en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈登科,男,1988年出生,博士,讲师,硕士研究生导师。主要研究方向为仿生多功能表面、防除冰技术和智能蒙皮。E-mail:716316hay@163.com;

苏琳,女,1989年出生,硕士研究生,高级工程师。主要研究方向为声学覆盖层材料。

刘晓林,男,1990年出生,博士,讲师,硕士研究生导师。主要研究方向为防除冰技术。

张力文,男,1990年出生,博士,副教授,博士研究生导师。主要研究方向为微纳仿生表面功能化、微纳流体、微纳智能制造技术及其应用。

通讯作者:

陈华伟,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为微纳仿生表面制造、界面微流体行为理论、柔性电子制造及其微纳制造装备。E-mail:Chenhw75@buaa.edu.cn

中图分类号:TH16;Q81

DOI:10.11933/j.issn.1007−9289.20230128001

参考文献 1
中国政府网.中华人民共和国国民经济和社会发展第十四个五年规划纲要[EB/OL].[2021-03-13].http://www.gov.cn.The Chinese Government Website.Outline of the14th Five-year plan for national economic and social development and vision 2035 of the people’ s republic of China[EB/OL].[2021-03-13].http://www.gov.cn.(in Chinese)
参考文献 2
杨永嘉,杨兆祥,贺泳霖.船舶水下减阻抗污涂层的研究进展[J].化学通报,2022,85(8):937-942.YANG Yongjia,YANG Zhaoxiang,HE Yonglin.Advance on underwater-drag reduction and anti-fouling coating for ships[J].Chemistry,2022,85(8):937-942.(in Chinese)
参考文献 3
LIU M,MA L R.Drag reduction methods at solid-liquid interfaces[J].Friction,2021,10(4):491-515.
参考文献 4
欧勇鹏,吴浩,董文才.船舶气层减阻节能技术应用研究进展[J].中国水运,2015,15(9):28-30.OU Yongpeng,WU Hao,DONG Wencai.Research progress on the application of drag reduction and energy saving technology in Marine air layer[J].China Water Transport,2015,15(9):28-30.(in Chinese)
参考文献 5
柳盾.柔性壁面被动与主动形变的减阻性能研究[D].大连:大连理工大学,2019.LIU Dun.Research on drag reduction performance of passive and active deformation of flexible wall[D].Dalian:Dalian University of Technology,2019.(in Chinese)
参考文献 6
王平.新型防污减阻软涂层的研究[D].杭州:浙江大学,2012.WANG Ping.Research on a novel anti-fouling and drag-reducing soft coating[D].Hangzhou:Zhejiang University,2012.(in Chinese)
参考文献 7
王仲.湍流激励下潜器蒙皮减阻降噪性能研究[D].哈尔滨:哈尔滨工程大学,2017.WANG Zhong.Research on the drag & noise reduction performance of submersible skin under turbulent excitation[D].Harbin:Harbin Engineering University,2017.(in Chinese)
参考文献 8
HAYDER A.ABDULBARI H D,MAHAMMED Z B,et al.Bio-inspired passive drag reduction techniques:A review[J].Chembioeng Reviews,2015,2(3):185-203.
参考文献 9
宋保维,刘冠杉,胡海豹.不同宽高比的V型随行波表面减阻仿真研究[J].计算机工程与应用,2009,45(32):222-224,48.SONG Baowei,LIU Guanshan,HU Haibao.Simulation study on surface drag-reduction with V-size traveling wave of different aspect ratios[J].Computer Engineering and Applications,2009,45(2):222-224,248.(in Chinese)
参考文献 10
DIEZ G,SOTO M,BLANCO J M.Biological characterization of the skin of shortfin mako sharkIsurus oxyrinchusand preliminary study of the hydrodynamic behaviour through computational fluid dynamics[J].Journal of Fish Biology,2015,87(1):123-137.
参考文献 11
张维俊.海豚游动水动力特性分析研究[J].中国水运,2014,14(2):6-8,25.ZHANG Weijun.Study on hydrodynamic characteristics of dolphin swimming[J].China Water Transport,2014,14(2):6-8,25.(in Chinese)
参考文献 12
俞洁,刘志明,吴文健.海豚皮肤减阻降噪仿生研究进展[C]//第十五届船舶水下噪声学术讨论会论文集,2015-08-01,郑州.郑州:中国船舶科学研究中心《船舶力学》编辑部,2015:362-369.YU Jie,LIU Zhiming,WU Wenjian.Progress in bionic research on drag and noise reduction of dolphin skin [C]//15th Symposium on Underwater Noise of Ships,August 1,2015,Zhengzhou.Zhengzhou:China Ship Scientific Research Center,2015,362-369.(in Chinese)
参考文献 13
张家忠,刘雁,孙旭,等.柔性结构气弹效应在流动控制中的应用及进展[J].力学进展,2018,48:299-319.ZHANG Jiazhong,LIU Yan,SUN Xu,et al.Applications and developments of aeroelasticity of flexible structure in flow controls[J].Advances in Mechanics,2018,48:299-319.(in Chinese)
参考文献 14
VV B.Hydrobionic pinciples of drag reduction[J].International Journal of Fluid Mechanics Research,2003,30(2):125-144.
参考文献 15
WAINWRIGHT D K,FISH F E,INGERSOLL S,et al.How smooth is a dolphin?The ridged skin of odontocetes[J].Biology Letters,2019,15(7):20190103.
参考文献 16
CHEN D K,CHEN H W,CUI X X.Dual-coupling drag reduction inspired by tuna skin:Fan-shaped imbricated fish scale composited with flexible coating[J].AIP Advances,2022,12(3):035218.
参考文献 17
CHEN D K,CUI X X,CHEN H W.Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J].Microscopy Research and Technique,2021,84(8):1862-1872.
参考文献 18
WU L Y,JIAO Z B,SONG Y Q,et al.Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations[J].Science China Technological Sciences,2017,60(7):1111-1117.
参考文献 19
DOU Z L,WANG J D,CHEN D R.Bionic research on fish scales for drag reduction[J].Journal of Bionic Engineering,2012,9(4):457-464.
参考文献 20
MUTHUKUMAR M,VILLEMIN L S,BRUECKER C,et al.Streak formation in flow over biomimetic fish scale arrays[J].Journal of experimental biology,2019,222(16):jeb205963.
参考文献 21
SEO E,YOON G Y,KIM H N,et al.Morphological features of mucous secretory organ and mucous secretion of loach Misgurnus anguillicaudatus skin for friction drag reduction[J].Journal of Fish Biology,2019,96(1):83-91.
参考文献 22
ZHOU H G,LIU C Q,TIAN G Z,et al.Research on the drag reduction property of puffer(Takifugu flavidus)spinal nonsmooth structure surface [J].Microscopy Research and Technique,2020,83(7):795-803.
参考文献 23
FAN D L,FENG X M,TIAN G Z,et al.Experimental investigations of the turbulent boundary layer for biomimetic protrusive surfaces inspired by Pufferfish skin:effects of spinal density and diameter[J].Langmuir,2021,37(40):11804-11817.
参考文献 24
FENG X M,FAN D L,TIAN G Z,et al.Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin[J].ACS Applied Materials & Interfaces,2022,14(28):32747-32760.
参考文献 25
JEON W S,CHOI W P.Hydrodynamic Characteristics of the sailfish(Istiophorus platypterus)and swordfish(Xiphias gladius)in gliding postures at their cruise speeds[J].PLoS One,2013,8(12):e81323.
参考文献 26
WAINWRIGHT D K,LAUDER G V,WEAVER J C.Imaging biological surface topography in situ and in vivo[J].Methods in Ecology and Evolution,2017,8(11):1626-1638.
参考文献 27
ZHANG D Y,LI Y Y,HAN X,et al.High-precision bio-replication of synthetic drag reduction shark skin[J].Chinese Science Bulletin,2011,56(9):938-944.
参考文献 28
SCHRADER L U.Passive drag reduction via bionic hull coatings[J].Journal of Ship Research,2019,63(3):206-218.
参考文献 29
CHEN D K,CUI X X,LIU X L,et al.Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction[J].Surface & Coatings Technology,2023,457:129337.
参考文献 30
WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface[J].Surface & Coatings Technology,2021,409:126801.
参考文献 31
秦立果,龚朝永,孙红江,等.非光滑表面减阻研究进展[J].表面技术,2022,51(8):107-122.QIN Liguo,GONG Chaoyong,SUN Hongjiang.Review of research on drag reduction of non-smooth surface[J].Surface Technology,2022,51(8):107-122.(in Chinese)
参考文献 32
RICARDO G M,JAVIER J.Drag reduction by riblets[J].Philos Trans a Math Phys Eng Sci,2011,369(1940):1412-1427.
参考文献 33
刘宝胜,吴为,曾元松.鲨鱼皮仿生结构应用及制造技术综述[J].塑性工程学报,2014,21(4):56-62.LIU Baosheng,WU Wei,ZENG Yuansong.Review on application and fabrication of shark skin bionic structure[J].Journal of Plasticity Engineering,2014,21(4):56-62.(in Chinese)
参考文献 34
HIRT G,THOME M.Rolling of functional metallic surface structures[J].CIRP Annals Manufacturing Technology,2008,57(1):317-320.
参考文献 35
KIM T,KWON S,LEE J,et al.A metallic anti-biofouling surface with a hierarchical topography containing nanostructures on curved micro-riblets[J].Microsystems & Nanoengineering,2022,8(1):6.
参考文献 36
KORD H.Process abilities of the riblet-coating process with dual-cure lacquers[J].CIRP Journal of Manufacturing Science and Technology,2015,11:1-9.
参考文献 37
WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,17(10):1656-1666.
参考文献 38
YU H Y,HAN Z W,ZHANG J Q,et al.Bionic design of tools in cutting:Reducing adhesion,abrasion or friction[J].Wear,2021,482:203955.
参考文献 39
HAN X,ZHANG D Y,LI X,et al.Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J].Science Bulletin,2008,53(10):1587-1592.
参考文献 40
LAUDER G V,WAINWRIGHT D K,DOMEL A G,et al.Structure,biomimetics,and fluid dynamics of fish skin surfaces[J].Physical Review Fluids,2016,1(6):060502.
参考文献 41
CHEN H W,ZHANG X,CHE D,et al.Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement[J].Advances in Mechanical Engineering,2015,6:425701.
参考文献 42
HAN X,WANG J,ZHANG D Y.Bio-replicated forming of the biomimetic drag-reducing surface based on underwater low-resistance scarfskins[C]//International Conference on Mechatronics and Automation,August 4-7,2010,Xi’ an,2010:840-845.
参考文献 43
PETER L,VOLKMAR S,ANDREAS F,et al.Riblet surfaces for improvement of efficiency of wind turbines [C]//AIAA Scitech 2020 Forum,Jan 6-10,2020.Orlando,FL:American Institute of Aeronautics and Astronautics,2020:0308.
参考文献 44
CUI X X,CHEN D K,CHEN H W.Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling[J].ACS Omega,2023,8(9):8569-8581.
参考文献 45
王春举,程利冬,薛韶曦,等.仿生减阻微结构制造技术综述[J].精密成型工程,2019,11(3):88-98.WANG Chunju,CHEN Lidong,XUE Shaoxin,et al.Manufacturing technologies of bionic micro-structures for drag reduction:A review[J].Journal of Netshape Forming Engineering,2019,11(3):88-98.(in Chinese)
参考文献 46
CHEN Q H,ZHANG C Q,CAI Y K,et al.Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction[J].Applied Surface Science,2023,615:156403.
参考文献 47
ZHOU Z D,WANG S K,YAN Z X,et al.Low air drag surface via multilayer hierarchical riblets[J].ACS Applied Materials & Interfaces,2021,13,53155−53161.
参考文献 48
刘明杰,吴青山,严昊,等.仿生减阻表面的进展与挑战[J].北京航空航天大学学报,2022,48(9):1782-1790.LIU Mingjie,WU Qingshan,YAN Hao,et al.Progress and challenges of bionic drag reduction surfaces[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(9):1782-1790.(in Chinese)
参考文献 49
CHUNG K K,SCHUMACHER J F,SAMPSONE M,et al.Impact of engineered surface microtopography on biofilm formation of Staphylococcus[J].Biointerphases,2007,2(2):89-94.
参考文献 50
LONG C J,SCHUMACHER J F,ROBINSON A C,et al.A model that predicts the attachment behavior of Ulvalinza zoospores on surface topography[J].Biofouling,2010,26(4):411-419.
参考文献 51
SCHUMACHER J F,NICK A,CALLOW,M E,et al.Species-specific engineered antifouling topographies:correlations between the settlement of algal zoospores and barnacle cyprids[J].Biofouling,2007,3(5-6):307-317.
参考文献 52
BRENNAN A B,BANEY R H,CARMAN M L.Surface topography for non-toxic bioadhesion control:US,7143709 [P].2006-12-05.
参考文献 53
MA Z Y,LIU J B,ZHANG X D,et al.Flexible surfaces prepared through direct ink writing with drag reduction and antifouling[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,655:130233.
参考文献 54
DAI Wei,ALKAHTANI M,HEMMER P R,et al.Drag-reduction of 3D printed shark-skin-like surfaces[J].Friction,2018,7(6):603-612.
参考文献 55
ELORA V,BARRY M,SENZE R V,et al.Influence of sharklet-inspired micropatterned polymers on spatiotemporal variations of marine biofouling[J].Macromol Biosci,2022,22(11):e2200304.
参考文献 56
JO W K,HONG S,CHOI J,et al.Light-designed shark skin-mimetic surfaces[J].Nano Letter,2021,21(13):5500-5507.
参考文献 57
KRAMER M O.Boundary layer stabilization by distributed damping[J].J Am Soc Naval Engrs,1960,74:25-33.
参考文献 58
PAVLOV V V.Dolphin skin as a natural anisotropic compliant wall[J].Bioinspiration & Biomimetics,2006,1(2):31-40.
参考文献 59
CHOI K S,YANG X,CLAYYON B R,et al.Turbulent drag reduction using compliant coatings[J].Proceedings of the Royal Society,1997,453:2229-2240.
参考文献 60
ENDO T,HIMENO R.Direct numerical simulation of turbulent flow over a compliant surface[J].Journal of Turbulence,2002,3:7.
参考文献 61
KULIK V,SEMENOV B.Measurement of dynamic properties of viscoelastic materials[J].Thermophysics and Aeromechanics,2007,14:211-221.
参考文献 62
BUSHNELL D M,HEFNER J N,ASH R L.Effect of compliant wall motion on turbulent boundary layers[J].Physics of Fluids,1977,20(10):S31-S48.
参考文献 63
郝翰林,樊益明,苏风民.基于转盘测阻法的天然乳胶涂层减阻特性研究[J].船舶工程,2021,43(1):108-149.HAO Hanlin,FAN Yinming,SU Fengmin.Study of drag reduction characteristics of natural latex coating based on rotating disc Test[J].Ship Engineering,2021,43(1):108-149.(in Chinese)
参考文献 64
LANG A W,JONES E M,AFROZ F.Separation control over a grooved surface inspired by dolphin skin[J].Bioinspiration & Biomimetics,2017,12(2):026005.
参考文献 65
洪正,叶正寅.二维有限长度柔性壁上 T-S 波演化的数值研究[J].北京航空航天大学学报,2022,48(7):1190-1199.HONG Zheng,YE Zhengyan.Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1190-1199.(in Chinese)
参考文献 66
MONHAMED G K.Compliant coatings for drag reduction[J].Progress in Aerospace Sciences,2002,38:77-99.
参考文献 67
李万平,杨新祥.柔性壁减阻的试验研究[J].水动力学研究与进展,1991(S1):108-112.LI Wanping,YANG Xinxiang.Experimental study ondrag reduction of flexible wall[J].Journal of Hydrodynamics,1991(S1):108-112.(in Chinese)
参考文献 68
孙卫红,刘波,晏欣.聚氨酯-丙烯酸酯弹性壁的减阻性能[J].高分子材料科学与工程,2017,33(9):59-64.SUN Weihong,LIU Bo,YAN Xin.Drag reduction properties of polyurethane-poly(acrylate)hybrid emulsions[J].Polymer Materials Science and Engineering,2017,33(9):59-64.(in Chinese)
参考文献 69
张庆利,李京伯.用主动柔顺壁运动控制边界层转捩[J].空气动力学学报,1999,7(3):333-338.ZHANG Qingli,LI Jingbo.Boundary layer transition is controlled by active smooth wall motion[J].Acta Aerodynamica Sinica,1999,7(3):333-338.(in Chinese)
参考文献 70
黄微波.水下航行器喷涂聚脲弹性涂层的制备及减阻性能的研究[D].青岛:中国海洋大学,2006.HUANG Weibo.Studies on the preparation of flexible spray polyurea coating and its drag-reducing properties of underwater vehicle[D].Qingdao:Ocean University of China,2006.(in Chinese)
参考文献 71
张祯华.以聚氨酯为基质的弹性仿生减阻材料的制备及减阻性能的研究[D].广州:华南理工大学,2012.ZHANG Zhenhua.The preparation and the drag-reduction properties of compliant and bionic drag-reduction materials using polyurethane as a matrix[D].Guangzhou:South China University of Technology,2012.(in Chinese)
参考文献 72
ZHANG J Z,REN S,MEI G H.Model reduction on inertial manifolds for N-S equations approached by multilevel finite element method[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(1):195-205.
参考文献 73
ZAHNG J Z,LIU Y,LEI P F,et al.Dynamic snap-through buckling analysis of shallow arches under impact load based on approximate inertial manifold[J].Dynamics of Continuous Discrete and Impulsive Systems Series B-Applications & Algorithms,2007,14:287-291.
参考文献 74
ZHANG J Z,LIU Y,FENG P H.Approximate inertial manifolds of burgers equation approached by nonlinear Galerkin’ s procedure and its application[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(12):4666-4670.
参考文献 75
ZHANG J Z,LIU Y,CHENG D M.Error estimate for the influence of model reduction of nonlinear dissipative autonomous dynamical system on the long-term behaviors[J].Journal of Applied Mathematics and Mechanics,2005,26(7):938-943.
参考文献 76
LI L C,LIU B,HAO H C,et al.Investigation of the drag reduction performance of bionic flexible coating[J].Physics of Fluids,2022,32(8):084103.
参考文献 77
ASHLEY B,CHRISTINE O,MARY C B.Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues[J].Journal of Mechanical Behavior of Biomedical Materials,2013,19:75-86.
参考文献 78
FUNK N,VERA M,SZEWCIW L J,et al.Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J].ACS Applied Materials & Interfaces,2015,7(10):5972-5983.
参考文献 79
RONG W T,ZHANG Z B,XU J K,et al.Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,622:126712.
参考文献 80
SUN Z Q,LIAO T,LI W X,et al.Fish-scale bio-inspired multifunctional ZnO nanostructures[J].NPG Asia Materials,2015,7(12):e232.
参考文献 81
BACHER E V,SMITH C R.A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[R].Boulder,CO,USA,AIAA,1985:548.
参考文献 82
TIAN G Z,FENG D L,FENG X M,et al.Thriving artificial underwater drag-reduction materials inspired from aquatic animals:progresses and challenges[J].RSC Advances,2021,11(6):3399-3428.
参考文献 83
MARIKO M,HIRAI,Y J,MORIYA H,et al.Biomimetic design inspired sharkskin denticles and modeling of diffuser for fluid control[J].Journal of Photopolymer Science and Technology,2018,31(1):133-138.
参考文献 84
LUO Y H,LU Y,LI J H,et al.Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications[J].Micron,2015,79:59-73.
参考文献 85
孙培培,李雯,胡文颖.仿生学在航空发动机领域的应用[J].航空动力,2018(5):12-15.SUN Peipei,LI Wen,HU Wenying.Application of bionics in aero engines[J].Aerospace Power,2018(5):12-15.(in Chinese)
参考文献 86
CHEN D K.Bionic surface research technology for micro gradient elastic drag reduction[D].Beijing:Beihang University,2022.
参考文献 87
SANDERS R,RUSHALL B,TOUSSAINT H,et al.Bodysuit yourself,but first think about it[J].Journal of Turbulence,2001,5:23-32.
参考文献 88
LIU C Z,MENG H,LU S C,et al.Design of nonsmooth groove tire bioinspired by shark-skin riblet structure[J].Applied Bionics and Biomechanics,2022:6025943.
目录contents

    摘要

    舰船、飞机等高速运动表面的高效减阻技术仍是一项重大挑战。水下减阻是鱼类等高速游动生物长期进化形成的优势功能策略,揭示水下高速游动鱼类表皮结构特征或材质特性与减阻功能机制的相互关系,可为解决高速运动表面高摩擦阻力问题提供可行参考方案。首先以鲨鱼皮盾鳞结构和海豚弹性表皮为典型生物原型,简要介绍表皮独特结构特征和弹性材质特性,对金枪鱼表皮拓扑覆瓦鱼鳞结构特征和法向多层弹性材质特性进行总结,并介绍其他鱼类表皮的独特结构特征,进而介绍以鱼类表皮独特结构特征或材质特性为生物原型的减阻表面的仿生制造、减阻特性及减阻机理研究现状。最后,对仿生减阻表面在工程和生活中的应用进行简要阐述。提出以鱼类表皮为生物原型的仿生减阻表面的研究现状和发展方向,填补仿鱼类表皮结构特征或材质特性减阻领域目前缺少综述文章来引领的空白,可为进一步深入分析鱼类优异的水动力性能提供借鉴,并为构筑新型减阻防污表面提供参考。

    Abstract

    Reducing energy consumption is consistently desirable, with the aim of avoiding aggravation of the global energy crisis. Creatures in nature have adapted to their surroundings as a result of biological evolution. Learning how nature creatures adapts to environmental challenges may help solve many challenges in engineering. Underwater drag reduction is a dominant functional strategy developed by the long-term evolution of high-speed swimming organisms such as fish, revealing the relationship between topography characteristics, material properties, and drag reduction functional mechanisms can provide a feasible reference scheme for solving the problem of high-friction resistance on high-moving surfaces. Based on this strategy, this review takes fish skin as a prototype, the unique structure characteristics of sharkskin and dolphin skin are briefly analyzed, before the topography characteristics and multilayered structure of tuna skin are revealed and summarized. The characterization results show that tuna skin has structural characteristics and mechanical properties that result from imbricated fish scales covered by a flexible epidermis layer and embedding in a flexible dermis layer. This structure could be one reason for tuna swimming faster than sharks and dolphins. As more topographical features of other fish skins have been discovered and characterized, some fish scales have been exhibited excellent drag reduction performance in varying conditions. The unique structure characteristics, material properties, and special function of fish skin can provide a useful source for scientific development, technological invention and creation, and engineering technological problems. Drag reduction surfaces inspired by these unique structures and material properties were fabricated using a variety of processing methods, and are summarized in this review. The drag reduction performance of different bionic surfaces differs due to various shapes which have been constructed on microscale or nanoscale surfaces, size dimensions, and material properties. Even so, the drag reduction mechanism of those bionic surfaces can be roughly divided into three categories. First, the drag reduction effect is brought about by the unique structure and its drag reduction mechanism is summarized as the structure effect. The unique structure has a direct influence on the characteristics of the near-wall flow field, such as the “water trapping” effect of the microcrescent array inspired by Ctenopharyngodon idelluse fish scales that can lower the velocity gradient and generate a fluid-lubrication film to reduce shear wall stress between solid and fluid interface. Second, the compliant mechanism is summarized in which the drag reduction effect is caused by a flexible or compliant surface. Typically, the compliant surface acts as a resilient energy-absorbing coating that can delay the boundary layer transitioning from laminar to turbulent flow. Finally, a composite mechanism type is proposed in which the drag reduction effect is brought by coupling of the flexible coating and the unique structure characteristics. The composite surface with unique structure coupling with functional coating not only has excellent drag reduction performance, but also has other useful functions such as antifouling and noise reduction. Those drag reduction mechanisms evolved in nature can provide new bionic drag reduction systems and provide inspiration for innovation to solve engineering problems. At the end of this review, the application of the bionic surfaces inspired by fish skin is briefly introduced. On this basis, the future development and application of bionic surface drag reduction technologies are prospected. Although has restriction development and application all sorts of factors, but with the continuous development of manufacturing technology and materials, infiltration and emergence of many scientific branches will become a trend in the field of bionic drag reduction. This review can serve as a foundation for an in-depth analysis of the hydrodynamic performance of fish as well as a new inspiration for drag reduction and antifouling.

    关键词

    仿生表面微观形貌仿生制造减阻机理

  • 0 前言

  • 《“十四五”海洋经济发展规划》指出,要协调推进海洋资源保护与开发,维护和拓展国家海洋权益,畅通陆海连接,增强海上实力,走依海富国、以海强国、人海和谐、合作共赢的发展道路,加快建设中国特色海洋强国[1]。我国是一个海洋大国,更是一个资源进出口大国,随着进出口贸易的不断增加,目前已经成为世界第一海运大国。我国进出口贸易中海运占 90%以上[2],发展海洋经济,建设海上“丝绸之路”,符合“海洋强国”的战略意义。海洋运输占全球运输能源消耗的 12%左右[3],每年消耗燃油约 2.7 亿 t [4]。舰船等海洋装备的能源消耗主要用于克服流体的摩擦阻力,经证实,舰船等海洋装备摩擦阻力占总阻力的 60%~80%[2],若能减小表面 10%的摩擦阻力,则在同等动力和航程下,可节省约 3.75%的能源消耗[5]。而且,舰船表面水下污损率高,而污损通常会导致摩擦阻力的大幅度增加。当污损率为 5%时,表面摩擦阻力相当于洁净表面的 2 倍,燃油消耗增加 10%;污损率为 10%时,燃油消耗增加 20%[6]。船舶运输在消耗燃油的同时,每年也排放出约 12 亿 t 二氧化碳,占全球排放量的 6%左右[4]。二氧化碳排放量过多加剧温室效应,导致全球变暖,冰川加速融化,海平面上升,地球自然环境和生态系统遭到严重破坏,直接影响人们生活环境和健康。此外,舰船等装备表面的摩擦阻力会严重影响推进效率,降低设备或功能涂层的使用性能和寿命。同时,表面摩擦阻力的增加会直接增大噪音,损害装备声纳信号的发射和接收,增大被敌军探测的机率,显著降低装备的隐身性和作战性能。减阻是降噪、增强隐身性的有效手段。例如,当潜艇的自噪声级降低 10 dB,则声纳探测距离提高 2~3 倍[7]。综上所述,发展高效、高可靠减阻技术具有重要现实意义。

  • 目前减阻方法从有无额外能源消耗分为主动减阻和被动减阻,如图1 所示[8]。主动减阻主要包括气泡减阻、聚合物减阻、壁面加热减阻、振动壁面减阻等,均需要外部机械能、电能或化学能的主动输入,因此具有能耗高 / 耗材适应性差、配套系统复杂、增重大且环境不友好等缺点。被动减阻主要包括非光滑表面减阻、弹性顺应性表面减阻、超疏水减阻等,无需外部额外能源的消耗,但适应雷诺数范围窄、选材严苛、耐久性差且大面积制备是个挑战。在此基础上,发展出复合减阻,突破单方法实现减阻目的的限制,可以达到 1+1>2 的减阻效果。

  • 图1 减阻方法及局限性

  • Fig.1 Methods of drag reduction and their limitations

  • 水下减阻是鱼类等高速游动生物长期进化形成的优势功能策略,师法自然,揭示水下高速游动生物体表结构特征 / 材质特征与减阻功能机制的相互关系,可为解决海军、飞行器等高速运动表面高摩擦阻力问题提供可行参考方案。鱼类所具有的优异动力学性能广泛受到科学家广泛关注和研究。因此,本文以鱼类表皮结构特征 / 材质特性为生物原型,进行了仿鱼类表皮表面减阻研究现状的综述,并对仿生表面减阻未来的发展方向进行了展望。

  • 1 表皮结构特征 / 材质特性

  • 1.1 鲨鱼盾鳞

  • 鲨鱼在海洋中最大游速可达 60 km / h,优异的水动力学性能为其掠食提供了必要条件。鲨鱼优异的水动力学性能不仅得益于流线纺锤体外形,还与表皮所覆盖的微米盾鳞结构有关。20 世纪 80 年代,德国科学家 REIF 和 DINSKELACKER 发现鲨鱼皮表面并非光滑,而是由许多沿身体纵向排列的脊状盾鳞所覆盖[9]。图2a 为台湾喉须鲨真皮层盾鳞结构 SEM 图,可以看出鲨鱼皮表面被许多微米盾鳞结构所覆盖。图2b 为不同种类鲨鱼真皮层上的盾鳞结构,其结构特征差异明显,主要区别是组成单个盾鳞脊状肋条的数量存在明显差异。鲨鱼盾鳞结构特征不仅与鲨鱼种类相关,而且在身体不同部位也存在明显区别[10],如图2c 所示。

  • 图2 鲨鱼皮盾鳞结构和形貌特征[10] (a)台湾喉须鲨盾鳞结构 SEM 图 (b)不同种类鲨鱼盾鳞形貌 (c)灰鲸鲨身体不同部位盾鳞 SEM 图

  • Fig.2 Topography of denticle on sharkskin[10]. (a) SEM image of denticle on Taiwan saddled carpet shark skin; (b) Structure of shield scales in different species of shark; (c) SEM image of denticles on different locations of the Mako shark.

  • 1.2 海豚弹性表皮

  • 海豚是一种与鲸类密切相关的水生哺乳动物,在大陆架附近海域中经常出现。海豚是海洋中游速最快的动物之一,最快游速可达 50 km / h。1936 年,英国动物学家 JAMES G 就海豚在运动过程中所消耗的能量和 1∶1 刚性海豚模型进行了对比[11]。结果表明,海豚如果在湍流中保持一定速度运动一定时间,则海豚的肌肉组织要比其他哺乳动物强壮 7 倍,但实际并非如此,该结论被称为 Gray 悖论(Gray’ Paradox)[12]。海豚的皮肤组织和水生齿鲸亚目哺乳动物一样,从外到内可以分为两层:表皮层和真皮层[13-14],如图3a 所示。其他鲸类动物的表皮构造如图3b 所示。由于海豚皮具有优异的力学性能特征,在运动时会在流体剪切作用下产生展向褶皱,从而影响边界层转捩。此外,在齿鲸亚目其他一些生物体表表面也发现了展向褶皱[15],如图3c 所示。

  • 图3 海豚和常见鲸类体表结构示意图[12-15] (a)宽吻海豚表皮截面结构示意图 (b)鲸类动物的角质层结构示意图 (c)齿鲸亚目生物表皮三维结构

  • Fig.3 Schematic diagram of body surface of dolphin skin and common cetaceans[12-15]. (a) Bottlenose dolphin skin structure; (b) Stratum corneum of cetaceans; (c) Three-dimensional structure of toothed cetaceans skin.

  • 1.3 金枪鱼表皮形貌特征

  • 金枪鱼具有非常完美的纺锤体外形和优异的动力学性能,是海洋中游速最快的远洋鱼类之一。低速时速度在 30~75 km / h,高速可达 160 km / h,比海洋中鲨鱼和海豚的游速都要快。CHEN 等[16]使用电镜对金枪鱼表皮中背处微观形貌进行了表征。结果表明,金枪鱼表皮表面并不像鲨鱼一样存在特殊的微米盾鳞,其鳞片大而圆(最小鳞片尺度已达毫米级),属圆鳞。在鱼鳞交叠处,最外层表皮和下层鱼鳞在叠加作用下形成不规则的微米褶皱,褶皱的分布主要是沿着下层鱼鳞后区摆线边缘分布,如图4a 所示。而在表皮覆盖的鱼鳞后区,表面呈现出较低的表面粗糙度(图4b)。为了揭示金枪鱼表皮其他位置处是否具有特殊微纳结构,CHEN 等[16]使用聚焦离子束扫描电子显微镜(FIB-SEM)对不同位置进行观察和表征,观察结果如图4c 所示。

  • 图4 金枪鱼表皮 SEM 图[16] (a)鱼鳞交叠处 (b)鱼鳞后区 (c)不同位置 SEM 图

  • Fig.4 SEM images of albacore tuna skin[16]. (a) Overlap of fish scale; (b) Posterior region; (c) SEM images on different locations.

  • 由图4c 可以看出,除鱼鳃(Location 2)以外,在金枪鱼表皮其他位置处无特殊微纳结构,表面较为光滑。在鱼鳃处,表面粗糙度明显增加,表面呈现不规则凹坑形貌。位置 3(Location 3)处的圆弧为两片鱼鳞叠加过渡结构特征。

  • 此外,CHEN 等[16]使用 Micro-CT 和超景深光学显微镜揭示了金枪鱼表皮宏观形貌特征,如图5 所示。图5a 解剖试验表明金枪鱼表皮鱼鳞层被一层表皮所覆盖。Micro-CT 扫描结果可知,金枪鱼表皮的鱼鳞结构耦合表皮层后并不光滑,而是呈现出拓扑覆瓦鱼鳞的三维轮廓,如图5b 和 5c 所示。图5d 为使用超景深显微镜对蓝色虚线矩形框范围内的表皮形貌进行观察的结果,鱼鳞呈拓扑覆瓦规则排列,其三维形貌如图5e 所示。为了对鱼鳞大小、倾斜角度进行定量阐释,在顺流向和展向方向上分别创建了截面,并得到了鱼鳞在顺流向和展向方向上的高度变化趋势,如图5f 所示。由图5f 截面轮廓图可知,单个鱼鳞后区的顺流向长度大约在 L=2.5 mm,展向宽度大约为W=3.5 mm,最大高度为H=600 μm,其鱼鳞倾角为 arctan(H / L)=arctan(600 / 2 500)≈13°。由此可以看出,高度沿着顺流向方向逐渐增加,在到达鱼鳞后区摆线边缘的中间位置处达到最大值。

  • 图5 金枪鱼表皮形貌特征[16] (a)金枪鱼表皮层和鱼鳞层 (b)Micro-CT—I (c)Micro-CT—II (d)金枪鱼表皮鱼鳞 (e)金枪鱼表皮三维形貌 (f)单个鱼鳞顺流向和展向方向上的高度变化趋势

  • Fig.5 Morphology feature of tuna skin[16]. (a) Epidermis layer and fish scale layer; (b) , (c) Micro-CT images of tuna fish skin; (d) Mode of fish scale; (e) Three-dimensional morphology of tuna skin; (f) Variation trend of height along streamwise and spanwise direction.

  • 为了探究鱼鳞表面微观特征,CHEN 等[17]使用电子显微镜对鱼鳞不同区域微观形貌进行了微观表征,如图6 所示。图6a 给出了鱼鳞不同的 4 个分区,分别为后区,左、右两侧区和前区,从前区到后区为顺流向方向(水流方向)。鱼鳞后区前缘具有不规则鳞沟,如图6b 所示。在鱼鳞后区存在不规则凹坑结构,如图6c 所示。而在 2 个侧区和前区,出现了较为规则的同心不连续脊状沟槽,如图6d~6f所示。

  • 图6 鱼鳞不同分区和 SEM 表征结果[17] (a)鱼鳞不同分区 (b)鱼鳞后区前缘鳞沟 (c)后区 SEM (d)左侧区 SEM (e)前区 SEM (f)右侧区 SEM

  • Fig.6 Schematic of different region and morphology of the fish scale[17]. (a) Fresh fish scale with four regions; (b) Serrated pattern on anterior of the posterior region; (c) Pit structure increases the surface roughness; (d) (f) Scanning electron micrographs of the tuna scale exhibit discontinuous circular ridges on different regions.

  • 在此基础上,CHEN 等[17]揭示了金枪鱼表皮多层结构特征,如图7 所示。图7a 可以看出金枪鱼表皮排列规则的拓扑鱼鳞结构,且被一层黑色表皮所覆盖(图7b)。解剖试验得到了金枪鱼表皮的 4 层结构,如图7c 所示。为了更加直观揭示金枪鱼表皮的多层结构,通过 Hematoxylin-Eosin Staining(HE)染色—切片揭示了金枪鱼表皮由外到内的四层结构:① 表皮层、② 鱼鳞层、③ 真皮层、 ④ 胶原纤维层和所附着的肌肉组织,如图7d 所示。对胶原纤维层进行进一步解剖和微观观察发现,纤维层由 3 层组成且每层呈规则螺旋排列,各层之前的旋转角度依次为~31°、~25°,如图7e 和 7f 所示。图7g 为金枪鱼表皮法向分层结构示意图。

  • 图7 金枪鱼表皮多层结构[17] (a)拓扑覆瓦式排列鱼鳞 (b)鱼鳞层和表皮层 (c)金枪鱼表皮分层解剖图 (d)HE 染色切片横截面光学显微图 (e)胶原纤维层 (f)胶原纤维螺旋排列示意图 (g)金枪鱼表皮法向分层结构示意图

  • Fig.7 Multilayered structures of tuna skin[17]. (a) Quasi-periodic pattern comprising alternate rows of overlapping scale; (b) Dual coupled structure showing fish-scale covered with the epidermis layer; (c) Four-layer hierarchical structure of the tuna skin; (d) Slice scanned cross-section after hematoxylin-eosin staining showing the interlayer structure of the tuna skin; (e) Collagenous fiber layers; (f) Schematic of the collagenous fiber layer; (g) Schematic of the multilayered structure of tuna skin.

  • 1.4 其他鱼类表皮形貌特征

  • 师法自然,随着鱼类优异水动力学性能逐渐被科学家广泛关注和研究,其他鱼类表皮结构和形貌特征逐渐被揭示[18-26],如图8 所示。由图8 可以看出,不同鱼类表皮具有不同结构和形貌特征。如草鱼鱼鳞表面具有类似“新月形”的凸起 (图8a),欧洲鲈鱼表面呈现出拓扑覆瓦鱼鳞结构排列(图8b),鲫鱼鱼鳞表面呈现不规则凹坑结构(图8c);泥鳅表皮覆瓦鱼鳞结构(图8d),河鲀表面刺状结构(图8e),旗鱼表面三角倒刺结构(图8f),剑鱼表面并无特殊规则微纳结构,略显粗糙(图8g);其他鱼类表皮的结构和形貌特征如图8h 所示。可以看出,多数鱼类为了保护自己不受伤害已经进化出各种形状的鱼鳞结构,其中一些鱼鳞结构已经表现出优异的减阻效果,见表1。

  • 由表1 可以看出,除鲨鱼盾鳞、草鱼鱼鳞表面“新月形”凸起和鲫鱼鱼鳞表面凹坑结构尺寸在微米级以外,其他鱼类表皮鱼鳞最小尺寸已到达毫米级,且鱼类表皮不同结构特征在不同条件下得到的减阻率存在明显差异,而在实际应用过程中,表1 中鱼类表皮所具有的独特结构特征或材质特性将为设计合理的仿生表面提供可行参考。

  • 图8 其他鱼类表皮形貌特征[18-26] (a)草鱼 (b)欧洲鲈鱼 (c)鲫鱼 (d)泥鳅 (e)河鲀 (f)旗鱼 (g)剑鱼 (h)其他鱼类

  • Fig.8 Topography features of fish skin[18-26]. (a) 3D microscope image of the apical part of fish scale for Ctenopharyngodonidellu; (b) European bass; (c) apical part of Carassius auratus fish scales; (d) Dark-field OCT images of the Misgurnusanguillicaudatus skin; (e) Enlarged view of part of spines zone of adult puffer (Takifuguflavidus) skin; (f) Sailfish skin; (g) Swordfish skin; (h) Surface topography diversity on fish skin.

  • 表1 不同鱼类表皮结构和形貌特征及减阻效果[18-2527-30]

  • Table1 Torphological characteristics of the fish skin for different fishes and their drag reduction effects

  • 2 仿生制造

  • 2.1 仿鲨鱼盾鳞沟槽非光滑表面

  • 自然界生物体表独特结构为解决许多复杂工程问题提供了不竭源泉。以鱼类表皮独特结构特征作为生物原型进行仿生表面的设计及精准制造,可为解决高速运动表面高摩擦阻力问题提供可行参考方案。因鲨鱼盾鳞三维空间结构复杂导致难以进行大面积精准制备,又因盾鳞结构在顺流向方向上呈肋条脊状结构,因此在最初进行仿生设计时常把盾鳞结构简化成顺流向沟槽。常见及常用沟槽有 V-形、叶片形、锯齿形、扇形等,如图9a~9d 所示。对于对称 V-形沟槽,通常当量纲一间距和量纲一高度 s ≤30 和 h≤25 时,具有减阻效果[31],如图9e 所示。对于叶片形沟槽,在 t / s=0.04 时,减阻率和 h / s 比值有密切关系[32],如图9f 所示。对于锯齿形沟槽,其减阻率(Drag reduction rate,DR)和顶角角度(α) 及 h / s 有关[32],如图9g 所示。而对于扇形沟槽,影响减阻率的主要参数为 h / s 比值:减阻率随着 h / s 的比值逐渐增大,达到相同减阻率时的 s 越小[32],如图9h 所示。对比不同截面形状肋条减阻率可以发现,仿鲨鱼盾鳞沟槽非光滑表面的减阻率随无量纲间距 s的增大呈现先增后减的趋势,通常当 s为 5~28 时 DR 大于 0,即沟槽有减阻效果;当 s为 10~25 时 DR 大于 5%,即沟槽处于有效减阻状态; 当 s为 15~18 时 DR 接近最大;当 s大于某一值后 DR 小于 0,沟槽表面起增阻作用。

  • 图9 常见减阻沟槽及减阻特性[32] (a)V-形 (b)叶片形 (c)锯齿形 (d)扇形 (e)V-型减阻特性 (f)叶片型沟槽减阻特性 (g)锯齿形沟槽减阻特性 (h)扇形沟槽减阻特性

  • Fig.9 Common riblet and drag reduction characteristics[32]. (a) V-shape; (b) Blade shape; (c) Sawtooth shape; (d) Fan shaped; (e) - (h) Drag reduction characteristics of different riblet.

  • 仿鲨鱼盾鳞沟槽非光滑表面比较有代表性的制造方法有热压印[33-34]、紫外光固化成型[35-36]、3D 打印[37]、机加工[38]、复制[39]、激光刻蚀[40]、光刻及多工艺协同[41],如图10 所示。张德远等[42]使用真空热压印法制备出逼真仿鲨鱼皮,并在水洞中进行了测试,取得了 8.25%的减阻效果。PETER 等[43]使用紫外光固化方法在风机叶片上滚压制备出仿鲨鱼盾鳞沟槽表面,用以提高风力发电机发电效率。CUI 等[44]使用高精度 3D 打印机打印出具有多级多尺度的微米沟槽结构,在流速为 0.5 m / s 时取得了 16.8%的减阻效果。此外,微机械加工方法也常用以加工仿鲨鱼盾鳞沟槽表面,如国内的程凯、丁辉等使用机械加工方法加工出 V 形沟槽结构,并在风洞试验中得到了 9.56%的减阻率[45]。CHEN 等[46]使用纳秒脉冲激光烧蚀—化学蚀刻(LACE)工艺在 316L 不锈钢表面制备出具有取向可控、周期可调、高度可控制的超疏水表面织构表面,试验结果表面微通道内的范宁摩擦因数降低了 29.83%。作为精度最高的一种工艺之一,光刻技术也被用来制备仿鲨鱼盾鳞沟槽非光滑表面。ZHOU 等[47]使用 3 层混合掩模光刻法制备出多层肋条结构,封闭通道测试结果表明减阻率较之前提高了 52%,取得了 16.67%的减阻率。由此可以看出,不同制造方法和工艺已成功制备出不同形状的沟槽表面,但由于真实盾鳞结构的复杂性,难以实现大面积制造,而多工艺和多材料交叉融合将是未来发展的主要趋势[48]

  • 图10 仿鲨鱼沟槽非光滑表面制造方法[42-47] (a)压印 (b)UV 固化成型 (c)3D 打印 (d)机加工 (e)复制成型 (f)激光刻蚀 (g)光刻 (h)多工艺协同

  • Fig.10 Manufacturing methods for non-smooth surfaces inspired by sharkskin[42-47]. (a) Impressing method; (b) UV curing molding; (c) 3D printing; (d) Machining method; (e) Laser ablation; (g) Photoetching; (h) Multi-process collaboration.

  • Sharklet AFTM是仿鲨鱼盾鳞沟槽非光滑表面最具典型仿生表面之一,由一条最长的肋条和三组对称肋条组成,其长度分别为 16 μm、12 μm、8 μm, 4 μm,肋条高度在 1~40 μm 范围内变化[49-51],如图11a 所示。Sharklet AFTM最初是 BRENNAN 等[52] 在美国海军的资助下使用光刻翻模方法进行了制备并用于防生物附着。近年来,Sharklet AFTM或类似结构的减阻性能也逐渐引起科学家的关注。MA 等[53]使用墨水直写 3D 打印(Direct ink writing)制备出宏观类 Sharklet 结构(图11b)并验证了减阻防污性能。结果表明,在流速为 0.06 m / s 时获得了 18.16%的减阻率,且可有效抑制污垢在表面的扩散。 DAI 等[54]使用 3D 打印直接打印出类 Sharklet 的宏观结构表面(图11c),并使用流变仪进行了减阻性能测试,该表面可使粘性阻力降低 9%。KIM 等[35] 使用自上而下的制造方法,在梯度肋条表面复合纳米结构(图11d)并可明显减少细菌附着。ELORA 等[55]通过 3D 打印制备出九种不同弹性模量的多级结构(图11e),并研究了结构形貌、化学、力学特性和海水参数对海洋微生物和大型生物沉降的影响规律。JO 等[56]利用光可重构偶氮聚合物方法制备出低阻力仿鲨盾鳞结构,如图11f 所示。ZHOU 等[47] 采用三层混合掩模光刻法制备了多级肋条结构(图11g),风洞测试结果表明最大减阻率可达 16.67%,比此前报道的减阻率提高了 52%。由此可以看出,随着制造技术不断发展和精度的不断提高,多尺度、多功能化的仿鲨鱼盾鳞沟槽表面已成为一种发展趋势。

  • 图11 仿鲨鱼盾鳞多级多尺度结构[4753-56] (a)Sharklet AFTM (b)类 Sharklet 结构 (c)类 Sharklet 结构 (d)微纳复合沟槽 (e)多级多尺度类 Sharklet 结构 (f)仿鲨鱼盾鳞结构 (g)多级肋条结构

  • Fig.11 Multi-structural inspired by sharkskin[47, 53-56]. (a) Sharklet AFTM; (b) Macrostructure imitating sharkskin; (c) Shark-skin-like surface; (d) Hierarchical structures with nanostructures on micro-riblets; (e) Sharklet-inspired micropatterned; (f) Hierarchical structures; (g) Bionic denticles; (h) Multilayer hierarchical riblets.

  • 2.2 仿海豚皮表面

  • 1946 年,KRAMER 在穿越大西洋时,发现了海豚的非凡水动力学性能而倍受启发,认为海豚的弹性皮肤可能会影响边界层的稳定性和过渡特性[57],并在加利福尼亚州的长滩港(Long Beach Harbor)进行了最初的试验。KRAMER 使用摩托艇拖着表面覆有弹性涂层的刚性海豚模型进行了试验,结果表明该仿海豚皮弹性涂层可达 50%的减阻率。KRAMER 使用的经典弹性涂层是由天然乳胶为材料制作而成的弹性基底、一层外膜和支柱组成,如图12a 所示。基底和外膜之间的空腔内充满高黏度阻尼液,如硅油。在 KRAMER 看来,该仿海豚皮弹性涂层可以阻尼 Tollmien-Schlichting(T-S) 波的非线性增长,延迟边界层从层流到湍流的转捩,从而达到减阻效果[58]。在 KRAMER 弹性涂层之后,许多研究学者研究了多种不同类型弹性表面的减阻效果。CHOI 等[59]使用橡胶制备成了弹性表面并在湍流流场中测试了减阻效果,试验结果表明,在整个测试速度范围内减阻率最高达到 7%。 ENDO 等[60]使用直接数值模拟方法研究了弹性平板在湍流中的减阻效果,研究发现在顺流向 1200 粘性单位上出现了一个典型的波,并得到了 2%~3%的减阻率。KULIK 等[61]也使用了直接数值模拟方法对弹性表面进行了仿真,仿真结果不仅得到了 17%的减阻率,而且还发现弹性表面还具有降低流动噪声的效果。BUSHNELL 等[62]对弹性壁面减阻的机理进行了研究,发现弹性壁面可以吸收近壁面猝发产生的脉动压力,降低猝发频率,从而达到减阻效果。更多文献同样证明了仿海豚皮弹性壁面具有优异的减阻效果[63-64]。为了对 KRAMER 以及后人所研究的类似涂层进行统一,将此类涂层统称为弹性顺应性涂层(Compliant coating),如图12 所示。基于这些模型,可将其分为基于表面和基于体积的两种类型[1365-66]。其中,为了便于计算,将基于表面的模型简化为一维模型,而基于体积的模型是在 NAVIER 方程的基础上,由各向异性或各向同性的单层或多层涂层构成,此类模型更加符合实际情况。

  • 图12 仿海豚皮弹性顺应性涂层[1365-66] (a)Kramer’s 涂层 (b)基于平面的平板-弹簧模型 (c)Grosskreutz’ s 各向异性顺应性涂层 (d)均质层涂层 (e)基于表面的各向异性涂层 (f)双层顺应性涂层 (g)具有各向异性取向性纤维的顺应性涂层

  • Fig.12 Compliant coatings based on the surface and volume[13, 65-66]. (a) Kramer’ s coating; (b) Flat-spring model based on the smooth surface; (c) Grosskreutz’s anisotropy coating; (d) Homosphere coating; (e) Anisotropy coating based on surface; (f) Double-deck coating; (g) Anisotropic coating with fibers.

  • 国内对于弹性壁面减阻的研究起步相对较晚, 1991 年,李万平等[67]使用硅橡胶、硅油和聚氨酯制作了弹性壁面,并在华中理工大学的水池进行了试验,试验结果表明,使用了弹性壁面的平板模型最高减阻率达到了 15.7%。孙伟红等[68]使用种子乳液聚合法和物理共混交联法制备了聚氨酯—聚丙烯酸乙酯(PU / PEA)乳液和聚氨酯—聚丙烯酸丁酯 (PU / PBA)乳液弹性壁,水洞试验表明,当流速为 3 m / s 时该弹性壁面最高减阻率可达 8.8%。南京航空航天大学的张庆利等[69]发现弹性壁面可以有效的延迟边界层转捩。中国海洋大学的黄微波等[70]在水下航行器表面利用喷涂技术制作了聚氨酯弹性涂层,并研究了减阻性能。华南理工大学的张祯华等[71]研究了聚氨酯弹性涂层的制备以及减阻性能,最大减阻率达到了 24.9%。近年来,张家忠等[72-75] 提出了一种带有弹性壁面的机翼模型,并使用流— 固耦合对其进行了研究,试验结果表明在低雷诺数下具有优异的增升减阻效果。中国科学院宁波材料技术与工程研究所 LI 等[76]使用喷涂法将 PDMS 与不同比例的固化剂混合溶液喷涂在铝板上,制备出不同弹性模量的柔弹性涂层,PDMS 和固化剂比例为 10∶1.5 的弹性表面在转速为 50 r / min 时达到了最大 21.6%的减阻率。

  • 目前,基于海豚表面的弹性涂层技术主要集中在弹性壁面的制作上,而基于 KRAMER 的顺应性壁面虽然在多种环境下得到成功应用,但是基于表面和体积的弹性顺应性涂层技术在流体介质为水的情况下并不常见。

  • 2.3 仿其他类表皮表面

  • 以其他鱼类表皮为灵感的仿生表面主要集中在两方面:以鱼鳞为原型的仿鱼鳞表面和以鱼类表皮结构与弹性材质耦合特征为原型的仿生耦合表面,如图13 所示。如前所述,一些鱼鳞已表现出优异的减阻效果,为减少固—液界面摩擦阻力提供了创新灵感。ASHLEY 等[77]以大西洋鲑鱼鳞片为原型,利用计算机建模结合 3D 打印技术制备出仿鱼鳞覆瓦结构表面,并研究了力学性能(图13a)。FUNK 等[78]通过设计和组件制造制备出一种人造鱼皮,由低模量弹性网或“真皮层”组成 (图13b),可容纳刚性的塑料鳞片,具有灵活的变形能力以适应外界环境变化。LAUDER 等[40]使用激光刻蚀在二维金属薄片上制备出了不同形状的仿鱼鳞表面(图13c),并研究了仿鱼鳞表面的动力学性能。结果表明,仿鱼鳞纹理结构会改变前缘涡和表面上的流动模式,增强推力,此外还可形成剪切层从而影响边界层状态。 RONG 等[79]利用纳秒激光烧蚀技术制备出仿鱼鳞非对称各向异性超疏水 / 亲水表面(图13d),在流速为 4.448 m /s 时取得了 40%的减阻效果。WANG 等[30]同样使用激光刻蚀在铝合金表面上制备出仿美国红鱼鱼鳞的超疏水表面(图13e),并在层流流动状态下验证了该表面的减阻效果(4.814%)。SUN 等[80]以亚洲龙鱼鳞片微观结构作为原型,对氧化锌(ZnO)进行改性,制备出多功能 ZnO 纳米涂层(图13f),其微观形貌与亚洲龙鱼鳞片摆线相似,具有可调的光折射和反射性能。CHEN 等[16]以金枪鱼表皮覆瓦鱼鳞结构特征和弹性表皮层材质特性为生物原型,使用 3D 打印技术打印出拓扑覆瓦鱼鳞结构,并使用喷涂工艺将聚氨酯喷涂在结构表面上从而制备出仿生耦合非光滑表面(图13g),循环水洞试验结果表明,在流速为 2.5 m /s 时得到了 7.22%的减阻率。DOU 等[19]以鲫鱼鱼鳞表面的凹坑结构为仿生对象,使用喷涂工艺制备出仿鲫鱼鱼鳞凹坑结构仿生表面(图13h),并在高速水洞中进行了测试。FENG 等[24]使用复模和烧结工艺相结合的方法制备出仿河鲀刺状结构耦合弹性涂层表面(图13i),并得到了最大 17.5%的减阻效果。河鲀表面的刺状结构同样引起了研究者的广泛关注,ZHOU 等[22]首先对河鲀刺状结构进行了表征,通过仿真分析了刺状结构对流场的影响规律。之后,FAN 等[23]通过 3D 打印制备出仿河鲀刺状结构并利用粒子图像测速仪(PIV)技术研究了仿生表面湍流边界层内的流场特征。为了揭示河鲀刺状结构耦合弹性涂层对减阻的影响规律,FENG 等[24]使用烧结复制工艺制备出锥形突起与弹性涂层耦合的仿生表面,并在湍流中研究了减阻特性。

  • 图13 以鱼类表皮为原型的仿生表面[164077-80] (a)仿大西洋鲑鱼鱼鳞表面 (b)仿红鲻鱼人造鱼皮 (c)不同形状的鱼鳞表面 (d)非对称各向异性超疏水 / 亲水表面 (e)仿红鱼鱼鳞超疏水表面 (f)仿亚洲龙鱼鳞结构的多功能 ZnO 纳米涂层 (g)仿金枪鱼表皮鱼鳞耦合弹性涂层表面 (h)仿鲫鱼鱼鳞凹坑表面 (i)仿河鲀刺状结构表面

  • Fig.13 Bionic surfaces inspired by fish skin[16, 40, 77-80]. (a) Bionic surface inspired by Atlantic salmon skin; (b) Synthetic fish skin inspired by Mullussurmuletus; (c) Bionic fish scales; (d) Anisotropic superhydrophobic / hydrophilic surface; (e) Bionic superhydrophobic inspired by Sciaenops ocellatus; (f) Fish-scale bio-inspired nanostructured coatings; (g) Dual-coupling drag reductionsurface inspired by tuna skin; (h) Bionic surface inspired by Carassius auratus; (i) Coupled bionic drag-reducing surface inspired from Pufferfish skin.

  • 综上所述可以发现,鱼类表皮独特的结构特征或材质特性为新型减阻技术提供了源源不断的创新灵感。随着制造技术和新型材料的不断发展,结构耦合功能材料表面减阻技术将会得到进一步探索和发展。

  • 3 减阻机理

  • 3.1 仿鲨鱼盾鳞非光滑表面减阻机理

  • 仿鲨鱼盾鳞非光滑表面减阻率和无量纲间距(s +)和宽度(h+)有直接关系,计算方法如式(1)、 (2)所示[45]

  • s+=suvCf2
    (1)
  • h+=huvCf2
    (2)
  • 式中,sh 分别为肋条间距和高度,u 为相对速度、υ 为介质的运动黏度,Cf 为摩阻系数。关于仿鲨鱼盾鳞沟槽非光滑表面的减阻机理,有两种主流理论: “突出高度”论[81]和“第二涡群”论[82]。为了形象说明仿鲨鱼沟槽非光滑表面的减阻机理,图14a 首先给出了光滑表面的平板边界层,边界层从 x=0 处开始发展,其平均速度小于来流速度 U;且平板边界层由粘性底层、缓冲层、对数附面层和尾流层组成。仿鲨鱼盾鳞沟槽非光滑表面减阻的直接原因是漩涡的存在增加了粘性底层的厚度,使得流动趋于稳定,抑制了动量交换。对于层流边界层,有效的突出高度(h)被定义为表观原点到肋条尖端的距离,以确定肋条尖端突出到边界层的距离,如图14b 所示。在横向流动中,表观原点比纵向流动更靠近肋尖。“第二涡群”论认为肋条脊面形成的漩涡起到非常重要的作用,高速度漩涡分布在肋条的顶部,从而导致这一部分区域承受着高剪切应力,而低剪切应力产生在肋条的谷底。在沟槽的作用下,大涡分裂为次级漩涡,从而进入沟槽谷底,形成的这种二次涡可以有效削弱动量交换的能力和低速喷射流。另外,形成的漩涡可以看作是一种“滚动轴承”,其作用是将流体和沟槽表面的滑动摩擦转变为滚动摩擦。漩涡在沟槽谷底的嵌入使得流体在通过肋条表面时产生部分滑移,漩涡的存在稳定边界层中也发挥了作用,如图14c 所示。

  • 图14 仿鲨鱼盾鳞非光滑表面减阻机理示意图 (a)平板边界层示意图 (b)“突出高度”论 (c)“第二涡群”论

  • Fig.14 Drag reduction mechanism of riblet. (a) Boundary layer of flat surface; (b) Protrusion height theory; (c) Second vortex group theory.

  • 3.2 仿海豚皮弹性表面减阻机理

  • 最早的仿海豚皮弹性涂层由 KRAMER 设计,并于1946年在Long Beach Harbor进行了减阻测试。结果表明,弹性涂层可以抑制 Tollmien-Schlichting (T-S)波的非线性增长,延缓层流边界层向湍流边界层的转捩,从而减小固—液间的摩擦阻力。为了对仿海豚弹性顺应性表面进行定性研究,VV[14]建立了仿海豚弹性表面力学模型并推导出模型的控制微分方程(式 3),如图15 所示。

  • T1+T22εyx2-M1-M22εyt2-ηεyt-E1'+E2'+E3'εy=P-σ
    (3)
  • 式中,Tn 对应各层张力大小,M 是振动的质量,η 是皮肤层的黏度或阻尼,E 是各层弹性模量,P 是作用于皮肤表面的力,σ是表面对力的响应,由增加的质量的大小决定,εy 是垂直方向上的弹性应变,x 为纵坐标,t 是时间。

  • 图15 膜(1,2)和复合材料(1~4)弹性表面的力学模型 1. 外膜 2. 位于其下的弹性体 3. 内部张力的第二层 4. 弹性基底 5.基底

  • Fig.15 Mechanical model of the membrane (1, 2) and composite (1-4) elastic surfaces.1 is an external membrane, 2 is an elastomer situated under it, 3 is the second layer of the internal tension, 4 is an elastic substrate, and 5 is the base.

  • 3.3 仿其他鱼类非光滑表面减阻机理

  • 研究学者以图8 所示其他鱼类表皮结构特征或材质特性作为生物原型进行了仿生表面的制备,并在不同测试条件下取得了减阻效果。草鱼鳞片表面 “新月形”结构可以形成“捕水效应”及流体润滑膜,从而有效减小表面摩擦阻力。动力学有限元软件分析表明,与光滑表面相比,在流速为 0.66 m / s 时,仿生表面最大减阻率为 3.014%[18]。DOU 等[19]根据鲫鱼鱼鳞表面凹坑结构使用喷涂工艺制备出超疏水表面,并在高速循环水洞中进行了减阻性能测试,结果表明在流速为 13.1 m / s 时,减阻率达到了 10%。仿欧洲鲈鱼拓扑覆瓦式鱼鳞表面的仿真分析表明,在靠近拓扑覆瓦鱼鳞表面的附面层内产生了规则排列、顺流向的低速和高速条纹,最大速度差约为 9%。低速条纹形成在鳞片中心区域,高速条纹形成在鳞片重叠区域,其低速—高速条纹模式和数量与拓扑覆瓦结构的排列方式和大小有关。研究者认为,仿生拓扑鱼鳞结构可延迟层流边界层到湍流边界层的转捩,增加动量边界层厚度,从而减少表面摩擦阻力[20]。SEO 等[21]对泥鳅表面形态及黏液进行了分析,揭示了对泥鳅黏液层分泌黏液减少皮肤摩擦阻力的功能形态和机理。随着河鲀体表刺状结构被揭示,研究人员首先通过三维建模得到了河鲀表面的刺状结构,并对其进行了流场分析。结果表明,与光滑表面相比,刺状单元结构非光滑表面能有效降低壁面剪切力和雷诺应力,并出现“爬升涡旋”,在速度为 5 m / s 时得到了 12.94%的减阻率[22]。之后,FAN 等[23]使用 3D 打印技术制备出仿河鲀刺状结构,并在流道中测试了减阻效果,最大减阻率达 11%。为了揭示河鲀刺状结构与弹性涂层耦合后对减阻的影响规律,FENG 等[24]使用烧结复制工艺制备出锥形突起与弹性涂层耦合的仿生表面,并在湍流试验中获得了最大 17.5%的减阻率。仿生耦合表面优异的减阻效果得益于锥形结构附近形成的大量低能量小尺度涡旋,从而有效削弱扰动和动量交换。作为海洋游速最快的鱼类之一, JEON 等[25]对旗鱼和剑鱼 1∶1 模型进行了风洞测试,但并未得到减阻效果。为了对不同鱼类的减阻机理进行直观比较和阐释,表2 总结了不同鱼类的减阻机理。

  • 表2 不同鱼类的减阻机理[1618-22283048]

  • Table2 Drag reduction mechanism of different fish skins[16, 18-22, 28, 30, 48]

  • 综上所述可以看出,由鱼类表皮结构特征或弹性材质特性作为生物原型所制备出的仿生表面减阻效果和机理各不相同,减阻机理并未统一。但其共性特征是鱼鳞嵌入在弹性真皮层中,从而表现出结构与弹性材质的耦合特征,建立由结构+弹性材质仿生耦合表面协同作用的减阻规律,揭示协同减阻机制对进一步深入研究鱼类所具有的优异动力学性能具有重要推动作用。

  • 4 仿鲨鱼非光滑表面的应用

  • 仿鱼类表皮结构 / 材质减阻表面在工程和生活领域已经展现出巨大的应用前景。应用最为广泛和为人熟知的是仿鲨鱼盾鳞沟槽非光滑表面,如图16。在航天和航空领域,利用精密切削技术在叶片表面制备出了“Riblet”结构,可改善叶片对流体运动的控制效果[83]。法国空客将肋条薄膜贴敷在 A320 表面,经过 3 年的飞行试验,每架飞机的年油耗减少了 350 t[84-85]。2022 年,德国汉莎航空集团研究开发了一种新型涂层-AeroShark,并将其应用在汉莎货运公司拥有的 777F 货机表面。据统计,以整个机队 10 架飞机计算,每年可节省约 3 700 t 燃料,可减少 11 700 t 碳排放,相当于从法兰克福飞往上海的 48 个全货运航班[86]。在体育竞技领域,仿鲨鱼皮沟槽表面也有广泛的应用,美国队在 1984 年洛杉矶奥运会和 1987 年美洲杯帆船赛上将美国宇航局开发的鲨鱼条纹薄膜贴附在划艇和帆船表面,取得了优异的成绩。由世界著名泳衣制造商澳大利亚 Speedo 制造的著名泳衣“Fast Skin”,可以减少人体周围 4%~7%的阻力。澳大利亚选手伊恩·索普穿黑色连体紧身泳装,在 2000 年悉尼奥运会赢得了 3 枚金牌[87]。LIU 等[88]受鲨鱼皮启发,在轮胎表面制备出非光滑沟槽表面,有效提高了轮胎的临界打滑速度。可以看到,随着仿鲨鱼盾鳞沟槽非光滑表面的制造技术不断成熟,很多领域都逐渐显现出仿鲨鱼皮沟槽非光滑表面成功应用的案例。

  • 图16 仿鲨鱼沟槽非光滑表面应用

  • Fig.16 Application of bionic drag-reduction surfaces

  • 5 结论和展望

  • 减小表面摩擦阻力具有重要的现实意义,高效、高可靠减阻技术一直是研究热点之一,水下减阻是鱼类等海洋生物长期进化形成的优势功能策略,师法自然,首先综述了鱼皮表面结构特征和材质特性,总结了以鱼皮表面结构特征或材质特性为生物原型的仿生表面制备、减阻特性和机理,对仿生减阻表面在工程中的应用进行了简述。以鱼类表皮独特结构特性或材质特性为研究的主要结论如下:

  • (1)鱼类表皮结构特征和材质特性各异,导致以鱼类表皮结构或材质特征为原型所构筑的仿生表面减阻特性各不相同,仿生表面的减阻率不仅与所设计和构筑的结构有关,而且和表面材质特性有密切关系,形态各异的鱼鳞嵌入到弹性真皮层,或被柔弹性表皮层所覆盖,建立结构特征耦合弹性材质特性的仿生耦合表面与高效减阻之间的匹配关系,需要进一步研究和阐释。

  • (2)仿生表面减阻机理不统一,以生物表面结构特征为原型所构筑的仿生微纳结构可以作为一种具有特殊粗糙度的表面影响近壁面流场特性,从而达到减阻效果,建立鱼类表皮独特结构特征与弹性材质特性耦合表面对减阻的影响规律,有助于揭示鱼类具有优异水动力学性能的内在机制。

  • (3)随着制造技术和制备工艺不断发展,以生物表皮独特结构特征或材质特性为原型的仿生新型减阻技术定会得到蓬勃发展,减阻结构耦合功能涂层的多功能仿生表面将在工程领域大放异彩,将对解决工程中存在的技术难题起到巨大推动作用。

  • 由于鱼类表皮结构特征的多样性,以鱼类表皮为原型的仿生表面还须开展更广泛、更深入的研究,主要包括以下几个方面:

  • (1)以圆鳞为原型的仿生表面已被证实具有优异的减阻性能,但仿圆鳞覆瓦结构表面减阻规律和机制尚不明晰,圆鳞之间的间距、裸露面积等参数对高-低速速度条纹的影响规律亟需进行揭示。

  • (2)鱼类表皮的结构特征或材质特性赋予表皮具有优异的减阻、防污、降噪等功能,构筑以鱼类表皮结构特征或材质特性为原型的仿生多功能表面须加强研究。

  • (3)仿生多功能表面的成功应用将为解决工程技术难题提供可行方案,开发多工艺协同的成型工艺和制备方法可为仿生多功能表面的大面积制备提供必要条件,从而克服难以在实际生活及工程中顺利应用的技术难题。

  • 总之,大自然生物为高效高可靠减阻技术提供源源不断的创新灵感,随着制造技术和材料的蓬勃发展,多学科的紧密融合仍将是未来的发展趋势之一,水下仿生减阻表面和材料在未来仍亟须进一步的探索和研究。

  • 参考文献

    • [1] 中国政府网.中华人民共和国国民经济和社会发展第十四个五年规划纲要[EB/OL].[2021-03-13].http://www.gov.cn.The Chinese Government Website.Outline of the14th Five-year plan for national economic and social development and vision 2035 of the people’ s republic of China[EB/OL].[2021-03-13].http://www.gov.cn.(in Chinese)

    • [2] 杨永嘉,杨兆祥,贺泳霖.船舶水下减阻抗污涂层的研究进展[J].化学通报,2022,85(8):937-942.YANG Yongjia,YANG Zhaoxiang,HE Yonglin.Advance on underwater-drag reduction and anti-fouling coating for ships[J].Chemistry,2022,85(8):937-942.(in Chinese)

    • [3] LIU M,MA L R.Drag reduction methods at solid-liquid interfaces[J].Friction,2021,10(4):491-515.

    • [4] 欧勇鹏,吴浩,董文才.船舶气层减阻节能技术应用研究进展[J].中国水运,2015,15(9):28-30.OU Yongpeng,WU Hao,DONG Wencai.Research progress on the application of drag reduction and energy saving technology in Marine air layer[J].China Water Transport,2015,15(9):28-30.(in Chinese)

    • [5] 柳盾.柔性壁面被动与主动形变的减阻性能研究[D].大连:大连理工大学,2019.LIU Dun.Research on drag reduction performance of passive and active deformation of flexible wall[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [6] 王平.新型防污减阻软涂层的研究[D].杭州:浙江大学,2012.WANG Ping.Research on a novel anti-fouling and drag-reducing soft coating[D].Hangzhou:Zhejiang University,2012.(in Chinese)

    • [7] 王仲.湍流激励下潜器蒙皮减阻降噪性能研究[D].哈尔滨:哈尔滨工程大学,2017.WANG Zhong.Research on the drag & noise reduction performance of submersible skin under turbulent excitation[D].Harbin:Harbin Engineering University,2017.(in Chinese)

    • [8] HAYDER A.ABDULBARI H D,MAHAMMED Z B,et al.Bio-inspired passive drag reduction techniques:A review[J].Chembioeng Reviews,2015,2(3):185-203.

    • [9] 宋保维,刘冠杉,胡海豹.不同宽高比的V型随行波表面减阻仿真研究[J].计算机工程与应用,2009,45(32):222-224,48.SONG Baowei,LIU Guanshan,HU Haibao.Simulation study on surface drag-reduction with V-size traveling wave of different aspect ratios[J].Computer Engineering and Applications,2009,45(2):222-224,248.(in Chinese)

    • [10] DIEZ G,SOTO M,BLANCO J M.Biological characterization of the skin of shortfin mako sharkIsurus oxyrinchusand preliminary study of the hydrodynamic behaviour through computational fluid dynamics[J].Journal of Fish Biology,2015,87(1):123-137.

    • [11] 张维俊.海豚游动水动力特性分析研究[J].中国水运,2014,14(2):6-8,25.ZHANG Weijun.Study on hydrodynamic characteristics of dolphin swimming[J].China Water Transport,2014,14(2):6-8,25.(in Chinese)

    • [12] 俞洁,刘志明,吴文健.海豚皮肤减阻降噪仿生研究进展[C]//第十五届船舶水下噪声学术讨论会论文集,2015-08-01,郑州.郑州:中国船舶科学研究中心《船舶力学》编辑部,2015:362-369.YU Jie,LIU Zhiming,WU Wenjian.Progress in bionic research on drag and noise reduction of dolphin skin [C]//15th Symposium on Underwater Noise of Ships,August 1,2015,Zhengzhou.Zhengzhou:China Ship Scientific Research Center,2015,362-369.(in Chinese)

    • [13] 张家忠,刘雁,孙旭,等.柔性结构气弹效应在流动控制中的应用及进展[J].力学进展,2018,48:299-319.ZHANG Jiazhong,LIU Yan,SUN Xu,et al.Applications and developments of aeroelasticity of flexible structure in flow controls[J].Advances in Mechanics,2018,48:299-319.(in Chinese)

    • [14] VV B.Hydrobionic pinciples of drag reduction[J].International Journal of Fluid Mechanics Research,2003,30(2):125-144.

    • [15] WAINWRIGHT D K,FISH F E,INGERSOLL S,et al.How smooth is a dolphin?The ridged skin of odontocetes[J].Biology Letters,2019,15(7):20190103.

    • [16] CHEN D K,CHEN H W,CUI X X.Dual-coupling drag reduction inspired by tuna skin:Fan-shaped imbricated fish scale composited with flexible coating[J].AIP Advances,2022,12(3):035218.

    • [17] CHEN D K,CUI X X,CHEN H W.Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J].Microscopy Research and Technique,2021,84(8):1862-1872.

    • [18] WU L Y,JIAO Z B,SONG Y Q,et al.Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations[J].Science China Technological Sciences,2017,60(7):1111-1117.

    • [19] DOU Z L,WANG J D,CHEN D R.Bionic research on fish scales for drag reduction[J].Journal of Bionic Engineering,2012,9(4):457-464.

    • [20] MUTHUKUMAR M,VILLEMIN L S,BRUECKER C,et al.Streak formation in flow over biomimetic fish scale arrays[J].Journal of experimental biology,2019,222(16):jeb205963.

    • [21] SEO E,YOON G Y,KIM H N,et al.Morphological features of mucous secretory organ and mucous secretion of loach Misgurnus anguillicaudatus skin for friction drag reduction[J].Journal of Fish Biology,2019,96(1):83-91.

    • [22] ZHOU H G,LIU C Q,TIAN G Z,et al.Research on the drag reduction property of puffer(Takifugu flavidus)spinal nonsmooth structure surface [J].Microscopy Research and Technique,2020,83(7):795-803.

    • [23] FAN D L,FENG X M,TIAN G Z,et al.Experimental investigations of the turbulent boundary layer for biomimetic protrusive surfaces inspired by Pufferfish skin:effects of spinal density and diameter[J].Langmuir,2021,37(40):11804-11817.

    • [24] FENG X M,FAN D L,TIAN G Z,et al.Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin[J].ACS Applied Materials & Interfaces,2022,14(28):32747-32760.

    • [25] JEON W S,CHOI W P.Hydrodynamic Characteristics of the sailfish(Istiophorus platypterus)and swordfish(Xiphias gladius)in gliding postures at their cruise speeds[J].PLoS One,2013,8(12):e81323.

    • [26] WAINWRIGHT D K,LAUDER G V,WEAVER J C.Imaging biological surface topography in situ and in vivo[J].Methods in Ecology and Evolution,2017,8(11):1626-1638.

    • [27] ZHANG D Y,LI Y Y,HAN X,et al.High-precision bio-replication of synthetic drag reduction shark skin[J].Chinese Science Bulletin,2011,56(9):938-944.

    • [28] SCHRADER L U.Passive drag reduction via bionic hull coatings[J].Journal of Ship Research,2019,63(3):206-218.

    • [29] CHEN D K,CUI X X,LIU X L,et al.Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction[J].Surface & Coatings Technology,2023,457:129337.

    • [30] WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface[J].Surface & Coatings Technology,2021,409:126801.

    • [31] 秦立果,龚朝永,孙红江,等.非光滑表面减阻研究进展[J].表面技术,2022,51(8):107-122.QIN Liguo,GONG Chaoyong,SUN Hongjiang.Review of research on drag reduction of non-smooth surface[J].Surface Technology,2022,51(8):107-122.(in Chinese)

    • [32] RICARDO G M,JAVIER J.Drag reduction by riblets[J].Philos Trans a Math Phys Eng Sci,2011,369(1940):1412-1427.

    • [33] 刘宝胜,吴为,曾元松.鲨鱼皮仿生结构应用及制造技术综述[J].塑性工程学报,2014,21(4):56-62.LIU Baosheng,WU Wei,ZENG Yuansong.Review on application and fabrication of shark skin bionic structure[J].Journal of Plasticity Engineering,2014,21(4):56-62.(in Chinese)

    • [34] HIRT G,THOME M.Rolling of functional metallic surface structures[J].CIRP Annals Manufacturing Technology,2008,57(1):317-320.

    • [35] KIM T,KWON S,LEE J,et al.A metallic anti-biofouling surface with a hierarchical topography containing nanostructures on curved micro-riblets[J].Microsystems & Nanoengineering,2022,8(1):6.

    • [36] KORD H.Process abilities of the riblet-coating process with dual-cure lacquers[J].CIRP Journal of Manufacturing Science and Technology,2015,11:1-9.

    • [37] WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,17(10):1656-1666.

    • [38] YU H Y,HAN Z W,ZHANG J Q,et al.Bionic design of tools in cutting:Reducing adhesion,abrasion or friction[J].Wear,2021,482:203955.

    • [39] HAN X,ZHANG D Y,LI X,et al.Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J].Science Bulletin,2008,53(10):1587-1592.

    • [40] LAUDER G V,WAINWRIGHT D K,DOMEL A G,et al.Structure,biomimetics,and fluid dynamics of fish skin surfaces[J].Physical Review Fluids,2016,1(6):060502.

    • [41] CHEN H W,ZHANG X,CHE D,et al.Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement[J].Advances in Mechanical Engineering,2015,6:425701.

    • [42] HAN X,WANG J,ZHANG D Y.Bio-replicated forming of the biomimetic drag-reducing surface based on underwater low-resistance scarfskins[C]//International Conference on Mechatronics and Automation,August 4-7,2010,Xi’ an,2010:840-845.

    • [43] PETER L,VOLKMAR S,ANDREAS F,et al.Riblet surfaces for improvement of efficiency of wind turbines [C]//AIAA Scitech 2020 Forum,Jan 6-10,2020.Orlando,FL:American Institute of Aeronautics and Astronautics,2020:0308.

    • [44] CUI X X,CHEN D K,CHEN H W.Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling[J].ACS Omega,2023,8(9):8569-8581.

    • [45] 王春举,程利冬,薛韶曦,等.仿生减阻微结构制造技术综述[J].精密成型工程,2019,11(3):88-98.WANG Chunju,CHEN Lidong,XUE Shaoxin,et al.Manufacturing technologies of bionic micro-structures for drag reduction:A review[J].Journal of Netshape Forming Engineering,2019,11(3):88-98.(in Chinese)

    • [46] CHEN Q H,ZHANG C Q,CAI Y K,et al.Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction[J].Applied Surface Science,2023,615:156403.

    • [47] ZHOU Z D,WANG S K,YAN Z X,et al.Low air drag surface via multilayer hierarchical riblets[J].ACS Applied Materials & Interfaces,2021,13,53155−53161.

    • [48] 刘明杰,吴青山,严昊,等.仿生减阻表面的进展与挑战[J].北京航空航天大学学报,2022,48(9):1782-1790.LIU Mingjie,WU Qingshan,YAN Hao,et al.Progress and challenges of bionic drag reduction surfaces[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(9):1782-1790.(in Chinese)

    • [49] CHUNG K K,SCHUMACHER J F,SAMPSONE M,et al.Impact of engineered surface microtopography on biofilm formation of Staphylococcus[J].Biointerphases,2007,2(2):89-94.

    • [50] LONG C J,SCHUMACHER J F,ROBINSON A C,et al.A model that predicts the attachment behavior of Ulvalinza zoospores on surface topography[J].Biofouling,2010,26(4):411-419.

    • [51] SCHUMACHER J F,NICK A,CALLOW,M E,et al.Species-specific engineered antifouling topographies:correlations between the settlement of algal zoospores and barnacle cyprids[J].Biofouling,2007,3(5-6):307-317.

    • [52] BRENNAN A B,BANEY R H,CARMAN M L.Surface topography for non-toxic bioadhesion control:US,7143709 [P].2006-12-05.

    • [53] MA Z Y,LIU J B,ZHANG X D,et al.Flexible surfaces prepared through direct ink writing with drag reduction and antifouling[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,655:130233.

    • [54] DAI Wei,ALKAHTANI M,HEMMER P R,et al.Drag-reduction of 3D printed shark-skin-like surfaces[J].Friction,2018,7(6):603-612.

    • [55] ELORA V,BARRY M,SENZE R V,et al.Influence of sharklet-inspired micropatterned polymers on spatiotemporal variations of marine biofouling[J].Macromol Biosci,2022,22(11):e2200304.

    • [56] JO W K,HONG S,CHOI J,et al.Light-designed shark skin-mimetic surfaces[J].Nano Letter,2021,21(13):5500-5507.

    • [57] KRAMER M O.Boundary layer stabilization by distributed damping[J].J Am Soc Naval Engrs,1960,74:25-33.

    • [58] PAVLOV V V.Dolphin skin as a natural anisotropic compliant wall[J].Bioinspiration & Biomimetics,2006,1(2):31-40.

    • [59] CHOI K S,YANG X,CLAYYON B R,et al.Turbulent drag reduction using compliant coatings[J].Proceedings of the Royal Society,1997,453:2229-2240.

    • [60] ENDO T,HIMENO R.Direct numerical simulation of turbulent flow over a compliant surface[J].Journal of Turbulence,2002,3:7.

    • [61] KULIK V,SEMENOV B.Measurement of dynamic properties of viscoelastic materials[J].Thermophysics and Aeromechanics,2007,14:211-221.

    • [62] BUSHNELL D M,HEFNER J N,ASH R L.Effect of compliant wall motion on turbulent boundary layers[J].Physics of Fluids,1977,20(10):S31-S48.

    • [63] 郝翰林,樊益明,苏风民.基于转盘测阻法的天然乳胶涂层减阻特性研究[J].船舶工程,2021,43(1):108-149.HAO Hanlin,FAN Yinming,SU Fengmin.Study of drag reduction characteristics of natural latex coating based on rotating disc Test[J].Ship Engineering,2021,43(1):108-149.(in Chinese)

    • [64] LANG A W,JONES E M,AFROZ F.Separation control over a grooved surface inspired by dolphin skin[J].Bioinspiration & Biomimetics,2017,12(2):026005.

    • [65] 洪正,叶正寅.二维有限长度柔性壁上 T-S 波演化的数值研究[J].北京航空航天大学学报,2022,48(7):1190-1199.HONG Zheng,YE Zhengyan.Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1190-1199.(in Chinese)

    • [66] MONHAMED G K.Compliant coatings for drag reduction[J].Progress in Aerospace Sciences,2002,38:77-99.

    • [67] 李万平,杨新祥.柔性壁减阻的试验研究[J].水动力学研究与进展,1991(S1):108-112.LI Wanping,YANG Xinxiang.Experimental study ondrag reduction of flexible wall[J].Journal of Hydrodynamics,1991(S1):108-112.(in Chinese)

    • [68] 孙卫红,刘波,晏欣.聚氨酯-丙烯酸酯弹性壁的减阻性能[J].高分子材料科学与工程,2017,33(9):59-64.SUN Weihong,LIU Bo,YAN Xin.Drag reduction properties of polyurethane-poly(acrylate)hybrid emulsions[J].Polymer Materials Science and Engineering,2017,33(9):59-64.(in Chinese)

    • [69] 张庆利,李京伯.用主动柔顺壁运动控制边界层转捩[J].空气动力学学报,1999,7(3):333-338.ZHANG Qingli,LI Jingbo.Boundary layer transition is controlled by active smooth wall motion[J].Acta Aerodynamica Sinica,1999,7(3):333-338.(in Chinese)

    • [70] 黄微波.水下航行器喷涂聚脲弹性涂层的制备及减阻性能的研究[D].青岛:中国海洋大学,2006.HUANG Weibo.Studies on the preparation of flexible spray polyurea coating and its drag-reducing properties of underwater vehicle[D].Qingdao:Ocean University of China,2006.(in Chinese)

    • [71] 张祯华.以聚氨酯为基质的弹性仿生减阻材料的制备及减阻性能的研究[D].广州:华南理工大学,2012.ZHANG Zhenhua.The preparation and the drag-reduction properties of compliant and bionic drag-reduction materials using polyurethane as a matrix[D].Guangzhou:South China University of Technology,2012.(in Chinese)

    • [72] ZHANG J Z,REN S,MEI G H.Model reduction on inertial manifolds for N-S equations approached by multilevel finite element method[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(1):195-205.

    • [73] ZAHNG J Z,LIU Y,LEI P F,et al.Dynamic snap-through buckling analysis of shallow arches under impact load based on approximate inertial manifold[J].Dynamics of Continuous Discrete and Impulsive Systems Series B-Applications & Algorithms,2007,14:287-291.

    • [74] ZHANG J Z,LIU Y,FENG P H.Approximate inertial manifolds of burgers equation approached by nonlinear Galerkin’ s procedure and its application[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(12):4666-4670.

    • [75] ZHANG J Z,LIU Y,CHENG D M.Error estimate for the influence of model reduction of nonlinear dissipative autonomous dynamical system on the long-term behaviors[J].Journal of Applied Mathematics and Mechanics,2005,26(7):938-943.

    • [76] LI L C,LIU B,HAO H C,et al.Investigation of the drag reduction performance of bionic flexible coating[J].Physics of Fluids,2022,32(8):084103.

    • [77] ASHLEY B,CHRISTINE O,MARY C B.Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues[J].Journal of Mechanical Behavior of Biomedical Materials,2013,19:75-86.

    • [78] FUNK N,VERA M,SZEWCIW L J,et al.Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J].ACS Applied Materials & Interfaces,2015,7(10):5972-5983.

    • [79] RONG W T,ZHANG Z B,XU J K,et al.Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,622:126712.

    • [80] SUN Z Q,LIAO T,LI W X,et al.Fish-scale bio-inspired multifunctional ZnO nanostructures[J].NPG Asia Materials,2015,7(12):e232.

    • [81] BACHER E V,SMITH C R.A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[R].Boulder,CO,USA,AIAA,1985:548.

    • [82] TIAN G Z,FENG D L,FENG X M,et al.Thriving artificial underwater drag-reduction materials inspired from aquatic animals:progresses and challenges[J].RSC Advances,2021,11(6):3399-3428.

    • [83] MARIKO M,HIRAI,Y J,MORIYA H,et al.Biomimetic design inspired sharkskin denticles and modeling of diffuser for fluid control[J].Journal of Photopolymer Science and Technology,2018,31(1):133-138.

    • [84] LUO Y H,LU Y,LI J H,et al.Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications[J].Micron,2015,79:59-73.

    • [85] 孙培培,李雯,胡文颖.仿生学在航空发动机领域的应用[J].航空动力,2018(5):12-15.SUN Peipei,LI Wen,HU Wenying.Application of bionics in aero engines[J].Aerospace Power,2018(5):12-15.(in Chinese)

    • [86] CHEN D K.Bionic surface research technology for micro gradient elastic drag reduction[D].Beijing:Beihang University,2022.

    • [87] SANDERS R,RUSHALL B,TOUSSAINT H,et al.Bodysuit yourself,but first think about it[J].Journal of Turbulence,2001,5:23-32.

    • [88] LIU C Z,MENG H,LU S C,et al.Design of nonsmooth groove tire bioinspired by shark-skin riblet structure[J].Applied Bionics and Biomechanics,2022:6025943.

  • 参考文献

    • [1] 中国政府网.中华人民共和国国民经济和社会发展第十四个五年规划纲要[EB/OL].[2021-03-13].http://www.gov.cn.The Chinese Government Website.Outline of the14th Five-year plan for national economic and social development and vision 2035 of the people’ s republic of China[EB/OL].[2021-03-13].http://www.gov.cn.(in Chinese)

    • [2] 杨永嘉,杨兆祥,贺泳霖.船舶水下减阻抗污涂层的研究进展[J].化学通报,2022,85(8):937-942.YANG Yongjia,YANG Zhaoxiang,HE Yonglin.Advance on underwater-drag reduction and anti-fouling coating for ships[J].Chemistry,2022,85(8):937-942.(in Chinese)

    • [3] LIU M,MA L R.Drag reduction methods at solid-liquid interfaces[J].Friction,2021,10(4):491-515.

    • [4] 欧勇鹏,吴浩,董文才.船舶气层减阻节能技术应用研究进展[J].中国水运,2015,15(9):28-30.OU Yongpeng,WU Hao,DONG Wencai.Research progress on the application of drag reduction and energy saving technology in Marine air layer[J].China Water Transport,2015,15(9):28-30.(in Chinese)

    • [5] 柳盾.柔性壁面被动与主动形变的减阻性能研究[D].大连:大连理工大学,2019.LIU Dun.Research on drag reduction performance of passive and active deformation of flexible wall[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [6] 王平.新型防污减阻软涂层的研究[D].杭州:浙江大学,2012.WANG Ping.Research on a novel anti-fouling and drag-reducing soft coating[D].Hangzhou:Zhejiang University,2012.(in Chinese)

    • [7] 王仲.湍流激励下潜器蒙皮减阻降噪性能研究[D].哈尔滨:哈尔滨工程大学,2017.WANG Zhong.Research on the drag & noise reduction performance of submersible skin under turbulent excitation[D].Harbin:Harbin Engineering University,2017.(in Chinese)

    • [8] HAYDER A.ABDULBARI H D,MAHAMMED Z B,et al.Bio-inspired passive drag reduction techniques:A review[J].Chembioeng Reviews,2015,2(3):185-203.

    • [9] 宋保维,刘冠杉,胡海豹.不同宽高比的V型随行波表面减阻仿真研究[J].计算机工程与应用,2009,45(32):222-224,48.SONG Baowei,LIU Guanshan,HU Haibao.Simulation study on surface drag-reduction with V-size traveling wave of different aspect ratios[J].Computer Engineering and Applications,2009,45(2):222-224,248.(in Chinese)

    • [10] DIEZ G,SOTO M,BLANCO J M.Biological characterization of the skin of shortfin mako sharkIsurus oxyrinchusand preliminary study of the hydrodynamic behaviour through computational fluid dynamics[J].Journal of Fish Biology,2015,87(1):123-137.

    • [11] 张维俊.海豚游动水动力特性分析研究[J].中国水运,2014,14(2):6-8,25.ZHANG Weijun.Study on hydrodynamic characteristics of dolphin swimming[J].China Water Transport,2014,14(2):6-8,25.(in Chinese)

    • [12] 俞洁,刘志明,吴文健.海豚皮肤减阻降噪仿生研究进展[C]//第十五届船舶水下噪声学术讨论会论文集,2015-08-01,郑州.郑州:中国船舶科学研究中心《船舶力学》编辑部,2015:362-369.YU Jie,LIU Zhiming,WU Wenjian.Progress in bionic research on drag and noise reduction of dolphin skin [C]//15th Symposium on Underwater Noise of Ships,August 1,2015,Zhengzhou.Zhengzhou:China Ship Scientific Research Center,2015,362-369.(in Chinese)

    • [13] 张家忠,刘雁,孙旭,等.柔性结构气弹效应在流动控制中的应用及进展[J].力学进展,2018,48:299-319.ZHANG Jiazhong,LIU Yan,SUN Xu,et al.Applications and developments of aeroelasticity of flexible structure in flow controls[J].Advances in Mechanics,2018,48:299-319.(in Chinese)

    • [14] VV B.Hydrobionic pinciples of drag reduction[J].International Journal of Fluid Mechanics Research,2003,30(2):125-144.

    • [15] WAINWRIGHT D K,FISH F E,INGERSOLL S,et al.How smooth is a dolphin?The ridged skin of odontocetes[J].Biology Letters,2019,15(7):20190103.

    • [16] CHEN D K,CHEN H W,CUI X X.Dual-coupling drag reduction inspired by tuna skin:Fan-shaped imbricated fish scale composited with flexible coating[J].AIP Advances,2022,12(3):035218.

    • [17] CHEN D K,CUI X X,CHEN H W.Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J].Microscopy Research and Technique,2021,84(8):1862-1872.

    • [18] WU L Y,JIAO Z B,SONG Y Q,et al.Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations[J].Science China Technological Sciences,2017,60(7):1111-1117.

    • [19] DOU Z L,WANG J D,CHEN D R.Bionic research on fish scales for drag reduction[J].Journal of Bionic Engineering,2012,9(4):457-464.

    • [20] MUTHUKUMAR M,VILLEMIN L S,BRUECKER C,et al.Streak formation in flow over biomimetic fish scale arrays[J].Journal of experimental biology,2019,222(16):jeb205963.

    • [21] SEO E,YOON G Y,KIM H N,et al.Morphological features of mucous secretory organ and mucous secretion of loach Misgurnus anguillicaudatus skin for friction drag reduction[J].Journal of Fish Biology,2019,96(1):83-91.

    • [22] ZHOU H G,LIU C Q,TIAN G Z,et al.Research on the drag reduction property of puffer(Takifugu flavidus)spinal nonsmooth structure surface [J].Microscopy Research and Technique,2020,83(7):795-803.

    • [23] FAN D L,FENG X M,TIAN G Z,et al.Experimental investigations of the turbulent boundary layer for biomimetic protrusive surfaces inspired by Pufferfish skin:effects of spinal density and diameter[J].Langmuir,2021,37(40):11804-11817.

    • [24] FENG X M,FAN D L,TIAN G Z,et al.Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin[J].ACS Applied Materials & Interfaces,2022,14(28):32747-32760.

    • [25] JEON W S,CHOI W P.Hydrodynamic Characteristics of the sailfish(Istiophorus platypterus)and swordfish(Xiphias gladius)in gliding postures at their cruise speeds[J].PLoS One,2013,8(12):e81323.

    • [26] WAINWRIGHT D K,LAUDER G V,WEAVER J C.Imaging biological surface topography in situ and in vivo[J].Methods in Ecology and Evolution,2017,8(11):1626-1638.

    • [27] ZHANG D Y,LI Y Y,HAN X,et al.High-precision bio-replication of synthetic drag reduction shark skin[J].Chinese Science Bulletin,2011,56(9):938-944.

    • [28] SCHRADER L U.Passive drag reduction via bionic hull coatings[J].Journal of Ship Research,2019,63(3):206-218.

    • [29] CHEN D K,CUI X X,LIU X L,et al.Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction[J].Surface & Coatings Technology,2023,457:129337.

    • [30] WANG Y H,ZHANG Z B,XU J K,et al.One-step method using laser for large-scale preparation of bionic superhydrophobic & drag-reducing fish-scale surface[J].Surface & Coatings Technology,2021,409:126801.

    • [31] 秦立果,龚朝永,孙红江,等.非光滑表面减阻研究进展[J].表面技术,2022,51(8):107-122.QIN Liguo,GONG Chaoyong,SUN Hongjiang.Review of research on drag reduction of non-smooth surface[J].Surface Technology,2022,51(8):107-122.(in Chinese)

    • [32] RICARDO G M,JAVIER J.Drag reduction by riblets[J].Philos Trans a Math Phys Eng Sci,2011,369(1940):1412-1427.

    • [33] 刘宝胜,吴为,曾元松.鲨鱼皮仿生结构应用及制造技术综述[J].塑性工程学报,2014,21(4):56-62.LIU Baosheng,WU Wei,ZENG Yuansong.Review on application and fabrication of shark skin bionic structure[J].Journal of Plasticity Engineering,2014,21(4):56-62.(in Chinese)

    • [34] HIRT G,THOME M.Rolling of functional metallic surface structures[J].CIRP Annals Manufacturing Technology,2008,57(1):317-320.

    • [35] KIM T,KWON S,LEE J,et al.A metallic anti-biofouling surface with a hierarchical topography containing nanostructures on curved micro-riblets[J].Microsystems & Nanoengineering,2022,8(1):6.

    • [36] KORD H.Process abilities of the riblet-coating process with dual-cure lacquers[J].CIRP Journal of Manufacturing Science and Technology,2015,11:1-9.

    • [37] WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,17(10):1656-1666.

    • [38] YU H Y,HAN Z W,ZHANG J Q,et al.Bionic design of tools in cutting:Reducing adhesion,abrasion or friction[J].Wear,2021,482:203955.

    • [39] HAN X,ZHANG D Y,LI X,et al.Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J].Science Bulletin,2008,53(10):1587-1592.

    • [40] LAUDER G V,WAINWRIGHT D K,DOMEL A G,et al.Structure,biomimetics,and fluid dynamics of fish skin surfaces[J].Physical Review Fluids,2016,1(6):060502.

    • [41] CHEN H W,ZHANG X,CHE D,et al.Synthetic effect of vivid shark skin and polymer additive on drag reduction reinforcement[J].Advances in Mechanical Engineering,2015,6:425701.

    • [42] HAN X,WANG J,ZHANG D Y.Bio-replicated forming of the biomimetic drag-reducing surface based on underwater low-resistance scarfskins[C]//International Conference on Mechatronics and Automation,August 4-7,2010,Xi’ an,2010:840-845.

    • [43] PETER L,VOLKMAR S,ANDREAS F,et al.Riblet surfaces for improvement of efficiency of wind turbines [C]//AIAA Scitech 2020 Forum,Jan 6-10,2020.Orlando,FL:American Institute of Aeronautics and Astronautics,2020:0308.

    • [44] CUI X X,CHEN D K,CHEN H W.Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling[J].ACS Omega,2023,8(9):8569-8581.

    • [45] 王春举,程利冬,薛韶曦,等.仿生减阻微结构制造技术综述[J].精密成型工程,2019,11(3):88-98.WANG Chunju,CHEN Lidong,XUE Shaoxin,et al.Manufacturing technologies of bionic micro-structures for drag reduction:A review[J].Journal of Netshape Forming Engineering,2019,11(3):88-98.(in Chinese)

    • [46] CHEN Q H,ZHANG C Q,CAI Y K,et al.Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction[J].Applied Surface Science,2023,615:156403.

    • [47] ZHOU Z D,WANG S K,YAN Z X,et al.Low air drag surface via multilayer hierarchical riblets[J].ACS Applied Materials & Interfaces,2021,13,53155−53161.

    • [48] 刘明杰,吴青山,严昊,等.仿生减阻表面的进展与挑战[J].北京航空航天大学学报,2022,48(9):1782-1790.LIU Mingjie,WU Qingshan,YAN Hao,et al.Progress and challenges of bionic drag reduction surfaces[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(9):1782-1790.(in Chinese)

    • [49] CHUNG K K,SCHUMACHER J F,SAMPSONE M,et al.Impact of engineered surface microtopography on biofilm formation of Staphylococcus[J].Biointerphases,2007,2(2):89-94.

    • [50] LONG C J,SCHUMACHER J F,ROBINSON A C,et al.A model that predicts the attachment behavior of Ulvalinza zoospores on surface topography[J].Biofouling,2010,26(4):411-419.

    • [51] SCHUMACHER J F,NICK A,CALLOW,M E,et al.Species-specific engineered antifouling topographies:correlations between the settlement of algal zoospores and barnacle cyprids[J].Biofouling,2007,3(5-6):307-317.

    • [52] BRENNAN A B,BANEY R H,CARMAN M L.Surface topography for non-toxic bioadhesion control:US,7143709 [P].2006-12-05.

    • [53] MA Z Y,LIU J B,ZHANG X D,et al.Flexible surfaces prepared through direct ink writing with drag reduction and antifouling[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,655:130233.

    • [54] DAI Wei,ALKAHTANI M,HEMMER P R,et al.Drag-reduction of 3D printed shark-skin-like surfaces[J].Friction,2018,7(6):603-612.

    • [55] ELORA V,BARRY M,SENZE R V,et al.Influence of sharklet-inspired micropatterned polymers on spatiotemporal variations of marine biofouling[J].Macromol Biosci,2022,22(11):e2200304.

    • [56] JO W K,HONG S,CHOI J,et al.Light-designed shark skin-mimetic surfaces[J].Nano Letter,2021,21(13):5500-5507.

    • [57] KRAMER M O.Boundary layer stabilization by distributed damping[J].J Am Soc Naval Engrs,1960,74:25-33.

    • [58] PAVLOV V V.Dolphin skin as a natural anisotropic compliant wall[J].Bioinspiration & Biomimetics,2006,1(2):31-40.

    • [59] CHOI K S,YANG X,CLAYYON B R,et al.Turbulent drag reduction using compliant coatings[J].Proceedings of the Royal Society,1997,453:2229-2240.

    • [60] ENDO T,HIMENO R.Direct numerical simulation of turbulent flow over a compliant surface[J].Journal of Turbulence,2002,3:7.

    • [61] KULIK V,SEMENOV B.Measurement of dynamic properties of viscoelastic materials[J].Thermophysics and Aeromechanics,2007,14:211-221.

    • [62] BUSHNELL D M,HEFNER J N,ASH R L.Effect of compliant wall motion on turbulent boundary layers[J].Physics of Fluids,1977,20(10):S31-S48.

    • [63] 郝翰林,樊益明,苏风民.基于转盘测阻法的天然乳胶涂层减阻特性研究[J].船舶工程,2021,43(1):108-149.HAO Hanlin,FAN Yinming,SU Fengmin.Study of drag reduction characteristics of natural latex coating based on rotating disc Test[J].Ship Engineering,2021,43(1):108-149.(in Chinese)

    • [64] LANG A W,JONES E M,AFROZ F.Separation control over a grooved surface inspired by dolphin skin[J].Bioinspiration & Biomimetics,2017,12(2):026005.

    • [65] 洪正,叶正寅.二维有限长度柔性壁上 T-S 波演化的数值研究[J].北京航空航天大学学报,2022,48(7):1190-1199.HONG Zheng,YE Zhengyan.Numerical investigation on evolution of T-S wave on a two-dimensional compliant wall with finite length[J].Journal of Beijing University of Aeronautics and Astronautics,2022,48(7):1190-1199.(in Chinese)

    • [66] MONHAMED G K.Compliant coatings for drag reduction[J].Progress in Aerospace Sciences,2002,38:77-99.

    • [67] 李万平,杨新祥.柔性壁减阻的试验研究[J].水动力学研究与进展,1991(S1):108-112.LI Wanping,YANG Xinxiang.Experimental study ondrag reduction of flexible wall[J].Journal of Hydrodynamics,1991(S1):108-112.(in Chinese)

    • [68] 孙卫红,刘波,晏欣.聚氨酯-丙烯酸酯弹性壁的减阻性能[J].高分子材料科学与工程,2017,33(9):59-64.SUN Weihong,LIU Bo,YAN Xin.Drag reduction properties of polyurethane-poly(acrylate)hybrid emulsions[J].Polymer Materials Science and Engineering,2017,33(9):59-64.(in Chinese)

    • [69] 张庆利,李京伯.用主动柔顺壁运动控制边界层转捩[J].空气动力学学报,1999,7(3):333-338.ZHANG Qingli,LI Jingbo.Boundary layer transition is controlled by active smooth wall motion[J].Acta Aerodynamica Sinica,1999,7(3):333-338.(in Chinese)

    • [70] 黄微波.水下航行器喷涂聚脲弹性涂层的制备及减阻性能的研究[D].青岛:中国海洋大学,2006.HUANG Weibo.Studies on the preparation of flexible spray polyurea coating and its drag-reducing properties of underwater vehicle[D].Qingdao:Ocean University of China,2006.(in Chinese)

    • [71] 张祯华.以聚氨酯为基质的弹性仿生减阻材料的制备及减阻性能的研究[D].广州:华南理工大学,2012.ZHANG Zhenhua.The preparation and the drag-reduction properties of compliant and bionic drag-reduction materials using polyurethane as a matrix[D].Guangzhou:South China University of Technology,2012.(in Chinese)

    • [72] ZHANG J Z,REN S,MEI G H.Model reduction on inertial manifolds for N-S equations approached by multilevel finite element method[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(1):195-205.

    • [73] ZAHNG J Z,LIU Y,LEI P F,et al.Dynamic snap-through buckling analysis of shallow arches under impact load based on approximate inertial manifold[J].Dynamics of Continuous Discrete and Impulsive Systems Series B-Applications & Algorithms,2007,14:287-291.

    • [74] ZHANG J Z,LIU Y,FENG P H.Approximate inertial manifolds of burgers equation approached by nonlinear Galerkin’ s procedure and its application[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(12):4666-4670.

    • [75] ZHANG J Z,LIU Y,CHENG D M.Error estimate for the influence of model reduction of nonlinear dissipative autonomous dynamical system on the long-term behaviors[J].Journal of Applied Mathematics and Mechanics,2005,26(7):938-943.

    • [76] LI L C,LIU B,HAO H C,et al.Investigation of the drag reduction performance of bionic flexible coating[J].Physics of Fluids,2022,32(8):084103.

    • [77] ASHLEY B,CHRISTINE O,MARY C B.Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues[J].Journal of Mechanical Behavior of Biomedical Materials,2013,19:75-86.

    • [78] FUNK N,VERA M,SZEWCIW L J,et al.Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials[J].ACS Applied Materials & Interfaces,2015,7(10):5972-5983.

    • [79] RONG W T,ZHANG Z B,XU J K,et al.Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,622:126712.

    • [80] SUN Z Q,LIAO T,LI W X,et al.Fish-scale bio-inspired multifunctional ZnO nanostructures[J].NPG Asia Materials,2015,7(12):e232.

    • [81] BACHER E V,SMITH C R.A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[R].Boulder,CO,USA,AIAA,1985:548.

    • [82] TIAN G Z,FENG D L,FENG X M,et al.Thriving artificial underwater drag-reduction materials inspired from aquatic animals:progresses and challenges[J].RSC Advances,2021,11(6):3399-3428.

    • [83] MARIKO M,HIRAI,Y J,MORIYA H,et al.Biomimetic design inspired sharkskin denticles and modeling of diffuser for fluid control[J].Journal of Photopolymer Science and Technology,2018,31(1):133-138.

    • [84] LUO Y H,LU Y,LI J H,et al.Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications[J].Micron,2015,79:59-73.

    • [85] 孙培培,李雯,胡文颖.仿生学在航空发动机领域的应用[J].航空动力,2018(5):12-15.SUN Peipei,LI Wen,HU Wenying.Application of bionics in aero engines[J].Aerospace Power,2018(5):12-15.(in Chinese)

    • [86] CHEN D K.Bionic surface research technology for micro gradient elastic drag reduction[D].Beijing:Beihang University,2022.

    • [87] SANDERS R,RUSHALL B,TOUSSAINT H,et al.Bodysuit yourself,but first think about it[J].Journal of Turbulence,2001,5:23-32.

    • [88] LIU C Z,MENG H,LU S C,et al.Design of nonsmooth groove tire bioinspired by shark-skin riblet structure[J].Applied Bionics and Biomechanics,2022:6025943.

  • 手机扫一扫看