en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘林,女,1998年出生,硕士。主要研究方向为轮轨表面润湿性、轮轨增粘技术与界面行为调控。E-mail:liulin392068442@163.com

通讯作者:

沈明学,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为轮轨摩檫学及表面工程、材料服役行为。E-mail:shenmingxue@126.com

中图分类号:TG178

DOI:10.11933/j.issn.1007−9289.20221207001

参考文献 1
CIASCA G,PAPI M,BUSINARO L,et al.Recent advances in superhydrophobic surfaces and their relevance to biology and medicine[J].Bioinspiration & Biomimetics.Institute of Physics Publishing,2016,11(1):011001.
参考文献 2
XUN X,WAN Y Z,ZHANG Q C,et al.Low adhesion superhydrophobic AZ31B magnesium alloy surface with corrosion resistant and anti-bioadhesion properties[J].Applied Surface Science,2020,505:144566.
参考文献 3
REN T T,YANG M Q,WANG K K,et al.CuO Nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property[J].ACS Applied Materials & Interfaces,2018,10(30):25717-25725.
参考文献 4
YIN X L,YU S R,WANG K,et al.Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel[J].Chemical Engineering Journal,2020,394:124925.
参考文献 5
ZHENG Y H,ZHANG C C,WANG J,et al.Robust adhesion of droplets via heterogeneous dynamic petal effects[J].Journal of Colloid and Interface Science,2019,557:737-745.
参考文献 6
YUAN C,HUANG M Y,YU X J,et al.A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation[J].Applied Surface Science,2016,385:562-568.
参考文献 7
WANG F,ZHUO Y Z,HE Z W,et al.Dynamic anti-icing surfaces(DAIS)[J].Advanced Science.2021,8(21):1163-1189.
参考文献 8
ZHU H,HUANG Y,ZHANG S W,et al.A universal,multifunctional,high-practicability superhydrophobic paint for waterproofing grass houses[J].NPG Asia Materials,2021,13(1):315-362.
参考文献 9
闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)
参考文献 10
TANG L L,WANG N,SUN H H,et al.Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability[J].Chemical Physics Letters,2020,758:137903.
参考文献 11
HUANG L Y,LIU Z L,LIU Y M,et al.Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J].International Journal of Thermal Sciences,2010,50(4):432-439.
参考文献 12
JING T,KIM Y,LEE S,et al.Frosting and defrosting on rigid superhydrohobic surface[J].Applied Surface Science,2013,276:37-42.
参考文献 13
BARTHWAL S,LIM S H.A durable,fluorine-free,and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation[J].Journal of Membrane Science,2020,618:118716.
参考文献 14
WANG C J,KUAN W F,LIN H P,et al.Facile hydrophilic modification of polydimethylsiloxane-based sponges for efficient oil-water separation[J].Journal of Industrial and Engineering Chemistry,2021,96:144-155.
参考文献 15
HUANG L,ZHANG L L,SONG J L,et al.Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability[J].ACS Applied Materials and Interfaces,2020,12(21):24390-24402.
参考文献 16
WANG N,WANG Y B,SHANG B,et al.Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J].Journal of Colloid and Interface Science,2018,531:300-310.
参考文献 17
LI Y L,SHI B Y,LUAN X Y,et al.Achieving reversible superhydrophobic-superhydrophilic switching of lignocellulosic paper surface with modified Nano-TiO2 coating[J].Polymer Testing,2022,116:107789.
参考文献 18
ZHANG F,ZHAO R,WANG Y R,et al.Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption[J].Chemical Engineering Journal,2023,452:139513.
参考文献 19
HUANG W Q,XUE W H,HU X Y,et al.A s-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution[J].Journal of Alloys and Compounds,2023,930:167368.
参考文献 20
CHI H J,CAO H,XU Z G,et al.Unexpected excellent under-oil superhydrophilicity of poly(2-(dimethylamino)thyl methacrylate)for water capture from oil and water-induced oil self-dewetting[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,657(PA):130588.
参考文献 21
DONG W H,LIU F,ZHOU X X,et al.Superhydrophilic PVDF nanofibrous membranes with hierarchical structure based on solution blow spinning for oil-water separation[J].Separation and Purification Technology,2022,301(August):121903.
参考文献 22
XU M,ZHANG H,PENG W H,et al.Eco-friendly fabrication of porphyrin@hyperbranched polyamideamine@phytic acid/PVDF membrane for superior oil-water separation and dye degradation[J].Applied Surface Science,2023,608:155075.
参考文献 23
WANG D D,WANG G Z,MIAO X Y,et al.Activated carbon fibers with different hydrophilicity/ydrophobicity modified by pDA-SiO2 coating for gravity oil-water separation[J].Separation and Purification Technology,2022,303(July):122179.
参考文献 24
XUE J J,LI J,GAO J M,et al.CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation[J].Separation and Purification Technology,2022,302(June):122120.
参考文献 25
孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)
参考文献 26
CHEN Z J,YANG J,LIU H B,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.
参考文献 27
MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.
参考文献 28
ZHANG C C,ZHAO L H,ZHANG J M,et al.An improved Bessel beam-based method for processing curved/tilted surface with anti-icing property[J].Colloids and Interface Science Communications,2022,48:100609.
参考文献 29
LI J,FAN F Y,ZHAO Y H,et al.Influence of laser surface texturing on a low-adhesion and superhydrophobic aluminium alloy surface[J].Micro and Nano Letters,2018,13(3):389-392.
参考文献 30
LIN H P,CHEN L J.Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect[J].Journal of Colloid and Interface Science,2021,603:539-549.
参考文献 31
LIU M J,WANG S T,JIANG L.Nature-inspired superwettability systems[J].Nature Reviews Materials.Nature Publishing Group,2017,2(7):36.
参考文献 32
PARK K C,KIM P,GRINTHAL A,et al.Condensation on slippery asymmetric bumps[J].Nature,2016,531(7592):78-82.
参考文献 33
WANG C L,WEN B H,TU Y S,et al.Friction reduction at a superhydrophilic surface:Role of ordered water[J].Journal of Physical Chemistry C,2015,119(21):11679-11684.
参考文献 34
NAGAOKA S,AKASHI R.Low-friction hydrophilic surface for medical devices[J].Biomaterials,1990,11(6):419-424.
参考文献 35
CHEN L W,MINAKAWA A,MIZUTANI M,et al.Study of laser-induced periodic surface structures on different coatings exhibit super hydrophilicity and reduce friction[J].Precision Engineering,2022,78(July):215-232.
参考文献 36
SHENG W,PEI Y,LI X L,et al.Effect of surface characteristics on condensate droplets growth[J].Applied Thermal Engineering,2020,173:115260.
参考文献 37
CHU F Q,WU X M,MA Q.Condensed droplet growth on surfaces with various wettability[J].Applied Thermal Engineering,2017,115:1101-1108.
参考文献 38
RAN M R,ZHENG W Y,WANG H M.Fabrication of superhydrophobic surfaces for corrosion protection:a review[J].Materials Science and Technology(United Kingdom).2019,35(3):313-326.
参考文献 39
ZHANG D W,WANG L T,QIAN H C,et al.Superhydrophobic surfaces for corrosion protection:a review of recent progresses and future directions[J].Journal of Coatings Technology and Research,2016,13(1):11-29.
参考文献 40
赵菊玲.几种具有特殊润湿性能的工程材料界面的构筑及表征[D].兰州:西北师范大学,2012.ZHAO Jüling.Generation and characterization of several engineering material surfaces with special wettabilities[D].Lanzhou:Northwest Normal University,2012.(in Chinese)
参考文献 41
MA C H,BAI S X,MENG Y G,et al.Hydrophilic control of laser micro-square-convexes SiC surfaces[J].Materials Letters,2013,109:316-319.
参考文献 42
唐浩铭,孙国富,潘高峰,等.不锈钢基超疏水表面的制备及其性能研究[J].电镀与精饰,2022,44(7):42-49.TANG Haoming,SUN Guofu,PAN Gaofeng.Preparation of stainless steel-based superhydrophobic surface and its performance[J].Plating and Finishing,2022,44(7):42-49.(in Chinese)
参考文献 43
SAMANTA A,HUANG W,BELL M,et al.Large-area surface wettability patterning of metal alloys via a maskless laser-assisted functionalization method[J].Applied Surface Science,2021,568(August):150788.
参考文献 44
WANG Q H,SAMANTA A,SHAW S K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.
参考文献 45
YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.
参考文献 46
WENZEL R N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.
参考文献 47
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40(1):546-551.
参考文献 48
BICO J,THIELE U,QUÉRÉ D.Wetting of textured surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):41-46.
参考文献 49
王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Z,XING Z,WANG H,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)
参考文献 50
江雷.从自然到仿生的超疏水纳米界面材料[J].新材料产业,2003(3):60-65.JIANG Lei.Super-hydrophobic surfaces from natural to artificial[J].Advanced Materials Industry,2003(3):60-65.(in Chinese)
参考文献 51
MURUGADOSS K,DHAR P,DAS S K.Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces[J].European Physical Journal E,2017,40(1):11491-11501.
参考文献 52
VILLA F,MARENGO M,DE CONINCK J.A new model to predict the influence of surface temperature on contact angle[J].Scientific Reports,2018,8(1):1-10.
参考文献 53
ISMAIL M F,KHORSHIDI B,SADRZADEH M.New insights into the role of the surrounding medium temperature in the under-liquid wetting of solid surfaces[J].Langmuir,2020,36(28):8301-8310.
参考文献 54
WANG K L,LIU X R,TAN Y,et al.Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings[J].Chemical Engineering Journal,2019,359:626-640.
参考文献 55
A H,YANG Z B,HU R,et al.Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel[J].Journal of Colloid and Interface Science,2022,607:1023-1035.
参考文献 56
薛磊,于竞尧,马学胜,等.飞秒激光制备铜微纳结构表面的润湿及抗结冰特性研究[J].航空制造技术,2018,61(12):74-79.XUE Lei,YU Jingyao,MA Xuesheng,et al.Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J] Aeronautical Manufacturing Technology,2018,61(12):74-79.(in Chinese)
参考文献 57
CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.
参考文献 58
肖易航,郑军,何勇明,等.不同润湿性液体在粗糙表面的润湿滞后现象[J].中国表面工程,2020,32(6):150-156.XIAO Yihang,ZHENG Jun,HE Yongming,et al.Contact angle hysteresis with different wetting-liquids on rough surfaces[J].China Surface Engineering,2020,32(6):150-156.(in Chinese)
参考文献 59
KHANDIZOD R,VARGHESE V,MUJUMDAR S.Electric discharge assisted surface texturing of stainless steel304[J].Procedia CIRP,2022,108:670-674.
参考文献 60
QI Z,LIAO L,WANG R Y,et al.Roughness-dependent wetting and surface tension of molten lead on alumina[J].Transactions of Nonferrous Metals Society of China,2021,31(8):2511-2521.
参考文献 61
俞伟元,邢春晓,吴保磊,等.水和乙二醇在特氟龙表面的本征接触角测量[J].兰州理工大学学报,2019,45(6):69-73.YU Weiyuan,XING Chunxiao,WU Baolei,et al.Measurement of intrinsic contact angle of water and ethylene glycol on teflon surface[J].Journal of Lanzhou University of Technology,2019,45(6):69-73.(in Chinese)
参考文献 62
GILJEAN S,BIGERELLE M,ANSELME K,et al.New insights on contact angle/roughness dependence on high surface energy materials[J].Applied Surface Science,2011,257(22):9631-9638.
参考文献 63
WANG L Z,TIAN Z,JIANG G C,et al.Spontaneous dewetting transitions of droplets during icing & melting cycle[J].Nature Communications,2022,13(1):28036-X.
参考文献 64
彭华乔,罗振军,李开宇,等.盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究[J].应用化工,2019,48(12):2900-2904.PENG Huaqiao,LUO Zhenjun,LI Kaiyu,et al.Study on preparation proces and self-cleaning performance of superhydrophbic aluminum surfaces fabricated by hydrochloric acid etching[J].Applied Chemical Industry,2019,48(12):2900-2904.(in Chinese)
参考文献 65
ZHANG H M,GU D D,MA C L,et al.Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting[J].Applied Surface Science,2019,476(January):151-160.
参考文献 66
PETA K,BARTKOWIAK T,GALEK P,et al.Contact angle analysis of surface topographies created by electric discharge machining[J].Tribology International,2021,163:107139.
参考文献 67
DU Q J,ZHOU P,PAN Y P,et al.Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface:A many-body dissipative particle dynamics study[J].Chemical Engineering Science,2022,249:117327.
参考文献 68
IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:A comprehensive review[J].Surfaces and Interfaces,2020,21(November):100802.
参考文献 69
GAO Y F,YU C Y,HAN B,et al.Picosecond laser-induced periodic surface structures(LIPSS)on crystalline silicon[J].Surfaces and Interfaces,2020,19(9):538-564.
参考文献 70
EZHILMARAN V,DAMODARAM R.Laser surface texturing on nickel-aluminium-bronze alloy for improving the hydrophobicity[J].Lasers in Manufacturing and Materials Processing,2021,8(1):15-27.
参考文献 71
TONG W,CUI L L,QIU R X,et al.Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates[J].Journal of Materials Science and Technology,2021,89:59-67.
参考文献 72
LIU Z Y,YANG J,LI Y L,et al.Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser[J].Applied Surface Science,2020,520:146316.
参考文献 73
林澄,钟敏霖,范培迅,等.皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J].中国激光,2014,41(9):115-112.LIN Cheng,ZHONG Minlin,FAN Peixun,et al.Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J].Chinese Jouranl of Lasers,2014,41(9):115-112.(in Chinese)
参考文献 74
SHEN Y,XIE X,TAO J,et al.Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J].Materials China,2022,41(5):388-397.
参考文献 75
LIU B,WANG W J,JIANG G D,et al.Study on hierarchical structured PDMS for surface superhydrophobicity using imprinting with ultrafast laser structured models[J].Applied Surface Science,2016,364:528-538.
参考文献 76
WANG Y H,QIN Z L,XU J K,et al.Microstructure control of the wettability and adhesion of Al alloy surfaces[J].RSC Advances,2020,10(64):38788-38797.
参考文献 77
YANG Z R,ZHU C C,ZHENG N,et al.Superhydrophobic surface preparation and wettability transition of titanium alloy with micro/nano hierarchical texture[J].Materials,2018,11(11):2210.
参考文献 78
江国琛,潘瑞,陈昶昊,等.超快激光制备水面减阻微纳结构及其耐蚀性研究[J].中国激光,2020,47(8):81-89.JIANG Guochen,PAN Rui,CHEN Changhao,et al.Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J].Chinese Jouranl of Lasers,2020,47(8):81-89.(in Chinese)
参考文献 79
XING W,LI Z,YANG H O,et al.Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J].Materials and Design,2019,183:1-9.
参考文献 80
CHO H,PARK J M,KIM J H,et al.Mass production of superhydrophilic micropatterned copper surfaces using powder injection molding process[J].Powder Technology,2022,411(July):117779.
参考文献 81
ZHANG Y,WANG T,LV Y J,et al.Superhydrophilic surface on Ti6Al4V with good HA-inducing ability prepared via an eco-friendly two-step method[J].Vacuum,2022,205(July):111390.
参考文献 82
CHU Z M,JIAO W C,HUANG Y F,et al.Smart superhydrophobic films with self-sensing and anti-icing properties based on silica nanoparticles and graphene[J].Advanced Materials Interfaces,2020,7(15):2000492.
参考文献 83
杨奇彪,邓波,汪于涛,等.飞秒激光诱导铝基的超疏水表面[J].激光与光电子学进展,2017,54(10):314-320.YANG Qibiao,DENG Bo,WANG Yutao,et al.Superhydrophobic surface of aluminium base induced by femtosecond laser[J].Laser & Optoelectronics Progress,2017,54(10):314-320.(in Chinese)
参考文献 84
VIDHYA Y E B,PATTAMATTA A,MANIVANNAN A,et al.Influence of fluence,beam overlap and aging on the wettability of pulsed Nd3+:YAG nanosecond laser-textured Cu and Al sheets[J].Applied Surface Science,2021,548(September 2020):149259.
参考文献 85
GIANNUZZI G,GAUDIUSO C,DI MUNDO R,et al.Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses[J].Applied Surface Science,2019,494:1055-1065.
参考文献 86
ZHOU C L,LI H J,LIN J,et al.Matchstick-like Cu2S@CuxO nanowire film:transition of superhydrophilicity to superhydrophobicity[J].Journal of Physical Chemistry C,2017,121(36):19716-19726.
参考文献 87
WANG H P,HE M J,LIU H,et al.One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability,thermal stability,and anti-icing function[J].ACS Applied Materials and Interfaces,2019,11(28):25586-25594.
参考文献 88
YANG Z,TIAN Y L,ZHAO Y C,et al.Study on the fabrication of super-hydrophobic surface on Inconel Alloy via nanosecond laser ablation[J].Materials,2019,12(2):202000492.
参考文献 89
LAU K K S,BICO J,TEO K B K,et al.Superhydrophobic carbon nanotube forests[J].Nano Letters,2003,3(12):1701-1705.
参考文献 90
易天浩,杨光,黄永华,等.基于扩散界面法的微重力下液氢沸腾传热研究[J].工程热物理学报,2022,43(9):2494-2500.YI Tianhao,YANG Guang,HUANG Yonghua,et al.Simulation of liquid hydrogen pool boiling under microgravity based on diffusion interface method[J].Jouranl of Engineering Thermophysics,2022,43(9):2494-2500.(in Chinese)
参考文献 91
BAE J,SAMEK I A,STAIR P C,et al.Investigation of the hydrophobic nature of metal oxide surfaces created by atomic layer deposition[J].Langmuir,2019,35(17):5762-5769.
参考文献 92
SHI Y,JIANG Z,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500:144286.
参考文献 93
HUANG W,NELSON B,MULLENNEX R,et al.Superhydrophobic surface processing for selective laser melting of metal parts[J].Procedia CIRP,2022,108:418-423.
参考文献 94
BAKHTIARI N,AZIZIAN S,MOHAZZAB B F,et al.One-step fabrication of brass filter with reversible wettability by nanosecond fiber laser ablation for highly efficient oil/water separation[J].Separation and Purification Technology,2021,259:118139.
参考文献 95
LANGMUIR B I.The mechanism of the surface phenomena of flotation[J].Trans Faraday Soc,1920,15(June):62-74.
参考文献 96
金巍,梁建,马艳丽,等.电沉积参数对 Cr2O3超疏水膜层表面形貌和润湿性的影响[J].盐湖研究,2022,30(1):77-86.JIN Wei,LIANG Jian,MA Yanli,et al.Influence of electrodeposition conditon on the surface morphology and wettability of Cr2O3 super-hydrophobic layer[J].Jouranl of Salt Lake Research,2022,30(1):77-86.(in Chinese)
参考文献 97
ZHANG T T,LIN P,WEI N,et al.Enhanced photoelectrochemical water-splitting property on TiO2 nanotubes by surface chemical modification and wettability control[J].ACS Applied Materials and Interfaces,2020,12(17):20110-20118.
参考文献 98
JALIL S A,AKRAM M,BHAT J A,et al.Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses[J].Applied Surface Science,2020,506:0-6.
参考文献 99
BEHERA R R,DAS A,HASAN A,et al.Deposition of biphasic calcium phosphate film on laser surface textured Ti–6Al–4V and its effect on different biological properties for orthopedic applications[J].Journal of Alloys and Compounds,2020,842:155683.
参考文献 100
YUSUF Y,GHAZALI M J,OTSUKA Y,et al.Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings[J].Ceramics International,2020,46(3):3949-3959.
参考文献 101
YANG Z,LIU X P,TIAN Y L.A contrastive investigation on anticorrosive performance of laserinduced super-hydrophobic and oil-infused slippery coatings[J].Progress in Organic Coatings,2020,138:105313.
参考文献 102
MONDUZZI M,MUSU G,GROSSO M,et al.Effect of electrolytes on the sol-gel phase transitions in a Pluronic F127/carboxymethyl cellulose aqueous system:phase map,rheology and NMR self-diffusion study[J].European Polymer Journal,2022,181(July):111707.
参考文献 103
ZHANG W,GUAN X,QIU X,et al.Bioactive composite Janus nanofibrous membranes loading Ciprofloxacin and Astaxanthin for enhanced healing of full-thickness skin defect wounds[J].Applied Surface Science,2023,610:155290.
参考文献 104
PARK C,HONG J H,KIM B Y,et al.Supersonically sprayed copper oxide titania nanowires for antibacterial activities and water purification[J].Applied Surface Science,2022,611:155513.
参考文献 105
ELZAABALAWY A,MEGUID S A.Development of novel icephobic surfaces using siloxane-modified epoxy nanocomposites[J].Chemical Engineering Journal,2022,433:133637.
参考文献 106
TANG L L,WANG N,HAN Z Y,et al.Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594(January):124655.
参考文献 107
WU X H,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.
参考文献 108
PAN R,ZHANG H J,ZHONG M L.Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.
参考文献 109
李天然,卢晨光,原子超,等.耐用铝基超疏水涂层的机械稳定性及抗结冰性能[J].表面技术,2022,51(11):385-394.LI Tianran,LU Chenguang,YUAN Zichao.Mechanical stability and anti-icing performance of robust aluminum-based superhydrophobic coating[J].Surface Technology,2022,51(11):385-394.(in Chinese)
参考文献 110
王雅培,林凯歌,高陈陈,等.纤维素及其组成物基超浸润材料在油水分离中的研究进展[J].表面技术:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.WANG Yapei,LIN Kaige,GAO Chenchen,et al.Research progress of cellulose fiber and its component-based superwetting materials in oilwater separation[J].Surface Technology:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.(in Chinese)
参考文献 111
VAIDULYCH M,SHELEMIN A,HANUŠ J,et al.Superwettable antibacterial textiles for versatile oil/water separation[J].Plasma Processes and Polymers,2019,16(5):1-13.
参考文献 112
YANG J,LIN L G,WANG Q,et al.Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept[J].International Journal of Biological Macromolecules,2022,222:2603-2614.
参考文献 113
SATRIA M,SALEH T A.Facile approach of eco-friendly superhydrophilic/underwater superoleophobic zincfunctionalized polyurethane foams for continuous oilwater separation[J].Journal of Molecular Liquids,2022,367:120341.
参考文献 114
XIAO X H,YU Z X,ZHU X M,et al.Sepiolite@TiO2/Graphene oxide composite membrane for long-term separation of oily wastewater[J].Journal of Molecular Structure,2023,1273:134258.
参考文献 115
ZHU J,JIANG J X,JAMIL M I,et al.Biomass-derived,water-induced self-recoverable composite aerogels with robust superwettability for water treatment[J].Langmuir,2020,36(37):10960-10969.
参考文献 116
CAO G L,ZHANG W B,JIA Z,et al.Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures[J].ACS Applied Materials and Interfaces,2017,9(41):36368-36376.
参考文献 117
ZHANG X T,LIU D Y,SUI G X.Superamphiphilic polyurethane foams synergized from cellulose nanowhiskers and graphene nanoplatelets[J].Advanced Materials Interfaces,2018,5(2):1-7.
参考文献 118
ZHAO X W,MAO F,WU J Y,et al.Facilely tuning the surface wettability of Cu mesh for multi-functional applications[J].Journal of Industrial and Engineering Chemistry,2022,116:293-302.
参考文献 119
ZHANG S,SU Q,YAN J,et al.Flexible nanofiber composite membrane with photothermally induced switchable wettability for different oil/water emulsions separation[J].Chemical Engineering Science,2022,264:118175.
参考文献 120
KOLLARIGOWDA R H,BHYRAPPA H M,CHENG G.Stimulus-responsive biopolymeric surface:molecular switches for oil/water separation[J].ACS Applied Bio Materials,2019,2(10):4249-4257.
参考文献 121
FU Y C,JIN B Y,ZHANG Q H,et al.PH-induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation[J].ACS Applied Materials and Interfaces,2017,9(35):30161-30170.
参考文献 122
OU X,REN Y Y,GUO J G,et al.ZIF-8@Poly(ionic liquid)-grafted cotton cloth for switchable water/oil emulsion separation[J].ACS Applied Polymer Materials,2020,2(8):3433-3439.
参考文献 123
FU J,TANG M K,ZHANG Q X.Simple fabrication of hierarchical micro/nanostructure superhydrophobic surface with stable and superior anticorrosion silicon steel via laser marking treatment[J].Journal Wuhan University of Technology,Materials Science Edition,2020,35(2):411-417.
参考文献 124
ZANG D M,XUN X W,GU Z D,et al.Fabrication of superhydrophobic self-cleaning manganese dioxide coatings on Mg alloys inspired by lotus flower[J].Ceramics International,2020,46(12):20328-20334.
参考文献 125
ZHANG L X,LIN N M,ZOU J J,et al.Super-hydrophobicity and corrosion resistance of laser surface textured AISI 304 stainless steel decorated with Hexadecyltrimethoxysilane(HDTMS)[J].Optics and Laser Technology,2020,127(February):106146.
参考文献 126
ALWAHIB A A,MUTTLAK W H,MAHDI B S,et al.Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy[J].Surfaces and Interfaces,2020,20:100557.
参考文献 127
XU X B,LIU G M,BAI J,et al.In-situ self-compensation strategy for superhard,universal superhydrophilic/underwater superoleophobic coatings[J].Chemical Engineering Science,2022,262:118007.
参考文献 128
TENG L,YUE C,ZHANG G W.Epoxied SiO2 nanoparticles and polyethyleneimine(PEI)coated polyvinylidene fluoride(PVDF)membrane for improved oil water separation,anti-fouling,dye and heavy metal ions removal capabilities[J].Journal of Colloid and Interface Science,2023,630:416-429.
参考文献 129
KONG R X,REN J L,MO M,et al.Multifunctional antifogging,self-cleaning,antibacterial,and self-healing coatings based on polyelectrolyte complexes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,656:130484.
参考文献 130
刘玲莉,韩云龙,钱付平,等.SiO2-NH2-GA-AAS/CS 席夫碱复合涂层的制备和吸湿性能[J].复合材料学报:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=FUHE20220909000&DbName= CAPJ2022.LIU Lingli,HAN Yunlong,QIAN Fuping.et al.Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating[J].Acta Materiae Compositae Sinica:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=F UHE20220909000&DbName=CAPJ2022.(in Chinese)
参考文献 131
PARK S G,RHEE C,JADHAV D A,et al.Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells[J].Science of the Total Environment,2023,856:159105.
目录contents

    摘要

    润湿性是赋予材料表面的重要特征之一,对功能件服役行为具有极为重要的作用。影响表面润湿性的主要因素包括材料表面能、表面表面粗糙度以及表面微纳结构,而鲜有定量研究其间关系。对表面微纳结构和化学修饰对润湿性影响进行研究,首先介绍表面润湿性的三种经典理论模型及润湿理论的最新进展,详细综述国内外学者对表面微纳结构和化学修饰对表面润湿性影响的研究现状,分析并讨论接触角随表面粗糙度变化的内在机理和成因,阐述表面微织构对润湿性的影响及在不同领域内化学修饰的作用,最后总结当前面临的主要问题和未来的发展方向。结果表明,表面微织构和调控表面能是调控材料表面润湿性的关键因素和基本条件;在润湿理论逐步完善的过程中,建立起的修正物理与数学模型使试验数据与理论模型更具匹配性,以期得到适用性更广的理论模型;润湿性表面的制备也逐渐从单一的圆形、方形和沟槽微结构向微-纳多尺度、多层复合微织构和仿生功能性表面的创成与优化等方向发展;激光加工结合其他技术实现多响应、多功能润湿性表面的制备是未来的重要研究方向:材料表面润湿性影响因素众多,除受表面微纳结构和化学修饰的影响外,功能表面会与基底材料和周围环境发生化学反应,也会导致润湿性转变。综述了特殊润湿性表面制备方法和原理及应用领域,可为相关研究提供参考。

    Abstract

    Wettability is an important characteristic of a material surface and significantly contributes toward the service behavior of functional parts. Thus, the wetting behavior of droplets on solid surfaces can effectively guide the design and application of functional surfaces, as well as further improve the surface properties and service capabilities of functional parts, providing broad application prospects in national defense, daily life, and other industries. In addition, the main factors affecting surface wettability include the material surface energy, surface roughness, and surface micro / nanostructure. However, few scholars have quantitatively studied the relationship between these parameters, and there is no clear description of how the surface wettability can be regulated through the interface. Therefore, the effects of the surface micro-nano structure and chemical modification on wettability are examined in this work, and three classical theoretical models of surface wettability and new progress in wetting theory are introduced. Then, the research status of the influence of surface micro / nanostructures and chemical modification on surface wettability is reviewed in detail. The internal mechanism and causes of the change in contact angle with roughness are discussed and analyzed. Furthermore, the influence of surface microtexture on wettability and the role of chemical modification in different fields are described. Finally, the main problems and future development directions are summarized. With the gradual improvement of the wetting theory, relevant theoretical research has gradually changed from idealization to more suitable outcomes for actual working conditions. Many researchers have attempted to extend and modify the classical wetting model based on the corresponding theory combined with a large amount of experimental data. Subsequently, the resulting modified physical and mathematical models produced experimental data more compatible with the theoretical model, thus establishing a more applicable theoretical model. Similarly, the wettability surface textures have gradually developed from the single pattern of circular, square, and groove microstructure to the current micro-nano multiscale, multilayer composite micro-texture and bionic functional surface. Laser processing combined with other technologies to achieve multiresponsive and multifunctional surface wettability is an important future research direction. More specifically, many factors affect the wettability of a material surface, which will react with the substrate material and surrounding environment, besides the influence of the surface micro / nanostructure and chemical modification. Herein, the preparation methods, principles, and applications of special wettability surfaces are summarized, which can provide a valuable reference for scholars engaged in related research. In general, surface wettability technology remains in the preliminary exploration stage, and existing research is only at the tip of the iceberg. Therefore, there is an urgent need to develop a surface wettability test standard that considers surface microstructure, material, environment, and other factors. Unfortunately, the current production method cannot efficiently prepare low-cost, multiscale, micro / nano functional surfaces. Regarding the demand for green and sustainable development, there is an urgent need to meet the practical requirements of economic and environmentally friendly low-surface-energy modification, high-strength wettability, functional surface stability, and excellent service life for functional parts. Generally, there is room for improvement. In future, a database for the preparation of wettable functional surfaces should be established. Then, based on collected experimental data and integration of the concept of green environmental protection, a combination of numerical simulations and experiments should be used to obtain simple and fast processing technology, as well as parameters to realize fine and complex or multiphase precise wetting. This will be significant for specific applications such as military facilities, cell engineering, and intelligent sensing.

  • 0 前言

  • 润湿性是指液滴在材料表面的铺展倾向,而表面的微观结构及其化学组成是影响润湿性的两大因素,所以改变表面粗糙度和通过化学修饰可以调控材料表面润湿性。材料的表面润湿性可应用在生物医用[1-3]、防粘附[2-5]、液滴输送[6-7]、自清洁[8-9]、去除冰霜[9-12]、油水分离[13-16]等许多方面,因此对于超疏水(接触角 WCA>150°)、超亲水[17-19](WCA< 10°)、超疏油、疏水亲油、亲水疏油[20-23]、超双疏、超双亲[24]等各种极端润湿特性表面的研究正逐年增加。由于近几年微纳米激光加工技术[25-28]的快速发展和仿生学[29-32]研究的兴起,关于润湿特性表面的制备多是采用激光加工方法。例如,在农药喷雾和机械润滑等方面要求表面具有良好的亲水性,并且亲水性表面还可以改善摩擦磨损等摩擦学行为[33-35];而在自清洁[17]、延缓结冰[36-37]、抗污染和防腐蚀[38-39]等方面则要求表面具有优异的超疏水性,以减小液体与材料接触。

  • 目前人们主要通过激光加工、涂覆涂层、化学蚀刻等多种方法从微观结构和化学组成两个方面对材料表面进行修饰,进而调控材料表面的润湿性。其中,表面上的微观结构一般是由加工方法和其他因素共同造成的,加工方法和工件材料的不同,导致表面上纹理的深浅、疏密、形状和纹理均有差别,最终影响其表面粗糙度和润湿性;而从化学组成上看,固体表面的润湿性主要取决于最外层的原子或原子基团的性质及排列情况[40]。例如,激光加工在一定程度上也会改变材料表面的化学组成,因而导致接触角发生改变。MA 等[41]发现激光加工可以显著改善 SiC 表面的润湿性能。唐浩铭等[42]通过水热法和化学修饰制备了具有良好耐磨性的超疏水不锈钢表面。HUANG 等[43]采用激光辅助功能化(LAF) 方法在大面积金属合金上制备了具有高通量的超疏水-超亲水性图案化表面,制备了纳米结构和氟碳化学的超疏水区域以及微通道和腈化学的超亲水区域。同样地,SHAW 等[44]提出了一种新颖的基于纳秒激光的高通量表面纳米结构化(nHSN)工艺,该工艺包括纳秒激光毛化和化学浸泡处理,其中氟硅烷修饰的 nHSN 纳米结构是呈现疏水的,而氰硅烷修饰的 nHSN 纳米结构是呈现亲水的。随着激光加工和化学修饰的运用更加广泛和熟练,制备更加复杂、精细和高性能的材料表面成为可能,使得各种极端润湿特性表面得到合理应用并不断开发新的加工工艺及应用领域。

  • 本文主要综述了近年来表面粗糙度以及化学修饰影响润湿行为相关研究进展。首先介绍润湿性的 3 大经典理论和最近进展的理论模型,随后阐述表面粗糙度与接触角的关系以及表面织构调控润湿性,讨论在不同应用领域下化学修饰对材料表面润湿性的影响,最后总结当前面临的主要问题和展望未来的发展方向。

  • 1 润湿性理论模型

  • 材料表面润湿性可由液体接触角来表征,其概念由 YOUNG 等[45]于 1805 年首次提出。如图1 所示θe为接触角、α 为滚动角、θ a 为前进接触角和θ r 为后退接触角,接触角滞后为前进与后退接触角的差值,并且接触角滞后越大液滴越易粘黏材料表面。

  • 图1 接触角和滚动角示意图[45]

  • Fig.1 Chart of contact angle and rolling angle[45]

  • 1.1 Young 模型

  • YOUNG 等[45]认为液滴在完全光滑、成分均匀的材料表面上时完全润湿光滑表面,如图2a 所示,其理论方程为:

  • cosθY=γSG-γSL/γLG

  • 式中,θ Y 为材料的本征接触角,γSG 为固-气界面的表面张力,γSL 为固-液界面的表面张力,γLG 为液气界面的表面张力。由上述公式可得:当固体表面张力大于液体时,所得接触角小于 90°,表面亲水; 反之,表面疏水。该理论模型描述的是一种理想和简单化的状态,但可作为后续理论发展的基础。

  • 1.2 Wenzel 模型

  • 实际材料表面均有一定的表面粗糙度,并呈现出不同的微观组织形貌。1936 年,WENZEL[46]探究了材料表面粗糙度与接触角的相关性,是在 Young 模型的基础上进行细化修正,进而提出完全润湿粗糙表面的 Wenzel 模型,如图2b 所示,其理论方程为:

  • cosθW=rγSG-γSL/γLG=rcosθY

  • 式中,θ W 为 Wenzel 模型中的表观接触角;r 为材料表面粗糙度因子,其值为实际接触面积与表观接触面积之比。由于材料表面存在微观组织结构,实际接触面积一般大于表观接触面积,因此 r≥1。由该模型可知,表面粗糙度的增加会导致亲水表面更加亲水,疏水表面更加疏水。这种模型与 Young 不同之处是将光滑表面替换成粗糙表面,更符合实际表面上凹凸不平的结构,但该模型忽略了局部润湿的情况。

  • 1.3 Cassie-Baxter 模型

  • 1944 年,CASSES 和 BAXTER[47]发现在多孔表面和粗糙表面上的固-液界面间存在空气,液体并没有完全润湿材料表面,液体一部分被凸起顶端支撑,另一部分由凹槽捕获空气所形成的气囊支撑,形成由固-液-气三相组成的复合界面,如图2c 所示。其理论方程为:

  • cosθC-B=f1cosθY-f2

  • 式中,θC-B为 Cassie-Baxter 模型下的表观接触角; f1f2 分别为固-液和液-气两相界面在接触面上所占比例,并且 f1 + f2 =1。与上述模型相比,该模型更加符合液体与材料表面的实际接触状态。然而液体不可能只浮于凸起顶部,它会有一定的浸润深度,但此模型没有涉及该方面。

  • 图2 表面润湿性经典理论模型[45-47]

  • Fig.2 Classical theoretical model of surface wettability[45-47]

  • 1.4 Partial impalement 模型

  • Wenzel模型和Cassie-Baxter模型分别描述完全润湿和不完全润湿的两种极端状态,但在实际工况下很难达到。2002 年,BICO 等[48]在这两种理论模型基础上创建了一个介于两种润湿状态之间的穿透模型。其模型示意图如 3 所示,理论方程为:

  • cosθB=fs+πxd (d+b) 2cosθY+fs-1

  • 式中,θ B 为 Partial impalement 模型下的表观接触角,x 为液体浸润凸起深度,d 为凸起直径,b 为凸起间距, fs 为接触面积影响因子[49]。这个模型是对 Cassie-Baxter 模型的细化修正,考虑了液体会浸润部分深度的粗糙结构,模拟计算出来结果更符合实际。

  • 图3 Partial impalement 模型[49]

  • Fig.3 Partial impalement model[49]

  • 1.5 润湿模型的最新进展

  • 2002 年,江雷[50]发现荷叶表面的分级结构与分型几何中的 Koch 曲线非常相似,采用分形公式来计算表面粗糙度因子[50],其理论方程为:

  • cosθF=fS (L/l) D-2cosθ-fV

  • 式中,L/lD-2是表面粗糙度因子;Ll 分别为表面分形的上限和下限尺度,D 是分形维数[50]。该模型适用于各种类型的疏水表面的接触角计算。

  • 2017 年,MURUGADOSS 等[51]认为固体表面的抗润湿压力和液滴的冲击表面的压强是润湿过程的两个重要因素。该模型考虑了毛细作用力,并运用能量守恒公式去计算接触角[49],其理论方程为:

  • -γ1gcosθLCDC+12ρV2+ρg=0

  • 式中, LCDC 为毛细管道周长和面积,12ρV2为液滴动能变化,ρg为液滴势能变化。该模型与计算机流体力学模拟原理相似,为后续模型研究提供了可靠的理论基础[49]

  • 2018 年,VILLA 等[52]将温度的影响引入到了模型之中,提出了递减趋势模型(DTM)和非对称趋势模型(UTM)。但 DTM 和 UTM 模型对大多数试验观测的偏差超过 35%[53],因此该理论模型也存在一定局限性。

  • DTM 模型为:

  • cosθ (T) =-1+2γDT01+cosθT02γD (T)

  • UTM 模型为:

  • cosθ (T) =γDT0cosθT0γD (T)

  • 式中,T0 为参考温度(如 25℃),T 为试验条件下的升高温度,γD 为液滴的界面张力,cosθ 为固-液-液体系(即液滴在不同液体介质下对固体表面的润湿)下的润湿性。

  • 20 19 年,WANG 等[54]在 Cassie-Baxter 模型上进行细化修正,得到了更详细的理论方程:

  • cosθF=πR2 (cosθ+1) 24 (R+d) 2-1

  • 式中,R 为液滴接触半径,d 为浸入深度。

  • 2022 年,YANG 等[55]利用 Cox-Voinov 定律修正了经典的 Lucas-Washburn 方程,考虑了动态接触角和有效平衡接触角的影响,得到自吸速率与接触角的关系如图4 所示:

  • VB=γLVWcosθD6μLB=θD3-θE3γLV9μlnLmac/Lmol

  • 式中,γLVμ 分别为液体的表面张力和黏度,LmacLmol 分别代表所选择的宏观和分子长度尺度,其模型示意图如图4 所示。

  • 图4 纳米通道内毛细管吸胀示意图[55]

  • Fig.4 Capillary imbibition diagram in nanochannels[55]

  • 2 表面微纳结构对润湿性的影响

  • 2.1 表面粗糙度对接触角的影响

  • 由 Wenzel 模型可得,表面粗糙度的增加会导致亲水表面更加亲水,疏水表面更加疏水。有些学者通过试验研究和结果也证实了 Wenzel 模型[56-59]。 QI 等[60]观测熔融铅滴在氧化铝基底上呈现疏水状态,其接触角随基板表面粗糙度的增大而增大;然而,去离子水和甘油这两种液体在同一基底上呈现亲水状态,其接触角随基板表面表面粗糙度的增大而减小。而俞伟元等[61]研究发现,超声振动干扰会导致水和乙二醇呈现不同的润湿状态:对于水而言,有无超声波时接触角均随着表面粗糙度的增加而增大,该结果是符合 Wenzel 方程的;但改为乙二醇并进行类似操作之后,接触角随表面粗糙度的变化不大,这一现象与 Wenzel 方程的结果矛盾。因此,润湿状态会因液体种类和基板类型及表面形貌等展示出不同的润湿状态,其实质是比较两者的表面张力大小和考虑表面粗糙度的影响。但在测量表面接触角时,要特别注意材料表面的清洁,GILJEAN 等[62]发现由于液体和固体表面的吸附作用,材料表面很容易形成污染,表面污染会导致接触角滞后,从而使接触角发生显著变化。

  • 在未破坏微纳米粗糙结构的前提下,疏水表面接触角随表面粗糙度的增大而增大,一旦破坏了这种结构,表面润湿形态就会发生转变,即由未完全润湿 Cassie 状态转变为完全润湿的 Wenzel 状态[63]。彭华乔等[64]证实了接触角随着铝合金表面表面粗糙度的增加呈现先增大后减小的趋势,其中蚀刻时间与表面蚀刻程度是呈正比的,在刚开始刻蚀没有达到疏水所需的粗糙结构时,接触角较低;随着刻蚀程度增大,逐渐形成均匀的微纳米粗糙结构时,接触角有所增加;然而一旦铝板表面刻蚀过度,微纳米结构将被破坏,接触角随之降低。此外,ZHANG 等[65]采用选择性激光熔化(SLM)加工 TiC / Inconel781 纳米复合材料,研究指出随着表面扫描速度的增加,其表面形貌变化情况如下:从相对光滑到微纳米粗糙结构,最后形成裂纹;表面表面粗糙度随之增大,而接触角呈现先增大后减小,在过程中表面呈现微纳米结构时接触角达到最大(151.5°)。

  • Wenzel 模型中提到接触角随表面粗糙度变化趋势在 90°处存在分界点,也就是说在亲水和疏水体系中存在相反的变化趋势。然而,GILJEAN 等[62] 以 5 mm 厚的纯钛金属板为基板时发现接触角是随着表面粗糙度的增大而增大,但其上升存在阈值,并且其接触角增大到 120°后趋于稳定。PETA 等[66] 通过电火花精加工控制铝合金表面的润湿行为,发现其接触角都是随着表面粗糙度的增大而增大,但是,如图5 所示越过了亲-疏水分界线接触角的变化趋势依旧不变。此外,DU 等[67]通过仿真模拟了水滴在光滑和粗糙固体表面的润湿行为,结果表明接触角随表面粗糙度变化可分为 3 个区域:在区域 I 中,随着固有疏水性的增加,增加表面粗糙度可以导致表面更亲水;在区域Ⅱ中,增加表面粗糙度可以导致表面更疏水;在区域Ⅲ中,一旦疏水性超过超疏水边界时,表面粗糙度对表观疏水性的增强作用减弱甚至消失。并且观察到随着表面粗糙度的增加这 3 个区域之间的边界及其范围内均呈现非单调变化。该研究表明,表面粗糙度并不总是能提高亲水表面的表观亲水性或疏水表面的表观疏水性,这还取决于表面粗糙度和固有表面疏水性。

  • 图5 2、3 和 5 wt. % CMC 水溶液在 S1-S11(表面粗糙度逐渐增加)表面上的接触角变化趋势[66]

  • Fig.5 Change trend of contact angle of 2, 3 and 5 wt. % CMC aqueous solution on S1-S11 (roughness gradually increased) surface[66]

  • 除了观测接触角随表面粗糙度的变化情况,还有学者研究了在不同表面粗糙度下液滴的润湿状态。LIN 等[30]观察到水滴的玫瑰花瓣效应和单微尺度粗糙表面的润湿行为,如表1 所示。同样 ZHENG 等[5]也对新鲜玫瑰花瓣直接受液滴冲击进行试验,首次研究了黏性超疏水基底(SSHS) 的动态润湿规律,结果表明,钉扎效应与非均匀微凸体之间的独特耦合作用导致了接触线速度的不平衡,从而显著抑制了液滴侧向振荡和回弹。这个发现可能是设计动态疏水表面时的一种新策略,该试验采用的是透明的玻璃基板,创新地使用倒置摄像头的方法观测液滴的润湿状态,为超高效能量转换和收获等新兴领域开辟了一条很有前景的途径[5]

  • 表1 ACA(前进角)、RCA(后退角) 处的润湿行为示意图及水滴在 Wenzel、花瓣、莲蓬和莲花基质上的滑动行为[30]

  • Table1 Diagram of wetting behavior at ACA (advancing contact angle) , RCA (receding contact angle) and sliding behavior of a water drop on Wenzel, petal, pseudo-lotus and lotus substrates[30]

  • 2.2 表面织构对润湿性的影响

  • 表面织构本质上也是改变表面粗糙度的一种途径,是获得优异的超疏水性能和良好的机械稳定性的重要手段。在不同表面粗糙度的织构表面上液滴接触角存在明显差异,因此合理设计材料表面织构参数,能精准调控其表面润湿性。利用微织构凹凸不平的特性可进行表面自清洁、抗结冰以及液体定向传导等。现在可通过喷丸、化学刻蚀、机械加工以及等离子体刻蚀等制备表面织构,这些技术各有优缺点,尽管设备简单、成本低廉,但也存在加工步骤复杂、材料表面形貌不能精确控制和制备表面使用寿命不长等问题。

  • 激光加工是通过在基材上制备不同织构来改变表面润湿性的有效途径[68]。例如,激光表面毛化技术可以通过简单快速的加工实现大面积功能表面的制备,并应用于工业生产,重现性较高。尤其是超短脉冲激光,包括飞秒和皮秒激光[69],对于制备微纳米级织构表面具有更高的精度。例如, EZHILMARAN 等[70]采用纳秒脉冲激光器在镍铝青铜金属表面制备了线性和非线性的微通道织构表面,通过微通道织构表面即可提高镍铝铜合金的接触角。TONG 等[71]通过激光毛化技术调整韧窝尺寸,从而调控铝合金表面的润湿性,并利用荧光法记录足够小的水分子穿透材料表面区域,进一步论证表面存在捕获空气的区域。此外,飞秒激光制备表面织构也是一种有效的改善表面润湿性的方法, CUNHA 等[57]研究了生物医用级 Ti-6Al-4V 合金表面经飞秒激光处理后的润湿行为,发现处理后的表面具有亲水性和各向异性。LIU 等[72]研究了 Al-Si 合金在不锈钢表面的润湿铺展行为,结果表明,该合金在具有微弧氧化沟和微坑的表面上润湿性差,而在具有微纳米级条纹的表面上表现出良好的润湿性。

  • 近年来,微纳米激光加工技术和仿生学的交叉结合成为材料表面润湿性的研究热点。例如,荷叶表面上存在平均尺寸约为 10 μm 的微米凸起和直径为 100~200 nm 的纳米级蜡丝,这种组合结构将水与界面接触转变为水与微纳米结构凸起的点接触,在微米凸起之间的凹陷处形成了纳米级的气囊,再与低表面能的蜡丝共同作用,使得荷叶表面展现超疏水特性[73]。SHEN 等[74]观察到荷叶表面呈现如图6 所示的微纳米分级复合结构,这种结构可以明显增大接触角且减小滚动角,使得表面上的液滴容易滚落。由于这种结构能够减小液滴与固体表面的实际接触面积,并且即使一级结构被液体浸润,二级纳米结构也难以润湿,从而使表面一直处于 Cassie 状态,有效减小了滚动角[74]

  • 图6 微米-纳米复合结构示意图[74]

  • Fig.6 Micro-nano composite structure diagram[74]

  • 受荷叶表面特性启发,林澄等[73]运用高功率皮秒激光结合高速扫描振镜,在 H13 模具钢表面高效制备了一种反荷叶结构的纳米级亚结构的超疏水微纳米压印模板。研究发现具有二级微米 / 纳米级复合结构更易达到疏水效果,而只进行激光加工来提高其疏水性会到达饱和状态,如果还需要提高其疏水性,则需进一步考虑添加化学修饰。此外,LIU 等[75]利用金膜覆盖分层结构中规则有序的亚微米 / 纳米结构,证实了上述分级结构更易达到疏水状态,指出被金膜覆盖金属母体比具有分级结构的聚二甲基硅氧烷(PDMS)复制品的表面接触角更小,换而言之分级结构能显著增强材料表面的疏水性。而 WANG 等[76]通过对铝合金(7075)进行电火花加工和激光处理,最终得到自然无序双尺度结构和高接触角的超疏水表面,研究发现这种结构可以很容易地捕捉到大量的空气,并在其表面形成气囊,从而提高接触角。YANG 等[77]采用 1 064 nm 脉冲皮秒激光在钛合金(Ti-6Al-4V)表面制备了微 / 纳多级结构,研究发现接触角会随着微织构表面密度的增大而增大,且该织构表面的润湿状态符合 Cassie 模型。

  • 一般情况下,圆凹坑和沟槽表面可以提升表面亲水性;凸台织构可以提升疏水性,因为液滴在凸台表面不易黏附[49]。但是,江国琛等[78]研究了通过超快激光在 6061 铝合金表面制备两种间距宽度为 28 μm 和 50 μm 的微纳米沟槽结构的润湿特性,其表面布满了烧蚀产生的纳米颗粒,液体很容易就浸入图7 所示的二级纳米沟槽,其状态达到了完全润湿的超亲水状态。事实上,合适的多层微纳沟槽结构也可以提高疏水性,这是由于层次结构对疏水性有放大效应。XING 等[79]通过皮秒激光处理直接在铝表面上构筑微光栅、菜花状突起和纳米结构的微纳米三级结构,其接触角可高达 160°,并从图8 中可以看出这些表面具有优异的抗冰性能。他们将该超疏水表面与原始表面比较,发现合适的激光加工可以减小液固接触面积,不仅降低了静电力、范德华力和固液粘附力,而且通过传热调节了热损失,最终提高了激光加工铝合金表面的抗结冰能力。CHO 等[80]采用粉末注射成型(PIM)工艺制备了亲水性微织构铜表面,其表面超亲水性的关键是高展弦比和小间隙尺寸。ZHANG 等[81]通过喷砂和水热处理成功地在 Ti6Al4V 基底上构建了具有良好的长期稳定性的超亲水微纳米网结构,因此,该表面可快速沉积较厚且均匀的羟基磷灰石(HA)层。

  • 图7 两种微 U 形沟槽结构的微观形貌[78]

  • Fig.7 Micromorphology of two micro U-groove structures[78]

  • 图8 水滴冻结过程和冻结时间 (a)原表面 (b)~(f)不同间距超疏水表面 (g)不同间距激光加工表面延迟了冻结时间和降低了冻结温度: 20 μm,1 311 s,7℃; 40 μm,1 344 s,7℃; 60 μm,1 252 s,6℃; 80 μm,1 337 s,7℃; 100 μm,1 147 s,6℃[79]

  • Fig.8 Water droplet frozen and frozen time[79]. (a) Original surface; (b) - (f) Superhydrophobic surfaces with various pitches; (g) Laser processed surface with various pitches delayed the frozen time and reduced the frozen temperature: 20 μm, 1 311 s, 7℃; 40 μm, 1 344 s, 7℃; 60 μm, 1 252 s, 6℃; 80 μm, 1 337 s, 7℃; 100 μm, 1 147 s, 6℃.

  • 2.3 润湿性转变

  • Cassie状态是一种亚稳状态,当液滴处于 Cassie 状态时,由于液滴被材料表面上大量微纳米结构中的微凹坑所形成的小气囊支撑,表面具有良好的疏水性。但是一旦液滴受到降温、振动、动态冲击等外界环境的刺激利于底部小气囊中的空气排开,引起表面由未完全润湿 Cassie 状态转变为完全润湿的 Wenzel 状态。处于 Cassie 状态的超疏水表面液滴,在降温过程中将不可避免地从低粘附的 Cassie 状态转变为高粘附的 Wenzel 状态,并且由于两种状态之间存在较大的能垒,即使在升温过程中,液滴也无法跨越能垒,不能恢复到初始的 Cassie 状态,从而导致超疏水表面失效[63]。例如,CHU[82]等制备的 M–FGF 薄膜上的水滴在常温下是容易滚落的,而在低温-10℃下由于在低温下水滴由 Cassie-Baxter 状态转变为 Wenzel 状态导致 M-FGF 上的液滴不能滚动。

  • 众所周知,金属和合金表面存在金属阳离子、氧阴离子和羟基,使得金属氧化物通常具有亲水性[5683]。所以激光加工刚制备的表面是完全亲水状态的,但是将其放大气环境下放置一段时间,由于表面吸附了空气中有机分子的长碳氢链[84-85],激光织构化合金会发生超亲水向超疏水的转变[43]。 ZHOU 等[86]制备了 Cu2S @ CuxO 纳米线薄膜,具体制备流程如图9 所示,此薄膜在空气中存放一定时间后,就可以由超亲水转变为超疏水。他们推测这是表面化学成分变化和棒状结构间滞留空气所致。同样地,WANG 等[87]通过激光毛化制备不锈钢表面在一天内就发生了上述润湿性转变,对比分析发现材料表面碳含量骤增,并且该表面几乎完全由铁氧化物和非极性碳(即 C-C 键[88])组成,而这些疏水性的非极性碳抑制了(固体-空气-液体)三相接触线[89-90]下移,从而阻止液体浸入粗糙表面微织构内部结构,再结合粗糙微纳米结构形成的微小气囊,使该激光织构表面呈现超疏水。BAE 等[91]发现 α-Al2O3、α-SiO2、Y:ZrO2、Al2O3、TiO2、SiO2 和 CeO2 的金属氧化物具有内在亲水性,但是这几种金属氧化物表面暴露在空气后的疏水性都有所增大,因为它们吸附了空气中含碳元素的物质。总之,他们认为激光加工后是由于金属表面存在羧基使其呈亲水性,其中液体可以很容易地与氧化物中的电子结合形成氢键,一段时间之后自发进行的润湿性转变归因于材料表面吸附了非极性碳沉积层[92]或疏水性的羰基、羧酸和二醇基团的长链烃[93]

  • 图9 Cu2S @ CuxO 纳米线薄膜的制备流程[86]

  • Fig.9 Preparation process of Cu2S @ CuxO nanowire film[86]

  • 此外,润湿性转变的进程也可以通过热处理来加速转变[77]或者表面重复恢复超疏水性[4]。为了了解润湿性转换过程的接触角变化趋势和原因, BAKHTIARI 等[94]通过分析表面组成成分发现了润湿性转变过程,如图10 所示。第一阶段黄铜网表面的 CuO 暴露在空气中生成了疏水性的 Cu2O 薄膜和吸附了空气中的有机化合物,导致了黄铜网从超亲水转变为高度疏水状态;第二阶段通过热处理过程中生成了亲水性的 CuO 纳米线结构和吸附的有机物发生了脱离,从而变回了亲水状态;第三阶段再次暴露在空气中与第一阶段发生相同润湿性转变现象和机理。

  • 图10 接触角随处理过程(空气-热处理-空气)和时间的变化趋势[94]

  • Fig.10 Variation trend of contact angle with treatment process (air-heat treatment-air) and time[94]

  • 3 化学修饰对润湿性的影响

  • 自从 LANGMUIR[95]在 1920 年发现了表面涂覆的有机化合物的方法可以完全改变材料表面的润湿和摩擦性能,许多学者采用化学修饰来调控表面润湿性。例如,制备了许多如氟硅烷(PFOS) 和氟聚合物(CHF3 或 C4F8)等低表面能的物质[4496] 来修饰材料表面,从而表面的疏水性可以显著提高。

  • 为了实现超疏水,通常将构建微纳米结构和化学修饰结合起来,SAMANTA 等[44]采用不同工艺条件处理材料表面,从图11 可以看出,化学浸泡处理可以明显提高接触角,其原理就是通过化学修饰降低材料表面能。彭华乔等[64]将有机烷烃酸含有疏水性能的-CH3 和-CH2 基团[97]修饰到铝合金表面,进而获得疏水性表面。ZHANG 等[97]通过表面化学修饰和润湿性控制增强 TiO2 纳米管的光电化学分解水性能,将具有不同表面能和官能团的 4 类修饰剂分子,包括胺基(-NH2)、正构烷烃(-CnH2n + 1)、全氟烷基(-F)和聚合物分子(-Polymer)自组装到 TiO2 纳米管表面,可使润湿性由超亲水转变为疏水,并对水氧化的界面反应和新生成氧的吸附 / 脱附产生重要影响,这也为控制表面光催化反应提供了新的方法。为了在两种由选择性激光融化的合金 AlSi10Mg 和 Ti6Al4V 上创建稳定的超疏水表面,NELSON 等[93] 只使用 FDDTS 乙醇溶液(CF3(CF29(CH22SiCl3) 的化学浸泡处理,得到出现玫瑰花瓣效应(高接触角和高接触角滞后)的超疏水表面。之后,他们先用纳秒激光构建高通量表面纳米结构,然后使用 FDDTS 乙醇溶液进行化学修饰,得到出现莲花效应(高接触角和低接触角滞后)的超疏水表面。

  • 图11 不同工艺条件处理的 AISI 4130 钢试样的水接触角:空气中纳秒激光毛化(aNLT)、水约束纳秒激光毛化(wNLT)、化学浸泡处理(CIT)及其组合[44]

  • Fig.11 Water contact angles of AISI 4130 steel samples treated under different process conditions: nanosecond laser texturing in air (aNLT) , water-constrained nanosecond laser texturing (wNLT) , chemical immersion treatment (CIT) and their combination[44]

  • 为了制备自愈合、环境友好的无氟超疏水涂层,并希望该涂层在恶劣环境中延长材料寿命,YIN 研究团队[4]通过电沉积、溶剂热反应和化学修饰相结合的方法,在 304 不锈钢表面制备了无氟的超疏水 Ni3S2涂层,能够阻碍液体浸润材料表面和保证水滴不因纳米棒和低表面能的双重作用而钉扎。同样地,也有学者通过激光加工和化学修饰相结合的方法在同一块基底上制备了超疏水和超亲水区域。 SAMANTA 等[43]首先采用 1.5 wt.% FOTS 的乙醇溶液去修饰稳定随机纳米结构,之后用 1.5 wt.% CPTS 试剂的乙醇溶液去修饰稳定微通道结构,得到了图12 中具有氟碳基团的随机纳米结构的超疏水区域和具有腈基的微通道结构的超亲水区域。

  • 3.1 医用领域的应用

  • 在医学和工业上的仪器表面一直存在细菌定植的问题,学者们采用的解决方案是利用表面的超疏水特性,REN 等[3]基于抗菌涂料抵抗细菌病原体的定植原理,采用喷涂疏水性硅溶胶和 CuO 纳米颗粒,制备了具有极低细菌黏附和杀菌性能的新型高透明超疏水涂层。AKRAM 等[98]利用飞秒激光技术在金表面创建了周期性表面结构(fs-LIPSSs)[69]、覆盖微纳米结构的 fs-LIPSSs、锥形和一维棒状结构,所有这些表面结构降低了大肠杆菌的粘附力。XUN 等[2]采用两步原位浸泡法和硬脂酸(SA)后处理技术在 AZ31B 镁合金表面制备了具有稳定粗糙结构的低附着力超疏水表面,具有较强的稳定性和具有良好的低附着力超疏水性能,进而能有效提高 AZ31B 的耐腐蚀性能,该表面对蛋白质、细菌和细胞等具有良好的抗生物粘附性能。BEHERA 等[99]报道了使用激光表面微纹理和 RF 溅射对 Ti-6Al-4V 进行表面改性,研究表明:激光纹理化显著提高了表面润湿性;蛋白质吸附随着表面疏水性的增加而增加;使用 BCP 涂覆可调节表面表面粗糙度和润湿性,从而影响细胞粘附和增殖,如图13 所示。同样地,YUSUF 等[100]也发现先用皮秒激光加工的纹理化表面再涂覆 TiO2 / ZnO 涂层后,表面上的菌落形成数量远低于非纹理化涂层,这表明该涂层具有较强的抗菌性能。YANG 等[101]通过对比电化学测量结果发现超疏水性和油浸润光滑涂层都为不锈钢基底提供了良好的腐蚀防护屏障,之后将两种表面长期浸泡在腐蚀性溶液中,后者表现出更优异的防腐性能。但是超疏水性涂层经过长期浸泡后接触角有所下降,产生这种现象的原因是试样长期浸泡会破坏该表面的不稳定空气层,增大了腐蚀溶液与基底之间的接触面积。

  • 图12 两种策略下表面形貌、制备流程以及接触角的变化趋势[43]

  • Fig.12 Trends in surface morphology, preparation process, and contact angle under two strategies[43]

  • 图13 加工示意图、三维形貌以及不同处理条件下的润湿性、细胞粘附率和增殖率(OF:重叠率)[99]

  • Fig.13 Processing diagram, three-dimensional morphology, and wettability under different treatment conditions, cell adhesion rate and proliferation rate (OF: overlapping factor) [99]

  • 特殊润湿性表面的亲水性在医用方面也有涉及,MONDUZZI 等[102]证实将共聚物(Pluronic F127)和羧甲基纤维素钠(NaCMC)以 20 / 4 含量比混合,在 NaCl 浓度为 0.07 mol / kg 的条件下,是开发潜在的热敏给药系统的合适配方,具有低的细胞毒性,特别适合于不同种类的生物活性分子的缓释。一方面,由于相对较高的溶胶-凝胶温度(35℃) 接近人体的温度,可用于在骨科手术中管理水溶性较差的药物,如抗生素、抗癌药物和止痛药;另一方面,由于聚电解质 NaCMC 和 NaCl 的存在,可能实现在多功能纳米医学应用中溶解和控制释放亲水分子,如抗菌肽或生长因子。ZHANG 等[103]设计并制备了具有超亲水性和超疏水性的皮肤激发多层 Janus 复合纳米纤维膜作为创面敷料,以管理和利用渗出液。该四层复合膜包括含有环丙沙星(CIP)和虾青素(ATX)的载药层,具有超亲水表面,可自泵和药物回流;疏水聚偏氟乙烯层,可延缓渗出物流失;超疏水涂层,具有自清洁特性,可避免外来微生物粘附。将渗出液吸收到复合膜中,锁定在纳米纤维网络中,避免创面脱水,同时将 CIP 和 ATX 输送到创面,可有效抑制细菌生长,刺激组织再生。 HONG 等[104]用超音速喷射铜和 TiO2 颗粒创建了可用于细菌消毒的超亲水性纳米线表面,可以吸引空气中含有细菌的气溶胶,从而减少空气污染。其中紫外照射下 CuO / TiO2 复合材料对大肠杆菌的抑制率为 100%,说明 TiO2 具有良好的光杀伤活性。

  • 3.2 抗结冰领域的应用

  • 制备超疏水表面作为一种主要通过延迟冻结时间的抗结冰方法,在解决结冰问题方面受到了广泛关注。开发有效的疏冰表面具备 4 个必要特征:①在冻结前使液滴反弹或者滚落;②降低液滴形成冰核温度;③延迟液滴冻结时间;④当结冰无法避免时降低材料表面的粘附强度 [105]。 ELZAABALAWY[105]研究发现浓度为 35 wt.%的纳米复合涂层能够达到疏冰的特性,是因为较高含量的 SiO2 纳米颗粒具有较低的表面能和增强的层次结构,从而使材料表面呈现疏冰状态。该疏冰表面能够将水的成核温度降低到-12℃,并在-10℃可延缓 94 s 冻结,且将冰粘附强度降低到 230 kPa,远小于对照组纯铝和超疏水表面的冰粘附强度。某些多功能超疏水材料具有自感知特性,可用于实时监测冰情,CHU[82]等使用过氟癸基三氯硅烷(FDTS) 改性石墨烯基微纳米分级结构薄膜,该薄膜在-10℃的温度和冷凝条件下表现出优越的超疏水特性和优异的抗结冰性能,能够快速感知不同跌落高度和大小的撞击液滴,这些都会引起薄膜电阻的变化,进而记录水滴冻结的全过程。冰粘附强度[106-107] 可作为防冰性能的评估参数,冰粘附强度越小,其疏冰性能越好。PAN 等[108]通过超快激光烧蚀和化学氧化的超疏水表面 MNGP,其冰粘附强度可低至 1.7 kPa,如图14 所示,如此低的冰粘附强度使冰很容易因自重脱落。李天然等[109]将膜树脂和疏水纳米粒子喷涂到铝合金表面,得到了具有优异机械稳定性和抗结冰性的无氟耐用超疏水涂层,该涂层表面的液滴延迟冻结时间是未处理的铝片的 7 倍,同时表现出良好的动态除冰能力。

  • 图14 不同样品表面的冰粘附强度[108]

  • Fig.14 Ice adhesion strength of different sample surfaces[108]

  • 3.3 油水分离领域的应用

  • 由于溢油、石油泄漏和油污染废水等引起的污染日益严重,利用超疏水和超亲油的性质相结合制备油水分离过滤材料。因此,根据不同的分离原理可将此类材料分为 4 类:超疏水-超亲油型、超亲水-超疏油型、超亲水-超亲油型及超亲疏水(油)响应切换型[110]

  • 当过滤材料为超疏水-超亲油型型时,HUANG 等[15]利用一种新颖的电镀镍方法制备了超疏水-超亲油碳纤维,它具有优异的可重复使用性和高稳定性的多功能油水分离,其表面具有低表面能的官能团(−CF2 和−CF3),使镀镍碳纤维具有超疏水性。 BARTHWAL 等[13]通过化学蚀刻、水热过程及简单的气相沉积方法,对聚二甲基硅氧烷涂层进行改性,得到了无氟的超疏水-超亲油铝网,用于分离各种油水混合物,具有高达 94%的分离效率和较高可重复使用性。WANG 等[14]利用白砂糖作为辅助材料,通过控制白砂糖的尺寸和含量,调节聚二甲基硅氧烷 (PDMS)基海绵的孔隙率,进而实现高效的吸收能力和油水分离速度。此外,PDMS 材料本身就是超疏水-超亲油的,他们引入 PDMS-b-PEO(聚二甲基硅氧烷-b-环氧乙烷)实现了 PDMS 海绵从疏水-亲油到亲水-疏油的转变。如图15 所示,AZIZIAN 等[94]团队通过纳秒光纤激光制备的黄铜网,可以高效地分离油水混合物,且其具备耐磨、高持久和稳定性等良好性能。

  • 图15 分离效率每根柱子顶部的数字表示不同油通过膜的渗透通量(mL / (cm2 ·s))[94]

  • Fig.15 Separation efficiency Numbers at the top of each column represent the permeation fluxes of different oils through the membrane (mL / (cm2 ·s) ) [94]

  • 过滤材料为超亲水-超疏油型时,VAIDULYCH 等[111]在非织造粘胶织物上制备出对油水混合物中非极性有机溶剂的选择性吸收的超疏水膜;在碳布上制备了适用于轻油和重油的智能分离,且效率可达 99.97%以上超两亲性膜;给这两种膜添加纳米铜 (CuNPs)使具有优异的抗菌性能。YANG 等[112]设计了以生物材料羧甲基纤维素(CMC)为原料,通过热处理和化学交联在 PVDF 膜表面构建了超亲水性和水下超疏油性的蛛网状凝胶层,可用于高效分离油水。SATRIA 等[113]将纳米锌(Zn NPs)浸涂在商用聚氨酯泡沫(PUF)上,之后使用用苹果酸(MA)和四甘醇(TEG)对 PUF-Zn-NPs 进行超亲水改性,形成较高的机械稳定性和耐久性的 PUF-Zn-MA-TEG 纳米复合材料。这种材料表现出优良的水下油接触角(OCA~158°)和水接触角 (WCA~0°),因而其能高效分离油水混合物。这种性质的滤材,不仅可以用于油水分离,而且可用于水污染的治理。如今水污染问题日益复杂,需要滤材无论在强酸、强碱或高盐度环境中都需要有良好的稳定性[114-115]

  • 过滤材料为超亲水-超亲油型时,CAO 等[116]采用一种简单、低成本、环保的喷涂工艺制备了双预湿水下超疏油和油下超疏水废玉米秸秆粉(CSP) 涂层两亲性棉织物(DCSPF),其分离效率超过 97%、具有良好的结构稳定性和化学稳定性。SUI 等[117] 报道了利用纤维素纳米晶须(CNWs)和石墨烯纳米片(GNs)的协同作用制备超两亲性聚氨酯(PU) 泡沫材料,它具有良好的重复使用和耐久性。此外, CNWs 的浓度为 0.75 wt.%时,超两亲性泡沫具有较高的水和各种有机溶剂的储存量,可达自身重量的 22~24 倍。

  • 当过滤材料为超亲疏水(油)响应切换型时,如运用光热响应进行转换,ZHAO 等[118]采用一步化学蚀刻法在 Cu 网上构建了层次化结构的 CuO 纳米片和微团簇,其中,富 C 气氛储存和短时间的红外照射[119]为调控润湿性转换方式,控制含 C 物质在 Cu 网表面的吸附和解吸,从而调节 Cu 网格表面的润湿性。他们证实该铜网在超疏水 / 超亲油和超亲水 / 水下超疏油之间的超湿转换可以重复多次循环,如图16 所示。BHYRAPPA 等[120]制备了一种可高效分离油水混合物刺激响应型生物高分子材料,它是一种可逆的、可重复使用的、环保的材料,并证明了其亲疏水界面在紫外线照射下的可逆特性。同样地,通过 pH 值也可智能可调控表面润湿性, FU 等[121]将 pH 响应抗菌共聚物、含甲醇的聚脲醛纳米粒子(PUF NPs)和六亚甲基二异氰酸酯进行交联反应,制备了具有智能可调润湿性的超疏水抗菌织物。其中,不同 pH 溶液的处理会影响织物表面的 N+ 浓度,且经酸溶液处理后涂层棉织物的润湿性由原始的超疏水 / 超亲油性转变为超亲水性 / 水下超疏油性,从而使其具有优异的选择性油水分离性能、良好的自洁性能和高杀菌率。此外,REN 等[122]发现 ZIF-PIL 修饰后 CC 织物可以实现超亲水性 / 水下超疏油和超疏水性 / 超亲油的切换,用于 O / W 和 W / O 乳剂分离,而且 CC-ZIF-PIL 织物对水 / 油乳液具有较高的分离效率、循环稳定性和耐久性,在处理复杂的水 / 油混合物方面具有潜在的应用前景。

  • 图16 红外照射和富碳环境储存引发铜网超润湿性转变[118] (a),(b)在空气中铜网表面水滴影像 (c),(d)在水下四氯化碳液滴影像 (e)超润湿性转变的重复性

  • Fig.16 Superwettability transition of copper mesh surface induced by infrared irradiation and carbon-rich environmental storage[118]. (a) , (b) Digital photos of water droplets (in air) ; (c) , (d) Oil (carbon tetrachloride) water droplets (under water) ; (e) Repeatability of superwetting transition.

  • 3.4 防腐和自清洁领域的应用

  • 超疏水表面因其自清洁和疏水性能使材料隔绝液体,可以降低材料表面发生电化学腐蚀的概率,因而可以极大提高材料的耐腐蚀性。为了提高硅钢在酸性和高温碱性溶液中的耐腐蚀性,FU 等[123]通过激光加工和氟化处理制备了具有大量不规则微尺度隆起和片状纳米结构的稳定分级微纳米结构表面,其接触角可高达 156.6°,具有优异和稳定的防腐性能。同样地,镁合金具有优异的刚度、强度和高延展性,但在大气中极易腐蚀,一定程度上限制了其应用。受莲花表面超疏水特性的启发,ZANG 等[124]在AZ31B镁合金上制备了如图17所示的包裹硬脂酸的 MnO2 微球,制备的超疏水性镁合金表面在空气和油中展现优异的自清洁性能;且其经过强酸、强碱和盐水以及有机溶液处理和剪切处理之后依旧保持其疏水性,具有良好的机械化学耐久性。 ZHANG 团队[125]采用激光表面纹理化(LST)和十六烷基三甲氧基硅烷(HDTMS)进行了表面修饰,从图18 可以看出样品的微孔间距最小时接触角最大,它表现出最好的超疏水、超亲油和自清洁性能,且其耐腐蚀性最高。ALWAHIB 等[126] 提出了一种提高 1050 铝合金抗点蚀性能的新方法,将铝合金置于还原石墨烯纳米复合材料 (Rgo-Ag)饱和的混合电解质溶液中进行阳极氧化,这种方法提高了氧化铝层在海水环境中的耐点蚀性和耐化学反应性。

  • 超亲水和水下超疏油表面可以保持表面清洁,但是,这些表面通常是机械性能弱,容易损坏,导致使用寿命短[127]。因此,稳定的涂层制备技术成为膜改性的必要条件,TENG 等[128] 使用环氧化二氧化硅纳米颗粒作为交联剂将聚乙烯亚胺(PEI)涂覆在聚偏氟乙烯(PVDF)膜表面,得到了优异超亲水性和水下超疏油性,亲水性涂层提高了膜的防污性能,其原理示意图如图19 所示。KONG 等[129]以聚乙烯亚胺(PEI)、植酸(PA)和 Cu2+的聚电解质复合物 (简称 PEI-PA-Cu)为原料,研制了一种具有防雾、自清洁、抗菌和自愈合功能的多功能涂料。其自清洁原理是该涂层具有超亲水性,易于水扩散,进而隔离含油污染物。

  • 图17 超疏水 AZ31B 镁合金[124] (a)制备工艺 (b)~(d)表面微观结构 (e)空气中水滴滚落表面过程(倾斜角<1°) (f)异辛烷中水滴滚落表面过程(倾斜角<1°)

  • Fig.17 Superhydrophobic AZ31B magnesium alloy[124]. (a) preparation process; (b) - (d) Surface microstructure; (e) Water droplets roll down from the surface in air (tilt angle<1°) ; (f) Water droplets roll off surfaces in oil (isooctane) (inclination<1°) .

  • 3.5 其他领域的应用

  • 为制备轻便的高吸湿材料,刘玲莉等[130]采用浸渍的方法将席夫碱(Schiff)复合涂层对高分子材料聚对苯二甲酸乙二酯醇(PET)亲水改性以提高吸湿性能。结果表明:在 25℃、97% RH 环境下,最优复合涂层改性后的 PET 基材在经过 45 h 吸湿后达到平衡,吸湿率高达 36.94%,吸湿性能得到了极大的提高。目前,通过微生物电解电池(MECs)的生物电化学制氢技术备受关注,PARK 等[131]利用 3,4-乙烯二氧噻吩(PEDOT)的高导电性和聚苯乙烯磺酸盐(PSS)的超亲水性来提高 MEC 生成氢气的效率,从而得到改性阳极。研究表明:与控制阳极相比,改性阳极生成氢气的效率提高了两倍,达到稳定状态所需的时间缩短了 14 d,且改性阳极具有更丰富的电化学活性细菌。为了实现木质纤维素纸表面的超疏水-超亲水可逆转换,LI 等[17]通过在木质纤维素纸上涂覆纳米 TiO2。该转换机制如下:紫外线照射处理约 100 min 后,其润湿性由超疏水性转为超亲水性;而加热 25 h 后,表面就会恢复到原来的超疏水状态。

  • 图18 光滑加工表面和不同加工间距表面接触角[125] (a)HG-304 SS 和 HT-304 SS (b)d=50 μm (c)d=80 μm (d)d=150 μm (e)d=250 μm

  • Fig.18 Smoothly milled surface and the surface with various pitches[125]. (a) HG-304 SS and HT-304 SS; (b) d=50 μm; (c) d=80 μm; (d) d=150 μm; (e) d=250 μm.

  • 图19 牛血清白蛋白(BSA)和防污 PVDF 膜示意图[128] (a)未涂覆 PVDF 膜被污染 (b)PVDF 膜防污

  • Fig.19 Diagram of bovine serum albumin (BSA) and antifouling properties PVDF membrane[128]. (a) Uncoated PVDF membrane contaminated; (b) Antifouling PVDF membrane

  • 4 结论与展望

  • 表面润湿性是固体表面一个非常重要的特性,是由表面结构和化学组成共同决定的。液滴在固体表面上的润湿行为可以有效指导功能性表面的设计和应用,进一步改善功能件的表面性能,提升其服役能力,在国防军工、日常生活和工业领域中有着广泛的应用前景。考虑表面粗糙度和化学修饰对表面润湿性影响的制备表征和理论研究方兴未艾,具有特殊润湿性的超疏水表面、超亲水表面及润湿梯度表面因其卓越的表面性能尤为引人关注。综上所述,得到以下结论:

  • (1)在理论层面,尽管普遍认识到经典润湿理论存在的缺陷和弊端,但尚未找到更合适的完备理论予以替代。在润湿理论逐步完善的过程中,相关理论研究逐渐由理想化向更贴合实际工况转变,许多研究者试图在经典润湿性模型的理论基础上结合大量的实验数据去拟合并进行延伸与修正,建立起的修正物理与数学模型使试验数据与理论模型更具匹配性,以期得到适用性更广的理论模型;在制备表征方面,随着现代工业的飞速发展,对材料表面性能提出了具体化、苛刻性的使用要求。

  • (2)润湿性表面的制备也逐渐从单一的圆形、方形和沟槽微结构向微-纳多尺度、多层复合微织构和仿生功能性表面的创成与优化等方向发展。

  • (3)激光加工结合其他技术实现多响应、多功能润湿性表面的制备是未来的重要研究方向。近年来,飞秒激光微纳加工技术被证明是调控固体材料表面润湿性的一种有力工具。

  • (4)材料表面润湿性影响因素众多,除受表面微纳结构和化学修饰的影响外,功能表面会与基底材料和周围环境发生化学反应,也会导致润湿性转变。

  • 总体来说,表面润湿性技术仍处于初步探索阶段,已有的研究探索只是掀开了冰山一角,形成兼顾表面微结构、材质、环境等多因素的表面润湿性测试标准迫在眉睫。遗憾的是,如何定量研究和界面调控表面润湿特性是目前研究的热点和难点,需要进行以下更进一步的研究:

  • (1)目前仍缺少复杂几何形状织构的有效表征,针对微观表面结构与宏观润湿性之间的内在关联有待建立;在工业化应用中,润湿功能性表面的制造和应用仍主要停留在实验研究阶段,从实验室研究走向工业化应用还存在诸多问题。

  • (2)高效率、低成本的多尺度微纳功能表面大面积制造、经济环保的低表面能修饰、润湿性功能表面稳定性以及强度、服役寿命等现实问题仍有很大提升空间。例如,金属表面在吸附空气中含碳化合物变得疏水,环境温湿度、气压和液滴自身特性均会对润湿性造成影响,但上述影响机制目前尚未被完全揭示、相关研究存在诸多争议和分歧。

  • (3)目前表面润湿性仍没有形成统一的测试标准,很难对各类报道中呈现的研究结果进行纵向比较。此外,液滴接触表面前后过程中的确定性影响因素太多,照搬经典理论的通用准则进行设计并不合理,也会造成理论无法指导试验的情况。

  • (4)未来应考虑建立润湿性功能表面制备的数据库,在收集试验数据、融入绿色环保理念的基础上,利用数值仿真与实验相结合的手段研究以获得简单、快捷的加工工艺和参数,从而实现精细复杂或多相精准润湿,在如军事设施、细胞工程、智能传感等特殊应用场合中将大有作为。

  • 参考文献

    • [1] CIASCA G,PAPI M,BUSINARO L,et al.Recent advances in superhydrophobic surfaces and their relevance to biology and medicine[J].Bioinspiration & Biomimetics.Institute of Physics Publishing,2016,11(1):011001.

    • [2] XUN X,WAN Y Z,ZHANG Q C,et al.Low adhesion superhydrophobic AZ31B magnesium alloy surface with corrosion resistant and anti-bioadhesion properties[J].Applied Surface Science,2020,505:144566.

    • [3] REN T T,YANG M Q,WANG K K,et al.CuO Nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property[J].ACS Applied Materials & Interfaces,2018,10(30):25717-25725.

    • [4] YIN X L,YU S R,WANG K,et al.Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel[J].Chemical Engineering Journal,2020,394:124925.

    • [5] ZHENG Y H,ZHANG C C,WANG J,et al.Robust adhesion of droplets via heterogeneous dynamic petal effects[J].Journal of Colloid and Interface Science,2019,557:737-745.

    • [6] YUAN C,HUANG M Y,YU X J,et al.A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation[J].Applied Surface Science,2016,385:562-568.

    • [7] WANG F,ZHUO Y Z,HE Z W,et al.Dynamic anti-icing surfaces(DAIS)[J].Advanced Science.2021,8(21):1163-1189.

    • [8] ZHU H,HUANG Y,ZHANG S W,et al.A universal,multifunctional,high-practicability superhydrophobic paint for waterproofing grass houses[J].NPG Asia Materials,2021,13(1):315-362.

    • [9] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [10] TANG L L,WANG N,SUN H H,et al.Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability[J].Chemical Physics Letters,2020,758:137903.

    • [11] HUANG L Y,LIU Z L,LIU Y M,et al.Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J].International Journal of Thermal Sciences,2010,50(4):432-439.

    • [12] JING T,KIM Y,LEE S,et al.Frosting and defrosting on rigid superhydrohobic surface[J].Applied Surface Science,2013,276:37-42.

    • [13] BARTHWAL S,LIM S H.A durable,fluorine-free,and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation[J].Journal of Membrane Science,2020,618:118716.

    • [14] WANG C J,KUAN W F,LIN H P,et al.Facile hydrophilic modification of polydimethylsiloxane-based sponges for efficient oil-water separation[J].Journal of Industrial and Engineering Chemistry,2021,96:144-155.

    • [15] HUANG L,ZHANG L L,SONG J L,et al.Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability[J].ACS Applied Materials and Interfaces,2020,12(21):24390-24402.

    • [16] WANG N,WANG Y B,SHANG B,et al.Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J].Journal of Colloid and Interface Science,2018,531:300-310.

    • [17] LI Y L,SHI B Y,LUAN X Y,et al.Achieving reversible superhydrophobic-superhydrophilic switching of lignocellulosic paper surface with modified Nano-TiO2 coating[J].Polymer Testing,2022,116:107789.

    • [18] ZHANG F,ZHAO R,WANG Y R,et al.Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption[J].Chemical Engineering Journal,2023,452:139513.

    • [19] HUANG W Q,XUE W H,HU X Y,et al.A s-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution[J].Journal of Alloys and Compounds,2023,930:167368.

    • [20] CHI H J,CAO H,XU Z G,et al.Unexpected excellent under-oil superhydrophilicity of poly(2-(dimethylamino)thyl methacrylate)for water capture from oil and water-induced oil self-dewetting[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,657(PA):130588.

    • [21] DONG W H,LIU F,ZHOU X X,et al.Superhydrophilic PVDF nanofibrous membranes with hierarchical structure based on solution blow spinning for oil-water separation[J].Separation and Purification Technology,2022,301(August):121903.

    • [22] XU M,ZHANG H,PENG W H,et al.Eco-friendly fabrication of porphyrin@hyperbranched polyamideamine@phytic acid/PVDF membrane for superior oil-water separation and dye degradation[J].Applied Surface Science,2023,608:155075.

    • [23] WANG D D,WANG G Z,MIAO X Y,et al.Activated carbon fibers with different hydrophilicity/ydrophobicity modified by pDA-SiO2 coating for gravity oil-water separation[J].Separation and Purification Technology,2022,303(July):122179.

    • [24] XUE J J,LI J,GAO J M,et al.CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation[J].Separation and Purification Technology,2022,302(June):122120.

    • [25] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [26] CHEN Z J,YANG J,LIU H B,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.

    • [27] MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.

    • [28] ZHANG C C,ZHAO L H,ZHANG J M,et al.An improved Bessel beam-based method for processing curved/tilted surface with anti-icing property[J].Colloids and Interface Science Communications,2022,48:100609.

    • [29] LI J,FAN F Y,ZHAO Y H,et al.Influence of laser surface texturing on a low-adhesion and superhydrophobic aluminium alloy surface[J].Micro and Nano Letters,2018,13(3):389-392.

    • [30] LIN H P,CHEN L J.Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect[J].Journal of Colloid and Interface Science,2021,603:539-549.

    • [31] LIU M J,WANG S T,JIANG L.Nature-inspired superwettability systems[J].Nature Reviews Materials.Nature Publishing Group,2017,2(7):36.

    • [32] PARK K C,KIM P,GRINTHAL A,et al.Condensation on slippery asymmetric bumps[J].Nature,2016,531(7592):78-82.

    • [33] WANG C L,WEN B H,TU Y S,et al.Friction reduction at a superhydrophilic surface:Role of ordered water[J].Journal of Physical Chemistry C,2015,119(21):11679-11684.

    • [34] NAGAOKA S,AKASHI R.Low-friction hydrophilic surface for medical devices[J].Biomaterials,1990,11(6):419-424.

    • [35] CHEN L W,MINAKAWA A,MIZUTANI M,et al.Study of laser-induced periodic surface structures on different coatings exhibit super hydrophilicity and reduce friction[J].Precision Engineering,2022,78(July):215-232.

    • [36] SHENG W,PEI Y,LI X L,et al.Effect of surface characteristics on condensate droplets growth[J].Applied Thermal Engineering,2020,173:115260.

    • [37] CHU F Q,WU X M,MA Q.Condensed droplet growth on surfaces with various wettability[J].Applied Thermal Engineering,2017,115:1101-1108.

    • [38] RAN M R,ZHENG W Y,WANG H M.Fabrication of superhydrophobic surfaces for corrosion protection:a review[J].Materials Science and Technology(United Kingdom).2019,35(3):313-326.

    • [39] ZHANG D W,WANG L T,QIAN H C,et al.Superhydrophobic surfaces for corrosion protection:a review of recent progresses and future directions[J].Journal of Coatings Technology and Research,2016,13(1):11-29.

    • [40] 赵菊玲.几种具有特殊润湿性能的工程材料界面的构筑及表征[D].兰州:西北师范大学,2012.ZHAO Jüling.Generation and characterization of several engineering material surfaces with special wettabilities[D].Lanzhou:Northwest Normal University,2012.(in Chinese)

    • [41] MA C H,BAI S X,MENG Y G,et al.Hydrophilic control of laser micro-square-convexes SiC surfaces[J].Materials Letters,2013,109:316-319.

    • [42] 唐浩铭,孙国富,潘高峰,等.不锈钢基超疏水表面的制备及其性能研究[J].电镀与精饰,2022,44(7):42-49.TANG Haoming,SUN Guofu,PAN Gaofeng.Preparation of stainless steel-based superhydrophobic surface and its performance[J].Plating and Finishing,2022,44(7):42-49.(in Chinese)

    • [43] SAMANTA A,HUANG W,BELL M,et al.Large-area surface wettability patterning of metal alloys via a maskless laser-assisted functionalization method[J].Applied Surface Science,2021,568(August):150788.

    • [44] WANG Q H,SAMANTA A,SHAW S K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.

    • [45] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [46] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [47] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40(1):546-551.

    • [48] BICO J,THIELE U,QUÉRÉ D.Wetting of textured surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):41-46.

    • [49] 王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Z,XING Z,WANG H,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)

    • [50] 江雷.从自然到仿生的超疏水纳米界面材料[J].新材料产业,2003(3):60-65.JIANG Lei.Super-hydrophobic surfaces from natural to artificial[J].Advanced Materials Industry,2003(3):60-65.(in Chinese)

    • [51] MURUGADOSS K,DHAR P,DAS S K.Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces[J].European Physical Journal E,2017,40(1):11491-11501.

    • [52] VILLA F,MARENGO M,DE CONINCK J.A new model to predict the influence of surface temperature on contact angle[J].Scientific Reports,2018,8(1):1-10.

    • [53] ISMAIL M F,KHORSHIDI B,SADRZADEH M.New insights into the role of the surrounding medium temperature in the under-liquid wetting of solid surfaces[J].Langmuir,2020,36(28):8301-8310.

    • [54] WANG K L,LIU X R,TAN Y,et al.Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings[J].Chemical Engineering Journal,2019,359:626-640.

    • [55] A H,YANG Z B,HU R,et al.Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel[J].Journal of Colloid and Interface Science,2022,607:1023-1035.

    • [56] 薛磊,于竞尧,马学胜,等.飞秒激光制备铜微纳结构表面的润湿及抗结冰特性研究[J].航空制造技术,2018,61(12):74-79.XUE Lei,YU Jingyao,MA Xuesheng,et al.Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J] Aeronautical Manufacturing Technology,2018,61(12):74-79.(in Chinese)

    • [57] CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.

    • [58] 肖易航,郑军,何勇明,等.不同润湿性液体在粗糙表面的润湿滞后现象[J].中国表面工程,2020,32(6):150-156.XIAO Yihang,ZHENG Jun,HE Yongming,et al.Contact angle hysteresis with different wetting-liquids on rough surfaces[J].China Surface Engineering,2020,32(6):150-156.(in Chinese)

    • [59] KHANDIZOD R,VARGHESE V,MUJUMDAR S.Electric discharge assisted surface texturing of stainless steel304[J].Procedia CIRP,2022,108:670-674.

    • [60] QI Z,LIAO L,WANG R Y,et al.Roughness-dependent wetting and surface tension of molten lead on alumina[J].Transactions of Nonferrous Metals Society of China,2021,31(8):2511-2521.

    • [61] 俞伟元,邢春晓,吴保磊,等.水和乙二醇在特氟龙表面的本征接触角测量[J].兰州理工大学学报,2019,45(6):69-73.YU Weiyuan,XING Chunxiao,WU Baolei,et al.Measurement of intrinsic contact angle of water and ethylene glycol on teflon surface[J].Journal of Lanzhou University of Technology,2019,45(6):69-73.(in Chinese)

    • [62] GILJEAN S,BIGERELLE M,ANSELME K,et al.New insights on contact angle/roughness dependence on high surface energy materials[J].Applied Surface Science,2011,257(22):9631-9638.

    • [63] WANG L Z,TIAN Z,JIANG G C,et al.Spontaneous dewetting transitions of droplets during icing & melting cycle[J].Nature Communications,2022,13(1):28036-X.

    • [64] 彭华乔,罗振军,李开宇,等.盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究[J].应用化工,2019,48(12):2900-2904.PENG Huaqiao,LUO Zhenjun,LI Kaiyu,et al.Study on preparation proces and self-cleaning performance of superhydrophbic aluminum surfaces fabricated by hydrochloric acid etching[J].Applied Chemical Industry,2019,48(12):2900-2904.(in Chinese)

    • [65] ZHANG H M,GU D D,MA C L,et al.Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting[J].Applied Surface Science,2019,476(January):151-160.

    • [66] PETA K,BARTKOWIAK T,GALEK P,et al.Contact angle analysis of surface topographies created by electric discharge machining[J].Tribology International,2021,163:107139.

    • [67] DU Q J,ZHOU P,PAN Y P,et al.Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface:A many-body dissipative particle dynamics study[J].Chemical Engineering Science,2022,249:117327.

    • [68] IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:A comprehensive review[J].Surfaces and Interfaces,2020,21(November):100802.

    • [69] GAO Y F,YU C Y,HAN B,et al.Picosecond laser-induced periodic surface structures(LIPSS)on crystalline silicon[J].Surfaces and Interfaces,2020,19(9):538-564.

    • [70] EZHILMARAN V,DAMODARAM R.Laser surface texturing on nickel-aluminium-bronze alloy for improving the hydrophobicity[J].Lasers in Manufacturing and Materials Processing,2021,8(1):15-27.

    • [71] TONG W,CUI L L,QIU R X,et al.Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates[J].Journal of Materials Science and Technology,2021,89:59-67.

    • [72] LIU Z Y,YANG J,LI Y L,et al.Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser[J].Applied Surface Science,2020,520:146316.

    • [73] 林澄,钟敏霖,范培迅,等.皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J].中国激光,2014,41(9):115-112.LIN Cheng,ZHONG Minlin,FAN Peixun,et al.Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J].Chinese Jouranl of Lasers,2014,41(9):115-112.(in Chinese)

    • [74] SHEN Y,XIE X,TAO J,et al.Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J].Materials China,2022,41(5):388-397.

    • [75] LIU B,WANG W J,JIANG G D,et al.Study on hierarchical structured PDMS for surface superhydrophobicity using imprinting with ultrafast laser structured models[J].Applied Surface Science,2016,364:528-538.

    • [76] WANG Y H,QIN Z L,XU J K,et al.Microstructure control of the wettability and adhesion of Al alloy surfaces[J].RSC Advances,2020,10(64):38788-38797.

    • [77] YANG Z R,ZHU C C,ZHENG N,et al.Superhydrophobic surface preparation and wettability transition of titanium alloy with micro/nano hierarchical texture[J].Materials,2018,11(11):2210.

    • [78] 江国琛,潘瑞,陈昶昊,等.超快激光制备水面减阻微纳结构及其耐蚀性研究[J].中国激光,2020,47(8):81-89.JIANG Guochen,PAN Rui,CHEN Changhao,et al.Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J].Chinese Jouranl of Lasers,2020,47(8):81-89.(in Chinese)

    • [79] XING W,LI Z,YANG H O,et al.Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J].Materials and Design,2019,183:1-9.

    • [80] CHO H,PARK J M,KIM J H,et al.Mass production of superhydrophilic micropatterned copper surfaces using powder injection molding process[J].Powder Technology,2022,411(July):117779.

    • [81] ZHANG Y,WANG T,LV Y J,et al.Superhydrophilic surface on Ti6Al4V with good HA-inducing ability prepared via an eco-friendly two-step method[J].Vacuum,2022,205(July):111390.

    • [82] CHU Z M,JIAO W C,HUANG Y F,et al.Smart superhydrophobic films with self-sensing and anti-icing properties based on silica nanoparticles and graphene[J].Advanced Materials Interfaces,2020,7(15):2000492.

    • [83] 杨奇彪,邓波,汪于涛,等.飞秒激光诱导铝基的超疏水表面[J].激光与光电子学进展,2017,54(10):314-320.YANG Qibiao,DENG Bo,WANG Yutao,et al.Superhydrophobic surface of aluminium base induced by femtosecond laser[J].Laser & Optoelectronics Progress,2017,54(10):314-320.(in Chinese)

    • [84] VIDHYA Y E B,PATTAMATTA A,MANIVANNAN A,et al.Influence of fluence,beam overlap and aging on the wettability of pulsed Nd3+:YAG nanosecond laser-textured Cu and Al sheets[J].Applied Surface Science,2021,548(September 2020):149259.

    • [85] GIANNUZZI G,GAUDIUSO C,DI MUNDO R,et al.Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses[J].Applied Surface Science,2019,494:1055-1065.

    • [86] ZHOU C L,LI H J,LIN J,et al.Matchstick-like Cu2S@CuxO nanowire film:transition of superhydrophilicity to superhydrophobicity[J].Journal of Physical Chemistry C,2017,121(36):19716-19726.

    • [87] WANG H P,HE M J,LIU H,et al.One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability,thermal stability,and anti-icing function[J].ACS Applied Materials and Interfaces,2019,11(28):25586-25594.

    • [88] YANG Z,TIAN Y L,ZHAO Y C,et al.Study on the fabrication of super-hydrophobic surface on Inconel Alloy via nanosecond laser ablation[J].Materials,2019,12(2):202000492.

    • [89] LAU K K S,BICO J,TEO K B K,et al.Superhydrophobic carbon nanotube forests[J].Nano Letters,2003,3(12):1701-1705.

    • [90] 易天浩,杨光,黄永华,等.基于扩散界面法的微重力下液氢沸腾传热研究[J].工程热物理学报,2022,43(9):2494-2500.YI Tianhao,YANG Guang,HUANG Yonghua,et al.Simulation of liquid hydrogen pool boiling under microgravity based on diffusion interface method[J].Jouranl of Engineering Thermophysics,2022,43(9):2494-2500.(in Chinese)

    • [91] BAE J,SAMEK I A,STAIR P C,et al.Investigation of the hydrophobic nature of metal oxide surfaces created by atomic layer deposition[J].Langmuir,2019,35(17):5762-5769.

    • [92] SHI Y,JIANG Z,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500:144286.

    • [93] HUANG W,NELSON B,MULLENNEX R,et al.Superhydrophobic surface processing for selective laser melting of metal parts[J].Procedia CIRP,2022,108:418-423.

    • [94] BAKHTIARI N,AZIZIAN S,MOHAZZAB B F,et al.One-step fabrication of brass filter with reversible wettability by nanosecond fiber laser ablation for highly efficient oil/water separation[J].Separation and Purification Technology,2021,259:118139.

    • [95] LANGMUIR B I.The mechanism of the surface phenomena of flotation[J].Trans Faraday Soc,1920,15(June):62-74.

    • [96] 金巍,梁建,马艳丽,等.电沉积参数对 Cr2O3超疏水膜层表面形貌和润湿性的影响[J].盐湖研究,2022,30(1):77-86.JIN Wei,LIANG Jian,MA Yanli,et al.Influence of electrodeposition conditon on the surface morphology and wettability of Cr2O3 super-hydrophobic layer[J].Jouranl of Salt Lake Research,2022,30(1):77-86.(in Chinese)

    • [97] ZHANG T T,LIN P,WEI N,et al.Enhanced photoelectrochemical water-splitting property on TiO2 nanotubes by surface chemical modification and wettability control[J].ACS Applied Materials and Interfaces,2020,12(17):20110-20118.

    • [98] JALIL S A,AKRAM M,BHAT J A,et al.Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses[J].Applied Surface Science,2020,506:0-6.

    • [99] BEHERA R R,DAS A,HASAN A,et al.Deposition of biphasic calcium phosphate film on laser surface textured Ti–6Al–4V and its effect on different biological properties for orthopedic applications[J].Journal of Alloys and Compounds,2020,842:155683.

    • [100] YUSUF Y,GHAZALI M J,OTSUKA Y,et al.Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings[J].Ceramics International,2020,46(3):3949-3959.

    • [101] YANG Z,LIU X P,TIAN Y L.A contrastive investigation on anticorrosive performance of laserinduced super-hydrophobic and oil-infused slippery coatings[J].Progress in Organic Coatings,2020,138:105313.

    • [102] MONDUZZI M,MUSU G,GROSSO M,et al.Effect of electrolytes on the sol-gel phase transitions in a Pluronic F127/carboxymethyl cellulose aqueous system:phase map,rheology and NMR self-diffusion study[J].European Polymer Journal,2022,181(July):111707.

    • [103] ZHANG W,GUAN X,QIU X,et al.Bioactive composite Janus nanofibrous membranes loading Ciprofloxacin and Astaxanthin for enhanced healing of full-thickness skin defect wounds[J].Applied Surface Science,2023,610:155290.

    • [104] PARK C,HONG J H,KIM B Y,et al.Supersonically sprayed copper oxide titania nanowires for antibacterial activities and water purification[J].Applied Surface Science,2022,611:155513.

    • [105] ELZAABALAWY A,MEGUID S A.Development of novel icephobic surfaces using siloxane-modified epoxy nanocomposites[J].Chemical Engineering Journal,2022,433:133637.

    • [106] TANG L L,WANG N,HAN Z Y,et al.Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594(January):124655.

    • [107] WU X H,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.

    • [108] PAN R,ZHANG H J,ZHONG M L.Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.

    • [109] 李天然,卢晨光,原子超,等.耐用铝基超疏水涂层的机械稳定性及抗结冰性能[J].表面技术,2022,51(11):385-394.LI Tianran,LU Chenguang,YUAN Zichao.Mechanical stability and anti-icing performance of robust aluminum-based superhydrophobic coating[J].Surface Technology,2022,51(11):385-394.(in Chinese)

    • [110] 王雅培,林凯歌,高陈陈,等.纤维素及其组成物基超浸润材料在油水分离中的研究进展[J].表面技术:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.WANG Yapei,LIN Kaige,GAO Chenchen,et al.Research progress of cellulose fiber and its component-based superwetting materials in oilwater separation[J].Surface Technology:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.(in Chinese)

    • [111] VAIDULYCH M,SHELEMIN A,HANUŠ J,et al.Superwettable antibacterial textiles for versatile oil/water separation[J].Plasma Processes and Polymers,2019,16(5):1-13.

    • [112] YANG J,LIN L G,WANG Q,et al.Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept[J].International Journal of Biological Macromolecules,2022,222:2603-2614.

    • [113] SATRIA M,SALEH T A.Facile approach of eco-friendly superhydrophilic/underwater superoleophobic zincfunctionalized polyurethane foams for continuous oilwater separation[J].Journal of Molecular Liquids,2022,367:120341.

    • [114] XIAO X H,YU Z X,ZHU X M,et al.Sepiolite@TiO2/Graphene oxide composite membrane for long-term separation of oily wastewater[J].Journal of Molecular Structure,2023,1273:134258.

    • [115] ZHU J,JIANG J X,JAMIL M I,et al.Biomass-derived,water-induced self-recoverable composite aerogels with robust superwettability for water treatment[J].Langmuir,2020,36(37):10960-10969.

    • [116] CAO G L,ZHANG W B,JIA Z,et al.Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures[J].ACS Applied Materials and Interfaces,2017,9(41):36368-36376.

    • [117] ZHANG X T,LIU D Y,SUI G X.Superamphiphilic polyurethane foams synergized from cellulose nanowhiskers and graphene nanoplatelets[J].Advanced Materials Interfaces,2018,5(2):1-7.

    • [118] ZHAO X W,MAO F,WU J Y,et al.Facilely tuning the surface wettability of Cu mesh for multi-functional applications[J].Journal of Industrial and Engineering Chemistry,2022,116:293-302.

    • [119] ZHANG S,SU Q,YAN J,et al.Flexible nanofiber composite membrane with photothermally induced switchable wettability for different oil/water emulsions separation[J].Chemical Engineering Science,2022,264:118175.

    • [120] KOLLARIGOWDA R H,BHYRAPPA H M,CHENG G.Stimulus-responsive biopolymeric surface:molecular switches for oil/water separation[J].ACS Applied Bio Materials,2019,2(10):4249-4257.

    • [121] FU Y C,JIN B Y,ZHANG Q H,et al.PH-induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation[J].ACS Applied Materials and Interfaces,2017,9(35):30161-30170.

    • [122] OU X,REN Y Y,GUO J G,et al.ZIF-8@Poly(ionic liquid)-grafted cotton cloth for switchable water/oil emulsion separation[J].ACS Applied Polymer Materials,2020,2(8):3433-3439.

    • [123] FU J,TANG M K,ZHANG Q X.Simple fabrication of hierarchical micro/nanostructure superhydrophobic surface with stable and superior anticorrosion silicon steel via laser marking treatment[J].Journal Wuhan University of Technology,Materials Science Edition,2020,35(2):411-417.

    • [124] ZANG D M,XUN X W,GU Z D,et al.Fabrication of superhydrophobic self-cleaning manganese dioxide coatings on Mg alloys inspired by lotus flower[J].Ceramics International,2020,46(12):20328-20334.

    • [125] ZHANG L X,LIN N M,ZOU J J,et al.Super-hydrophobicity and corrosion resistance of laser surface textured AISI 304 stainless steel decorated with Hexadecyltrimethoxysilane(HDTMS)[J].Optics and Laser Technology,2020,127(February):106146.

    • [126] ALWAHIB A A,MUTTLAK W H,MAHDI B S,et al.Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy[J].Surfaces and Interfaces,2020,20:100557.

    • [127] XU X B,LIU G M,BAI J,et al.In-situ self-compensation strategy for superhard,universal superhydrophilic/underwater superoleophobic coatings[J].Chemical Engineering Science,2022,262:118007.

    • [128] TENG L,YUE C,ZHANG G W.Epoxied SiO2 nanoparticles and polyethyleneimine(PEI)coated polyvinylidene fluoride(PVDF)membrane for improved oil water separation,anti-fouling,dye and heavy metal ions removal capabilities[J].Journal of Colloid and Interface Science,2023,630:416-429.

    • [129] KONG R X,REN J L,MO M,et al.Multifunctional antifogging,self-cleaning,antibacterial,and self-healing coatings based on polyelectrolyte complexes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,656:130484.

    • [130] 刘玲莉,韩云龙,钱付平,等.SiO2-NH2-GA-AAS/CS 席夫碱复合涂层的制备和吸湿性能[J].复合材料学报:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=FUHE20220909000&DbName= CAPJ2022.LIU Lingli,HAN Yunlong,QIAN Fuping.et al.Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating[J].Acta Materiae Compositae Sinica:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=F UHE20220909000&DbName=CAPJ2022.(in Chinese)

    • [131] PARK S G,RHEE C,JADHAV D A,et al.Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells[J].Science of the Total Environment,2023,856:159105.

  • 参考文献

    • [1] CIASCA G,PAPI M,BUSINARO L,et al.Recent advances in superhydrophobic surfaces and their relevance to biology and medicine[J].Bioinspiration & Biomimetics.Institute of Physics Publishing,2016,11(1):011001.

    • [2] XUN X,WAN Y Z,ZHANG Q C,et al.Low adhesion superhydrophobic AZ31B magnesium alloy surface with corrosion resistant and anti-bioadhesion properties[J].Applied Surface Science,2020,505:144566.

    • [3] REN T T,YANG M Q,WANG K K,et al.CuO Nanoparticles-containing highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and excellent bactericidal property[J].ACS Applied Materials & Interfaces,2018,10(30):25717-25725.

    • [4] YIN X L,YU S R,WANG K,et al.Fluorine-free preparation of self-healing and anti-fouling superhydrophobic Ni3S2 coating on 304 stainless steel[J].Chemical Engineering Journal,2020,394:124925.

    • [5] ZHENG Y H,ZHANG C C,WANG J,et al.Robust adhesion of droplets via heterogeneous dynamic petal effects[J].Journal of Colloid and Interface Science,2019,557:737-745.

    • [6] YUAN C,HUANG M Y,YU X J,et al.A simple approach to fabricate the rose petal-like hierarchical surfaces for droplet transportation[J].Applied Surface Science,2016,385:562-568.

    • [7] WANG F,ZHUO Y Z,HE Z W,et al.Dynamic anti-icing surfaces(DAIS)[J].Advanced Science.2021,8(21):1163-1189.

    • [8] ZHU H,HUANG Y,ZHANG S W,et al.A universal,multifunctional,high-practicability superhydrophobic paint for waterproofing grass houses[J].NPG Asia Materials,2021,13(1):315-362.

    • [9] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [10] TANG L L,WANG N,SUN H H,et al.Superhydrophobic surfaces with flake-like structures and lubricant-infused composite surfaces to enhance anti-icing ability[J].Chemical Physics Letters,2020,758:137903.

    • [11] HUANG L Y,LIU Z L,LIU Y M,et al.Preparation and anti-frosting performance of super-hydrophobic surface based on copper foil[J].International Journal of Thermal Sciences,2010,50(4):432-439.

    • [12] JING T,KIM Y,LEE S,et al.Frosting and defrosting on rigid superhydrohobic surface[J].Applied Surface Science,2013,276:37-42.

    • [13] BARTHWAL S,LIM S H.A durable,fluorine-free,and repairable superhydrophobic aluminum surface with hierarchical micro/nanostructures and its application for continuous oil-water separation[J].Journal of Membrane Science,2020,618:118716.

    • [14] WANG C J,KUAN W F,LIN H P,et al.Facile hydrophilic modification of polydimethylsiloxane-based sponges for efficient oil-water separation[J].Journal of Industrial and Engineering Chemistry,2021,96:144-155.

    • [15] HUANG L,ZHANG L L,SONG J L,et al.Superhydrophobic nickel-electroplated carbon fibers for versatile oil/water separation with excellent reusability and high environmental stability[J].ACS Applied Materials and Interfaces,2020,12(21):24390-24402.

    • [16] WANG N,WANG Y B,SHANG B,et al.Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation[J].Journal of Colloid and Interface Science,2018,531:300-310.

    • [17] LI Y L,SHI B Y,LUAN X Y,et al.Achieving reversible superhydrophobic-superhydrophilic switching of lignocellulosic paper surface with modified Nano-TiO2 coating[J].Polymer Testing,2022,116:107789.

    • [18] ZHANG F,ZHAO R,WANG Y R,et al.Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption[J].Chemical Engineering Journal,2023,452:139513.

    • [19] HUANG W Q,XUE W H,HU X Y,et al.A s-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution[J].Journal of Alloys and Compounds,2023,930:167368.

    • [20] CHI H J,CAO H,XU Z G,et al.Unexpected excellent under-oil superhydrophilicity of poly(2-(dimethylamino)thyl methacrylate)for water capture from oil and water-induced oil self-dewetting[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,657(PA):130588.

    • [21] DONG W H,LIU F,ZHOU X X,et al.Superhydrophilic PVDF nanofibrous membranes with hierarchical structure based on solution blow spinning for oil-water separation[J].Separation and Purification Technology,2022,301(August):121903.

    • [22] XU M,ZHANG H,PENG W H,et al.Eco-friendly fabrication of porphyrin@hyperbranched polyamideamine@phytic acid/PVDF membrane for superior oil-water separation and dye degradation[J].Applied Surface Science,2023,608:155075.

    • [23] WANG D D,WANG G Z,MIAO X Y,et al.Activated carbon fibers with different hydrophilicity/ydrophobicity modified by pDA-SiO2 coating for gravity oil-water separation[J].Separation and Purification Technology,2022,303(July):122179.

    • [24] XUE J J,LI J,GAO J M,et al.CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation[J].Separation and Purification Technology,2022,302(June):122120.

    • [25] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [26] CHEN Z J,YANG J,LIU H B,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.

    • [27] MILLES S,VOISIAT B,NITSCHKE M,et al.Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology[J].Journal of Materials Processing Technology,2019,270:142-151.

    • [28] ZHANG C C,ZHAO L H,ZHANG J M,et al.An improved Bessel beam-based method for processing curved/tilted surface with anti-icing property[J].Colloids and Interface Science Communications,2022,48:100609.

    • [29] LI J,FAN F Y,ZHAO Y H,et al.Influence of laser surface texturing on a low-adhesion and superhydrophobic aluminium alloy surface[J].Micro and Nano Letters,2018,13(3):389-392.

    • [30] LIN H P,CHEN L J.Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect[J].Journal of Colloid and Interface Science,2021,603:539-549.

    • [31] LIU M J,WANG S T,JIANG L.Nature-inspired superwettability systems[J].Nature Reviews Materials.Nature Publishing Group,2017,2(7):36.

    • [32] PARK K C,KIM P,GRINTHAL A,et al.Condensation on slippery asymmetric bumps[J].Nature,2016,531(7592):78-82.

    • [33] WANG C L,WEN B H,TU Y S,et al.Friction reduction at a superhydrophilic surface:Role of ordered water[J].Journal of Physical Chemistry C,2015,119(21):11679-11684.

    • [34] NAGAOKA S,AKASHI R.Low-friction hydrophilic surface for medical devices[J].Biomaterials,1990,11(6):419-424.

    • [35] CHEN L W,MINAKAWA A,MIZUTANI M,et al.Study of laser-induced periodic surface structures on different coatings exhibit super hydrophilicity and reduce friction[J].Precision Engineering,2022,78(July):215-232.

    • [36] SHENG W,PEI Y,LI X L,et al.Effect of surface characteristics on condensate droplets growth[J].Applied Thermal Engineering,2020,173:115260.

    • [37] CHU F Q,WU X M,MA Q.Condensed droplet growth on surfaces with various wettability[J].Applied Thermal Engineering,2017,115:1101-1108.

    • [38] RAN M R,ZHENG W Y,WANG H M.Fabrication of superhydrophobic surfaces for corrosion protection:a review[J].Materials Science and Technology(United Kingdom).2019,35(3):313-326.

    • [39] ZHANG D W,WANG L T,QIAN H C,et al.Superhydrophobic surfaces for corrosion protection:a review of recent progresses and future directions[J].Journal of Coatings Technology and Research,2016,13(1):11-29.

    • [40] 赵菊玲.几种具有特殊润湿性能的工程材料界面的构筑及表征[D].兰州:西北师范大学,2012.ZHAO Jüling.Generation and characterization of several engineering material surfaces with special wettabilities[D].Lanzhou:Northwest Normal University,2012.(in Chinese)

    • [41] MA C H,BAI S X,MENG Y G,et al.Hydrophilic control of laser micro-square-convexes SiC surfaces[J].Materials Letters,2013,109:316-319.

    • [42] 唐浩铭,孙国富,潘高峰,等.不锈钢基超疏水表面的制备及其性能研究[J].电镀与精饰,2022,44(7):42-49.TANG Haoming,SUN Guofu,PAN Gaofeng.Preparation of stainless steel-based superhydrophobic surface and its performance[J].Plating and Finishing,2022,44(7):42-49.(in Chinese)

    • [43] SAMANTA A,HUANG W,BELL M,et al.Large-area surface wettability patterning of metal alloys via a maskless laser-assisted functionalization method[J].Applied Surface Science,2021,568(August):150788.

    • [44] WANG Q H,SAMANTA A,SHAW S K,et al.Nanosecond laser-based high-throughput surface nanostructuring(nHSN)[J].Applied Surface Science,2020,507:145136.

    • [45] YOUNG T.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [46] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Transactions of the Faraday Society,1936,28(8):988-994.

    • [47] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40(1):546-551.

    • [48] BICO J,THIELE U,QUÉRÉ D.Wetting of textured surfaces[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,206(1):41-46.

    • [49] 王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Z,XING Z,WANG H,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)

    • [50] 江雷.从自然到仿生的超疏水纳米界面材料[J].新材料产业,2003(3):60-65.JIANG Lei.Super-hydrophobic surfaces from natural to artificial[J].Advanced Materials Industry,2003(3):60-65.(in Chinese)

    • [51] MURUGADOSS K,DHAR P,DAS S K.Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces[J].European Physical Journal E,2017,40(1):11491-11501.

    • [52] VILLA F,MARENGO M,DE CONINCK J.A new model to predict the influence of surface temperature on contact angle[J].Scientific Reports,2018,8(1):1-10.

    • [53] ISMAIL M F,KHORSHIDI B,SADRZADEH M.New insights into the role of the surrounding medium temperature in the under-liquid wetting of solid surfaces[J].Langmuir,2020,36(28):8301-8310.

    • [54] WANG K L,LIU X R,TAN Y,et al.Highly fluorinated and hierarchical HNTs/SiO2 hybrid particles for substrate-independent superamphiphobic coatings[J].Chemical Engineering Journal,2019,359:626-640.

    • [55] A H,YANG Z B,HU R,et al.Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel[J].Journal of Colloid and Interface Science,2022,607:1023-1035.

    • [56] 薛磊,于竞尧,马学胜,等.飞秒激光制备铜微纳结构表面的润湿及抗结冰特性研究[J].航空制造技术,2018,61(12):74-79.XUE Lei,YU Jingyao,MA Xuesheng,et al.Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J] Aeronautical Manufacturing Technology,2018,61(12):74-79.(in Chinese)

    • [57] CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.

    • [58] 肖易航,郑军,何勇明,等.不同润湿性液体在粗糙表面的润湿滞后现象[J].中国表面工程,2020,32(6):150-156.XIAO Yihang,ZHENG Jun,HE Yongming,et al.Contact angle hysteresis with different wetting-liquids on rough surfaces[J].China Surface Engineering,2020,32(6):150-156.(in Chinese)

    • [59] KHANDIZOD R,VARGHESE V,MUJUMDAR S.Electric discharge assisted surface texturing of stainless steel304[J].Procedia CIRP,2022,108:670-674.

    • [60] QI Z,LIAO L,WANG R Y,et al.Roughness-dependent wetting and surface tension of molten lead on alumina[J].Transactions of Nonferrous Metals Society of China,2021,31(8):2511-2521.

    • [61] 俞伟元,邢春晓,吴保磊,等.水和乙二醇在特氟龙表面的本征接触角测量[J].兰州理工大学学报,2019,45(6):69-73.YU Weiyuan,XING Chunxiao,WU Baolei,et al.Measurement of intrinsic contact angle of water and ethylene glycol on teflon surface[J].Journal of Lanzhou University of Technology,2019,45(6):69-73.(in Chinese)

    • [62] GILJEAN S,BIGERELLE M,ANSELME K,et al.New insights on contact angle/roughness dependence on high surface energy materials[J].Applied Surface Science,2011,257(22):9631-9638.

    • [63] WANG L Z,TIAN Z,JIANG G C,et al.Spontaneous dewetting transitions of droplets during icing & melting cycle[J].Nature Communications,2022,13(1):28036-X.

    • [64] 彭华乔,罗振军,李开宇,等.盐酸刻蚀制备铝合金超疏水表面的工艺及自清洁性研究[J].应用化工,2019,48(12):2900-2904.PENG Huaqiao,LUO Zhenjun,LI Kaiyu,et al.Study on preparation proces and self-cleaning performance of superhydrophbic aluminum surfaces fabricated by hydrochloric acid etching[J].Applied Chemical Industry,2019,48(12):2900-2904.(in Chinese)

    • [65] ZHANG H M,GU D D,MA C L,et al.Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting[J].Applied Surface Science,2019,476(January):151-160.

    • [66] PETA K,BARTKOWIAK T,GALEK P,et al.Contact angle analysis of surface topographies created by electric discharge machining[J].Tribology International,2021,163:107139.

    • [67] DU Q J,ZHOU P,PAN Y P,et al.Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface:A many-body dissipative particle dynamics study[J].Chemical Engineering Science,2022,249:117327.

    • [68] IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:A comprehensive review[J].Surfaces and Interfaces,2020,21(November):100802.

    • [69] GAO Y F,YU C Y,HAN B,et al.Picosecond laser-induced periodic surface structures(LIPSS)on crystalline silicon[J].Surfaces and Interfaces,2020,19(9):538-564.

    • [70] EZHILMARAN V,DAMODARAM R.Laser surface texturing on nickel-aluminium-bronze alloy for improving the hydrophobicity[J].Lasers in Manufacturing and Materials Processing,2021,8(1):15-27.

    • [71] TONG W,CUI L L,QIU R X,et al.Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates[J].Journal of Materials Science and Technology,2021,89:59-67.

    • [72] LIU Z Y,YANG J,LI Y L,et al.Wetting and spreading behaviors of Al-Si alloy on surface textured stainless steel by ultrafast laser[J].Applied Surface Science,2020,520:146316.

    • [73] 林澄,钟敏霖,范培迅,等.皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J].中国激光,2014,41(9):115-112.LIN Cheng,ZHONG Minlin,FAN Peixun,et al.Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J].Chinese Jouranl of Lasers,2014,41(9):115-112.(in Chinese)

    • [74] SHEN Y,XIE X,TAO J,et al.Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J].Materials China,2022,41(5):388-397.

    • [75] LIU B,WANG W J,JIANG G D,et al.Study on hierarchical structured PDMS for surface superhydrophobicity using imprinting with ultrafast laser structured models[J].Applied Surface Science,2016,364:528-538.

    • [76] WANG Y H,QIN Z L,XU J K,et al.Microstructure control of the wettability and adhesion of Al alloy surfaces[J].RSC Advances,2020,10(64):38788-38797.

    • [77] YANG Z R,ZHU C C,ZHENG N,et al.Superhydrophobic surface preparation and wettability transition of titanium alloy with micro/nano hierarchical texture[J].Materials,2018,11(11):2210.

    • [78] 江国琛,潘瑞,陈昶昊,等.超快激光制备水面减阻微纳结构及其耐蚀性研究[J].中国激光,2020,47(8):81-89.JIANG Guochen,PAN Rui,CHEN Changhao,et al.Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J].Chinese Jouranl of Lasers,2020,47(8):81-89.(in Chinese)

    • [79] XING W,LI Z,YANG H O,et al.Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser[J].Materials and Design,2019,183:1-9.

    • [80] CHO H,PARK J M,KIM J H,et al.Mass production of superhydrophilic micropatterned copper surfaces using powder injection molding process[J].Powder Technology,2022,411(July):117779.

    • [81] ZHANG Y,WANG T,LV Y J,et al.Superhydrophilic surface on Ti6Al4V with good HA-inducing ability prepared via an eco-friendly two-step method[J].Vacuum,2022,205(July):111390.

    • [82] CHU Z M,JIAO W C,HUANG Y F,et al.Smart superhydrophobic films with self-sensing and anti-icing properties based on silica nanoparticles and graphene[J].Advanced Materials Interfaces,2020,7(15):2000492.

    • [83] 杨奇彪,邓波,汪于涛,等.飞秒激光诱导铝基的超疏水表面[J].激光与光电子学进展,2017,54(10):314-320.YANG Qibiao,DENG Bo,WANG Yutao,et al.Superhydrophobic surface of aluminium base induced by femtosecond laser[J].Laser & Optoelectronics Progress,2017,54(10):314-320.(in Chinese)

    • [84] VIDHYA Y E B,PATTAMATTA A,MANIVANNAN A,et al.Influence of fluence,beam overlap and aging on the wettability of pulsed Nd3+:YAG nanosecond laser-textured Cu and Al sheets[J].Applied Surface Science,2021,548(September 2020):149259.

    • [85] GIANNUZZI G,GAUDIUSO C,DI MUNDO R,et al.Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses[J].Applied Surface Science,2019,494:1055-1065.

    • [86] ZHOU C L,LI H J,LIN J,et al.Matchstick-like Cu2S@CuxO nanowire film:transition of superhydrophilicity to superhydrophobicity[J].Journal of Physical Chemistry C,2017,121(36):19716-19726.

    • [87] WANG H P,HE M J,LIU H,et al.One-step fabrication of robust superhydrophobic steel surfaces with mechanical durability,thermal stability,and anti-icing function[J].ACS Applied Materials and Interfaces,2019,11(28):25586-25594.

    • [88] YANG Z,TIAN Y L,ZHAO Y C,et al.Study on the fabrication of super-hydrophobic surface on Inconel Alloy via nanosecond laser ablation[J].Materials,2019,12(2):202000492.

    • [89] LAU K K S,BICO J,TEO K B K,et al.Superhydrophobic carbon nanotube forests[J].Nano Letters,2003,3(12):1701-1705.

    • [90] 易天浩,杨光,黄永华,等.基于扩散界面法的微重力下液氢沸腾传热研究[J].工程热物理学报,2022,43(9):2494-2500.YI Tianhao,YANG Guang,HUANG Yonghua,et al.Simulation of liquid hydrogen pool boiling under microgravity based on diffusion interface method[J].Jouranl of Engineering Thermophysics,2022,43(9):2494-2500.(in Chinese)

    • [91] BAE J,SAMEK I A,STAIR P C,et al.Investigation of the hydrophobic nature of metal oxide surfaces created by atomic layer deposition[J].Langmuir,2019,35(17):5762-5769.

    • [92] SHI Y,JIANG Z,CAO J,et al.Texturing of metallic surfaces for superhydrophobicity by water jet guided laser micro-machining[J].Applied Surface Science,2020,500:144286.

    • [93] HUANG W,NELSON B,MULLENNEX R,et al.Superhydrophobic surface processing for selective laser melting of metal parts[J].Procedia CIRP,2022,108:418-423.

    • [94] BAKHTIARI N,AZIZIAN S,MOHAZZAB B F,et al.One-step fabrication of brass filter with reversible wettability by nanosecond fiber laser ablation for highly efficient oil/water separation[J].Separation and Purification Technology,2021,259:118139.

    • [95] LANGMUIR B I.The mechanism of the surface phenomena of flotation[J].Trans Faraday Soc,1920,15(June):62-74.

    • [96] 金巍,梁建,马艳丽,等.电沉积参数对 Cr2O3超疏水膜层表面形貌和润湿性的影响[J].盐湖研究,2022,30(1):77-86.JIN Wei,LIANG Jian,MA Yanli,et al.Influence of electrodeposition conditon on the surface morphology and wettability of Cr2O3 super-hydrophobic layer[J].Jouranl of Salt Lake Research,2022,30(1):77-86.(in Chinese)

    • [97] ZHANG T T,LIN P,WEI N,et al.Enhanced photoelectrochemical water-splitting property on TiO2 nanotubes by surface chemical modification and wettability control[J].ACS Applied Materials and Interfaces,2020,12(17):20110-20118.

    • [98] JALIL S A,AKRAM M,BHAT J A,et al.Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses[J].Applied Surface Science,2020,506:0-6.

    • [99] BEHERA R R,DAS A,HASAN A,et al.Deposition of biphasic calcium phosphate film on laser surface textured Ti–6Al–4V and its effect on different biological properties for orthopedic applications[J].Journal of Alloys and Compounds,2020,842:155683.

    • [100] YUSUF Y,GHAZALI M J,OTSUKA Y,et al.Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings[J].Ceramics International,2020,46(3):3949-3959.

    • [101] YANG Z,LIU X P,TIAN Y L.A contrastive investigation on anticorrosive performance of laserinduced super-hydrophobic and oil-infused slippery coatings[J].Progress in Organic Coatings,2020,138:105313.

    • [102] MONDUZZI M,MUSU G,GROSSO M,et al.Effect of electrolytes on the sol-gel phase transitions in a Pluronic F127/carboxymethyl cellulose aqueous system:phase map,rheology and NMR self-diffusion study[J].European Polymer Journal,2022,181(July):111707.

    • [103] ZHANG W,GUAN X,QIU X,et al.Bioactive composite Janus nanofibrous membranes loading Ciprofloxacin and Astaxanthin for enhanced healing of full-thickness skin defect wounds[J].Applied Surface Science,2023,610:155290.

    • [104] PARK C,HONG J H,KIM B Y,et al.Supersonically sprayed copper oxide titania nanowires for antibacterial activities and water purification[J].Applied Surface Science,2022,611:155513.

    • [105] ELZAABALAWY A,MEGUID S A.Development of novel icephobic surfaces using siloxane-modified epoxy nanocomposites[J].Chemical Engineering Journal,2022,433:133637.

    • [106] TANG L L,WANG N,HAN Z Y,et al.Robust superhydrophobic surface with wrinkle-like structures on AZ31 alloy that repels viscous oil and investigations of the anti-icing property[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,594(January):124655.

    • [107] WU X H,SILBERSCHMIDT V V,HU Z T,et al.When superhydrophobic coatings are icephobic:Role of surface topology[J].Surface and Coatings Technology,2019,358:207-214.

    • [108] PAN R,ZHANG H J,ZHONG M L.Triple-scale superhydrophobic surface with excellent anti-icing and icephobic performance via ultrafast laser hybrid fabrication[J].ACS Applied Materials and Interfaces,2021,13(1):1743-1753.

    • [109] 李天然,卢晨光,原子超,等.耐用铝基超疏水涂层的机械稳定性及抗结冰性能[J].表面技术,2022,51(11):385-394.LI Tianran,LU Chenguang,YUAN Zichao.Mechanical stability and anti-icing performance of robust aluminum-based superhydrophobic coating[J].Surface Technology,2022,51(11):385-394.(in Chinese)

    • [110] 王雅培,林凯歌,高陈陈,等.纤维素及其组成物基超浸润材料在油水分离中的研究进展[J].表面技术:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.WANG Yapei,LIN Kaige,GAO Chenchen,et al.Research progress of cellulose fiber and its component-based superwetting materials in oilwater separation[J].Surface Technology:1-13[2023-06-16].http://kns.cnki.net/kcms/detail/50.1083.tg.20221128.1632.002.html.(in Chinese)

    • [111] VAIDULYCH M,SHELEMIN A,HANUŠ J,et al.Superwettable antibacterial textiles for versatile oil/water separation[J].Plasma Processes and Polymers,2019,16(5):1-13.

    • [112] YANG J,LIN L G,WANG Q,et al.Engineering a superwetting membrane with spider-web structured carboxymethyl cellulose gel layer for efficient oil-water separation based on biomimetic concept[J].International Journal of Biological Macromolecules,2022,222:2603-2614.

    • [113] SATRIA M,SALEH T A.Facile approach of eco-friendly superhydrophilic/underwater superoleophobic zincfunctionalized polyurethane foams for continuous oilwater separation[J].Journal of Molecular Liquids,2022,367:120341.

    • [114] XIAO X H,YU Z X,ZHU X M,et al.Sepiolite@TiO2/Graphene oxide composite membrane for long-term separation of oily wastewater[J].Journal of Molecular Structure,2023,1273:134258.

    • [115] ZHU J,JIANG J X,JAMIL M I,et al.Biomass-derived,water-induced self-recoverable composite aerogels with robust superwettability for water treatment[J].Langmuir,2020,36(37):10960-10969.

    • [116] CAO G L,ZHANG W B,JIA Z,et al.Dually prewetted underwater superoleophobic and under oil superhydrophobic fabric for successive separation of light oil/water/heavy oil three-phase mixtures[J].ACS Applied Materials and Interfaces,2017,9(41):36368-36376.

    • [117] ZHANG X T,LIU D Y,SUI G X.Superamphiphilic polyurethane foams synergized from cellulose nanowhiskers and graphene nanoplatelets[J].Advanced Materials Interfaces,2018,5(2):1-7.

    • [118] ZHAO X W,MAO F,WU J Y,et al.Facilely tuning the surface wettability of Cu mesh for multi-functional applications[J].Journal of Industrial and Engineering Chemistry,2022,116:293-302.

    • [119] ZHANG S,SU Q,YAN J,et al.Flexible nanofiber composite membrane with photothermally induced switchable wettability for different oil/water emulsions separation[J].Chemical Engineering Science,2022,264:118175.

    • [120] KOLLARIGOWDA R H,BHYRAPPA H M,CHENG G.Stimulus-responsive biopolymeric surface:molecular switches for oil/water separation[J].ACS Applied Bio Materials,2019,2(10):4249-4257.

    • [121] FU Y C,JIN B Y,ZHANG Q H,et al.PH-induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation[J].ACS Applied Materials and Interfaces,2017,9(35):30161-30170.

    • [122] OU X,REN Y Y,GUO J G,et al.ZIF-8@Poly(ionic liquid)-grafted cotton cloth for switchable water/oil emulsion separation[J].ACS Applied Polymer Materials,2020,2(8):3433-3439.

    • [123] FU J,TANG M K,ZHANG Q X.Simple fabrication of hierarchical micro/nanostructure superhydrophobic surface with stable and superior anticorrosion silicon steel via laser marking treatment[J].Journal Wuhan University of Technology,Materials Science Edition,2020,35(2):411-417.

    • [124] ZANG D M,XUN X W,GU Z D,et al.Fabrication of superhydrophobic self-cleaning manganese dioxide coatings on Mg alloys inspired by lotus flower[J].Ceramics International,2020,46(12):20328-20334.

    • [125] ZHANG L X,LIN N M,ZOU J J,et al.Super-hydrophobicity and corrosion resistance of laser surface textured AISI 304 stainless steel decorated with Hexadecyltrimethoxysilane(HDTMS)[J].Optics and Laser Technology,2020,127(February):106146.

    • [126] ALWAHIB A A,MUTTLAK W H,MAHDI B S,et al.Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy[J].Surfaces and Interfaces,2020,20:100557.

    • [127] XU X B,LIU G M,BAI J,et al.In-situ self-compensation strategy for superhard,universal superhydrophilic/underwater superoleophobic coatings[J].Chemical Engineering Science,2022,262:118007.

    • [128] TENG L,YUE C,ZHANG G W.Epoxied SiO2 nanoparticles and polyethyleneimine(PEI)coated polyvinylidene fluoride(PVDF)membrane for improved oil water separation,anti-fouling,dye and heavy metal ions removal capabilities[J].Journal of Colloid and Interface Science,2023,630:416-429.

    • [129] KONG R X,REN J L,MO M,et al.Multifunctional antifogging,self-cleaning,antibacterial,and self-healing coatings based on polyelectrolyte complexes[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,656:130484.

    • [130] 刘玲莉,韩云龙,钱付平,等.SiO2-NH2-GA-AAS/CS 席夫碱复合涂层的制备和吸湿性能[J].复合材料学报:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=FUHE20220909000&DbName= CAPJ2022.LIU Lingli,HAN Yunlong,QIAN Fuping.et al.Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating[J].Acta Materiae Compositae Sinica:1-11[2023-06-16].https://kns.cnki.net/kcms/detail/detail.aspx?FileName=F UHE20220909000&DbName=CAPJ2022.(in Chinese)

    • [131] PARK S G,RHEE C,JADHAV D A,et al.Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells[J].Science of the Total Environment,2023,856:159105.

  • 手机扫一扫看