en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

贺小燕,女,1989年出生,博士,特任研究员,硕士研究生导师。主要研究方向为船舶绿色防污技术。E-mail:hexiaoyan@whut.edu.cn

通讯作者:

白秀琴,女,1971年出生,博士,教授,博士研究生导师。主要研究方向为船舶摩擦学、船舶绿色防污技术。E-mail:xqbai@whut.edu.cn

中图分类号:U661

DOI:10.11933/j.issn.1007−9289.20221128002

参考文献 1
YANG Z,HE X,CHANG J,et al.Facile fabrication of fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling and anticorrosion application[J].Surface and Coatings Technology,2021,415:127136.
参考文献 2
潘健森,谢庆宜,马春风,等.天然产物基无铜自抛光防污涂料的制备与性能[J].中国表面工程,2019,32(4):109-114.PAN Jiansen,XIE Qingyi,MA Chunfeng,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.(in Chinese)
参考文献 3
HE X,CAO P,TIAN F,et al.Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces:A new route to fabricate antifouling coatings[J].Surface and Coatings Technology,2019,357:180-188.
参考文献 4
曹京宜,唐建华,付婷,等.含氧化亚铜和有机防污剂的两种防污涂层失效过程对比[J].中国表面工程,2019,32(6):105-112.CAO Jingyi,TANG Jianhua,FU Ting,et al.Comparisons on degradation process of two antifouling coatings containing Cu2O and organic antifouling agents[J].China Surface Engineering,2019,32(6):105-112.(in Chinese)
参考文献 5
KIRSCHNER C M,BRENNAN A B.Bio-inspired antifouling strategies[J].Annual Review of Materials Research,2012,42:211-229.
参考文献 6
田丰,白秀琴,贺小燕,等.海洋环境下金属材料微生物腐蚀研究进展[J].表面技术,2018,47(8):182-196.TIAN Feng,BAI Xiuqin,HE Xiaoyan,et al.Research progress on microbiological induced corrosion of metallic materials under ocean environment[J].Surface Technology,2018,47(8):182-196.(in Chinese)
参考文献 7
LOU T,BAI X,HE X,et al.Antifouling performance analysis of peptide-modified glass microstructural surfaces[J].Applied Surface Science,2021,541:148384.
参考文献 8
HE X,LIU Y,BAI X,et al.Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae[J].Biochemical Engineering Journal,2018,139:25-32.
参考文献 9
YANG Z,CHANG J,HE X,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress In Organic Coatings,2023,177:107458.
参考文献 10
CHANG J,HE X,YANG Z,et al.Surface topography effects on the wettability and antifouling performance of nano-ZnO epoxy composite coatings[J].Surface and Coatings Technology,2022,433:128145.
参考文献 11
于雪艳,王科,陈正涛,等.不含铜类防污剂海洋防污涂料研制及性能[J].表面技术,2017,46(12):11-17.YU Xueyan,WANG Ke,CHEN Zhengtao,et al.Development and performance of copper antifoulant-free marine biocide antifouling paints[J].Surface Technology,2017,46(12):11-17.(in Chinese)
参考文献 12
楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)
参考文献 13
NGUYEN-TRI P,NGUYEN T A,CARRIERE P,et al.Nanocomposite coatings:preparation,characterization,properties,and applications[J].International Journal of Corrosion,2018,2018:1-19.
参考文献 14
鲍艳,陈颖.无机纳米材料改性聚氨酯防腐涂料的研究进展[J].涂料工业,2017,47(8):62-69.BAO Yan,CHEN Ying.Research progress in inorganic nanomaterial modified polyurethane anticorrosive coatings[J].Paint & Coatings Industry,2017,47(8):62-69.(in Chinese)
参考文献 15
NECOLAU M I,PANDELE A M.Recent advances in graphene oxide-based anticorrosive coatings:An overview[J].Coatings,2020,10(12):1149.
参考文献 16
LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:A nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.
参考文献 17
刘思琪,刘斌,宁玉杰,等.抗菌低表面能复合型海洋防污涂料的研究进展[J].表面技术,2022,51(5):265-273.LIU Siqi,LIU Bin,NING Yujie,et al.Progress in the antibacterial and low surface energy composite marine antifouling coatings[J].Surface Technology,2022,51(5):265-273.(in Chinese)
参考文献 18
NURIOGLU A G,ESTEVES A C D C,WITH G D.Non-toxic,non-biocide-release antifouling coatings based on molecular structure design for marine applications[J].Journal of Materials Chemistry B,2015,3(32):6547-6570.
参考文献 19
ZHAO W,ZHU R,JIANG J,et al.Environmentallyfriendly superhydrophobic surface based on Al2O3@ KH560@SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water[J].Applied Surface Science,2019,484:307-316.
参考文献 20
CAVAS L,YILDIZ P G,MIMIGIANNI P,et al.Reinforcement effects of multiwall carbon nanotubes and graphene oxide on PDMS marine coatings[J].Journal of Coatings Technology and Research,2018,15(1):105-120.
参考文献 21
QIU H,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable siliconepolythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.
参考文献 22
XIE Q,LIU C,LIN X,et al.Nanodiamond reinforced poly(dimethylsiloxane)-based polyurea with self-healing ability for fouling release coating[J].ACS Applied Polymer Materials,2020,2(8):3181-3188.
参考文献 23
CHEN R Z,XIE Q Y,ZENG H H,et al.Non-elastic glassy coating with fouling release and resistance abilities[J].Journal of Materials Chemistry A,2020,8(1):380-387.
参考文献 24
JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic graphene-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.
参考文献 25
李磊,刘晓玲,曹磊,等.仿生协同防污涂层的制备及性能[J].表面技术,2021,50(6):161-168.LI Lei,LIU Xiaoling,CAO Lei,et al.Preparation and performance of bionic cooperative antifouling coating[J].Surface technology,2021,50(6):161-168.(in Chinese)
参考文献 26
BA M,ZHANG Z,QI Y.The influence of MWCNTs-OH on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil[J].Progress In Organic Coatings,2019,130:132-143.
参考文献 27
HE X,CAO P,TIAN F,et al.Infused configurations induced by structures influence stability and antifouling performance of biomimetic lubricant-infused surfaces[J].Surface and Coatings Technology,2019,358:159-166.
参考文献 28
GENZER J,EFIMENKO K.Recent developments in superhydrophobic surfaces and their relevance to marine fouling:a review[J].Biofouling,2006,22(5):339-360.
参考文献 29
SELIM M S,YANG H,WANG F Q,et al.Silicone/ZnO nanorod composite coating as a marine antifouling surface[J].Applied Surface Science,2019,466:40-50.
参考文献 30
TRUONG V K,WEBB H K,FADEEVA E,et al.Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J].Biofouling,2012,28(6):539-550.
参考文献 31
WANG G,WENG D,CHEN C,et al.Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion[J].Colloid and Interface Science Communications,2020,34:100220.
参考文献 32
SELIM M S,ELMARAKBI A,AZZAM A M,et al.Eco-friendly design of superhydrophobic nanomagnetite/silicone composites for marine foul-release paints[J].Progress In Organic Coatings,2018,116:21-34.
参考文献 33
LI D,WANG H,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.
参考文献 34
QI C,CHEN H,SUN Y,et al.Facile preparation of robust superhydrophobic surface based on multi-scales nanoparticle[J].Polymer Engineering and Science,2020,60(8):1785-1794.
参考文献 35
SELIM M S,YANG H,EL-SAFTY S A,et al.Superhydrophobic coating of silicone/β-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces A-physicochemical and Engineering Aspects,2019,570:518-530.
参考文献 36
SELIM M S,HAMOUDA H,HAO Z,et al.Design of γ-AlOOH,γ-MnOOH,and α-Mn2O3 nanorods as advanced antibacterial active agents[J].Dalton Transactions,2020,49(25):8601-8613.
参考文献 37
ZHANG D Y,HAO Q,LIU J,et al.Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion[J].Separation and Purification Technology,2018,192:230-239.
参考文献 38
VASILEV K,SAH V,ANSELME K,et al.Tunable antibacterial coatings that support mammalian cell growth[J].Nano Letters,2010,10(1):202-207.
参考文献 39
ZHENG L,LIN Y C,WANG D H,et al.Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling[J].RSC Advances,2020,10(24):13936-13943.
参考文献 40
TIAN S,JIANG D,PU J,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.
参考文献 41
VUCKO M J,KING P C,POOLE A J,et al.Cold spray metal embedment:an innovative antifouling technology[J].Biofouling,2012,28(3):239-248.
参考文献 42
VUCKO M J,KING P C,POOLE A J,et al.Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles[J].Biofouling,2014,30(6):651-666.
参考文献 43
PIOLA R F,DAFFORN K A,and JOHNSTON E L.The influence of antifouling practices on marine invasions[J].Biofouling,2009,25(7):633-644.
参考文献 44
TSAI K P.Effects of two copper compounds on Microcystis aeruginosa cell density,membrane integrity,and microcystin release[J].Ecotoxicology and Environmental Safety,2015,120:428-435.
参考文献 45
LOPES T M,BARCAROLLI I F,DE OLIVEIRA C B,et al.Effect of copper on ion content in isolated mantle cells of the marine clam Mesodesma mactroides[J].Environmental Toxicology and Chemistry,2011,30(7):1582-1585.
参考文献 46
QIAN P Y,CHEN L,and XU Y.Mini-review:Molecular mechanisms of antifouling compounds[J].Biofouling,2013,29(4):381-400.
参考文献 47
应栋明.丙烯酸铜树脂防污涂料制备及其评价[D].舟山:浙江海洋大学,2016.YING Dongming.Preparation of antifouling coating with copper acrylate resin as adhesive and its application[D].Zhoushan:Zhejiang Ocean University,2016.(in Chinese)
参考文献 48
WU W,ZHAO W,WU Y,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.
参考文献 49
A M E S,ABD EL-FATTAH M,AZZAM A M,et al.Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating[J].International Journal of Biological Macromolecules,2016,89:190-197.
参考文献 50
TAVAKOLI S,NEMATI S,KHARAZIHA M,et al.Embedding CuO nanoparticles in PDMS-SiO2 Coating to improve antibacterial characteristic and corrosion resistance[J].Colloid and Interface Science Communications,2019,28:20-28.
参考文献 51
JI Z,WANG X,ZHANG H,et al.Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials[J].ACS Nano,2012,6(6):5366-5380.
参考文献 52
FU Y,WANG W C,ZHANG L Q,et al.Development of marine antifouling epoxy coating enhanced with clay nanotubes[J].Materials,2019,12(24):4195.
参考文献 53
MICHAILIDIS M,GUTNER-HOCH E,WENGIER R,et al.Highly effective functionalized coatings with antibacterial and antifouling properties[J].ACS Sustainable Chemistry & Engineering,2020,8(24):8928-8937.
参考文献 54
NATALIO F,ANDRE R,HARTOG A F,et al.Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J].Nature Nanotechnology,2012,7(8):530-535.
参考文献 55
赵云,何伟伟,许建兵,等.通过氢还原热处理提升 TiO2 薄膜的抗菌性能[J].中国表面工程,2023,36(1):77-84.ZHAO Yun,HE Weiwei,XU Jianbing,et al.Antibacterial properties of TiO2 film improved by hydrogen reduction heat treatment[J].China Surface Engineering,2023,36(1):77-84.(in Chinese)
参考文献 56
SARAVANAN P,JAYAMOORTHY K,ANANDA KUMAR S.Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance[J].Journal of Science:Advanced Materials and Devices,2016,1(3):367-378.
参考文献 57
TANG Y,SUN H,SHANG Y,et al.Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property[J].Journal of Colloid and Interface Science,2019,535:516-523.
参考文献 58
WEN B,WATERHOUSE G I N,JIA M Y,et al.The feasibility of polyaniline-TiO2 coatings for photocathodic antifouling:antibacterial effect[J].Synthetic Metals,2019,257:116175.
参考文献 59
LIU S,WEN B,JIANG X,et al.Enhanced photocathodic antifouling/antibacterial properties of polyanilineAg-N-doped TiO2 coatings[J].Journal of Materials Science,2020,55(34):16255-16272.
参考文献 60
VERMA S,DAS S,MOHANTY S,et al.Development of multifunctional polydimethylsiloxane(PDMS)-epoxy-zinc oxide nanocomposite coatings for marine applications[J].Polymers for Advanced Technologies,2019,30(9):2275-2300.
参考文献 61
MIRZAEE M,SEIF A,RASHIDI A,et al.Investigating the effect of PDA/KH550 dual functionalized h-BCN nanosheets and hybrided with ZnO on corrosion and fouling resistance of epoxy coating:Experimental and DFT studies[J].Journal of Environmental Chemical Engineering,2022,10(6):108746.
参考文献 62
MOSTAFAEI A,NASIRPOURI F.Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications[J].Journal of Coatings Technology and Research,2013,10(5):679-694.
参考文献 63
EL-SAIED H A-A,IBRAHIM A M.Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition[J].Journal of Environmental Chemical Engineering,2020,8(4):103949.
参考文献 64
CHEN Z,WANG Z,REN J,et al.Enzyme mimicry for combating bacteria and biofilms[J].Accounts of chemical research,2018,51(3):789-799.
参考文献 65
唐燕,仇智月,许卓斌,等.纳米酶的抗菌机理与应用[J].生物化学与生物物理进展,2018,45(2):118-128.TANG Yan,CHOU Zhiyue,XU Zhuobin,et al.Antibacterial mechanism and applications of nanozymes[J].Progress in Biochemistry and Biophysics,2018,45(2):118-128.(in Chinese)
参考文献 66
ANDRE R,NATALIO F,HUMANES M,et al.V2O5 nanowires with an intrinsic peroxidase-like activity[J].Advanced Functional Materials,2011,21(3):501-509.
参考文献 67
HU M,KORSCHELT K,VIEL M,et al.Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling[J].ACS Applied Materials & Interfaces,2018,10:44722-44730.
参考文献 68
HE X,TIAN F,CHANG J,et al.Haloperoxidase mimicry by CeO2–x nanorods of different aspect ratios for antibacterial performance[J].ACS Sustainable Chemistry & Engineering,2020,8(17):6744-6752.
参考文献 69
CRANS D C,SMEE J J,GAIDAMAUSKAS E,et al.The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds[J].Chemical Reviews,2004,104(2):849-902.
参考文献 70
ALMEIDA M,FILIPE S,HUMANES M,et al.Vanadium haloperoxidases from brown algae of the Laminariaceae family[J].Phytochemistry,2001,57(5):633-642.
参考文献 71
HERGET K,HUBACH P,PUSCH S,et al.Haloperoxidase mimicry by CeO2-x nanorods combats biofouling[J].Advanced Materials,2017,29(4):1603823.
参考文献 72
HERGET K,FRERICHS H,PFITZNER F,et al.Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation [J].Advanced Materials,2018:e1707073.
参考文献 73
SOLEIMANI S,JANNESARI A,YOUSEFZADI M,et al.Eco-friendly foul release coatings based on a novel reduced graphene oxide/Ag nanocomposite prepared by a green synthesis approach[J].Progress in Organic Coatings,2021,151:106107.
参考文献 74
TAN J,XU J,WANG D,et al.Seawater-responsive SiO2 nanoparticles for in situ generation of zwitterionic polydimethylsiloxane antifouling coatings with underwater superoleophobicity[J].Journal of Materials Chemistry A,2020,8(45):24086-24097.
参考文献 75
BHARATHIDASAN T,MANDALAM A,BALASUBRAMANIAN M,et al.Zinc oxide-containing porous boron-carbon-nitrogen sheets from glycine-nitrate combustion:synthesis,self-cleaning,and sunlight-driven photocatalytic activity[J].ACS Applied Materials & Interfaces,2015,7(33):18450-18459.
参考文献 76
WANG P,HE B,DU Y,et al.Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications[J].Chemical Engineering Journal,2022,448:137668.
目录contents

    摘要

    海洋生物污损带来巨大的损失是亟须解决的难题。开发含纳米填料的无机-有机杂化涂料是传统防污手段的绿色替代方案,然而目前缺乏纳米复合涂料在海洋防污领域应用的系统报道。综述无机纳米材料改性聚合物涂料的研究进展,按照防污机制的不同,重点总结低表面能纳米复合防污涂料、超疏水纳米复合防污涂料、释放型纳米复合防污涂料、催化型纳米防污涂料、多因素协同纳米防污涂料的研究现状,对其防污特性进行分析,并指出各类涂层所存在的问题。最后,提出无机纳米材料在聚合物中的稳定分散、多种防污机制协同优化、无机纳米复合涂层的长效防污性能保障是纳米防污涂料在海洋防污领域所面临的难题及未来发展方向,填补了纳米复合涂料在海洋绿色防污领域应用系统报道的空白。

    Abstract

    Marine biofouling is a serious problem, restricting the development of naval architecture and ocean engineering. Thus, strategies that can effectively inhibit marine biofouling are required. Many efficient antifouling approaches have been developed. The most successful antifouling strategies have been the employment of paints and coatings with released biocides to destroy colonizers. However, biocide-based coatings are often restricted by their short-term efficiency and harmfulness. Inorganic-organic hybrid coatings containing nanofillers are environmentally friendly alternatives to traditional biocide-based coatings. However, there have been few comprehensive and systematic reports on the research progress of nanocomposite coatings for marine antifouling applications. Development of inorganic nanomaterial-based coatings in recent years is reviewed in this paper, focusing on low-surface-energy nanocomposite coatings, superhydrophobic nanocomposite coatings, agent-releasing nanocomposite coatings, catalytic nanocomposite coatings, and synergistic nanocomposite coatings for antifouling applications. Traditional fouling-release technologies can benefit from addition of nanoparticles with a concentration of a few percent. Small amounts of nanofillers can improve the durability and fouling-release capabilities of low-surface-energy coatings. However, nanocomposite coatings with low surface energy lose their biofouling resistance in a stable liquid environment. Nanoparticles are dispersed in polymer matrices to obtain superhydrophobic surfaces by altering surface roughness or forming micro / nanostructures, resulting in self-cleaning properties. Superhydrophobic nanocomposite coatings do not provide adequate long-term antifouling capacity in a floating-liquid environment. In contrast to low-surface-energy nanocomposite coatings and superhydrophobic nanocomposite coatings that prevent biofouling by release and resistance, agent-releasing nanocomposite coatings disrupt the adhesion mechanism or kill fouling species by releasing an antifoulant. Nanoparticles can be used as antifouling agents or antifouling carriers to achieve effective antifouling performance. Agent-releasing nanocomposite coatings are limited by their negative effects on non-target organisms and their short-term efficiency, losing activity over time due to the slow release of the biocidal component. A significant advantage of photoactive coatings and nanozyme-containing coatings is the absence of toxicants leaching into the marine environment. Photoactive coatings exhibit fouling-degrading properties through highly toxic reactive oxygen species upon irradiation by light. Application of photoactive nanocomposite coatings is limited by access of light. Nanozyme-containing coatings are likely to lose their antimicrobial activity if they are contaminated by the adhered dead bacteria. These nanocomposite coatings can significantly reduce the rate of fouling, although they are limited by several problems including broad-spectrum antifouling activity and long-term efficiency. There is a need for development of synergistic coatings with a combination of fouling-resistant, fouling-release, or fouling-degrading strategies to guarantee broad-spectrum antifouling activity and long-term efficiency. Blending of ternary or quaternary nanoparticles can achieve a synergistic antifouling effect. Nanomaterial-based coatings are a green and efficient antifouling technology. Stable dispersion of inorganic nanomaterials in polymers, construction of coatings based on synergistic effects, and long-term antifouling performance of nanocomposite coatings are the key issues and future development directions in the field of marine antifouling. This review presents a comprehensive and systematic report on marine antifouling technology using nanocomposite coatings and offers guidance in the development of green antifouling coatings.

  • 0 前言

  • 随着陆地上资源的渐趋耗尽,人类开始向海洋进发,海洋经济地位也在快速提升,如今海洋强国战略已经成为我国时代发展的最强音。发展海洋经济,不可避免地涉及到海洋船舶和工程平台的大规模应用。然而,海水中一些细菌、藻类、贝类等生物体极易在海洋船舶和海洋平台浸水部位附着和生长,即为海洋生物污损[1-2]。生物污损的发生会增加船舶航行阻力、降低其航行速度、显著增加燃油消耗和增加 NOx、SOx、CO2燃烧废气的排放,等等[3-4]。研究表明,当船舶发生严重的污损问题时,其航行阻力会增加 86%以上,航行速度下降 10%左右[5]。此外,生物污损会影响船舶的使用性能,如加速船体表面金属腐蚀[6-7]、阻塞冷却管道[8]、影响设备功能、降低操作灵活性,给船舶的安全航行带来隐患等,且大幅度增加船舶维护和修理成本,造成巨大的经济损失[9-10]。因此,大力发展船舶防污技术,对于保障船舶的服役安全与可靠性,实现节能减排具有重要的意义。

  • 在众多防污技术中,涂装涂料(涂层)是最经济有效且适用范围最广的方法,约占市场份额的 76%。但传统防污涂料会释放难以分解的有害防污剂(如有机锡),污染生态环境,同时它能经鱼类、贝类等生物进入人类食物链,严重威胁人类健康。目前,大多数国家已限制传统防污剂的使用[11-12]。发展绿色防污涂料已成为海洋防污的重要方向。

  • 纳米复合涂料是指将纳米材料(在三维空间内至少有一维空间的尺寸大小在 1~100 nm 范围内)添加到涂料中[13],通过其小尺寸效应、表面效应、量子尺寸效应和介电限域效应提高涂料物理化学性能。目前,纳米材料可应用于抗菌涂料、防污涂料、防水涂料、耐候涂料、隐身涂料、耐磨涂料、防腐涂料等领域[14-15]。对于防污涂料而言,纳米颗粒与涂料会形成较强的氢键结合,提高了涂料的致密性及抗离子渗透性。纳米颗粒不仅可以改善涂料的流变性,提高涂料的附着力、硬度和耐老化性,降低涂料的表面粗糙度;还可以增强涂层表面的粗糙度,形成微纳复合结构,提高样品的疏水性,获得自清洁效果。此外,部分纳米材料具有催化功能,可以通过产生活性基团诱导微生物凋亡或催化分解粘附物质,有效阻止生物污损,且使用过程中产生的活性基团可以快速降解,安全性好,不会产生环境污染。

  • 针对纳米防污涂料对环境友好、稳定性的基本要求,开发含纳米填料的有机杂化涂料,是传统防污手段的环保型替代方案。通过将纳米颗粒嵌入到聚合物基体中,从本质上改善涂料的力学性能、表面形貌和活性位点,以期获得更优性能。同时,纳米颗粒的掺杂支持三元或四元纳米复合材料的制备,实现协同防污的功效。本文根据纳米防污涂料防污机制的不同,重点综述低表面能纳米复合防污涂料、超疏水纳米复合防污涂料、释放型纳米复合防污涂料、催化型纳米防污涂料、多因素协同纳米防污涂料的研究进展,并分析纳米防污涂料的不足及亟待解决的问题。

  • 1 低表面能纳米防污涂料

  • 1.1 低表面能涂料的防污机制

  • 污损生物主要以化学键合、静电作用、物理吸附、机械联锁、扩散等其中的一种或多种相互作用力牢固地附着在目标表面或已形成的污损膜上,这个过程受目标表面界面能的影响[16]。一般认为,低表面能涂料可以利用其表面自由能低的特性,使得污损物难以附着在材料表面;即使污损生物附着在表面,其附着力也非常弱,可以在低水流剪切力下被除去[17],实现船舶表面的自清洁,进而达到防污的效果,是一种污损脱附型涂料(Fouling release coatings,FRCs)(图1)。

  • 图1 低表面能涂料的自清洁行为示意图[16]

  • Fig.1 Diagram of self-cleaning behavior of low surface energy coatings[16]

  • 1.2 低表面能纳米防污涂料研究进展

  • 低表面能涂料基于材料表面的物理性质进行防污,不存在有毒物质的释放损耗问题,以其环境友好性和良好的防污性而受到人们的重视。低表面能防污材料按照基体树脂分为三大类:有机硅系列、有机氟系列和硅氟协同改性低表面能防污材料。其中,有机硅弹性体,如聚二甲基硅氧烷(PDMS)的表面能为 20 mJ / m2,聚甲基苯基硅氧烷(PMPS)的表面能为 26 mJ / m2,接近 Baier 曲线中所描述的污损附着量最小时所对应的表面能区间(22~24 mJ / m2),从而得到广泛的应用[18]

  • 虽然有机硅树脂有很多优点,但其力学性能、与基材的附着力和重涂性都较差,作为成膜物单独使用时效果不好,因此常用化学方法、表面改性技术及等离子体技术、纳米技术对有机硅低表面能涂层进行改性。掺杂无机纳米材料是提高有机硅低表面能涂层的力学性能和防污性能最有前途的解决方案之一。近年来,各种纳米材料如 Al2O3 纳米颗粒[19]、碳纳米管[20]、ZnO 纳米颗粒[21]等被引入到低表面能涂层中,以增强涂层的物理、化学、力学和防污性能。

  • XIE 等[22]将氟化的纳米金刚石添加到聚二甲基硅氧烷基聚脲(PDMS-PUa),以提高其力学性能。引入的氟化纳米金刚石使PDMS-PUa的抗拉强度从 1.2 MPa 提高到 1.6 MPa,粘接强度从 1.5 MPa 提高到 2.1 MPa,力学性能得到较大改善。由于涂层表面存在自富集的氟基和聚硅氧烷,PDMS-PUa 涂层的接触角由 110°提高为 124°,表面能降低为 18 mJ / m2。较低的表面能使得该涂层在实海挂板 4 个月后,仍具有较好的污损脱附能力(图2)。

  • CHEN 等[23]以十二烷基氟庚基甲基丙烯酸酯 ( DFMA)、聚乙二醇甲基醚甲基丙烯酸酯 (PEGMA)、三乙氧基辛基硅烷(KH832)和正硅酸四乙酯(TEOS)为原材料,采用溶胶-凝胶法制备了一种非弹性有机-无机杂化涂层。制备的涂层与基体的附着力高(1.3 MPa),硬度高(57 MPa),能有效防止机械损伤。且该涂层的表面能为 20 mJ / m2,弹性模量为 420 MPa,表面粗糙度为 3 nm。合适的低表面能、较高的弹性模量和光滑的表面使得该非弹性涂层表面海洋细菌、生物膜和硅藻等污损物极易脱附。

  • 图2 PDMS 基涂层在自然海水中的污损情况[22]

  • Fig.2 Biofouling on PDMS based coatings in natural seawater[22]

  • 一般认为,负电性的石墨烯可以排斥同样带有负电荷的海洋微生物,获得优异的防污能力。 JIN 等[24]通过共混法利用石墨烯和弹性硅烷体制备了石墨烯-硅烷复合膜,在流动的细菌悬浮液中,0.36 wt.%的石墨烯掺杂硅烷膜可以有效减少污损生物的贴附(图3);但在静止水流环境中,石墨烯掺杂硅烷膜不具备防污性能。这说明, 0.36 wt.%的石墨烯掺杂硅烷膜主要依靠其低表面能和低弹性模量的特性来减少流动环境中的生物贴附。当石墨烯的含量继续上升时,石墨烯发生团聚,导致样品表面粗糙度增加,防污性能减弱。

  • 图3 在流动的细菌悬浮液中,不同样品表面的生物污损现象[24]

  • Fig.3 Biofouling on different specimens after bacterial attachment test under hydrodynamic conditions[24]

  • 添加纳米级无机颗粒还会影响有机涂料中硅油的渗出速率。有机涂料中添加的硅油可以降低污损生物的粘附强度,提高污损释放效率。但是较高硅油的渗出速率会缩短涂层的防污期限。因此需要选择合适硅油的渗出速率。李磊等[25]将 ZnO 纳米颗粒、苯基甲基硅油加入到 PDMS 中,经过固化倒模,制备了海洋防污涂层。其中,苯基甲基硅油的渗出速率随着纳米 ZnO 含量的增多而减少。BA 等[26]将多壁碳纳米管(MWCNTs)、纳米 Fe2O3 和硅油添加到 PDMS 中,构筑防污涂层。添加 Fe2O3 以避免 PDMS 在固化过程中的收缩,而 MWCNTs 能够在涂层中形成扩散通道,使得硅油的输送由分子网络扩散转变为通道扩散,提高硅油的浸出效率。尽管表面粗糙度随 MWCNTs 浓度的增加而增加,但通道扩散提高了硅油的稳定浸出效率,导致更有效的生物污损脱附。可以通过选择合适的纳米填料来调控硅油的渗出速率。

  • 总体来说,可以通过添加纳米材料来提高低表面能涂层的防污性能。在大多数情况下,添加的纳米材料的浓度较低,只有几个百分点。因为在较高浓度下,纳米颗粒聚集,导致表面粗糙度的增加,从而降低污损脱附性能。由此可见,只需添加少量的纳米材料就可以对涂层的耐久性和污损脱附性能产生积极的影响。这种无机-有机杂化方法有益于低表面能防污技术的发展。但该技术仍不能解决低表面能防污材料在长时间处于静止状态时表面的污损难题。

  • 2 超疏水纳米防污涂料

  • 2.1 超疏水涂料防污机制

  • 生物污损发生在溶液和目标材料的界面上,目标界面的润湿性在生物污损行为研究中发挥着重要的作用[27]。材料的润湿性(或浸润性)一般由接触角来表征。疏水表面的浸润模式主要分为两种: Wenzel 模型和 Cassie-Baxter 模型。对比这两种状态,主要区别在于液滴对粗糙固体表面的凹槽处的浸润效果不同,这导致液滴滞后效果有很大的区别,从而使得液滴在粗糙固体表面的动态性能不同。对于 Wenzel 模型来说,液滴会完全润湿固体表面,液 / 固相间的相互作用力较大,使得液滴很难滚动,滚动角或接触滞后角较大,滞后现象严重。而对于 Cassie-Baxter 模型来说,液滴“悬挂”在固体表面上,捕获的空气层减少液-固之间直接接触面积,使得液体与固体间的作用力减弱,液滴容易从表面滚落,滚动角或接触滞后角较小。通常认为 Wenzel 状态常发生在粗糙度较低的固体表面,而 Cassie-Baxter 状态更容易出现在粗糙度较大的固体表面。对于防污表面而言,所需要的是 Cassie-Baxter状态的超疏水表面。

  • 仿荷叶超疏水表面即处于 Cassie-Baxter 状态。当水滴落到荷叶上时,空气层、微纳复合结构和表面蜡质层的共同托持作用,使得水滴不能渗透,从而自由滚落,使其表面的污染物如灰尘等可以被滚落的水滴带走而不留下任何痕迹[28]。在空气中,可以利用超疏水表面的自清洁效应减少污损物的吸附[29](图4)。

  • 图4 在空气中超疏水纳米防污涂料通过自清洁效应减少污损物的吸附[29]

  • Fig.4 Superhydrophobic nanocomposite coatings prevent fouling adhesion by their self-cleaning behavior in air[29]

  • 然而在海洋环境中,超疏水表面的防污机制发生改变。Cassie-Baxter 状态的超疏水表面通过其粗糙结构捕获的空气层,减少污损生物与样品表面的直接接触(图5),进而阻止生物污损的发生[1330]

  • 2.2 超疏水纳米防污涂料的研究进展

  • 近年来,纳米颗粒常被用于调节表面粗糙度来获得超疏水表面。一般利用纳米颗粒产生亚微米尺度的粗糙结构,随后进行化学处理或低表面能物质修饰,来增加疏水效果;或者将纳米颗粒分散在聚合物溶液中,喷涂至目标表面获得疏水涂层。目前基于无机纳米颗粒,如 SiO2、ZnO、 TiO2 和 Fe3O4,制备了一系列的超疏水防污纳米涂料。WANG 等[31]利用 25~300 nm 的 TiO2 纳米颗粒,通过喷涂法制备不同粒径的纳米涂层,随后对涂层进行氟化处理。以变形链球菌为典型污损生物,来研究不同尺寸的纳米颗粒和表面氟化处理的协同效应对 TiO2 纳米涂层润湿性和细菌附着行为的影响。一般认为,变形链球菌细胞膜表面的蛋白质具有很多疏水官能团,倾向于贴附到疏水表面[31]。25 nm 的 TiO2 纳米颗粒形成的纳米涂层经过氟化处理后具有超疏水的性质,可以有效抑制磷酸盐缓冲溶液中变形链球菌的贴附;而300 nm的TiO2纳米颗粒形成的纳米涂层经过氟化处理后同样具有超疏水的性质,但防污效率降低。该项结果表明,较小的纳米的颗粒更易于形成超疏水纳米防污涂层。

  • 图5 海藻在超疏水表面三相界面的接触示意图[3]

  • Fig.5 Schematic diagram of alga contact at the three-phase interface of a superhydrophobic surface[3]

  • SELIM 等[32]采用共沉淀法制备了粒径范围 10~20 nm 的 Fe3O4 纳米颗粒。随后将不同浓度的纳米颗粒分散在线性二羟基聚二甲基硅氧烷中,合成了一系列纳米复合材料,发现样品表面的防污性质与其疏水性密切相关。当 Fe3O4 纳米颗粒的掺杂量为 0.5%时,复合涂层的疏水性、表面惰性和防污性质最佳;但是当纳米颗粒的含量继续增加时,纳米颗粒发生团聚,使样品表面产生不均匀的粗糙结构。不均匀粗糙结构降低复合涂层的力学性能和疏水性,污损生物也易吸附在团聚体表面。

  • 为了解决纳米颗粒比表面能大、易团聚的问题,常采用改性剂对纳米颗粒进行修饰,以提高其在聚合物中的分散性。LI 等[33]利用环氧树脂、PDMS 和十八烷基三氯硅烷修饰 SiO2 纳米颗粒在多种基材表面制备了超疏水涂层。该涂层具有良好的超疏水性,接触角为 159.5°,滑动角为 3.8°。QI 等[34]利用正辛基三乙氧基硅烷修饰 30 nm 的 SiO2 和 300 nm 的 TiO2 这两种不同类型和尺寸的纳米颗粒,以增强其与基体材料氟乙烯乙烯基醚树脂(FEVE)的相容性,构筑新型微纳米粗糙表面的复合涂层。正辛基三乙氧基硅烷极大的提高了 SiO2 和 TiO2 的掺杂含量。试验结果表明,30 wt.% TiO2 掺杂的 FEVE 涂层的接触角为 92.6°,而 30 wt.% TiO2 20 wt.% SiO2 掺杂的 FEVE 涂层的接触角为 166.3°。亚微米和纳米不同尺度的颗粒与聚合物共混形成的涂层具有多尺度结构特征,更容易捕获空气层,形成超疏水表面。

  • 具有独特形貌和高比表面积的 MnO2 纳米棒特别适合制备粗糙表面,在防污领域受到广泛的关注。 MnO2是一种过渡金属氧化物,具有一系列的优点,如氧化性、环保性、高活性、低成本、易于操作等,在电池、感应器、自清洁和抗菌领域有着广泛的应用[35]。纳米 MnO2 涂料可以有效避免环境污染而发挥防污效果,在海洋防污领域具有应用潜力。SELIM 等[35]利用水热法合成了宽度为 20~30 nm、长度为 0.5~1 μm 的 β-MnO2 纳米棒,该纳米棒具有稳定的结构、高抗菌性和低表面能。随后,将不同含量的 β-MnO2 纳米棒分散于有机硅中,制备 β-MnO2 复合有机硅涂层(图6)。结果表明:纳米棒的含量升高至 3 wt.%时,纳米棒的团聚造成样品表面的不均匀性,降低涂层的疏水性,增加生物贴附;而均匀分布的低含量纳米棒(0.5 wt.%)可以增强复合涂层的疏水性至 158°,从而获得优异的防污性能。此外, 0.5 wt.% β-MnO2 纳米棒复合有机硅涂层具有优异的热稳定性和酸碱稳定性,这表明该涂层在恶劣环境中仍可以发挥其防污作用。

  • 纳米颗粒可以增强涂层表面的粗糙度,形成微纳复合结构,提高样品的疏水性,获得自清洁效果。然而,目前研究的超疏水纳米涂料中所涉及的纳米颗粒的含量从百分之零点几到百分之几十,变化范围较大。一般认为,随着纳米颗粒含量的增加,纳米复合涂层疏水性增强,但其耐磨性、耐冲击性、粘接强度等机械性能会变弱,且成本也会大幅增高。如何优化纳米材料的添加量,在保障其超疏水实现的前提下,合理设计涂料配方,达到降本增效的效果,是超疏水纳米涂料需要考虑的问题。且超疏水纳米涂料也需面临超疏水表面防污失效的本质问题:如何在流体环境中长期保持 Cassie-Baxter 状态利用“气膜”防污。

  • 图6 水热法和煅烧过程制备的 β-MnO2 纳米棒与 PDMS 原位反应后构筑 PDMS / β-MnO2纳米棒复合涂层[35]

  • Fig.6 Preparation of β-MnO2 nanorods through hydrothermal technique followed by calcination and in-situ synthesis of PDMS / β-MnO2 nanorod composite coating with surface rough structure[35]

  • 3 释放型纳米防污涂料

  • 3.1 释放型涂料防污机制

  • 纳米材料可以通过其纳米特性利用直接接触获得抗菌防污的效果:纳米颗粒或者释放的杀菌离子可以通过静电相互作用吸附在细菌细胞膜表面,影响细胞膜的通透性;随后进一步渗透到细胞内部,生成活性氧基团(ROS),破坏 DNA、RNA 和蛋白质,最终导致细菌细胞死亡,抑制污损生物。以 α-Mn2O3 纳米棒为例,α-Mn2O3 纳米棒自身或者释放的 Mn3+离子吸附在微生物的细胞壁或细胞膜上,造成细胞膜的形态发生变化,使其死亡,获得防污效果[36]。纳米材料,与其对应的微米或毫米级别的材料对比,在涂料中更容易实现可控释放,而且可以在更低的浓度下获得较好的防污效果。

  • 3.2 释放型纳米防污涂料的研究进展

  • 3.2.1 纳米颗粒作为防污剂

  • 银具有广谱的杀菌性,广泛应用于多个领域,也是最古老的防污策略之一[37]。作为一种释放型防污剂,直接释放或由金属银氧化形成的 Ag+,在低至 1 μg / mL 的条件下,可以有效杀死微生物,甚至是耐药性细菌。一般认为,Ag+ 可以附着在细胞膜上破坏细胞结构,与细胞内酶的巯基结合从而干扰新陈代谢,与 DNA 结合阻止 DNA 的正常复制或形成 ROS 等多种方式杀灭微生物。此外,VASILEV 等[38]研究表明,哺乳动物细胞对银的耐受能力显著强于细菌,因此在低浓度下使用银纳米颗粒是安全的。ZHENG 等[39]采用天然漆酚作为还原剂、分散剂和表面活性剂,原位合成了 Ag 纳米颗粒 (AgNPs)。同时,硝酸银催化漆酚聚合成聚漆酚 (PUL)。这种原位还原方法使 AgNPs 均匀分布在聚合物基体中,且 AgNPs 和 PUL 之间的结合保证了 Ag+ 的稳定释放,具有长效防污性。经过 120 d 的海洋挂板试验,空白基体表面附着大量的藻类、藤壶等污损生物,而含 0.3%AgNPs 的聚合物涂层表面没有任何污损生物的贴附。由此可见,该样品有效抑制海洋生物污损。TIAN 等[40]将硅烷弹性体、亲水性聚合物和三氟甲磺酸银盐共混,制备了纳米复合水凝胶涂料。涂料中的 Ag 纳米颗粒作为交联剂,使亲水性聚合物均匀地分布在 PDMS 基体中,增强了两种聚合物的界面相容性。该涂层对大肠杆菌的杀灭率接近 100%,分别减少 37%、37%和 52%的三角褐指藻、舟形藻和小球藻的贴附。南海海域的挂板试验也表明,纳米复合水凝胶涂料具有良好的防污性能。

  • 铜和铜基涂层也具有杀菌防污的效果,是最广泛使用的广谱防污涂层[41-43]。在海洋环境中,铜基防污涂层主要依靠释放出亚铜离子或铜离子来达到防污的效果。铜离子可以增大细胞膜的通透性[44]、抑制 Na+-ATPase 和 K+-ATPase 的活性[45]、破坏气体交换和酸碱平衡[41-42]、与非铜蛋白形成稳定的化合物,影响蛋白功能[46]、抑制细胞分裂、形成 ROS 等方式影响微生物的生存。应栋明[47]通过改变软硬段的含量合成丙烯酸树脂预聚体,再通过中和反应将氢氧化铜引入到预聚体的侧链,制备了丙烯酸铜树脂。利用上述自制的丙烯酸铜树脂和微纳米氧化亚铜,结合市售涂料助剂复配了防污涂料。对其进行为期半年的海上挂板试验,发现该涂料可以有效减少细菌和藻类的贴附。WU 等[48]采用液相还原法制备了立方体、球体和立方八面体三种形态的 Cu2O 颗粒。结果表明,Cu2O 颗粒形貌影响其在水溶液中的活性,进而影响其释放速率,最终影响其抗菌能力。在三种形状的 Cu2O 颗粒中,立方八面体 Cu2O 颗粒具有最高的离子浸出率和最好的抗菌性能。随后基于立方八面体Cu2O制备了Cu2O颗粒丙烯酸杂化涂层,涂层中释放的铜离子更容易对革兰氏阴性菌大肠杆菌的细胞膜造成损伤,对革兰氏阳性菌枯草芽孢杆菌的影响较弱。这是由于革兰氏阳性菌枯草芽孢杆菌具有较厚的细胞壁,含有 15~50 层肽聚糖,厚度为 20~80 nm;而革兰氏阴性菌大肠杆菌仅有 2 或 3 层肽聚糖,厚度仅为 7~8 nm。因此,铜离子更容易突破大肠杆菌的细胞膜。Cu2O 粒子也可产生 ROS,从而引起氧化应激,加速革兰氏阳性菌枯草芽孢杆菌的降解和死亡[49]。TAVAKOLI 等[50] 利用湿化学方法合成 CuO 和 SiO2 纳米粉体后,利用提拉法在 316L 不锈钢上制备了不同含量的 CuO-SiO2 纳米复合聚二甲基硅氧烷疏水涂层。试验结果表明,CuO 的掺杂含量影响纳米复合涂层的结构、物理性能、耐蚀性和抗菌性。0.5wt.% CuO 纳米复合涂层可以杀死 92.69%的大肠杆菌,1 wt.% CuO 纳米复合涂层可以杀死 90.14%的大肠杆菌;而 2 wt.% CuO 纳米复合涂层只能杀死 75.14%的大肠杆菌。这是由于随着掺杂的纳米颗粒含量的升高,纳米颗粒发生团聚;CuO 颗粒的团聚导致其扩散能力下降,从而导致抗菌效率下降。合适的掺杂浓度对于制备有效的防污涂层至关重要。

  • SELIM 等[36]指出一维纳米材料更容易释放金属离子,从而获得更优异的抗菌防污效果。由于一维纳米材料特殊的形态,它比零维纳米颗粒更容易穿透细菌的细胞壁[36],且高长径比的纳米棒具有较强的范德华力和偶极子-偶极子引力,易于在细胞膜表面吸附[51]。因此,利用一维纳米材料制备的纳米复合涂层防污性能更优。SELIM 等[36]利用简单的水热法合成了 γ-AlOOH(宽 20 nm,长 200 nm)、 γ-MnOOH(宽 20 nm,长 500 nm)和 α-Mn2O3纳米棒(宽 20 nm),并进一步研究了这三种纳米棒的抗菌性。试验结果表明,纳米棒的抗菌性按照 γ-MnOOH <γ-AlOOH <α-Mn2O3 顺序依次递增。与其他两种的纳米棒相比,所制备的 α-Mn2O3 纳米棒具有更大的比表面积,从而获得更高的杀灭革兰氏阳性细菌和革兰氏阴性细菌的能力。进一步研究表明,α-Mn2O3 纳米棒暴露的[110]极性表面也使其更容易聚集在细菌表面,从而获得更优的防污效果[36]

  • 3.2.2 纳米颗粒作为防污剂载体

  • 纳米材料还可以作为防污剂的负载体添加到聚合物基体中,以调控防污剂的释放 [52]。 MICHAILIDIS 等[53]通过球形介孔 SiO2 纳米颗粒负载二氯-2-辛基-4-异噻唑啉-3-酮(DCOIT)、二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵、二甲基十四烷基[3-(三乙氧基硅基)丙基]氯化铵 (季铵盐类物质),随后将这些纳米胶囊与佐敦涂料 (Jotaguard)共混,制备纳米胶囊质量分数 2 wt.%和 5 wt.%的涂层。6 个月实海挂板试验结果表明,未掺杂涂层表面生物污损覆盖率为 49%,而 5 wt.%纳米胶囊掺杂涂层的生物污损覆盖率为 6.9%,极大地抑制了海洋生物的贴附。此外,该涂层不仅可以依靠 DCOIT 的释放抑制污损生物的贴附,还可以通过季铵盐的接触杀菌减少污损生物的附着。

  • 总体来说,纳米颗粒作为防污剂或防污剂载体,拥有高效的防污性能。但是释放型纳米防污涂层具有一个致命缺点,随着时间的推移,由于防污剂的缓慢释放,其防污活性会逐渐丧失,且部分纳米防污剂的防污机制尚不明确,难以排除其对非目标生物的负面影响。在现有技术中,仍须严格控制纳米颗粒及其离子的释放。

  • 4 催化型纳米防污涂料

  • 4.1 催化型涂料防污机制

  • 纳米材料可以通过直接接触获得抗菌防污的效果时,不可避免地涉及纳米颗粒或纳米颗粒中离子的释放,该策略可能对环境有一定的负面影响。为了减少对环境的负面影响,一些具有催化作用的纳米颗粒也被广泛应用于防污涂料中。具有催化作用的纳米颗粒,可以通过非接触的模式获得防污效果。纳米颗粒通过与污损生物周围的环境相互作用,产生细胞外活性基团,如超氧负离子(O2·–)、过氧化氢(H2O2)、羟基自由基(·OH)等。它们能够在短时间内破坏与其接触的微生物的细胞结构,从而达到杀死微生物(细菌、真菌、藻类和病毒等) 的目的。在这种相互作用中,活性基团是在外界环境中聚集,随后通过胞外聚合物和细胞膜进入细胞,进而降解核酸和蛋白质等物质,从而导致细胞死亡,实现抗菌防污的作用(图7)[54]。在防污过程中产生的活性基团可以很快降解,安全性好,不会产生环境污染。

  • 图7 五氧化二钒(V2O5)通过产生 HOBr 活性基团防污示意图[54]

  • Fig.7 Antifouling mechanism of vanadium pentoxide (V2O5) by producing HOBr[54]

  • 4.2 催化型纳米防污涂料的研究进展

  • 4.2.1 光催化纳米防污涂料

  • 二氧化钛(TiO2)是一种典型的光催化材料,仅在光照条件下,产生 H2O2、·OH 等 ROS,这些 ROS 可以杀灭细菌等微生物,从而获得防污效果[55]。由于 TiO2 具有较高的光催化活性,是目前研究最多的光活性防污材料之一。SARAVANAN 等[56] 采用 3-氨基丙基三乙氧基硅烷(APTES)作为偶联剂对 TiO2 纳米颗粒进行表面处理,并将其与环氧二甘油酯树脂结合,制备了表面功能化的纳米环氧杂化涂层。无机纳米颗粒提高了涂层的耐腐蚀性和防污性。3 wt.% APTES-TiO2纳米杂化涂层拥有长达 6 个月的防污效果。

  • 然而,TiO2是一种仅受紫外光激发的宽带隙半导体材料。紫外光仅占到太阳光的 4%,而可见光占到大约 50%。此外,由于光生载流子复合率高 (3.2 eV),纯 TiO2的光催化活性相对较差。因此,需要对 TiO2 进行修饰,以增强的 TiO2 在可见光范围内的响应[57],提高防污性能。WEN 等[58]以聚苯胺 (PANI)为原料,采用化学聚合法制备了 PANI-TiO2复合纳米颗粒,然后分散在丙烯酸树脂中,在 316L 不锈钢表面制备了 PANI-TiO2 复合纳米涂层。TiO2 表面修饰的 PANI 会增强 TiO2在可见光波段的敏感度,促进 PANI 和 TiO2 之间的电子和空穴转移,从而提高其光催化效率。在紫外-可见光的照射下,表面涂覆 PANI-TiO2 复合涂层的不锈钢的电位降低到 −0.41 V(与饱和甘汞电极相比),足以实现对不锈钢的阴极保护。此外,PANI-TiO2 复合纳米涂层的负电势(−0.41 V)可以促进涂层表面 H2O2 和·OH 的形成,对大肠杆菌细胞造成氧化损伤,抑制生物污损的发生。LIU 等[59]在 316L 不锈钢表面制备了 PANI修饰的Ag和N掺杂的TiO2(PANI-Ag-N-TiO2) 涂层,该涂层在模拟太阳光下照射 30 min,能有效生成 H2O2,从而杀死 95%的大肠杆菌。Ag 和 N 的掺杂导致 TiO2 的吸收带扩展到可见光区,PANI 的修饰进一步增强 TiO2 对可见光的响应,而银纳米颗粒促进了 TiO2 / PANI 异质结的电荷分离,从而最大限度地利用光激发电子和空穴产生 ROS,进而抑制细菌生长。

  • 除 TiO2 外,其他的氧化物也具有光催化性能,如纳米 ZnO。纳米 ZnO 具有疏水性、优异的分散性能、屏蔽紫外线、耐老化、催化降解、抗菌防污等特殊性能,因此利用纳米 ZnO 的催化降解和抗菌防污性能,将其引入到海洋涂层中,可以提高涂层的防污性能,同时还增强涂层机械性能。VERMA 等[60] 通过原位聚合将不同质量分数(1、3 和 6.5 wt.%) 的 ZnO 纳米颗粒负载到环氧-聚二甲基硅氧烷中,制备了纳米复合涂层。1 wt.% ZnO 纳米复合涂层具有优异的热固性和力学性能,且涂层中均匀分散的氧化锌纳米颗粒可以诱发微生物的氧化应激反应,获得接触杀灭的效果,从而获得防污作用。 MIRZAEE 等[61]将 ZnO 纳米颗粒负载到六方碳氮化硼纳米片,制备了环氧涂层。该涂层可以通过 ZnO 产生 ROS 抑制海藻的贴附。MOSTAFAEI 等[62]以 ZnO 纳米棒、苯胺和环氧树脂制备了导电纳米复合材料。PANI-ZnO 纳米复合涂层能有效防止海洋微生物在涂层上的定殖。此外,由 PANI-ZnO 纳米复合材料组成的环氧涂层及 ZnO 纳米复合涂层,对大肠杆菌和环氧葡萄球菌具有显著的抗菌性能。这是由于:① PANI 将涂层的局部 pH 值降至 4~5,防止表面微生物的附着;② ZnO 纳米棒光催化性能产生的活性基团,获得抗菌和防污性能。EL-SAIED 等[63]以虾壳为原料制备了对环境无害的壳聚糖纳米颗粒,采用共沉淀法合成了纳米壳聚糖包覆 ZnO 纳米颗粒。将制备的纳米颗粒混合在惰性船用漆中,制备防污涂层。一般认为,壳聚糖中的氨基可以与细胞膜结合,改变细胞膜的通透性,导致微生物死亡;此外释放的 Zn2+加强防污效果。64d 的实海浸泡试验印证了该涂层的防污性能,该涂层可以有效抑制管蠕虫和藤壶的贴附。

  • 光催化纳米防污涂料没有有害物质进入环境,是一种绿色环保型防污方法。但是它仅限于能够接触光线的表面,船底及已被污损生物附着的浸水船面无法接收光照,会使得光催化纳米防污涂料的光活性防污性能大打折扣。

  • 4.2.2 类酶纳米防污涂料

  • 与 TiO2、ZnO 等利用光催化性质获得防污性能不同,一些纳米颗粒可以利用其自身的类酶活性防污[64-65]。V2O5 纳米颗粒[66]、CeO2 纳米颗粒[67-68]具有类似卤代过氧化物酶的催化活性,在 H2O2的存在下,它们通过 H2O2 + X + H+ = HOX + H2O 反应催化卤族元素(海水中存在~1mM Br 和 500 mM Cl [54]) 生成对应的次卤酸(HOCl 或 HOBr)[69-70]。次卤酸可以直接杀死微生物或影响污损生物的群体感应信号,抑制污损初期生物膜的形成,进而有效地抑制生物污损[70]

  • NATALIO 等[54]合成了 V2O5 纳米棒,V2O5 在 H2O2 存在的情况下,催化溴离子氧化成 HOBr;还可以催化产生单线态分子氧(1 O2)。这些活性氧分子具有较强的抗菌活性,可防止海洋生物污染。且 V2O5 纳米线的急性毒性值为 1.2 mg / mL,远低于海洋防污领域常用防污剂吡啶硫酮锌(0.085 mg / mL) 和吡啶硫酮铜(0.001 2 mg / mL)的急性毒性值。 V2O5 纳米棒的毒性分别比吡啶氧化锌和吡啶氧化铜小 14 倍和 1 000 倍,可以替代市面上的防污剂。 Natalio 将 V2O5 纳米棒添加到商用涂料中,制备了 V2O5 纳米涂层。经过 60 d 的实海挂板试验,V2O5 纳米涂层可以有效抑制生物污损(图8)。

  • 图8 商用涂层和 V2O5纳米涂层的污损生物情况[53]

  • Fig.8 Biofouling on a commercially available paint and nanocomposite coating with V2O5 nanowires[53]

  • HERGET 等[71-72]合成了 CeO2 纳米棒,铈元素可以在三价态和四价态之间切换,这种氧化还原循环能力使其作为氧化酶、超氧化物歧化酶、过氧化氢酶、卤代过氧化物酶等得到广泛关注。CeO2纳米棒模拟卤代过氧化物酶产生的 HOBr,可以溴化 N-(3-oxo-酰基)高丝氨酸内酯,从而阻碍细菌群体感应效应,抑制生物污损。在实海试验中,2 wt.%CeO2 纳米棒掺杂的普通油漆,也比常用的 10 wt.% Cu2O 防污漆具有更高的防污活性。CeO2纳米棒复合涂层在海水条件下稳定、低毒性;在试验室测试(革兰氏阴性菌 E. coli)和实海挂板(海洋藻类)中表现更好,甚至在较低浓度下也表现出更优的防污效率,具有广泛的应用前景。

  • 尽管这些类酶纳米材料是通过自身的催化性质抑制生物污损,但是在纳米复合涂层服役过程中,难以避免涂层内的纳米颗粒进入海洋环境,此时引发的生物毒性仍需评估。

  • 5 多因素纳米复合防污涂料

  • 以上涂层均可以显著抑制生物附着,但是从长远来看,生物污损是不可避免的。低表面能涂层在低速下不具备防污效果;超疏水防污涂层不稳定,空气层会被海水逐渐替代;释放型防污涂层由于防污剂的减少,会慢慢失去防污活性;催化型防污涂层主要依靠 ROS 杀死微生物,减少贴附,但其活性位点可能被粘附的生物大分子覆盖,从而失去防污活性。因此,有必要开发协同防污涂层。目前,针对多因素纳米复合防污涂料已进行部分研究。

  • SOLEIMANI 等[73]利用 Avicennia marina 和 AgNO3 还原氧化石墨烯,获得了 Ag 负载的氧化还原石墨烯(GOH@Ag)。将 0.5 wt.% GOH@Ag 粒子掺杂到 PDMS 中,制备纳米复合涂层。涂层的表面能为 16 mJ / m2pseudo-barnacle 在涂层表面的附着力为 0.16 MPa,已贴附的污损生物也极易从涂层表面脱附。此外,该涂层利用释放的 Ag+ 杀死部分污损生物,减少贴附,获得静态防污的效果,克服了低表面能防污涂层的缺陷。该涂层利用低表面能和释放 Ag+ 获得协同防污的效果。

  • TAN等[74]利用aza Michael加成反应合成了(N-甲氧基乙基)-3-氨基丙基三乙氧基硅烷(MAPS)和双(N-甲氧基乙基)-3-氨基丙基三乙氧基硅烷 (BMAPS),并通过硅烷化反应将这两种海水响应型硅烷接枝到 SiO2 纳米颗粒上,获得两性离子改性的 SiO2 纳米颗粒(M-SiO2 和 BM-SiO2)。随后,将改性后的SiO2嵌入PDMS中,构建仿生异质结构涂层。该涂层可以迅速由空气中超疏水转化为水下超疏油状态,且在机械磨损、野外曝露试验或人工浸泡 5 个月后,该涂层仍保持水下超疏油性。实验室污损试验和实海挂板试验表明,M-SiO2和 BM-SiO2掺杂的涂层均可以有效抑制污损生物的贴附。这主要是由于涂层表面水合屏障层和两性离子抗菌性质的协同作用有效增强了涂层的防污性能。

  • BHARATHIDASAN 等[75]将 ZnO 纳米颗粒分散在多孔硼碳氮(BCN)框架中,形成一类新的功能杂化体。BCN 的负载提高了 ZnO 在可见光区的光催化性能。随后,将 ZnO-BCN 二维材料分散在 PDMS 中,在铝合金上形成了稳定的涂层。当ZnO-BCN 掺杂的含量为 66.6 wt.%时,涂层表面的接触角为 157.6°,滚动角小于 6°,是一种超疏水的防污涂料。此外,ZnO 的光催化性能也能杀死贴附的细菌。超疏水和光催化的协同防污作用使得该涂层在防污领域具有潜力。

  • WANG 等[76]通过表面引发原子转移自由基聚合反应将 3-磺酸丙基甲基丙烯酸钾(PSPMA)修饰到 Ti3C2Tx上,随后与环氧树脂共混,形成环氧树脂涂层。该涂层可以通过 PSPMA 形成的水化层和 Ti3C2Tx 的接触杀菌效果减少 55%的细菌和 71%的微藻贴附。

  • 由此可见,纳米颗粒的掺杂可实现多种防污策略协同的防污涂层的制备。纳米颗粒可以利用其内在的抗菌防污机制或作为其他防污剂的负载体,结合纳米颗粒对涂层表面能或疏水性能的影响,实现协同防污的功效。多种防污策略协同的涂层有利于实现防污的长效性和广谱性。

  • 6 结论与展望

  • 目前,随着纳米技术的发展,利用纳米材料提高海洋防污涂层的机械性能和防污性能备受关注。通过将纳米颗粒嵌入到聚合物基体中,从本质上改善涂层的力学性能、表面形貌和活性位点,获得更优性能。对国内外无机纳米材料改性聚合物涂料在防污领域的应用进行了全面总结,主要有以下结论:

  • (1)对于低表面能纳米防污涂料,几个百分点的纳米颗粒的添加即可增强涂层的耐久性和污损脱附性能。

  • (2)对于超疏水纳米复合防污涂料而言,纳米颗粒的添加可以有效提高涂层的疏水性,以提升涂层的防污性能。目前所研究的超疏水纳米涂层中所涉及的纳米颗粒的含量从百分之零点几到百分之几十,变化范围较大。

  • (3)对于释放型纳米复合防污涂料而言,纳米颗粒作为防污剂赋予涂层高效的防污性能。但是释放型纳米防污涂层具有一个致命缺点:防污剂的缓慢释放导致涂层逐渐丧失防污活性。

  • (4)对于催化型纳米防污涂料而言,纳米颗粒通过产生的活性基团有效抑制污损生物的贴附。

  • (5)对于多因素协同纳米防污涂料而言,纳米颗粒的掺杂支持三元或四元纳米复合材料的制备,利用其内在的抗菌防污机制或作为其他防污剂的负载体,结合纳米颗粒对涂层表面性能的影响,实现协同防污的功效。

  • 纳米防污涂料具有环境友好性、稳定性的基本要求,是一种绿色高效的防污技术,是防污材料的未来发展方向。但是要实现大规模的应用,还需解决以下几个问题:

  • (1)保障无机纳米材料在聚合物中的稳定分散。纳米材料的表面能较高,极不稳定,易发生团聚。颗粒之间的范德华力、静电吸引力、离子与离子键的吸附湿桥、氢键等,导致粒子间的粘附力增强而团聚。纳米颗粒在有机介质中难以润湿和分散,限制其特有效应的发挥。因此,如何改善纳米颗粒在介质中的分散性与稳定性十分关键。

  • (2)基于多种防污机制协同优化无机纳米复合涂层。生物污损中参与的污损种类繁多,污损条件复杂,基于单一防污机制构建的纳米复合防污涂层难以实现防污的广谱性和长效性。因此,利用协同防污机制,将两种或多种防污策略组合构筑多功能纳米防污涂层是发展重点。

  • (3)保障无机纳米复合涂层的长效防污性能。目前纳米复合涂层防污性能的测试周期不长,污损对象主要聚焦于细菌、海藻等污损生物。但生物污损的初期,环境中的蛋白、多糖等物质会吸附在涂层表面,形成条件膜,改变涂层表面的物理化学性质,如表面能、亲疏水性,或者与释放型离子结合,减弱其防污性能。因此,如何通过合适的材料设计,抑制蛋白、多糖等生物大分子的吸附对于保障纳米涂层的防污性能具有重要作用。

  • 参考文献

    • [1] YANG Z,HE X,CHANG J,et al.Facile fabrication of fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling and anticorrosion application[J].Surface and Coatings Technology,2021,415:127136.

    • [2] 潘健森,谢庆宜,马春风,等.天然产物基无铜自抛光防污涂料的制备与性能[J].中国表面工程,2019,32(4):109-114.PAN Jiansen,XIE Qingyi,MA Chunfeng,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.(in Chinese)

    • [3] HE X,CAO P,TIAN F,et al.Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces:A new route to fabricate antifouling coatings[J].Surface and Coatings Technology,2019,357:180-188.

    • [4] 曹京宜,唐建华,付婷,等.含氧化亚铜和有机防污剂的两种防污涂层失效过程对比[J].中国表面工程,2019,32(6):105-112.CAO Jingyi,TANG Jianhua,FU Ting,et al.Comparisons on degradation process of two antifouling coatings containing Cu2O and organic antifouling agents[J].China Surface Engineering,2019,32(6):105-112.(in Chinese)

    • [5] KIRSCHNER C M,BRENNAN A B.Bio-inspired antifouling strategies[J].Annual Review of Materials Research,2012,42:211-229.

    • [6] 田丰,白秀琴,贺小燕,等.海洋环境下金属材料微生物腐蚀研究进展[J].表面技术,2018,47(8):182-196.TIAN Feng,BAI Xiuqin,HE Xiaoyan,et al.Research progress on microbiological induced corrosion of metallic materials under ocean environment[J].Surface Technology,2018,47(8):182-196.(in Chinese)

    • [7] LOU T,BAI X,HE X,et al.Antifouling performance analysis of peptide-modified glass microstructural surfaces[J].Applied Surface Science,2021,541:148384.

    • [8] HE X,LIU Y,BAI X,et al.Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae[J].Biochemical Engineering Journal,2018,139:25-32.

    • [9] YANG Z,CHANG J,HE X,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress In Organic Coatings,2023,177:107458.

    • [10] CHANG J,HE X,YANG Z,et al.Surface topography effects on the wettability and antifouling performance of nano-ZnO epoxy composite coatings[J].Surface and Coatings Technology,2022,433:128145.

    • [11] 于雪艳,王科,陈正涛,等.不含铜类防污剂海洋防污涂料研制及性能[J].表面技术,2017,46(12):11-17.YU Xueyan,WANG Ke,CHEN Zhengtao,et al.Development and performance of copper antifoulant-free marine biocide antifouling paints[J].Surface Technology,2017,46(12):11-17.(in Chinese)

    • [12] 楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)

    • [13] NGUYEN-TRI P,NGUYEN T A,CARRIERE P,et al.Nanocomposite coatings:preparation,characterization,properties,and applications[J].International Journal of Corrosion,2018,2018:1-19.

    • [14] 鲍艳,陈颖.无机纳米材料改性聚氨酯防腐涂料的研究进展[J].涂料工业,2017,47(8):62-69.BAO Yan,CHEN Ying.Research progress in inorganic nanomaterial modified polyurethane anticorrosive coatings[J].Paint & Coatings Industry,2017,47(8):62-69.(in Chinese)

    • [15] NECOLAU M I,PANDELE A M.Recent advances in graphene oxide-based anticorrosive coatings:An overview[J].Coatings,2020,10(12):1149.

    • [16] LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:A nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.

    • [17] 刘思琪,刘斌,宁玉杰,等.抗菌低表面能复合型海洋防污涂料的研究进展[J].表面技术,2022,51(5):265-273.LIU Siqi,LIU Bin,NING Yujie,et al.Progress in the antibacterial and low surface energy composite marine antifouling coatings[J].Surface Technology,2022,51(5):265-273.(in Chinese)

    • [18] NURIOGLU A G,ESTEVES A C D C,WITH G D.Non-toxic,non-biocide-release antifouling coatings based on molecular structure design for marine applications[J].Journal of Materials Chemistry B,2015,3(32):6547-6570.

    • [19] ZHAO W,ZHU R,JIANG J,et al.Environmentallyfriendly superhydrophobic surface based on Al2O3@ KH560@SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water[J].Applied Surface Science,2019,484:307-316.

    • [20] CAVAS L,YILDIZ P G,MIMIGIANNI P,et al.Reinforcement effects of multiwall carbon nanotubes and graphene oxide on PDMS marine coatings[J].Journal of Coatings Technology and Research,2018,15(1):105-120.

    • [21] QIU H,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable siliconepolythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.

    • [22] XIE Q,LIU C,LIN X,et al.Nanodiamond reinforced poly(dimethylsiloxane)-based polyurea with self-healing ability for fouling release coating[J].ACS Applied Polymer Materials,2020,2(8):3181-3188.

    • [23] CHEN R Z,XIE Q Y,ZENG H H,et al.Non-elastic glassy coating with fouling release and resistance abilities[J].Journal of Materials Chemistry A,2020,8(1):380-387.

    • [24] JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic graphene-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.

    • [25] 李磊,刘晓玲,曹磊,等.仿生协同防污涂层的制备及性能[J].表面技术,2021,50(6):161-168.LI Lei,LIU Xiaoling,CAO Lei,et al.Preparation and performance of bionic cooperative antifouling coating[J].Surface technology,2021,50(6):161-168.(in Chinese)

    • [26] BA M,ZHANG Z,QI Y.The influence of MWCNTs-OH on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil[J].Progress In Organic Coatings,2019,130:132-143.

    • [27] HE X,CAO P,TIAN F,et al.Infused configurations induced by structures influence stability and antifouling performance of biomimetic lubricant-infused surfaces[J].Surface and Coatings Technology,2019,358:159-166.

    • [28] GENZER J,EFIMENKO K.Recent developments in superhydrophobic surfaces and their relevance to marine fouling:a review[J].Biofouling,2006,22(5):339-360.

    • [29] SELIM M S,YANG H,WANG F Q,et al.Silicone/ZnO nanorod composite coating as a marine antifouling surface[J].Applied Surface Science,2019,466:40-50.

    • [30] TRUONG V K,WEBB H K,FADEEVA E,et al.Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J].Biofouling,2012,28(6):539-550.

    • [31] WANG G,WENG D,CHEN C,et al.Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion[J].Colloid and Interface Science Communications,2020,34:100220.

    • [32] SELIM M S,ELMARAKBI A,AZZAM A M,et al.Eco-friendly design of superhydrophobic nanomagnetite/silicone composites for marine foul-release paints[J].Progress In Organic Coatings,2018,116:21-34.

    • [33] LI D,WANG H,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.

    • [34] QI C,CHEN H,SUN Y,et al.Facile preparation of robust superhydrophobic surface based on multi-scales nanoparticle[J].Polymer Engineering and Science,2020,60(8):1785-1794.

    • [35] SELIM M S,YANG H,EL-SAFTY S A,et al.Superhydrophobic coating of silicone/β-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces A-physicochemical and Engineering Aspects,2019,570:518-530.

    • [36] SELIM M S,HAMOUDA H,HAO Z,et al.Design of γ-AlOOH,γ-MnOOH,and α-Mn2O3 nanorods as advanced antibacterial active agents[J].Dalton Transactions,2020,49(25):8601-8613.

    • [37] ZHANG D Y,HAO Q,LIU J,et al.Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion[J].Separation and Purification Technology,2018,192:230-239.

    • [38] VASILEV K,SAH V,ANSELME K,et al.Tunable antibacterial coatings that support mammalian cell growth[J].Nano Letters,2010,10(1):202-207.

    • [39] ZHENG L,LIN Y C,WANG D H,et al.Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling[J].RSC Advances,2020,10(24):13936-13943.

    • [40] TIAN S,JIANG D,PU J,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.

    • [41] VUCKO M J,KING P C,POOLE A J,et al.Cold spray metal embedment:an innovative antifouling technology[J].Biofouling,2012,28(3):239-248.

    • [42] VUCKO M J,KING P C,POOLE A J,et al.Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles[J].Biofouling,2014,30(6):651-666.

    • [43] PIOLA R F,DAFFORN K A,and JOHNSTON E L.The influence of antifouling practices on marine invasions[J].Biofouling,2009,25(7):633-644.

    • [44] TSAI K P.Effects of two copper compounds on Microcystis aeruginosa cell density,membrane integrity,and microcystin release[J].Ecotoxicology and Environmental Safety,2015,120:428-435.

    • [45] LOPES T M,BARCAROLLI I F,DE OLIVEIRA C B,et al.Effect of copper on ion content in isolated mantle cells of the marine clam Mesodesma mactroides[J].Environmental Toxicology and Chemistry,2011,30(7):1582-1585.

    • [46] QIAN P Y,CHEN L,and XU Y.Mini-review:Molecular mechanisms of antifouling compounds[J].Biofouling,2013,29(4):381-400.

    • [47] 应栋明.丙烯酸铜树脂防污涂料制备及其评价[D].舟山:浙江海洋大学,2016.YING Dongming.Preparation of antifouling coating with copper acrylate resin as adhesive and its application[D].Zhoushan:Zhejiang Ocean University,2016.(in Chinese)

    • [48] WU W,ZHAO W,WU Y,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.

    • [49] A M E S,ABD EL-FATTAH M,AZZAM A M,et al.Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating[J].International Journal of Biological Macromolecules,2016,89:190-197.

    • [50] TAVAKOLI S,NEMATI S,KHARAZIHA M,et al.Embedding CuO nanoparticles in PDMS-SiO2 Coating to improve antibacterial characteristic and corrosion resistance[J].Colloid and Interface Science Communications,2019,28:20-28.

    • [51] JI Z,WANG X,ZHANG H,et al.Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials[J].ACS Nano,2012,6(6):5366-5380.

    • [52] FU Y,WANG W C,ZHANG L Q,et al.Development of marine antifouling epoxy coating enhanced with clay nanotubes[J].Materials,2019,12(24):4195.

    • [53] MICHAILIDIS M,GUTNER-HOCH E,WENGIER R,et al.Highly effective functionalized coatings with antibacterial and antifouling properties[J].ACS Sustainable Chemistry & Engineering,2020,8(24):8928-8937.

    • [54] NATALIO F,ANDRE R,HARTOG A F,et al.Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J].Nature Nanotechnology,2012,7(8):530-535.

    • [55] 赵云,何伟伟,许建兵,等.通过氢还原热处理提升 TiO2 薄膜的抗菌性能[J].中国表面工程,2023,36(1):77-84.ZHAO Yun,HE Weiwei,XU Jianbing,et al.Antibacterial properties of TiO2 film improved by hydrogen reduction heat treatment[J].China Surface Engineering,2023,36(1):77-84.(in Chinese)

    • [56] SARAVANAN P,JAYAMOORTHY K,ANANDA KUMAR S.Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance[J].Journal of Science:Advanced Materials and Devices,2016,1(3):367-378.

    • [57] TANG Y,SUN H,SHANG Y,et al.Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property[J].Journal of Colloid and Interface Science,2019,535:516-523.

    • [58] WEN B,WATERHOUSE G I N,JIA M Y,et al.The feasibility of polyaniline-TiO2 coatings for photocathodic antifouling:antibacterial effect[J].Synthetic Metals,2019,257:116175.

    • [59] LIU S,WEN B,JIANG X,et al.Enhanced photocathodic antifouling/antibacterial properties of polyanilineAg-N-doped TiO2 coatings[J].Journal of Materials Science,2020,55(34):16255-16272.

    • [60] VERMA S,DAS S,MOHANTY S,et al.Development of multifunctional polydimethylsiloxane(PDMS)-epoxy-zinc oxide nanocomposite coatings for marine applications[J].Polymers for Advanced Technologies,2019,30(9):2275-2300.

    • [61] MIRZAEE M,SEIF A,RASHIDI A,et al.Investigating the effect of PDA/KH550 dual functionalized h-BCN nanosheets and hybrided with ZnO on corrosion and fouling resistance of epoxy coating:Experimental and DFT studies[J].Journal of Environmental Chemical Engineering,2022,10(6):108746.

    • [62] MOSTAFAEI A,NASIRPOURI F.Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications[J].Journal of Coatings Technology and Research,2013,10(5):679-694.

    • [63] EL-SAIED H A-A,IBRAHIM A M.Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition[J].Journal of Environmental Chemical Engineering,2020,8(4):103949.

    • [64] CHEN Z,WANG Z,REN J,et al.Enzyme mimicry for combating bacteria and biofilms[J].Accounts of chemical research,2018,51(3):789-799.

    • [65] 唐燕,仇智月,许卓斌,等.纳米酶的抗菌机理与应用[J].生物化学与生物物理进展,2018,45(2):118-128.TANG Yan,CHOU Zhiyue,XU Zhuobin,et al.Antibacterial mechanism and applications of nanozymes[J].Progress in Biochemistry and Biophysics,2018,45(2):118-128.(in Chinese)

    • [66] ANDRE R,NATALIO F,HUMANES M,et al.V2O5 nanowires with an intrinsic peroxidase-like activity[J].Advanced Functional Materials,2011,21(3):501-509.

    • [67] HU M,KORSCHELT K,VIEL M,et al.Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling[J].ACS Applied Materials & Interfaces,2018,10:44722-44730.

    • [68] HE X,TIAN F,CHANG J,et al.Haloperoxidase mimicry by CeO2–x nanorods of different aspect ratios for antibacterial performance[J].ACS Sustainable Chemistry & Engineering,2020,8(17):6744-6752.

    • [69] CRANS D C,SMEE J J,GAIDAMAUSKAS E,et al.The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds[J].Chemical Reviews,2004,104(2):849-902.

    • [70] ALMEIDA M,FILIPE S,HUMANES M,et al.Vanadium haloperoxidases from brown algae of the Laminariaceae family[J].Phytochemistry,2001,57(5):633-642.

    • [71] HERGET K,HUBACH P,PUSCH S,et al.Haloperoxidase mimicry by CeO2-x nanorods combats biofouling[J].Advanced Materials,2017,29(4):1603823.

    • [72] HERGET K,FRERICHS H,PFITZNER F,et al.Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation [J].Advanced Materials,2018:e1707073.

    • [73] SOLEIMANI S,JANNESARI A,YOUSEFZADI M,et al.Eco-friendly foul release coatings based on a novel reduced graphene oxide/Ag nanocomposite prepared by a green synthesis approach[J].Progress in Organic Coatings,2021,151:106107.

    • [74] TAN J,XU J,WANG D,et al.Seawater-responsive SiO2 nanoparticles for in situ generation of zwitterionic polydimethylsiloxane antifouling coatings with underwater superoleophobicity[J].Journal of Materials Chemistry A,2020,8(45):24086-24097.

    • [75] BHARATHIDASAN T,MANDALAM A,BALASUBRAMANIAN M,et al.Zinc oxide-containing porous boron-carbon-nitrogen sheets from glycine-nitrate combustion:synthesis,self-cleaning,and sunlight-driven photocatalytic activity[J].ACS Applied Materials & Interfaces,2015,7(33):18450-18459.

    • [76] WANG P,HE B,DU Y,et al.Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications[J].Chemical Engineering Journal,2022,448:137668.

  • 参考文献

    • [1] YANG Z,HE X,CHANG J,et al.Facile fabrication of fluorine-free slippery lubricant-infused cerium stearate surfaces for marine antifouling and anticorrosion application[J].Surface and Coatings Technology,2021,415:127136.

    • [2] 潘健森,谢庆宜,马春风,等.天然产物基无铜自抛光防污涂料的制备与性能[J].中国表面工程,2019,32(4):109-114.PAN Jiansen,XIE Qingyi,MA Chunfeng,et al.Preparation and performance of natural product-based copper-free self-polishing marine antifouling coatings[J].China Surface Engineering,2019,32(4):109-114.(in Chinese)

    • [3] HE X,CAO P,TIAN F,et al.Autoclaving-induced in-situ grown hierarchical structures for construction of superhydrophobic surfaces:A new route to fabricate antifouling coatings[J].Surface and Coatings Technology,2019,357:180-188.

    • [4] 曹京宜,唐建华,付婷,等.含氧化亚铜和有机防污剂的两种防污涂层失效过程对比[J].中国表面工程,2019,32(6):105-112.CAO Jingyi,TANG Jianhua,FU Ting,et al.Comparisons on degradation process of two antifouling coatings containing Cu2O and organic antifouling agents[J].China Surface Engineering,2019,32(6):105-112.(in Chinese)

    • [5] KIRSCHNER C M,BRENNAN A B.Bio-inspired antifouling strategies[J].Annual Review of Materials Research,2012,42:211-229.

    • [6] 田丰,白秀琴,贺小燕,等.海洋环境下金属材料微生物腐蚀研究进展[J].表面技术,2018,47(8):182-196.TIAN Feng,BAI Xiuqin,HE Xiaoyan,et al.Research progress on microbiological induced corrosion of metallic materials under ocean environment[J].Surface Technology,2018,47(8):182-196.(in Chinese)

    • [7] LOU T,BAI X,HE X,et al.Antifouling performance analysis of peptide-modified glass microstructural surfaces[J].Applied Surface Science,2021,541:148384.

    • [8] HE X,LIU Y,BAI X,et al.Alginate/albumin in incubation solution mediates the adhesion and biofilm formation of typical marine bacteria and algae[J].Biochemical Engineering Journal,2018,139:25-32.

    • [9] YANG Z,CHANG J,HE X,et al.Construction of robust slippery lubricant-infused epoxy-nanocomposite coatings for marine antifouling application[J].Progress In Organic Coatings,2023,177:107458.

    • [10] CHANG J,HE X,YANG Z,et al.Surface topography effects on the wettability and antifouling performance of nano-ZnO epoxy composite coatings[J].Surface and Coatings Technology,2022,433:128145.

    • [11] 于雪艳,王科,陈正涛,等.不含铜类防污剂海洋防污涂料研制及性能[J].表面技术,2017,46(12):11-17.YU Xueyan,WANG Ke,CHEN Zhengtao,et al.Development and performance of copper antifoulant-free marine biocide antifouling paints[J].Surface Technology,2017,46(12):11-17.(in Chinese)

    • [12] 楼彤,白秀琴,贺小燕,等.抗菌肽在海洋防污领域的研究进展[J].中国表面工程,2022,35(2):1-11.LOU Tong,BAI Xiuqin,HE Xiaoyan,et al.Research progress of antimicrobial peptides in the field of marine antifouling[J].China Surface Engineering,2022,35(2):1-11.(in Chinese)

    • [13] NGUYEN-TRI P,NGUYEN T A,CARRIERE P,et al.Nanocomposite coatings:preparation,characterization,properties,and applications[J].International Journal of Corrosion,2018,2018:1-19.

    • [14] 鲍艳,陈颖.无机纳米材料改性聚氨酯防腐涂料的研究进展[J].涂料工业,2017,47(8):62-69.BAO Yan,CHEN Ying.Research progress in inorganic nanomaterial modified polyurethane anticorrosive coatings[J].Paint & Coatings Industry,2017,47(8):62-69.(in Chinese)

    • [15] NECOLAU M I,PANDELE A M.Recent advances in graphene oxide-based anticorrosive coatings:An overview[J].Coatings,2020,10(12):1149.

    • [16] LEJARS M,MARGAILLAN A,BRESSY C.Fouling release coatings:A nontoxic alternative to biocidal antifouling coatings[J].Chemical Reviews,2012,112(8):4347-4390.

    • [17] 刘思琪,刘斌,宁玉杰,等.抗菌低表面能复合型海洋防污涂料的研究进展[J].表面技术,2022,51(5):265-273.LIU Siqi,LIU Bin,NING Yujie,et al.Progress in the antibacterial and low surface energy composite marine antifouling coatings[J].Surface Technology,2022,51(5):265-273.(in Chinese)

    • [18] NURIOGLU A G,ESTEVES A C D C,WITH G D.Non-toxic,non-biocide-release antifouling coatings based on molecular structure design for marine applications[J].Journal of Materials Chemistry B,2015,3(32):6547-6570.

    • [19] ZHAO W,ZHU R,JIANG J,et al.Environmentallyfriendly superhydrophobic surface based on Al2O3@ KH560@SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water[J].Applied Surface Science,2019,484:307-316.

    • [20] CAVAS L,YILDIZ P G,MIMIGIANNI P,et al.Reinforcement effects of multiwall carbon nanotubes and graphene oxide on PDMS marine coatings[J].Journal of Coatings Technology and Research,2018,15(1):105-120.

    • [21] QIU H,HOELKEN I,GAPEEVA A,et al.Development and characterization of mechanically durable siliconepolythiourethane composites modified with tetrapodal shaped ZnO particles for the potential application as fouling-release coating in the marine sector[J].Materials,2018,11(12):2413.

    • [22] XIE Q,LIU C,LIN X,et al.Nanodiamond reinforced poly(dimethylsiloxane)-based polyurea with self-healing ability for fouling release coating[J].ACS Applied Polymer Materials,2020,2(8):3181-3188.

    • [23] CHEN R Z,XIE Q Y,ZENG H H,et al.Non-elastic glassy coating with fouling release and resistance abilities[J].Journal of Materials Chemistry A,2020,8(1):380-387.

    • [24] JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic graphene-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.

    • [25] 李磊,刘晓玲,曹磊,等.仿生协同防污涂层的制备及性能[J].表面技术,2021,50(6):161-168.LI Lei,LIU Xiaoling,CAO Lei,et al.Preparation and performance of bionic cooperative antifouling coating[J].Surface technology,2021,50(6):161-168.(in Chinese)

    • [26] BA M,ZHANG Z,QI Y.The influence of MWCNTs-OH on the properties of the fouling release coatings based on polydimethylsiloxane with the incorporation of phenylmethylsilicone oil[J].Progress In Organic Coatings,2019,130:132-143.

    • [27] HE X,CAO P,TIAN F,et al.Infused configurations induced by structures influence stability and antifouling performance of biomimetic lubricant-infused surfaces[J].Surface and Coatings Technology,2019,358:159-166.

    • [28] GENZER J,EFIMENKO K.Recent developments in superhydrophobic surfaces and their relevance to marine fouling:a review[J].Biofouling,2006,22(5):339-360.

    • [29] SELIM M S,YANG H,WANG F Q,et al.Silicone/ZnO nanorod composite coating as a marine antifouling surface[J].Applied Surface Science,2019,466:40-50.

    • [30] TRUONG V K,WEBB H K,FADEEVA E,et al.Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J].Biofouling,2012,28(6):539-550.

    • [31] WANG G,WENG D,CHEN C,et al.Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion[J].Colloid and Interface Science Communications,2020,34:100220.

    • [32] SELIM M S,ELMARAKBI A,AZZAM A M,et al.Eco-friendly design of superhydrophobic nanomagnetite/silicone composites for marine foul-release paints[J].Progress In Organic Coatings,2018,116:21-34.

    • [33] LI D,WANG H,LIU Y,et al.Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J].Chemical Engineering Journal,2019,367:169-179.

    • [34] QI C,CHEN H,SUN Y,et al.Facile preparation of robust superhydrophobic surface based on multi-scales nanoparticle[J].Polymer Engineering and Science,2020,60(8):1785-1794.

    • [35] SELIM M S,YANG H,EL-SAFTY S A,et al.Superhydrophobic coating of silicone/β-MnO2 nanorod composite for marine antifouling[J].Colloids and Surfaces A-physicochemical and Engineering Aspects,2019,570:518-530.

    • [36] SELIM M S,HAMOUDA H,HAO Z,et al.Design of γ-AlOOH,γ-MnOOH,and α-Mn2O3 nanorods as advanced antibacterial active agents[J].Dalton Transactions,2020,49(25):8601-8613.

    • [37] ZHANG D Y,HAO Q,LIU J,et al.Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion[J].Separation and Purification Technology,2018,192:230-239.

    • [38] VASILEV K,SAH V,ANSELME K,et al.Tunable antibacterial coatings that support mammalian cell growth[J].Nano Letters,2010,10(1):202-207.

    • [39] ZHENG L,LIN Y C,WANG D H,et al.Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling[J].RSC Advances,2020,10(24):13936-13943.

    • [40] TIAN S,JIANG D,PU J,et al.A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties[J].Chemical Engineering Journal,2019,370:1-9.

    • [41] VUCKO M J,KING P C,POOLE A J,et al.Cold spray metal embedment:an innovative antifouling technology[J].Biofouling,2012,28(3):239-248.

    • [42] VUCKO M J,KING P C,POOLE A J,et al.Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles[J].Biofouling,2014,30(6):651-666.

    • [43] PIOLA R F,DAFFORN K A,and JOHNSTON E L.The influence of antifouling practices on marine invasions[J].Biofouling,2009,25(7):633-644.

    • [44] TSAI K P.Effects of two copper compounds on Microcystis aeruginosa cell density,membrane integrity,and microcystin release[J].Ecotoxicology and Environmental Safety,2015,120:428-435.

    • [45] LOPES T M,BARCAROLLI I F,DE OLIVEIRA C B,et al.Effect of copper on ion content in isolated mantle cells of the marine clam Mesodesma mactroides[J].Environmental Toxicology and Chemistry,2011,30(7):1582-1585.

    • [46] QIAN P Y,CHEN L,and XU Y.Mini-review:Molecular mechanisms of antifouling compounds[J].Biofouling,2013,29(4):381-400.

    • [47] 应栋明.丙烯酸铜树脂防污涂料制备及其评价[D].舟山:浙江海洋大学,2016.YING Dongming.Preparation of antifouling coating with copper acrylate resin as adhesive and its application[D].Zhoushan:Zhejiang Ocean University,2016.(in Chinese)

    • [48] WU W,ZHAO W,WU Y,et al.Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J].Applied Surface Science,2019,465:279-287.

    • [49] A M E S,ABD EL-FATTAH M,AZZAM A M,et al.Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating[J].International Journal of Biological Macromolecules,2016,89:190-197.

    • [50] TAVAKOLI S,NEMATI S,KHARAZIHA M,et al.Embedding CuO nanoparticles in PDMS-SiO2 Coating to improve antibacterial characteristic and corrosion resistance[J].Colloid and Interface Science Communications,2019,28:20-28.

    • [51] JI Z,WANG X,ZHANG H,et al.Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials[J].ACS Nano,2012,6(6):5366-5380.

    • [52] FU Y,WANG W C,ZHANG L Q,et al.Development of marine antifouling epoxy coating enhanced with clay nanotubes[J].Materials,2019,12(24):4195.

    • [53] MICHAILIDIS M,GUTNER-HOCH E,WENGIER R,et al.Highly effective functionalized coatings with antibacterial and antifouling properties[J].ACS Sustainable Chemistry & Engineering,2020,8(24):8928-8937.

    • [54] NATALIO F,ANDRE R,HARTOG A F,et al.Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J].Nature Nanotechnology,2012,7(8):530-535.

    • [55] 赵云,何伟伟,许建兵,等.通过氢还原热处理提升 TiO2 薄膜的抗菌性能[J].中国表面工程,2023,36(1):77-84.ZHAO Yun,HE Weiwei,XU Jianbing,et al.Antibacterial properties of TiO2 film improved by hydrogen reduction heat treatment[J].China Surface Engineering,2023,36(1):77-84.(in Chinese)

    • [56] SARAVANAN P,JAYAMOORTHY K,ANANDA KUMAR S.Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance[J].Journal of Science:Advanced Materials and Devices,2016,1(3):367-378.

    • [57] TANG Y,SUN H,SHANG Y,et al.Spiky nanohybrids of titanium dioxide/gold nanoparticles for enhanced photocatalytic degradation and anti-bacterial property[J].Journal of Colloid and Interface Science,2019,535:516-523.

    • [58] WEN B,WATERHOUSE G I N,JIA M Y,et al.The feasibility of polyaniline-TiO2 coatings for photocathodic antifouling:antibacterial effect[J].Synthetic Metals,2019,257:116175.

    • [59] LIU S,WEN B,JIANG X,et al.Enhanced photocathodic antifouling/antibacterial properties of polyanilineAg-N-doped TiO2 coatings[J].Journal of Materials Science,2020,55(34):16255-16272.

    • [60] VERMA S,DAS S,MOHANTY S,et al.Development of multifunctional polydimethylsiloxane(PDMS)-epoxy-zinc oxide nanocomposite coatings for marine applications[J].Polymers for Advanced Technologies,2019,30(9):2275-2300.

    • [61] MIRZAEE M,SEIF A,RASHIDI A,et al.Investigating the effect of PDA/KH550 dual functionalized h-BCN nanosheets and hybrided with ZnO on corrosion and fouling resistance of epoxy coating:Experimental and DFT studies[J].Journal of Environmental Chemical Engineering,2022,10(6):108746.

    • [62] MOSTAFAEI A,NASIRPOURI F.Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications[J].Journal of Coatings Technology and Research,2013,10(5):679-694.

    • [63] EL-SAIED H A-A,IBRAHIM A M.Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition[J].Journal of Environmental Chemical Engineering,2020,8(4):103949.

    • [64] CHEN Z,WANG Z,REN J,et al.Enzyme mimicry for combating bacteria and biofilms[J].Accounts of chemical research,2018,51(3):789-799.

    • [65] 唐燕,仇智月,许卓斌,等.纳米酶的抗菌机理与应用[J].生物化学与生物物理进展,2018,45(2):118-128.TANG Yan,CHOU Zhiyue,XU Zhuobin,et al.Antibacterial mechanism and applications of nanozymes[J].Progress in Biochemistry and Biophysics,2018,45(2):118-128.(in Chinese)

    • [66] ANDRE R,NATALIO F,HUMANES M,et al.V2O5 nanowires with an intrinsic peroxidase-like activity[J].Advanced Functional Materials,2011,21(3):501-509.

    • [67] HU M,KORSCHELT K,VIEL M,et al.Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling[J].ACS Applied Materials & Interfaces,2018,10:44722-44730.

    • [68] HE X,TIAN F,CHANG J,et al.Haloperoxidase mimicry by CeO2–x nanorods of different aspect ratios for antibacterial performance[J].ACS Sustainable Chemistry & Engineering,2020,8(17):6744-6752.

    • [69] CRANS D C,SMEE J J,GAIDAMAUSKAS E,et al.The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds[J].Chemical Reviews,2004,104(2):849-902.

    • [70] ALMEIDA M,FILIPE S,HUMANES M,et al.Vanadium haloperoxidases from brown algae of the Laminariaceae family[J].Phytochemistry,2001,57(5):633-642.

    • [71] HERGET K,HUBACH P,PUSCH S,et al.Haloperoxidase mimicry by CeO2-x nanorods combats biofouling[J].Advanced Materials,2017,29(4):1603823.

    • [72] HERGET K,FRERICHS H,PFITZNER F,et al.Functional enzyme mimics for oxidative halogenation reactions that combat biofilm formation [J].Advanced Materials,2018:e1707073.

    • [73] SOLEIMANI S,JANNESARI A,YOUSEFZADI M,et al.Eco-friendly foul release coatings based on a novel reduced graphene oxide/Ag nanocomposite prepared by a green synthesis approach[J].Progress in Organic Coatings,2021,151:106107.

    • [74] TAN J,XU J,WANG D,et al.Seawater-responsive SiO2 nanoparticles for in situ generation of zwitterionic polydimethylsiloxane antifouling coatings with underwater superoleophobicity[J].Journal of Materials Chemistry A,2020,8(45):24086-24097.

    • [75] BHARATHIDASAN T,MANDALAM A,BALASUBRAMANIAN M,et al.Zinc oxide-containing porous boron-carbon-nitrogen sheets from glycine-nitrate combustion:synthesis,self-cleaning,and sunlight-driven photocatalytic activity[J].ACS Applied Materials & Interfaces,2015,7(33):18450-18459.

    • [76] WANG P,HE B,DU Y,et al.Functionalized Ti3C2Tx-based nanocomposite coatings for anticorrosion and antifouling applications[J].Chemical Engineering Journal,2022,448:137668.

  • 手机扫一扫看