大、易损伤刀具、在熔覆层形成表面轮廓及裂纹等缺陷,不利于提高零部件的抗疲劳性能[22-23]

  • 表面强化工艺可以提高熔覆层机械加工后的表面力学性能[24],CUI 等[25]采用超声滚压工艺对 FeCoNiCrMn 高熵合金熔覆层进行后处理,熔覆层具有更强的残余压应力及耐蚀性。ALMANGOUR 等[26]通过喷丸工艺在外表面层产生严重的塑性变形来诱导晶粒细化,喷丸后的样品表现出致密的表面微观结构,降低了表面粗糙度,涂层的硬度、抗压屈服强度和耐磨性有一定的提高。HIEGEMANN 等[27-29]采用球滚压技术加工喷涂层,降低了表面粗糙度和摩擦因数,引入了残余压应力并使表层硬化,但是强化效果弱于磨削加工。因此,通过滚压加工进行表面强化时,须先采用车削或铣削控制表面粗糙度,确保滚压加工效果。CHAUDHARI 等[30]设计双球滚压刀具以强化车削加工表面,一次滚压过程起到单球滚压两道次的效果。

  • 后处理工艺提高了熔覆层的表面质量,但是,过大的熔覆层去除量增加了生产成本,过长的工艺链也降低了生产效率。亟须研制高效低成本的后处理工艺,满足高速激光熔覆工艺的需求。ZHANG 等[31] 实现了激光熔覆 Cr-Ni 基熔覆层的车-滚复合后处理加工,复合加工后熔覆层组织显著细化,表面划痕消除,表面完整性及耐蚀性显著提高。MAIß 等[32]设计车-滚复合刀具并用于轴承内圈加工。相比纯车削表面,车-滚复合加工将表面质量提高了 24%,生产时间缩减为 1 / 4。因此,本文研究了高速激光熔覆技术替代电镀工艺制备液压立柱表面耐腐蚀涂层,并采用车-滚复合加工工艺对熔覆层进行后处理,主要探究车-滚复合加工对熔覆层表面性能的影响。

  • 1 材料及方法

  • 1.1 高速激光熔覆

  • 基体材料为 27SiMn 管材,其尺寸为φ104 mm(外径)×400 mm(长度)×7 mm(壁厚),化学成分(质量分数)如表1 所示。熔覆材料为 Fe-Cr-B 系合金粉末,粉末粒径为 85~145 µm(100~175 目),成分如表2 所示,熔覆前,使用砂纸打磨基体,用无水乙醇擦拭后风干,将熔覆粉末放置在烘干箱烘干,烘干温度设置为 120℃,烘干时间为 1 h。高速激光熔覆试验参数如表3 所示。高速激光熔覆加工示意图如图1a 所示,高搭接率熔覆层成形示意图如图1b 所示。

  • 表1 27SiMn 管材化学成分(质量分数)

  • Table1 27SiMn pipe chemical composition(wt.%)

  • 表2 合金粉末成分(质量分数)

  • Table2 Alloy powder composition(wt.%)

  • 表3 高速激光熔覆试验参数

  • Table3 High-speed laser cladding experimental parameters

  • 图1 高速激光熔覆及后处理加工示意图

  • Fig.1 Schematic diagram of high-speed laser cladding and post-treatment processing

  • 1.2 后处理

  • 后处理材料为同批次高速激光熔覆后的 27SiMn 管材,设定机床转速为 360 r / min,加工装置进给量为 0.3 mm / r,车刀吃刀量为 0.3 mm,分别使用 1.8、2.8、3.8 MPa 滚压力进行滚压加工,复合加工完成后的实物图如图1c 所示,后处理试验加工示意图如图1d 所示。

  • 1.3 表面性能测试

  • 试验后使用电火花线切割机床将试样切割为 10 mm×10 mm×10 mm 块体,分别使用 400、800、 1200、1500、2000 目砂纸打磨并机械抛光,使用王水腐蚀处理后,使用扫描电子显微镜(SEM) 观察熔覆层微观组织形貌。使用 VK-X200 形状测量激光显微镜对熔覆层表面轮廓进行扫描,得到熔覆层表面轮廓的三维模型与表面粗糙度。通过盲孔法测量熔覆层表面残余应力。使用华银 HVS-1000 型显微硬度计测量熔覆层与基体的显微硬度,测量载荷为 1 kg,保持时间为 15 s,每隔 0.1 mm 测一个点,测量至表面下 0.6 mm。使用 CHI660D 电化学工作站进行电化学极化曲线和电化学阻抗谱测试,腐蚀溶液为 3.5%NaCl 溶液,开路电位测试时间为 300 s。熔覆层表面性能测试均完成三次及以上重复试验,以保证试验数据的可靠性。

  • 2 结果与讨论

  • 2.1 表面形貌分析

  • 图2 为高速激光熔覆层表面轮廓,由图可知,熔覆层表面存在大量的凸起尖峰和气孔,凸峰最高为 64.4 µm,气孔最深为 25.48 µm,凸峰和气孔的存在,是因为高速激光熔覆的扫描速度相对较快,基体热输入较少,熔池规模较小,粉末未完全熔化而随熔池凝固,附着在熔覆层表面从而形成凸起尖峰和未熔合孔隙,同时,熔池中的气体在熔覆层凝固时未能排出从而形成气孔。图3 为车削表面轮廓,与图2 对比可知,经车削加工后,熔覆层表面的凸峰和气孔被车削去除,表面轮廓呈波浪式,波峰较尖锐,波谷处存在尖锐的凹陷,与波峰呈中心对称。图4 为 1.8 MPa 滚压表面轮廓。与图3 对比可知,经滚压加工后的工件表面波峰范围明显变宽,波峰处的金属材料在滚压力的作用下发生塑性变形,一部分通过侧流补充到波谷处,使波峰高度有一定的降低。但是,由于熔覆层产生的弹性恢复,表面塑性变形不充分,“削峰填谷”作用不明显,波峰波谷仍然呈很明显的中心对称。图5 为 2.8 MPa 滚压表面轮廓。由图可知,在 2.8 MPa 滚压力的作用下,波峰的塑性流动量增加,进一步挤压填补波谷,表面轮廓相对平整,无明显的波峰波谷存在,滚压加工的“削峰填谷”作用明显。图6 为 3.8 MPa 滚压表面轮廓。与图5 相比,表面轮廓没有明显的起伏趋势,整体轮廓的几何特征没有明显改变。但是,3.8 MPa 的滚压力明显超过熔覆层的承载能力,熔覆层表面产生的塑性变形增大,滚珠与熔覆层表面的接触面积增大,在滚压加工中产生的热量增加,致使部分表面金属材料粘连到滚珠上,在相对运动过程中从表面撕脱,随着加工的进行,滚珠表面粘连的金属颗粒划伤工件表面。因此,在图6 中表面观察到不规则的波纹,局部区域出现划痕。

  • 图2 高速激光熔覆层表面轮廓

  • Fig.2 High-speed laser cladding surface profile

  • 图3 车削表面轮廓

  • Fig.3 Turning surface contour

  • 图4 1.8 MPa 滚压表面轮廓

  • Fig.4 1.8 MPa rolling surface profile

  • 图5 2.8 MPa 滚压表面轮廓

  • Fig.5 2.8 MPa rolling surface profile

  • 图6 3.8 MPa 滚压表面轮廓

  • Fig.6 3.8 MPa rolling surface profile

  • 2.2 表面粗糙度分析

  • 使用 VK 激光共聚焦显微镜分析加工后表面沿进给方向的线粗糙度,获得如图7 所示的表面轮廓线。由图7a 可知,车削后熔覆层表面波峰与波谷呈周期性分布,且波峰、波谷分布较宽,幅值较大; 在 1.8 MPa 滚压加工作用下,图7b 中波峰波谷不再呈周期性分布,波峰、波谷的幅值存在不同程度的降低,熔覆层表面产生了一定程度的塑性变形,但没有完全去除车削痕迹,对表面粗糙度的改善有限; 图7c 和图7d 基本观察不到波峰存在,整体高度较为平均。由此可知,车-滚复合加工使工件表面更加平整,表面轮廓线的分布特征与前文表面几何特征相对应。

  • 图7 车-滚复合加工表面的轮廓线

  • Fig.7 Turning and rolling compound processing surface profile

  • 车-滚复合加工表面粗糙度如图8 所示,熔覆层表面经车削加工后,熔覆层表面的轮廓算数平均偏差 Ra 值为 2.183 µm;在 1.8 MPa 的滚压作用下,熔覆层表面发生了有限的塑性变形,在“削峰填谷” 作用下,Ra 值降低至 1.546 µm;随着滚压力增大至 2.8 MPa,熔覆层表面的塑性变形量增加,“削峰填谷”效应明显,Ra 降至 0.768 µm;但是,当滚压力继续增加,增大至 3.8 MPa 时,Ra 升高至 0.988 µm。车削加工后的熔覆层轮廓峰顶线和谷底线之间的距离 Rz 为 14.496 µm,在 2.8 MPa 的滚压力下得到了最小的 Rz 值,为 8.026 µm,下降了 44.63%;当滚压力增加到 3.8 MPa 时,Rz 值增加到 9.119 µm,上涨了 13.49%。通过以上分析可知,滚压力取 2.8 MPa 时获得最优的表面粗糙度,工件表面光洁无缺陷。因此,在实际滚压加工中不可以盲目追求大滚压力,应根据材料性能确定合理的滚压参数。

  • 图8 车-滚复合加工表面粗糙度

  • Fig.8 Surface roughness of turning and rolling processing

  • 2.3 熔覆层显微组织分析

  • 图9 为未经车-滚复合加工的高速激光熔覆层显微组织。熔覆层组织在深度方向上呈现出不同的晶体生长形态,从结合面到熔覆层表面依次为平面晶、树枝晶、等轴晶,晶粒尺寸随熔覆层深度减小逐渐变小,熔覆层组织致密,无明显孔隙、裂纹等缺陷。图9a 是熔覆层与基体结合处的显微组织,熔池底部的温度梯度大,过冷度小,结晶缓慢,因此在结合面处形成光亮的平面晶带。图9b 是熔覆层底部靠近结合线处的显微组织,此处温度梯度减小,过冷度增大,晶体快速生长,形成方向表现为垂直于熔覆结合面的细长树枝晶。图9c 是熔覆层顶部的显微组织,熔池表面在马兰戈尼效应的作用下,对流换热加快了熔池表面的散热速度,使过冷度增大,抑制了树枝晶的择优生长,高搭接率使熔覆层表面形成多层熔覆成形效果,促进搭接处形成细小、网状的等轴晶。

  • 图9 高速激光熔覆层显微组织

  • Fig.9 Microstructure of high-speed laser cladding layer

  • 图10 为车削表面显微组织,由图可知,熔覆层表层晶粒经过车削后发生了明显的塑性变形,塑性变形区平均深度为 17.2 µm,但是,塑性变形区内晶粒变形程度不均匀。图11 为 1.8 MPa 滚压加工后的熔覆层显微组织,由图可知,表层晶粒发生弯曲和拉伸变形,产生深度为 5.5 µm 的硬化层,硬化层内晶粒无明显晶界,滚压加工产生晶粒细化区的平均深度为 49.4 µm。图12 为 2.8 MPa 滚压加工后的熔覆层显微组织。由图可知,熔覆层表层出现深度为 7.3 µm 的硬化层,无明显的晶界结构。熔覆层内部的晶粒细化区随滚压力的增大,熔覆层的显微组织变化也更加明显,出现明显的晶粒偏转,晶粒细化区的深度有所增加,深度为 57.7 µm。图13 为 3.8 MPa 滚压加工后的熔覆层显微组织。在 3.8 MPa 滚压力作用下,表面塑性变形加剧,晶体组织发生较大的弯曲、偏转等变形,晶粒细化区达到 72.8 µm。

  • 图10 车削加工后熔覆层顶部显微组织

  • Fig.10 Microstructure of the top of the coating after turning

  • 图11 1.8 MPa 滚压显微组织

  • Fig.11 1.8 MPa rolling microstructure

  • 图12 2.8 MPa 滚压显微组织

  • Fig.12 2.8 MPa rolling microstructure

  • 图13 3.8 MPa 滚压显微组织

  • Fig.13 3.8 MPa rolling microstructure

  • 2.4 表面残余应力分析

  • 分别对高速激光熔覆层与复合加工所得试件采用盲孔法进行残余应力的测量。盲孔法测量选点示意图如图14 所示。

  • 图14 盲孔法测量选点示意图

  • Fig.14 Schematic diagram of selecting points for blind hole measurement

  • 图15 显示了盲孔法测量残余应力主要参数之间的关系,图中σ 是沿熔覆方向残余应力分量,σ 是沿进给方向的残余应力分量。其中σσ 由式 (1)、(2)计算得出:

  • σ=σ1cosθ+σ2sinθ
    (1)
  • σ=σ2cosθ-σ1sinθ
    (2)
  • 根据试验结果,同一处的三个测试点数值相近,因此取每处三点的平均值表示此处的残余应力,具体残余应力分布如图16 所示。由图可知,初始熔覆层呈拉应力状态,且随熔覆层深度的增加,拉应力数值减小。进行车削加工后,熔覆层残余应力为压应力状态,这是因为车削去掉了熔覆层表层材料,使一部分残余拉应力释放,而车削加工使熔覆层表层产生有限的塑性变形,起到了表面强化作用,这是与文献[33]中车削使工件表现为残余拉应力的结论不相符的原因。

  • 图15 盲孔法测量残余应力主要参数间关系

  • Fig.15 Relationship between the main parameters of residual stress measurement by blind hole method

  • 图16 表面残余应力平均分布

  • Fig.16 Average distribution of surface residual stress

  • 从图16 中可以看出,使用 1.8 MPa 滚压力进行滚压时,表面残余压应力最大值从车削后的 246.1 MPa 增加到 689.2 MPa;当滚压力由 1.8 MPa 增加到 2.8 MPa 时,工件表面残余压应力数值增大,为 846.3 MPa;滚压力增加至 3.8 MPa,熔覆层最大残余压应力降低至 647.6 MPa,由此表明,当前滚压力超过熔覆层承载能力,随着滚压力的增加,熔覆层残余压应力数值先增大后减小。由滚压加工原理可知,当滚压力为 1.8、2.8 MPa 时,滚压加工使熔覆层表面产生硬化层,晶粒发生细化,但影响区域集中于表层组织,使表面残余压应力数值呈增加趋势;当滚压力增加到 3.8 MPa 时,滚压力不仅使工件表面发生塑性变形,传递到熔覆层内部时超过材料的屈服强度,使熔覆层内部发生分层、错位等塑性变形,但是熔覆层内部的塑性变形强度不一,使表面残余压应力降低。

  • 图17a 为残余应力沿进给方向分量,由图可知,残余应力分布趋势与图16 基本一致;图17b 为残余应力沿熔覆方向分量,由图可知,车削加工后,在 100 mm 处呈现残余拉应力状态,与文献[33]中的结论相符。根据图17a、17b 中曲线可以推测,车削加工使表面组织向车削方向弯曲变形较多,对沿熔覆方向表面残余应力影响较大。滚压加工的“削峰填谷”效应使熔覆层表面材料产生明显的塑性变形,显著地提高了熔覆层表面残余压应力。

  • 图17 表面残余应力分量分布情况

  • Fig.17 Surface residual stress component distribution

  • 2.5 显微硬度分析

  • 图18 为高速熔覆层截面从熔覆层顶部到基体的维氏硬度分布,由图可知,熔覆层硬度随深度增加从 374.8 HV 增加至 539.9 HV,相较于基体的 277.1 HV,熔覆层顶部硬度提高了 35%,熔覆层中最大硬度较基体提高了 95%。当激光照射到初始熔覆层时,表面迅速熔化,随着加工进行,由于高速激光熔覆搭接率为 92%,熔覆层组织经过重熔多次加热,熔池中温度较高,熔覆层表层中 Cr 元素被烧损,使熔覆层表层显微硬度降低。熔覆层组织经过多次热处理,熔池流动充分且元素分布均匀,较大的冷却速率使熔覆层在凝固时形成马氏体组织,同时形成高硬度 Cr23C6等碳化物,显著提高了熔覆层结合面区域硬度值。

  • 图18 熔覆层硬度分布

  • Fig.18 Hardness distribution of cladding layer

  • 图19 为后处理熔覆层的硬度分布,由图可知,车削后去除了 0.3 mm 表层材料,同时使熔覆层顶部组织产生一定的塑性变形,使晶粒细化,顶部硬度值提高至 407.5 HV;滚压加工随滚压力增加,产生的塑性变形区域更大,硬化层深度增加,硬化作用更显著,因此熔覆层表层硬度在 1.8MPa 时增加至 443.2 HV,在 2.8 MPa 时增加至 504.2 HV,在 3.8 MPa 时增加至 525.1 HV。但是,熔覆层结合处的硬度值接近,说明结合处受到滚压力硬化作用的影响较小。

  • 图19 后处理熔覆层硬度分布情况

  • Fig.19 Hardness distribution of post-treatment cladding layer

  • 3 后处理对熔覆层耐腐蚀性的影响

  • 图20 为熔覆层后处理前后表面极化曲线,由图20a 可知,后处理试样腐蚀电位均高于初始熔覆层,腐蚀电位越高,越不容易发生腐蚀,这表明后处理提高了熔覆层耐腐蚀性[34],其中,2.8 MPa 滚压试样腐蚀电位最大,1.8 MPa 滚压试样与 3.8 MPa 滚压试样曲线基本重合,低于车削试样腐蚀电位。图20b 为不同后处理参数下熔覆层表面极化曲线图,由图可知,试样表面发生了不同程度的钝化,在钝化区电位升高、电流密度小范围波动。由合金粉末成分可知,熔覆层中 Cr 元素含量较高,在表面形成致密的 Cr2O3 钝化膜。车削后熔覆层表面粗糙度较大,存在周期性分布的波峰波谷,表面形成的钝化膜薄弱,因此耐蚀性仅优于初始熔覆层。熔覆层表面在滚压力的作用下,发生塑性变形的同时产生晶粒细化和加工硬化。但是,晶粒细化提高耐蚀性,加工硬化降低耐蚀性[35]。因此,在滚压力为 1.8、2.8 MPa 时,熔覆层耐蚀性不断提高,表明晶粒细化对耐蚀性的影响大于加工硬化,当滚压力增加至 3.8 MPa 时,加工硬化的作用更加明显。因此,应根据材料承载能力合理选择滚压力。

  • 图20 试样后处理前后表面的动电位极化曲线分析

  • Fig.20 Analysis of the potential polarization curve of the sample surface before and after post-treatment

  • 对电化学阻抗谱测试数据进行拟合,绘制后处理前后的 Nyquist 图、频率-幅值图与频率-相角图。图21 为后处理前后试样 Nyquist 图,图22 为后处理前后的频率-幅值图,图23 为后处理前后各试样的频率-相角图。图21 中 2.8 MPa 滚压试样曲线的曲率最大,因此表明 2.8 MPa 滚压试样耐蚀性最好[36],由图22 可知,各试样幅值表现为熔覆层表面阻抗值,阻抗值与熔覆层表面耐腐蚀性呈线性关系,阻抗值越高,表面耐腐蚀性越好。频率高于 103 Hz,各试样曲线逐渐平稳,幅值接近。频率低于 10−1 Hz,车削试样阻抗值最低,其他试样曲线较为一致,远大于车削试样阻抗值,与图21 中曲线特征相对应。由图23 可知,除车削试样外,其他试样最大相角维持在 10−2~102 Hz,最大相角分布在 70°~80°。车削试样相角在 10−2~10 Hz 区间迅速降低,由此可知,滚压加工作用对车削加工后的试样耐腐蚀性提升明显。

  • 图21 后处理试样 Nyquist 图

  • Fig.21 Nyquist diagram of post-processing sample

  • 图22 后处理试样频率-幅值图

  • Fig.22 Frequency-amplitude diagram of post-processing sample

  • 图23 后处理试样频率-相角图

  • Fig.23 Frequency-phase angle diagram of post-processed sample

  • 综上所述,初始熔覆层表面粗糙度较大,表面存在的尖峰和气孔极大地影响了熔覆层表面钝化膜的形成,进而影响了耐腐蚀性能;车削加工后,虽然表面粗糙度降低,但是表面形成周期性分布的波峰波谷增大了熔覆层表面与腐蚀溶液的接触面积,而波峰波谷的幅值较大,对钝化膜的稳定性有一定的影响,进而影响了熔覆层的耐腐蚀性能;滚压加工可以使熔覆层表面产生塑性变形,产生晶粒细化和加工硬化,但是晶粒细化和加工硬化对耐腐蚀性能的影响是相反的,晶粒细化导致的大量晶界和高密度位错组织,提高 Cr 元素的扩散能力,在熔覆层表面形成一层致密的钝化膜,防止腐蚀加剧,提高耐蚀能力[37]。当滚压力增大至 3.8 MPa 时,熔覆层塑性变形区域最大,硬度值增加最大,硬化层深度最大,加工硬化作用最显著,但是晶体组织发生较大的弯曲、偏转等变形,熔覆层表面出现划痕,增大了表面粗糙度,造成熔覆层表面损伤,降低了熔覆层的耐腐蚀性能。因此,选择滚压力为 2.8 MPa,对熔覆层进行车-滚复合加工可以有效提高熔覆层表面的耐腐蚀性能。

  • 4 结论

  • 采用高速激光熔覆技术在 27SiMn 钢表面制备了铁基耐腐蚀熔覆层,并对熔覆层进行车-滚后处理复合加工,研究车-滚后处理对熔覆层组织结构、表面轮廓、残余应力、显微硬度及耐腐蚀性能的影响,研究结果表明车-滚后处理对提升强化熔覆层表面性能有显著效果。相应的结论如下:

  • (1)滚压加工的“削峰填谷”效应可以明显改善熔覆层表面形貌,降低表面粗糙度,但过大的滚压力会划伤熔覆层表面。当滚压力为 2.8 MPa 时, Ra 值最小,为 0.762 µm。

  • (2)车-滚复合加工使熔覆层表面组织加工硬化,熔覆层硬度随滚压力增加而增大,当滚压力为 3.8 MPa 时,表面显微硬度增加至 525.1 HV。

  • (3)熔覆层表面残余应力经车-滚复合加工后由拉应力状态转变为压应力,并随滚压力的增加,压应力先增加后减小,当滚压力为 2.8 MPa 时,表面残余压应力数值最大,为 846.3 MPa。

  • (4)车-滚复合加工使熔覆层表层组织发生晶粒细化和加工硬化,降低了表面粗糙度,减少了熔覆层表面与腐蚀溶液的接触面积,提高了熔覆层的耐腐蚀性能。但过大的滚压力会加剧加工硬化,降低了熔覆层表面性能,从而降低了熔覆层耐蚀能力。

  • 参考文献

    • [1] 袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.YUAN Liang.Study on the development strategy of coal mine safety in China[J].China Coal,2021,47(6):1-6.(in Chinese)

    • [2] 中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2020.National Bureau of Statistics of China.China statistical yearbook[M].Beijing:China Statistical Yearbook,2020.(in Chinese)

    • [3] 李秀云,牛曙光.单体液压支柱防腐蚀研究[J].煤矿机械,2004,36(8):36-37.LI Xiuyun,NIU Shuguang.Study hydraulic prop prevention of corrosion not single[J].Coal Mine Machinery,2004,36(8):36-37.(in Chinese)

    • [4] 王志华.液压支架立柱的腐蚀机理及其防护[J].矿山机械,2011,39(9):16-19.WANG Zhihua.Corrosion mechanism and protection techniques of columns of hydraulic supports[J].Mining and Processing Equipment,2011,39(9):16-19.(in Chinese)

    • [5] SHAO Q,LI S,LIU L,et al.The influence on the corrosion of hydraulic support system of chloride ions in the transmission medium and preventive measures[J].Procedia Engineering,2011,26:1214-1219.

    • [6] ZENG Z X,WANG L P,CHEN L,et al.The correlation between the hardness and tribological behaviour of electroplated chromium coatings sliding against ceramic and steel counterparts[J].Surface and Coatings Technology,2006,201(6):2282-2288.

    • [7] PODGORNIK B,MASSLER O,KAFEXHIU F,et al.Crack density and tribological performance of hardchrome coatings[J].Tribology International,2018,121:333-340.

    • [8] 唐伟,杜亚飞.基于激光辅助冷喷涂的立柱耐蚀涂层研究[J].煤矿机械,2019,40(10):41-44.TANG Wei,DU Yafei.Study on corrosion resistant coating of column based on laser-assisted cold spraying[J].Coal Mine Machinery,2019,40(10):41-44.(in Chinese)

    • [9] 高锋,万滋雄,黄昭明.激光熔覆液压支架立柱工艺特点分析[J].矿山机械,2013,41(6):125-126.GAO Feng,WAN Zixiong,HUANG Zhaoming.Analysis of technical characteristics of laser cladding hydraulic support column[J].Mining and Processing Equipment,2013,41(6):125-126.(in Chinese)

    • [10] United States Environmental Protection Agency.Chromium electroplating:National Emission Standards for hazardous air pollutants[EB/OL].[2012-09-19].https://www.epa.gov/stationary-sources-air-pollution/chro mium-electroplating-national-emission-standards-hazardo us-air.

    • [11] 李胜会,戎芳毅.中国制造业绿色转型升级:政策、实践与趋势[J].全球化,2021(5):103-114.LI Shenghui,RONG Fangyi.Green transformation and upgrading of China’ s manufacturing industry:policies,practices and trends[J].Globalization,2021(5):103-114.(in Chinese)

    • [12] 邹斌华.超高速激光熔覆技术在液压支柱上的应用[J].中国表面工程,2020,33(6):2.ZOU Binhua.Application of ultra-high speed laser cladding technology on hydraulic prop[J].China Surface Engineering,2020,33(6):2.(in Chinese)

    • [13] SCHOPPHOVEN T,GASSER A,WISSENBACH K,et al.Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying[J].Journal of Laser Applications,2016,28(2):022501.

    • [14] 郭永明,叶福兴,祁航.超高速激光熔覆技术的研究现状及发展趋势[J].中国表面工程,2022,35(6):39-50 GUO Yongming,YE Fuxing,QI Hang.Research status and development of ultra-high speed laser cladding[J].China Surface Engineering,2022,35(6):39-50.(in Chinese)

    • [15] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)

    • [16] KUMBHAR N N,MULAY A V.Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies:A review[J].Journal of the Institution of Engineers(India):Series C,2018,99(4):481-487.

    • [17] ZHONG Z.Machining of thermally sprayed WC-Co coatings[J].Materials and Manufacturing Processes,2001,16:103-112.

    • [18] ZHONG Z,PENG Z,LIU N.Surface roughness characterization of thermally sprayed and precision machined WC-Co and Alloy-625 coatings[J].Materials Characterization,2007,58:997-1005.

    • [19] ZHAO Y H,SUN J,LI J F.Study on chip morphology and milling characteristics of laser cladding layer[J].The International Journal of Advanced Manufacturing Technology,2015,77(5-8):783-796.

    • [20] ZHAO Y,JIE S,LI J.Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling[J].Applied Surface Science,2014,321(1):387-395.

    • [21] 王胜,郑志谊,周明安,等.45 钢表面激光熔覆316不锈钢涂层的工艺参数对熔覆层车削性能的影响[J].激光与光电子学进展,2021,58(21):214-221.WANG Sheng,ZHENG Zhiyi,ZHOU Mingan,et al.Influence of laser cladding parameters on turning performance of laser-cladded 316 stainless steel coating on 45 steel surface[J].Laser & Optoelectronics Progress,2021,58(21):214-221.(in Chinese)

    • [22] GUO Y B,WARREN A W.The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact[J].Surface and Coatings Technology,2008,203:291-299.

    • [23] LIU X B,ZHANG B,DENG Z H.Grinding of nanostructured ceramic coatings:surface observations and material removal mechanisms[J].International Journal of Machine Tools and Manufacture,2002,42(15):1665-1676.

    • [24] 刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo,et al.Effect of ultrasonic surface rolling extrusion on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high-entropy alloy coatings[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)

    • [25] CUI Z,QIN Z,DONG P,et al.Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment[J].Materials Letters,2020,259:126769.

    • [26] ALMANGOUR B,YANG J.Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing[J].Materials and Design,2016,110:914-924.

    • [27] HIEGEMANN L,WEDDELING C,KHALIFA N B,et al.Prediction of roughness after ball burnishing of thermally coated surfaces[J].Journal of Materials Processing Technology,2015,217:193-201.

    • [28] TEKKAYA A E,KLEINER M,BIERMANN D,et al.Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding[J].Production Engineering,2013,7:601-610.

    • [29] TILLMANN W,HOLLINGSWORTH P,BAUMANN I,et al.Thermally sprayed fine structured WC-12Co coatings finished by ball burnishing and grinding as an innovative approach to protect forming tools against wear[J].Surface and Coatings Technology,2015,268:134-141.

    • [30] CHAUDHARI P,AWARI G K,KHANDARE S S.Investigation of effectiveness of combined turning and burnishing operations performed on lathe machine on an aluminium alloy for the modification of surface texture[J].International Research Journal of Engineering and Technology,2015,2(6):1316-1320.

    • [31] ZHANG P,LIU Z.Enhancing surface integrity and corrosion resistance of laser cladded Cr–Ni alloys by hard turning and low plasticity burnishing[J].Applied Surface Science,2017,409:169-178.

    • [32] MAIß O,DENKENA B,GROVE T.Hybrid machining of roller bearing inner rings by hard turning and deep rolling[J].Journal of Materials Processing Technology,2016,230:211-216.

    • [33] OUTEIRO J C,PINA J C,M'SAOUBI R,et al.Analysis of residual stresses induced by dry turning of difficultto-machine materials[J].CIRP Annals,2008,57(1):77-80.

    • [34] WALTER R,KANNAN M B.Influence of surface roughness on the corrosion behaviour of magnesium alloy[J].Materials & Design,2011,32(4):2350-2354.

    • [35] 张培荣.Cr/Ni 合金激光熔覆层车—滚复合加工表面完整性及耐腐蚀性研究[D].济南:山东大学,2018.ZHANG Peirong.On surface integrity and corrosion resistance of laser cladded Cr/Ni alloy finished by hybrid turning and burnishing[D].Jinan:Shandong University,2018.(in Chinese)

    • [36] PU Z,SONG G L,YANG S,et al.Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J].Corrosion Science,2012,57:192-201.

    • [37] ZHANG Q,HU Z,SU W,et al.Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J].Surface and Coatings Technology,2017,321:64-73.

  • 参考文献

    • [1] 袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6.YUAN Liang.Study on the development strategy of coal mine safety in China[J].China Coal,2021,47(6):1-6.(in Chinese)

    • [2] 中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2020.National Bureau of Statistics of China.China statistical yearbook[M].Beijing:China Statistical Yearbook,2020.(in Chinese)

    • [3] 李秀云,牛曙光.单体液压支柱防腐蚀研究[J].煤矿机械,2004,36(8):36-37.LI Xiuyun,NIU Shuguang.Study hydraulic prop prevention of corrosion not single[J].Coal Mine Machinery,2004,36(8):36-37.(in Chinese)

    • [4] 王志华.液压支架立柱的腐蚀机理及其防护[J].矿山机械,2011,39(9):16-19.WANG Zhihua.Corrosion mechanism and protection techniques of columns of hydraulic supports[J].Mining and Processing Equipment,2011,39(9):16-19.(in Chinese)

    • [5] SHAO Q,LI S,LIU L,et al.The influence on the corrosion of hydraulic support system of chloride ions in the transmission medium and preventive measures[J].Procedia Engineering,2011,26:1214-1219.

    • [6] ZENG Z X,WANG L P,CHEN L,et al.The correlation between the hardness and tribological behaviour of electroplated chromium coatings sliding against ceramic and steel counterparts[J].Surface and Coatings Technology,2006,201(6):2282-2288.

    • [7] PODGORNIK B,MASSLER O,KAFEXHIU F,et al.Crack density and tribological performance of hardchrome coatings[J].Tribology International,2018,121:333-340.

    • [8] 唐伟,杜亚飞.基于激光辅助冷喷涂的立柱耐蚀涂层研究[J].煤矿机械,2019,40(10):41-44.TANG Wei,DU Yafei.Study on corrosion resistant coating of column based on laser-assisted cold spraying[J].Coal Mine Machinery,2019,40(10):41-44.(in Chinese)

    • [9] 高锋,万滋雄,黄昭明.激光熔覆液压支架立柱工艺特点分析[J].矿山机械,2013,41(6):125-126.GAO Feng,WAN Zixiong,HUANG Zhaoming.Analysis of technical characteristics of laser cladding hydraulic support column[J].Mining and Processing Equipment,2013,41(6):125-126.(in Chinese)

    • [10] United States Environmental Protection Agency.Chromium electroplating:National Emission Standards for hazardous air pollutants[EB/OL].[2012-09-19].https://www.epa.gov/stationary-sources-air-pollution/chro mium-electroplating-national-emission-standards-hazardo us-air.

    • [11] 李胜会,戎芳毅.中国制造业绿色转型升级:政策、实践与趋势[J].全球化,2021(5):103-114.LI Shenghui,RONG Fangyi.Green transformation and upgrading of China’ s manufacturing industry:policies,practices and trends[J].Globalization,2021(5):103-114.(in Chinese)

    • [12] 邹斌华.超高速激光熔覆技术在液压支柱上的应用[J].中国表面工程,2020,33(6):2.ZOU Binhua.Application of ultra-high speed laser cladding technology on hydraulic prop[J].China Surface Engineering,2020,33(6):2.(in Chinese)

    • [13] SCHOPPHOVEN T,GASSER A,WISSENBACH K,et al.Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying[J].Journal of Laser Applications,2016,28(2):022501.

    • [14] 郭永明,叶福兴,祁航.超高速激光熔覆技术的研究现状及发展趋势[J].中国表面工程,2022,35(6):39-50 GUO Yongming,YE Fuxing,QI Hang.Research status and development of ultra-high speed laser cladding[J].China Surface Engineering,2022,35(6):39-50.(in Chinese)

    • [15] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)

    • [16] KUMBHAR N N,MULAY A V.Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies:A review[J].Journal of the Institution of Engineers(India):Series C,2018,99(4):481-487.

    • [17] ZHONG Z.Machining of thermally sprayed WC-Co coatings[J].Materials and Manufacturing Processes,2001,16:103-112.

    • [18] ZHONG Z,PENG Z,LIU N.Surface roughness characterization of thermally sprayed and precision machined WC-Co and Alloy-625 coatings[J].Materials Characterization,2007,58:997-1005.

    • [19] ZHAO Y H,SUN J,LI J F.Study on chip morphology and milling characteristics of laser cladding layer[J].The International Journal of Advanced Manufacturing Technology,2015,77(5-8):783-796.

    • [20] ZHAO Y,JIE S,LI J.Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling[J].Applied Surface Science,2014,321(1):387-395.

    • [21] 王胜,郑志谊,周明安,等.45 钢表面激光熔覆316不锈钢涂层的工艺参数对熔覆层车削性能的影响[J].激光与光电子学进展,2021,58(21):214-221.WANG Sheng,ZHENG Zhiyi,ZHOU Mingan,et al.Influence of laser cladding parameters on turning performance of laser-cladded 316 stainless steel coating on 45 steel surface[J].Laser & Optoelectronics Progress,2021,58(21):214-221.(in Chinese)

    • [22] GUO Y B,WARREN A W.The impact of surface integrity by hard turning vs.grinding on fatigue damage mechanisms in rolling contact[J].Surface and Coatings Technology,2008,203:291-299.

    • [23] LIU X B,ZHANG B,DENG Z H.Grinding of nanostructured ceramic coatings:surface observations and material removal mechanisms[J].International Journal of Machine Tools and Manufacture,2002,42(15):1665-1676.

    • [24] 刘昊,高强,戴剑博,等.超声滚压强化对 CoCrFeMnNiM(M=Ti,Mo)高熵合金激光熔覆层耐磨性的影响[J].中国表面工程,2022,35(6):107-115.LIU Hao,GAO Qiang,DAI Jianbo,et al.Effect of ultrasonic surface rolling extrusion on the wear resistance of CoCrFeMnNiM(M=Ti,Mo)high-entropy alloy coatings[J].China Surface Engineering,2022,35(6):107-115.(in Chinese)

    • [25] CUI Z,QIN Z,DONG P,et al.Microstructure and corrosion properties of FeCoNiCrMn high entropy alloy coatings prepared by high speed laser cladding and ultrasonic surface mechanical rolling treatment[J].Materials Letters,2020,259:126769.

    • [26] ALMANGOUR B,YANG J.Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing[J].Materials and Design,2016,110:914-924.

    • [27] HIEGEMANN L,WEDDELING C,KHALIFA N B,et al.Prediction of roughness after ball burnishing of thermally coated surfaces[J].Journal of Materials Processing Technology,2015,217:193-201.

    • [28] TEKKAYA A E,KLEINER M,BIERMANN D,et al.Friction analysis of thermally sprayed coatings finished by ball burnishing and grinding[J].Production Engineering,2013,7:601-610.

    • [29] TILLMANN W,HOLLINGSWORTH P,BAUMANN I,et al.Thermally sprayed fine structured WC-12Co coatings finished by ball burnishing and grinding as an innovative approach to protect forming tools against wear[J].Surface and Coatings Technology,2015,268:134-141.

    • [30] CHAUDHARI P,AWARI G K,KHANDARE S S.Investigation of effectiveness of combined turning and burnishing operations performed on lathe machine on an aluminium alloy for the modification of surface texture[J].International Research Journal of Engineering and Technology,2015,2(6):1316-1320.

    • [31] ZHANG P,LIU Z.Enhancing surface integrity and corrosion resistance of laser cladded Cr–Ni alloys by hard turning and low plasticity burnishing[J].Applied Surface Science,2017,409:169-178.

    • [32] MAIß O,DENKENA B,GROVE T.Hybrid machining of roller bearing inner rings by hard turning and deep rolling[J].Journal of Materials Processing Technology,2016,230:211-216.

    • [33] OUTEIRO J C,PINA J C,M'SAOUBI R,et al.Analysis of residual stresses induced by dry turning of difficultto-machine materials[J].CIRP Annals,2008,57(1):77-80.

    • [34] WALTER R,KANNAN M B.Influence of surface roughness on the corrosion behaviour of magnesium alloy[J].Materials & Design,2011,32(4):2350-2354.

    • [35] 张培荣.Cr/Ni 合金激光熔覆层车—滚复合加工表面完整性及耐腐蚀性研究[D].济南:山东大学,2018.ZHANG Peirong.On surface integrity and corrosion resistance of laser cladded Cr/Ni alloy finished by hybrid turning and burnishing[D].Jinan:Shandong University,2018.(in Chinese)

    • [36] PU Z,SONG G L,YANG S,et al.Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J].Corrosion Science,2012,57:192-201.

    • [37] ZHANG Q,HU Z,SU W,et al.Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology[J].Surface and Coatings Technology,2017,321:64-73.

  • 手机扫一扫看