en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴杨,男,1993年出生,博士,讲师。主要研究方向为热障涂层制备与高温应用。E-mail:wuyang@bjut.edu.cn;

郭星晔,男,1984年出生,博士,副研究员。主要研究方向为新型热障/环境障涂层。E-mail:xyguo@bjut.edu.cn

通讯作者:

贺定勇,男,1970年出生,博士,教授,博士研究生导师。主要研究方向为工程材料表面改性理论与技术。E-mail:dyhe@bjut.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20221120001

参考文献 1
温俊峰.航空发动机发展简述与思考[J].世界科技研究与发展,1998,20(6):72-75.WEN Junfeng.Development in aero-engines—A brief history and some consideration[J].World SCI-Tech Research and Development,1998,20(6):72-75.(in Chinese)
参考文献 2
洪杰,陈光.航空发动机半个世纪来发展的回顾[J].燃气涡轮试验与研究,1998,11(4):56-60.HONG Jie,CHEN Guang.Review on the development of aero-engines over the past half century[J].Gas Turbine Experiment and Research,1998,11(4):56-60.(in Chinese)
参考文献 3
刘永泉,刘太秋,季路成.航空发动机风扇/压气机技术发展的若干问题与思考[J].航空学报,2015,36(8):2563-2576.LIU Yongquan,LIU Taiqiu,JI Lucheng.Some problems and thoughts in the development of aero-engine fan/compressor[J].Acta Aeronautica et Astronautica Sinica,2015,36(8):2563-2576.(in Chinese)
参考文献 4
郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26.GUO Hongbo,GONG Shengkai,XU Huibin.Progress in thermal barrier coatings for advanced aeroengines[J].Materials China,2009,28(9):18-26.(in Chinese)
参考文献 5
黄璇璇,郭双全,姚改成,等.航空发动机 SiC/SiC 复合材料环境障碍涂层研究进展[J].航空维修与工程,2017,2:28-31.HUANG Xuanxuan,GUO Shuangquan,YAO Gaicheng,et al.Research progress of environmental barrier coatings of SiC/SiC composite for aero-engine[J].Aviation Maintenance and Engineering,2017,2:28-31.(in Chinese)
参考文献 6
GOWARD G W.Recent developments in high temperature coatings for gas turbine airfoils[C]//High temperature corrosion.Proceedings of the International Conference,January 1,1981,San Diego,CA,1981.
参考文献 7
LEVINE S R,MILLER R A,STECURA S.Improved performance thermal barrier coatings[R].San Diego,USA:NASA,1983.
参考文献 8
PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
参考文献 9
STECURA S.Two layer thermal barrier coatings for high temperature components[R].USA:NASA Lewis Research Center,1977.
参考文献 10
BRINDLEY W J,LEONHARAT T A.Metallographic techniques for evaluation of thermal barrier coatings[J].Materials Characterization,1990,24:93-101.
参考文献 11
魏绍斌,陆峰,何利民,等.热障涂层制备技术及陶瓷层材料的研究进展[J].热喷涂技术,2013,5(1):31-37.WEI Shaobin,LU Feng,HE Limin,et al.Progress in processing techniques and ceramic materials of thermal barrier coatings[J].Thermal Spray Technology,2013,5(1):31-37.(in Chinese)
参考文献 12
ZHANG D.Thermal barrier coatings prepared by electron beam physical vapor deposition(EB-PVD)[J].Thermal Barrier Coatings,2011,23:3-24.
参考文献 13
LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35:2814-2823.
参考文献 14
NIESSEN K V,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.
参考文献 15
高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Pregress in plasma spray-physical vapor deposition thermal barrier caotings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)
参考文献 16
CLARKE D R,OECHSNER M,PADTURE N P.Thermal barrier coatings for more efficient gas-turbine engines[J].MRS Bulletin,2012,37(10):891-898.
参考文献 17
ROUX S,CAZALENS M,POINSOT T.Outletboundary-condition influence for large eddy simulation of combustion instabilities in gas turbines[J].Journal of Propulsion and Power,2008,24(3):541-546.
参考文献 18
SMIALEK J L,ARCHER F A,GARLICK R G.Turbine airfoil degradation in the Persian Gulf War[J].JOM,1994,46(12):39-41.
参考文献 19
BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.
参考文献 20
KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.
参考文献 21
AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.
参考文献 22
WANG M,LAI X C,GUO S C,et al.CaO-MgOAl2O3-SiO2 corrosion behavior of air-plasma-sprayed(LaxYb1-x)2Zr2O7[J].Journal of the American Ceramic Society,2019,102(4):2029-2040.
参考文献 23
SHOJI S,KODAYASHI S,YAMADA I,et al.Chemical and mineralogical studies on volcanic ashes Ⅰ.Chemical composition of volcanic ashes and their classification[J].Soil Science and Plant Nutrition,1975,21(4):311-318.
参考文献 24
SONG W J,LAVALLÉE Y,HESS K U,et al.Volcanic ash melting under conditions relevant to ash turbine interactions[J].Nature Communication,2016,7(1):1-10.
参考文献 25
JACOB D J.Heterogeneous chemistry and tropospheric ozone[J].Atmospheric Environment,2000,34(12-14):2131-2159.
参考文献 26
谢远云,何葵,周嘉,等.哈尔滨沙尘暴的化学特性及其物质源探讨[J].地理研究,2006,25(2):255-261.XIE Yuanyun,HE Kui,ZHOU Jia,et al.Chemical characteristic of duststorm deposits in Harbin and its matter origin[J].Geographical Research,2006,25(2):255-261.(in Chinese)
参考文献 27
KUEPPERS U,CIMARELLI C,HESS K U,et al.The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands[J].Journal of Applied Volcanology,2014,3(1):1-11.
参考文献 28
SIGURDSSON H,HOUGHTON B,MCNUTT S,et al.The encyclopedia of volcanoes[M].New York:Elsevier,2015.
参考文献 29
WU Y,SONG W J,DINGWELL D B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.
参考文献 30
MÜLLER D,HESS K U,KUEPPERS U,et al.Rheological and chemical interaction between volcanic ash and thermal barrier coatings[J].Surface and Coating Technology,2021,412:127409.
参考文献 31
GIORDANO D,RUSSELL J K,DINGWELL D B.Viscosity of magmatic liquids:A model[J].Earth and Planetary Science Letters,2008,271(1-4):123-134.
参考文献 32
FLUEGEL A.Glass viscosity calculation based on a global statistical modelling approach[J].Glass Technology-European Journal of Glass Science and Technology Part A,2007,48(1):13-30.
参考文献 33
BALE C W,BÉLISLE E,CHARTRAND P,et al.FactSage thermochemical software and databses-recent developments[J].Calphad,2009,33(2):295-311.
参考文献 34
WIESNER V L,VEMPATI U K,BANSAL N P.High temperature viscosity of calcium-magnesiumaluminosilicate glass from synthetic sand[J].Scripta Materialis,2016,124:189-192.
参考文献 35
POERSCHKE D L,BARTH T L,LEVI C G.Equilibrium relationships between thermal barrier oxides and silicate melts[J].Acta Materialia,2016,120:302-314.
参考文献 36
WIESNER V L,BANSAL N P.Mechanical and thermal properties of calcium-magnesium aluminosilicate(CMAS)glass[J].Journal of the European Ceramic Society,2015,35(10):2907-2914.
参考文献 37
MÜLLER D,DINGWELL D B.The influence of thermal barrier coating dissolution on CMAS melt viscosities[J].Journal of the European Ceramic Society,2021,41(4):2746-2752.
参考文献 38
GUO L,XIN H,LI Y Y,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.
参考文献 39
GIEHL C,BROOKER R A,MARXER H,et al.An experimental simulation of volcanic ash deposition in gas turbines and implications for jet engine safety[J].Chemical Geology,2017,461:160-170.
参考文献 40
PRATA A J.Satellite detection of hazardous volcanic clouds and the risk to global air traffic[J].Natural hazards,2009,51(2):303-324.
参考文献 41
GERTISSER R.Eyjafjallajökull volcano causes widespread disruption to European air traffic[J].Geology Today,2010,26(3):94-95.
参考文献 42
MILLÁN L,SANTEE M L,LAMBERT A,et al.The Hunga Tonga-Hunga Ha´apai hydration of the stratosphere[J].Geophysical Research Letter,2022,49(13):e2022GL099381.
参考文献 43
SONG W J,YANG S J,FUKUMOTO M,et al.Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J].Acta Materialia,2019,171:119-131.
参考文献 44
YANG S J,SONG W J,LAVALLÉE Y,et al.Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J].Corrosion Science,2020,170:108659.
参考文献 45
ZHANG X,SHAN X,WITHERS P J,et al.Tracking the calcium-magnesium-alumino-silicate(CMAS)infiltration into an air-plasma spray thermal barrier coating using X-ray imaging[J].Scripta Materialia,2020,176:94-98.
参考文献 46
MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.
参考文献 47
KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.
参考文献 48
LI Y Y,YU Y,GUO L,et al.Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis[J].Surface and Coatings Technology,2022,445:128701.
参考文献 49
CAI Z W,HONG H,PENG D,et al.Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading[J].Surface and Coatings Technology,2020,381:125146.
参考文献 50
WU J,GUO H B,GAO Y Z,et al.Microstructure and thermophysical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.
参考文献 51
LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack[J].Journal of Thermal Spray Technology,2010,19(1):148-155.
参考文献 52
CHEVALIER J,GREMILLARD L,VIRKAR A V,et al.The tetragonal-monoclinic transformation in zirconia:Lessons learnt and future trends[J].Journal of the American Ceramic Society,2009,92:1901-1920.
参考文献 53
XU G N,YANG L,ZHOU Y C.A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings[J].Corrosion Science,2021,190:109690.
参考文献 54
SONG J B,ZHANG X F,DENG C M,et al.Research of in situ modified PS-PVD thermal barrier coating against CMAS(CaO-MgO-Al2O3-SiO2)corrosion[J].Ceramics International,2016,42(2):3163-3169.
参考文献 55
MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.
参考文献 56
WANG L,GUO L,LI Z M,et al.Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate(CMAS)attack[J].Ceramics International,2015,41(9):11662-11669.
参考文献 57
LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layer[J].Ceramics International,2018,44(1):452-458.
参考文献 58
HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating[P].U.S.Patent:5871820,1999-02-16.
参考文献 59
NAGARAJ B A,ACKERMAN J F,STOWELL W R,et al.Thermal barrier coating protected by tantalum oxide and method for preparing same[P].U.S.Patent:6933066,2005-08-23.
参考文献 60
DREXLER J M,GLEDHILL A D,SHINODA K,et al.Jet engine coatings for resisting volcanic ash damage[J].Advanced Materials,2011,23(21):2419-2424.
参考文献 61
FANG H J,WANG W Z,HUANG J N,et al.Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J].Corrosion Science,2020,173(15):108764.
参考文献 62
MO Y,ZHANG Y Q,CHEN Z,et al.Effect of Er dopant on the corrosion resistance of YSZ in CMAS melt:experimental and first-principles study[J].Journal of Materials Science,2021,56(31):17542-17555.
参考文献 63
FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.
参考文献 64
MOCK C,WALOCK M J,GHOSHAL A,et al.Adhesion behavior of calcia-magnesia-alumino-silicates on gadolinia-yttria-stabilized zirconia composite thermal barrier coatings[J].Journal of Materials Research,2020,35(17):2335-2345.
参考文献 65
FANG H J,WANG W Z,HUANG J B,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesiumaluminum-silicate(CMAS)deposition:Experiments and first-principles calculation[J].Corrosion Science,2021,182:109230.
参考文献 66
MINERVINI L,GRIMES R W,SICKAFUS K E.Disorder in pyrochlore oxides[J].Journal of the American Ceramic Society,2000,83(8):1873-1878.
参考文献 67
WUENSCH B J,EBERMAN K W.Order-disorder phenomena in A2B2O7 pyrochlore oxides[J].JOM-Journal of the Minerals Metals & Materials Society,2000,52(7):19-21.
参考文献 68
SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.
参考文献 69
GODBOLE E,VON DER HANDT A,POERSCHKE D.Apatite and garnet stability in the Al-Ca-Mg-Si-(Gd/Y/Yb)-O systems and implications for T/EBC:CMAS reactions[J].Journal of the American Ceramic Society,2022,105(2):1596-1609.
参考文献 70
WU Y,ZHENG L,HE W T,et al.Effects of Yb3+ doping on phase structure,thermal conductivity and fracture toughness of(Nd1-xYbx)2Zr2O7[J].Ceramics International,2019,45(3):3133-3139.
参考文献 71
WANG F,GUO L,WANG C M,et al.Calciummagnesium-alumina-silicate(CMAS)resistance characteristics of LnPO4(Ln = Nd,Sm,Gd)thermal barrier oxides[J].Journal of the European Ceramic Society,2017,37(1):289-296.
参考文献 72
GUO L,LI M Z,CHENG Y X,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:Preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.
参考文献 73
ZHANG C L,FEI J M,GUO L,et al.Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J].Ceramics International,2018,44(8):8818-8826.
参考文献 74
GUO L,YAN Z,YU Y,et al.CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1 250 ℃-1 350 ℃ [J].Corrosion Science,2019,154:111-122.
参考文献 75
COLLONGUES R,GOURIER D,KAHN A M,et al.Magnetoplumbite related oxides[J].Annual Review of Materials Science,1990,20(1):51-82.
参考文献 76
CUI J J,OUYANG J H,LIU Z G.Hot corrosion behavior of LaMgAl11O19 ceramic coated with molten CMAS deposits at temperature of 1 250 ℃ in air[J].Journal of Alloys and Compounds,2016,685:316-321.
参考文献 77
LI X Y,DENG Z Q,ZHAO H X,et al.CMAS-induced degradation of the SPS gadolinium magnesium hexaaluminate ceramic bulk at 1 260-1 500 ℃[J].Surface and Coating Technology,2022,440:128490.
参考文献 78
SUN Y W,WU H K,ZHAO H X,et al.High-temperature degradation of the in-situ laser-glazed plasma sprayed LaMgAl11O19 thermal barrier coating exposed to Ca-Mg-Al-silicate deposits[J].Corrosion Science,2020,176:108934.
参考文献 79
QU W W,LI S S,JING J,et al.The spreading behavior of CMAS melt on YSZ single crystal with low index orientation[J].Applied Surface Science,2020,527:146846.
参考文献 80
LI B T,CHEN Z,ZHENG H Z,et al.Wetting mechanism of CMAS melt on YSZ surface at high temperature:First-principles calculation[J].Applied Surface Science,2019,483:811-818.
参考文献 81
LOKACHARI S,SONG W J,FUKUMOTO M,et al.Novel thermal barrier coatings with hexagonal boron nitride additives resistant to molten volcanic ash wetting[J].Corrosion Science,2020,168:108587.
参考文献 82
YANG S J,SONG W J,DINGWELL D B,et al.Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings[J].Rare Metals,2022,41(2):469-481.
参考文献 83
GUO L,LI G,GAN Z L.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.
参考文献 84
BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.
参考文献 85
ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Advanced Materials,2008,20(21):4049-4054.
参考文献 86
LARMOUR I A,BELL S E J,Saunders G C.Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J].Angewandte Chemie International Edition,2007,46(10):1710-1712.
参考文献 87
ZHAO Y,TANG Y W,WANG X G,et al.Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy[J].Applied Surface Science,2010,256(22):6736-6742.
参考文献 88
BABU D J,MAIL M,BARTHLOTT W,et al.Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water(salvinia effect)[J].Advanced Materials Interfaces,2017,4(13):1700273.
参考文献 89
ZHANG B P,SONG W J,GUO H B.Wetting,infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J].Journal of the European Ceramic Society,2018,38(10):3564-3572.
参考文献 90
SONG W J,MAJOR Z,GUO Y Q,et al.Biomimetic super “silicate” phobicity and superhydrophobicity of ceramic material[J].Advanced Materials Interface,2022,9(32):2201267.
目录contents

    摘要

    热障涂层(TBCs)广泛应用于先进航空发动机热端部件,可以有效提高发动机的工作效率和服役温度。随着发动机涡轮前进口温度不断提高以及工业生产和人类活动愈加频繁,TBCs 面临严峻的 CMAS 腐蚀问题。目前 CMAS 腐蚀已经成为制约 TBCs 应用和发展的关键因素,如何提高 TBCs 的 CMAS 防护能力是 TBCs 领域的研究热点和难点。针对此问题,对不同类型 CMAS 的室温和高温特性进行总结,深入分析 CMAS 作用下 TBCs 的失效机制,总结 TBCs 的 CMAS 防护方法,综述 TBCs 的 CMAS 腐蚀与防护研究进展。结果表明,不同 CMAS(如火山灰、沙石和灰尘等)的化学成分(质量分数)差异明显,影响了其高温黏度和熔化行为;高温下熔融 CMAS 渗入到涂层内部并与之发生化学反应,破坏了涂层的结构和性能稳定性,造成涂层失效;提出了增加惰性防护层、YSZ 材料掺杂改性和研发新材料等方法,以提高 TBCs 的 CMAS 防护能力。最后对未来的 CMAS 防护新方法进行展望,对超高温长寿命 TBCs 的研制提供理论支撑。

    Abstract

    Thermal barrier coatings (TBCs) are widely used in the hot-section components of gas-turbine engines to allow operation at higher temperatures (> 1200 ℃), which has created some new issues. One issue is the spallation and premature failure of TBCs caused by calcium-magnesium-alumino-silicate (CMAS) deposits, which arise from entry of siliceous debris such as fly ash, sand, dust, and volcanic ash into engines. Since 1953, over 130 jet aircraft have encountered volcanic ash clouds, with varying degrees of damage and endangering the lives of many passengers. The 2010 eruption of Eyjafjallajökull volcano in Iceland led to the most severe air-traffic disruption since World War II. The operational response produced economic losses approaching 1.7 billion. When these debris enter the hot-section airfoil, they melt and are accelerated from low speed (~15 m / s) to near supersonic speed (~300 m / s), impacting and adhering to the TBC surface. Even with only a few molten silicate ash droplets adhering to the surface of hot-section airfoils, an initial deposit layer can form and large melt pockets (several cubic centimeters in volume) can accumulate. Such deposits can 1) block cooling holes and air flow paths, and 2) react with the top coating of hot-section airfoils. Furthermore, adhering droplets infiltrate the interior of TBCs under capillary forces. Due to the thermal gradient and thermal cycling, the infiltrated CMAS solidifies and fills in the microcracks, pores, and grain boundaries, resulting in loss of strain tolerance and increased coating stiffness. For traditional 7–8 wt.% yttria-stabilized zirconia (YSZ) material, chemical reaction with CMAS destroys the phase and structure stability. YSZ grains dissolve and Y-depleted ZrO2 grains precipitate due to the relatively low solubility of Zr4+ compared with Y3+ in melted CMAS. Upon cooling, the newly formed grains transform from tetragonal (t) to monoclinic (m) phases, accompanied by a 3%–4% volume expansion. As turbine inlet temperatures improve and industry production grows, TBCs are suffering from severe CMAS corrosion. This issue limits further application and development of TBCs; enhancing anti-corrosion performance of TBCs has become a concern. Herein, we compare the room-temperature and high-temperature properties of different CMAS and study the failure mechanism of TBCs exposed to CMAS. We also determine the most effective CMAS protection method. The results show that the chemical compositions, especially the Ca:Si ratio, of CMAS such as volcanic ash, dust and sand are different, further affecting their high-temperature viscosities and melting behaviors. With infiltration of molten CMAS toward the coating interior, chemical reaction occurs between them, resulting in instability of the coating microstructure and properties, and failure. Significant methods including inert-layer, rare-earth doping and novel materials have been proposed to improve the CMAS corrosion resistance of TBCs. The research and future development directions of CMAS corrosion and protection are proposed, providing a reference for design of novel TBCs.

  • 0 前言

  • 航空发动机是飞机的“心脏”,是衡量国家国防实力和高端制造能力的重要标志。随着航空发动机向高推重比发展,涡轮前进口温度不断提高[1-2]。推重比 10 的航空发动机涡轮前进口温度已达到 1 600~1 700℃,推重比 12~15 的航空发动机涡轮前设计进口温度将达到 1 700~1 800℃ [3]。我国用于发动机高压涡轮叶片的单晶高温合金的使用温度不超过 1 100℃,目前代表高温合金最高水平的第五代单晶的最高使用温度为 1 150℃,已接近合金的承温极限,即使采用双层壁冷气膜冷却技术,也难以满足高推重比航空发动机的发展需求[4-5]。因此,热障涂层(Thermal barrier coatings,TBCs)技术应运而生。

  • TBCs 起源于 20 世纪 70 年代初,应用于先进航空发动机热端部件,可有效提高发动机的工作效率,延长叶片的服役寿命[6]。TBCs 一般由金属粘结层和表面陶瓷层构成,前者厚度小于 150 μm,材料多为 MCrAlY(M 为 Ni 或 Co)或(Ni,Pt)Al 合金,具有保护基体不受氧化、缓解陶瓷层与基体热膨胀不匹配等作用;后者厚度小于 300 μm,最成熟且应用最为广泛的材料为氧化钇部分稳定氧化锆(YSZ)[7-9]。常见的 TBCs 制备方法有等离子喷涂(Plasma spraying,PS)[10-11]、电子束物理气相沉积(Electron beam-physical vapor deposition,EB-PVD)[12-13],以及近几年迅速发展的等离子物理气相沉积(Plasma spray-physical vapor deposition,PS-PVD)[14-15]

  • 伴随着航空发动机工作温度的不断提升,TBCs 材料面临更加严苛的服役环境。航空发动机在服役过程中会不可避免地吸入火山灰、灰尘和沙石等硅酸盐粒子,这些粒子在发动机燃烧室中熔化,然后随高温高速高压燃气撞击涡轮叶片并沉积在 TBCs 表面,造成 TBCs 性能恶化及寿命锐减[16-17]。关于此类环境沉积物腐蚀的研究最早见于 SMIALEK 等[18]的报道。20 世纪 90 年代海湾战争期间,黑鹰直升机在沙漠等多尘区域长期服役,发动机叶片表面覆盖了大量玻璃态沉积物,严重威胁航空安全。 BOROM 等[19]采集多种玻璃态沉积物并进行对比分析,发现其主要化学成分均为 CaO、MgO、AlO1.5、 SiO2(简称 CMAS)。进一步地,KRÄMER 等[20]合成了名义成分为 33CaO-9MgO-13AlO1.5-45SiO2 的 CMAS,成为目前实验室研究所采用的经典组分。针对不同的国家和地区,PADTURE 等[21]和 WANG 等[22]相继设计了不同组分的 CMAS。不同 CMAS 的熔点尽管略有不同,但多是在高于 1 200℃环境下熔化,然后在毛细作用下沿晶界、孔隙和微裂纹等缺陷向 TBCs 内部渗透,并与之发生化学反应,破坏涂层的结构和性能稳定性。另外,CMAS 还会堵塞叶片的冷却气孔,造成局部过烧。

  • 目前,CMAS 腐蚀已经成为制约 TBCs 应用和发展的关键因素,如何提高 TBCs 的 CMAS 防护能力是TBCs领域的研究热点和难点。学者们从CMAS 的物理化学特性及腐蚀机理等方面开展了大量研究,并针对性地提出了一些防护方法。

  • 1 CMAS 的分类与特性

  • 航空发动机叶片表面 CMAS 主要来源于空气中漂浮的火山灰、灰尘和沙石等硅酸盐粒子,化学成分包括 CaO、MgO、AlO1.5、SiO2、Na2O、K2O、 MnO 和 FeOx等。由于地理位置和形成条件的不同,其粒径尺寸和化学成分存在明显差异。火山灰是火山喷发过程中,岩石或岩浆被粉碎而形成的细小粒子,尺寸在 1~63 μm 范围内,SiO2含量为 40%~75 %[23-24];北方城市常见的沙尘暴本质上是一种带负电荷的硅酸盐沙尘气溶胶,沙尘尺寸在 0.43~42 μm 范围内,化学成分以 SiO2、AlO1.5和 FeOx为主[25-26];沙漠地域的沙砾是长期风化作用形成的细小晶化岩石,尺寸在 4 μm~2 mm 范围内,SiO2含量通常在 95%以上[27]

  • CMAS 化学成分的差异导致其高温特性的不同。BOROM 等[19]测定的环境沉积物的熔点约为 1 200℃;KRÄMER 等[20]发现人工合成 CMAS (33CaO-9MgO-13AlO1.5-45SiO2)的熔化温度区间为 1 235~1 240℃;WANG 等[22]依据北京实际沙尘成分合成了名义成分为 16CaO-7MgO-13AlO1.5-50SiO2 的 CMAS,测得其熔点约为 1 300℃。相比之下,自然的火山灰表现出更加复杂的高温熔化行为。由于火山喷发时岩浆冷速不同,形成的火山灰中通常含有玻璃相和晶体相。前者没有固定熔点,软化温度一般在 500~800℃范围内,在高温下更倾向于发生粘附行为;后者主要是石英(SiO2),熔点高达 1 750℃,与其他成分的比例对火山灰的高温特性具有决定性影响[28]。SONG 等[24]在全球范围内采集了 9 座火山的火山灰样品,并定义了 4 个特征温度(收缩温度、变形温度、半球化温度、流变温度)用于将灰样高温熔化过程进行离散化和定量化处理,同时建立了火山灰高温流变特性(烧结、润湿与流动)的预测模型,可用于评估火山灰在航空发动机内部的沉积倾向(图1)。在此基础上,WU 等[29]对比了冰岛 Eyjafjallajökull 火山灰和人工合成 CMAS 的高温流变特性,发现火山灰在 1 139℃开始熔化,在 1 291℃开始流动;而合成 CMAS 的熔点约为 1 231℃,温度升高 10℃左右便可达到流动状态。这一现象说明两者的高温特性存在较大差异,用人工合成 CMAS 代替自然灰用于研究可能存在一定的不科学性(图2)。

  • 图1 火山灰样品的特征温度[24] (a)火山灰样品在不同特征温度下的几何形貌示意图 (b)九种火山灰样品的特征温度分布 (c)格里姆火山灰样品在 Al2O3 基板表面的粘附行为 (d)不同特征温度下格里姆火山灰样品的微观形貌

  • Fig.1 Characteristic temperatures of volcanic ash samples[24]. (a) Geometrical definition of four characteristic temperatures in the volcanic ash melting process; (b) Distribution of the four characteristic temperatures for the nine volcanic ash, ordered as a function of SiO2 content; (c) Typical behaviour observed during a test, here with Grímsvötn’s volcanic ash, along with (d) Back-scattered electron images of corresponding microstructures of the volcanic ash at the four characteristic temperatures.

  • 图2 CMAS 样品的特征温度[29] (a)4 个特征温度的几何定义示意图 (b)CMAS、火山灰和飞灰样品的四个特征温度对比 (c)3 种样品的流变温度与变形温度之间的温度差

  • Fig.2 Characteristic temperatures of CMAS samples[29]. (a) Schematic illustration of geometrical definition of four characteristic temperatures throughout the ash melting process; (b) Comparison of characteristic temperatures for CMAS, volcanic ash and fly ash; (c) Temperature difference between DT and FT of three silicate ash samples.

  • 熔融 CMAS 在 TBCs 表面经历一个短暂的流动阶段后便会达到平衡状态,此状态与熔体表面张力及黏度有关。MÜLLER 等[30]研究了 5 种火山灰样品在 TBCs 表面的润湿铺展行为,结果表明熔体的高温黏度是影响其铺展的关键因素。GIORDANO等[31] 通过测定大量火山灰样品的高温黏度,首次建立了经典的熔体黏度预测模型——GRD 模型。随着研究的深入,FLUEGEL[32]和 BALE 等[33]分别发展了 Fluegel 模型和 FactSage 软件等用于熔体黏度预测。 WIESNER 等[34]合成了名义成分为 23.3CaO-6.4MgO-3.1AlO1.5-62.5SiO2-4.1Na2O-0.5K2O-0.04Fe2O3的CMAS,分别采用 GRD 模型、Fluegel 模型和 FactSage 软件预测黏度,并与实际测量值进行对比。结果表明 Fluegel 模型和 FactSage 软件的预测值较为准确。 WU 等[29]比较了火山灰、飞灰和人工合成 CMAS 的黏度预测值及实际测量值,证实 GRD 模型适用于成分较为复杂的自然灰,而 FactSage 软件则适用于成分较为单一的人工合成 CMAS。

  • 实际上,熔融 CMAS 的黏度并不是一成不变的,还会受到与 TBCs 之间的化学反应、温度和自结晶等因素的影响。随着 CMAS 中 CaO 与 MgO 的消耗及 Zr4+浓度的增加,CMAS 的黏度增大;随着 SiO2 的消耗及 RE3+浓度的增加,CMAS 的黏度减小[35-36]。MÜLLER等[37]的研究表明YSZ和Gd2Zr2O7 材料的溶解会降低火山灰熔体的黏度。另外,CMAS 的黏度对温度变化非常敏感,随着温度由 1 250℃升高至 1 400℃,黏度由~0.75 迅速减小至~0.2 Pa·s [29]。 GUO 等[38]研究了 CMAS 自结晶产物的析出,发现当保温温度低于 1 050℃时,产物主要为透辉石和黄铁矿相;而温度较高时,产物为钙长石和硅灰石。冷却过程中,随着冷速降低,结晶产物依次为为透辉石、硅灰石和钙长石。自结晶产物的形成可以显著降低 CMAS 熔体的黏度。

  • 2 TBCs 的 CMAS 腐蚀行为

  • 受自然、工业和人类生产活动的影响,大气中漂浮的 CMAS 粒子逐年增多,已成为航空安全的主要威胁之一。据国际民航组织统计,自 20 世纪 80 年代以来,全球有 150 余架民航客机在飞行过程中误入火山灰云团,造成发动机不同程度的受损[39-40]。 2010 年冰岛 Eyjafjallajökull 火山喷发对全球航空运输业造成严重影响,直接经济损失高达近 20 亿美元[41]。2022 年 1 月,汤加火山多次喷发,将大量火山灰送入大气层,造成当地空中交通全面瘫痪。伴随火山灰的大面积扩散,全球航空业将会受到进一步的影响[42]。对于我国而言,东北地区、内蒙古高原、海南岛北部和台湾岛等地区分布有数百座火山,且荒漠化面积占国土面积的 27.2%,近年来沙尘暴天气频繁袭击北方城市,CMAS 问题异常严峻。

  • TBCs 在制备过程中会引入孔洞和微裂纹等缺陷,一方面可以提高涂层的热防护能力,另一方面可以改善涂层的抗热震性能。然而,该结构也为熔融 CMAS 下渗提供了便利,从而加速了涂层的剥落失效。针对此问题,国际上开展了相关研究。CMAS 与 TBCs 的相互作用包括撞击、粘附、润湿铺展、渗透和化学反应等一系列过程。SONG 等[43]巧妙地利用大气等离子喷涂技术研究了火山灰粒子在TBCs 表面的撞击行为,证实 TBCs 表面形貌对粒子的粘附行为具有显著影响,并建立模型用于定量预测粒子的粘附率。YANG 等[44]对比了火山灰在 EB-PVD 和 APS 涂层内部的渗透速率,结果表明前者的柱状结构可以加速熔融火山灰的垂直和水平渗透(图3)。ZHANG 等[45]采用 X 射线微断层扫描技术观察了熔融 CMAS 在 TBCs 内部的渗透,证实驱动力是毛细作用而非重力。

  • 图3 1 200℃条件下火山灰熔体在 APS 和 EB-PVD 涂层内部渗透的示意图、截面 SEM 照片和 Si 元素分布图[44]

  • Fig.3 Schematic, cross-section SEM images and Si elemental mappings of the melt-deposited APS (a) - (e) and EB-PVD (f) - (j) TBCs samples exposed to 1 200℃ for 101 –104 min[44]

  • 在 TBCs 内部热梯度以及冷却作用下,渗透的 CMAS 熔体会凝固成玻璃并填充在孔洞和裂纹处。由于玻璃和陶瓷热膨胀系数存在差异,涂层内部会不可避免地产生应力。MERCER 等[46]证实 CMAS 渗透进入 TBCs 后会改变渗透区的力学性能,涂层表现出明显的水平开裂倾向,并首次提出冷冲击分层和柱晶断裂失效机制。KRÄMER 等[47]采用拉曼位移法测量了 CMAS 渗透 TBCs 内部的应力分布,发现渗透层的上部为拉应力,而下部则为压应力,该方法为裂纹形成和涂层开裂预测提供了新思路。LI 等[48]使用 ANSYS 有限元软件分析了 CMAS 渗透后 GdPO4 涂层内部的应力分布,发现拉应力主要集中于渗透反应层与涂层基体的界面处,随着反应层表面粗糙度和厚度增加,拉应力逐渐增大。CAI 等[49]使用 ABAQUS 有限元软件探究了 CMAS 和热循环耦合作用下 TBCs 的应力演化,证实涂层内部更容易形成应力集中,诱发多种裂纹萌生,从而造成涂层失效(图4)。除此之外,TBCs 的热物理和力学等性能也会受到不同程度的影响。凝固的 CMAS 填充在涂层的孔洞和裂纹处,使得涂层致密度提高,应变容限显著下降; 另外,玻璃的热导率高于陶瓷材料,削弱涂层的热防护能力。

  • 图4 基于应力分析的 CMAS 与热循环耦合作用下的陶瓷层内部的裂纹萌生与连接[49]

  • Fig.4 Prediction of the formation and coalescence of cracks in the TC under CMAS attack during thermal cycling based on the stress analysis[49]

  • 除了上述提到的热机械失效,CMAS 对 TBCs 的腐蚀破坏还体现在热化学方面。WU 等[50]和 LI 等[51]的研究表明,在 CMAS 与涂层化学反应初期, CMAS 中可以观察到少量的气泡,这可能与涂层内部的残余气体向外逸出有关;随着化学反应的进行, CMAS 与涂层之间发生元素扩散,以 YSZ 涂层为例,Y2O3 和 ZrO2 溶解进入 CMAS 熔体中,Zr4+的溶解度低于 Y3+,从而促进了贫 Y 的 ZrO2 晶粒的析出。降温过程中,其通过马氏体相变进一步转变为球状的 m-ZrO2,同时伴随着 4%~6%的体积膨胀[52-53]。TBCs 的显微组织结构和化学成分稳定性遭到破坏,最终剥落失效。

  • 3 TBCs 的 CMAS 防护方法

  • 近年来,如何提高 TBCs 的 CMAS 腐蚀防护能力已经成为 TBCs 领域的研究热点,同时也是一个巨大的挑战。基于对 CMAS 腐蚀行为的理解,国际上主要提出了以下几种防护方法。

  • 3.1 物理阻渗层沉积

  • 物理阻渗层一般要求具有化学惰性和致密无缺陷等特点,能够有效阻挡熔体渗透。SONG 等[54]采用磁控溅射技术在 YSZ 涂层表面沉积了一层 Al 膜,然后经过真空热处理,使得 Al 与 YSZ 涂层中的氧元素反应,原位生成致密的α-Al2O3 层,从而阻挡熔融 CMAS 的渗透。MOHAN 等[55]则采用电泳沉积技术在 YSZ 涂层表面直接制备了致密无裂纹的 Al2O3 层,1 300℃条件下,Al2O3 层中的 Al 元素扩散进入 CMAS 熔体,促进了钙长石(CaAl2Si2O8)和尖晶石(MgAl2O4)的析出,可以进一步阻挡 CMAS 的渗透。WANG 等[56]在 YSZ 涂层表面电镀了一层厚度约为 1.5 μm 的 Pt 层,利用 Pt 在高温下的化学惰性和稳定性阻挡 CMAS 渗透,然而 LIU 等[57]的研究证明 Pt 会部分溶解在熔融 CMAS 中,阻渗透效果会有所削弱。另外,相关研究表明钯银合金、钯、铂、碳化硅、氧化硅、氧化钽、锆酸钙、铝酸镁和碳氧化硅等均可以作为阻渗层材料使用[58-59]

  • 尽管通过制备物理阻渗层可以提升 TBCs 的 CMAS 腐蚀抗力,但是 TBCs 的性能势必会受到不同程度的影响。比如,沉积的 Al 膜致密性出色,会阻碍涂层在热震过程中的热应力释放,从而影响涂层寿命。

  • 3.2 YSZ 材料改性

  • YSZ 具有热导率低、熔点高、密度小和断裂韧性高等优点,是目前应用最为成熟且广泛的 TBCs 陶瓷层材料。随着发动机服役温度的逐渐提高,YSZ暴露出了抗 CMAS 腐蚀性能差的缺陷。研究表明 CMAS 熔体在冷却过程中会发生结晶行为,根据有无与 TBCs 发生化学反应可分为“反应性结晶”和 “自结晶”。因此,国际上提出对 YSZ 材料进行掺杂改性,加速 CMAS 的反应结晶,从而延缓渗透。 DREXLER 等[60]制备了 YSZ+20Al+5Ti 涂层,发现相比于 YSZ 涂层,CMAS 的渗透深度减小了三分之二,展现了优异的腐蚀抗力。涂层中的 Al 元素扩散进入 CMAS 熔体,使得 CMAS 成分向“易结晶区” 转变,同时 Ti 元素为 CaAl2Si2O8 结晶晶粒的析出提供了更多的形核质点,消耗 CMAS 的同时也阻挡了其持续渗透(图5)。FANG 等[61]通过在 YSZ 中引入莫来石和 Al2O3-SiO2 来促进 CMAS 结晶形成 CaAl2Si2O8,从而抑制 CMAS 渗透。MO 等[62]在 YSZ 中引入 Er 元素,阻碍 Y 元素的扩散,同时强化 Si 与 Zr 元素的互扩散,从而延缓 t-ZrO2c-ZrO2 的相变,并促进 ZrSiO4 结晶晶粒的析出,抑制 CMAS 渗透。类似地,Sc2O3、Gd2O3、Y2O3和 Yb2O3 等均被证明可以作为掺杂剂,提升 YSZ 的 CMAS 腐蚀抗力[63-65]

  • 图5 7YSZ 和 Gd2Zr2O7或 YSZ+Al+Ti 涂层的 CMAS 腐蚀示意图[60]

  • Fig.5 Schematic diagrams of APS TBCs cross-sections with ash deposits, before and after exposure to heat[60]

  • 3.3 抗腐蚀 TBCs 新材料设计

  • 通过对 YSZ 材料进行掺杂改性可以改善抗 CMAS 腐蚀性能,然而高温烧结和相变等问题依然制约其高温应用,发展新型超高温 TBCs 材料势在必行。抗 CMAS 腐蚀性能是评估 TBCs 材料应用潜能的重要指标,国际上开展了大量相关研究。

  • 3.3.1 稀土锆酸盐

  • 稀土锆酸盐的化学式为 RE2Zr2O7,根据 RE3+ 离子半径的不同,呈现出两种不同的晶体结构,即有序的烧绿石结构(空间群为 Fd3m)和无序的萤石结构(空间群为 Fm3m)[66-67]。相比于 YSZ,稀土锆酸盐具有更高的氧空位浓度和更低的热导率,且能够在高温下保持良好的抗烧结性能和相稳定性,被认为非常有希望取代传统的 YSZ 材料得以广泛应用。目前,最具代表性的是 Gd2Zr2O7 和 La2Zr2O7。 KRÄMER 等[20]以 Gd2Zr2O7 材料为研究对象,首次提出“溶解—再析出”机制,证实其可以与 CMAS 迅速反应生成高温稳定且排列紧密的磷灰石相 (Gd8Ca2(SiO45O2)、c-ZrO2 和 MgAl2O4,形成致密的反应层,从而阻碍 CMAS 渗透。SCHULZ 等[68] 和 POERSCHKE 等 [69] 系统研究了 La2Zr2O7、 Gd2Zr2O7 和 Yb2Zr2O7 与 CMAS 的相互作用,发现结晶反应的速率随稀土阳离子半径的增大而增加。 WU 等[70]合成了具有低热导率(~1.2 W·m –1·K–1) 和高断裂韧性(~1.5 MPa·m 1 / 2)的 NdYbZr2O7 陶瓷块材并制备了APS涂层,证实其在多种介质(火山灰、飞灰和 CMAS)条件下均表现出优异的抗腐蚀能力(图6)。不同介质的 CaO 含量存在一定的差异,从而表现出不同的腐蚀行为,因此需要根据实际情况对稀土锆酸盐材料的成分进行调整,以达到令人满意的抗腐蚀效果[29]

  • 图6 火山灰渗透 TBCs 区域的 TEM 照片[29](a)低倍 TEM 照片 (b)图(a)中圆圈区域的高倍照片 (c)图(b)中方框区域界面处的 HRTEM 图像 (d)物相鉴定

  • Fig.6 TEM characterization of the infiltrated region with volcanic ash[29]. (a) Low-magnification TEM image, showing the representative morphology of corrosion products; examples showing the same contrast are marked by the blue arrows; (b) Magnified view of the circular area in (a) ; (c) HRTEM image detected from the interface marked by the rectangle in (b) ; (d) TEM and SAED analysis for phase identification.

  • 3.3.2 稀土磷酸盐

  • 稀土磷酸盐的化学式为 REPO4,具有很多优异性能,如低热导率、高热膨胀系数和高熔点等,是一种具有应用潜力的 TBCs 材料。WANG 等[71]系统比较了 LnPO4(NdPO4、SmPO4、GdPO4)和 YSZ 块材的 CMAS 腐蚀情况,证实前者在高温下可以与 CMAS 迅速反应生成排列紧密的 Ca3Ln7(PO4)(SiO45O2、CaAl2Si2O8和 MgAl2O4,从而阻挡 CMAS 渗透。其中,GdPO4 的阻渗效果最好。进一步地, GUO 等[72]采用 PS 技术制备了具有优异 CMAS 腐蚀抗力的纳米结构的 GdPO4 涂层。为提升涂层的热震性能,ZHANG 等[73]和 GUO 等[74]制备了 LaPO4 / YSZ 双层涂层,发现涂层的 CMAS 腐蚀抗力与温度密切相关。腐蚀温度为 1 250 °C 时,CMAS 的黏度较大,下渗速率小于结晶反应速率,涂层表现出出色的阻渗效果;随着腐蚀温度升高至 1 300 °C 甚至更高, CMAS 的黏度明显减小,下渗速率大于结晶反应速率,涂层的阻渗能力下降。

  • 3.3.3 六铝酸盐

  • 磁铅石型六铝酸盐的化学式为 MAl12O19 (M=Ca、Sr 和 Pb 等),镜面层由 1 个大阳离子和 3 个 O2− 构成,且 Al3+占据 4 个顶点位置,属于密排结构。该材料具有熔点高、热导率低、抗烧结能力强和相变温度高(2 000℃)等优点,在 TBCs 领域具有较大的发展潜力[75]。OUYANG 等[76]制备了 LaMgAl11O19块材并评估了其 CMAS 腐蚀抗力,发现块材与 CMAS 在 1 250℃迅速发生化学反应生成 CaAl2Si2O8和 Ca(Mg,Al)(Al,Si)2O6,阻碍 CMAS 渗透。LI 等[77]对比了 GdMgAl11O19 块材和涂层在更高温度(1 260~1 500℃)下的抗 CMAS 腐蚀表现,结果表明涂层展现了更好的腐蚀抗力,这一现象可能与涂层制备过程中形成的非晶相有关。在此基础上,SUN 等[78]对 LaMgAl11O19 涂层表面进行激光改性,形成致密的熔覆层,结合物理阻挡的方式进一步强化涂层的 CMAS 腐蚀抗力。

  • 3.4 TBCs 表面结构构筑

  • 上述研究均以熔融 CMAS 粘附于 TBCs 表面为前提,采用物理或者化学方法阻碍其向 TBCs 内部渗透,只能对 CMAS 腐蚀起到延缓作用。若从根本上解决这一问题,提升 TBCs 的抗 CMAS 附着和润湿铺展能力是关键。QU 等[79]和 LI 等[80]分别采用试验和第一性原理计算的方法研究了 CMAS 在 YSZ 不同晶面的润湿铺展行为,证实不同晶面的表面能对 CMAS 的润湿铺展有显著影响,表面能越低, CMAS 的平衡接触角越大。LOKACHARI 等[81]在 YSZ 涂层中加入了低表面能的六方氮化硼(h-BN),显著提升了涂层的抗熔融 CMAS 浸润性(图7)。 YANG 等[82]研究了 YSZ 涂层表面粗糙度对熔融火山灰液滴润湿铺展的影响,结果表明液滴的平衡接触角随涂层表面粗糙度的降低而增大。GUO 等[83] 的研究得到了相似的结论。

  • 图7 六方氮化硼(h-BN)薄板表面的非浸润行为[81] (a)h-BN 薄板表面的 Eyja 玻璃碎片 (b)Eyja 在 1 250℃ 真空状态下的熔化照片 (c)Eyja 在熔化过程中的截面轮廓图像 (d)凝固态熔体在 h-BN 基体表面的非浸润行为

  • Fig.7 Non-wetting behavior of hexagonal-boron nitride (h-BN) thin film substrate[81]. (a) Eyja glass shard before thermal treatment on h-BN thin film substrate; (b) Real time photograph of the molten Eyja at 1 250℃, in-vacuo condition; (c) Sequential in-situ silhouette morphological transition of the irregular shard to a sphere from 25℃ to 1 250℃; (d) Photographs showing the non-wetting behavior (left) and non-adhesion property (right) of solidified melt on the surface of h-BN substrate.

  • 古人称赞荷花荷叶“出淤泥而不染,浊清涟而不妖”。随着科技进步,人们逐渐意识到这与其表面的超疏水性有关[84-85]。研究发现,荷叶表面随机分布有大量微米尺度的乳突结构,每一个乳突表面覆盖有丰富的纳米棒和低表面能的蜡质层。微纳结构形成的空气层可以将表面的水滴托起,使其在荷叶表面自由滚动并带走灰尘,实现自清洁[86-88]。受“荷叶效应”启发,众多学者纷纷采用模板法、刻蚀法和溶液沉积法等在金属材料表面构筑低表面能分层粗糙结构,提升材料在高盐、高湿、高热极端环境下的室温防腐能力。高温下,固态 CMAS 熔化并在表面张力作用下收缩形成球状,本质上与室温下的水滴是一致的。基于此,ZHANG 等[89]采用 PS-PVD 技术制备了具备微纳结构的 YSZ 涂层,发现在 1 250℃条件下,熔融 CMAS 在涂层表面的平衡接触角约为 119°,而在 YSZ 陶瓷块材表面的平衡接触角仅为 13°(图8)。这一现象说明微纳结构可以有效提高 TBCs 的抗 CMAS 附着和浸润性。考虑到 PS-PVD 制备微纳结构的工艺窗口较窄,成本较高, SONG 等[90]提出采用超快激光在涂层表面进行微纳加工的新思路,然而该结构能否在高温下保持长时间稳定仍有待考察。

  • 图8 熔融 CMAS 在不同 TBCs 表面的浸润性[89] (a)试验装置示意图 (b)加热前样品形貌 (c)1 250℃ 加热过程中样品形貌(d)CMAS 在 PS-PVD、APS、EB-PVD 涂层和 YSZ 块材表面的浸润状态 (e)CMAS 在不同涂层表面的平衡接触角比较 (f)微纳结构抗 CMAS 浸润机制

  • Fig.8 Macroscopic wettability of molten CMAS deposits on various TBC surfaces[89]. (a) Side view of the high-temperature contact angle system and sessile drop method including the sample assembly of CMAS and TBC at room temperature; (b) Actual photograph of sample assembly before heating; (c) Sample assembly during heating at approximately 1 250℃; (d) In-situ observation of a sequence of states of CMAS (non-wetting / wetting) on PS-PVD, APS, EB-PVD, and bulk-YSZ TBC surfaces; (e) Quantification of contact angles of molten CMAS on PS-PVD, APS, EB-PVD, and bulk-YSZ TBC surfaces; (f) Illustration of melt-phobic behavior on TBC surface possessing micro-nano protuberances.

  • 4 结论与展望

  • TBCs 是先进航空发动机的三大核心关键技术之一。高推重比航空发动机的发展使得涡轮前进口温度不断提高,也对 TBCs 的工作温度提出了更高要求,同时由于工业生产和人类活动愈加频繁,TBCs 面临的 CMAS 腐蚀问题更加突出。提高 TBCs 的 CMAS 腐蚀抗力已迫在眉睫。本文从 CMAS 的分类与特性、TBCs 的 CMAS 腐蚀行为和 TBCs 的 CMAS 防护方法 3 方面概述近年来国内外的最新研究成果:

  • (1)由于地理位置和形成条件的不同,CMAS 的化学成分存在明显差异,从而展现出不同的高温熔融性、流动性、活度和润湿铺展性等。明晰 CMAS 的本质特性是探究 CMAS 与 TBCs 相互作用的前提。

  • (2)CMAS 与 TBCs 相互作用包括撞击、粘附、润湿铺展、渗透和化学反应等,腐蚀破坏主要集中于渗透和化学反应阶段。目前国内外学者开展了大量关于 CMAS 腐蚀的研究,对腐蚀机理的解释也比较透彻,然而美中不足的是腐蚀条件理想化、腐蚀介质单一化,对实际服役环境和环境沉积物的复杂性考虑不足。加深对 TBCs 的 CMAS 腐蚀行为和机理的理解是提出有效的 CMAS 防护方法的基础。

  • (3)随着近年来 CMAS 腐蚀问题愈加严重,传统的 YSZ 材料已无法满足当前的发展需求,通过在 YSZ 涂层表面沉积物理阻渗层以及对其进行稀土元素掺杂改性可以提升 CMAS 腐蚀抗力,然而会不可避免地牺牲涂层的热防护和热震抗力等性能。一些新型 TBCs 材料如稀土锆酸盐和稀土磷酸盐等,尽管表现出优异的 CMAS 腐蚀抗力,但是相对较低的断裂韧性和弹性模量会在一定程度上影响涂层的热震和热循环性能,因此双层涂层成为当前的研究热点。此外,通过构筑微纳结构改善涂层的高温浸润性为提升涂层 CMAS 腐蚀抗力提供了新思路,但该结构的高温稳定性有待进一步探究。

  • 基于以上总结,为推动我国航空发动机叶片表面长寿命高可靠性 TBCs 研发,对 CMAS 防护方法做出以下展望:

  • (1)研发抗 CMAS 腐蚀的新材料。此类材料一方面能够在高温下与熔融CMAS迅速反应生成稳定腐蚀产物,形成致密阻渗层;另一方面具有与基体相匹配的热膨胀系数、低热导率、高断裂韧性等特点。

  • (2)在涂层表面构筑微织构。利用喷涂和超快激光等方式在涂层表面构筑微织构,形成微纳结构,从而提升涂层的抗熔融 CMAS 附着能力。进行微织构设计时,需要对结构和成分实现精确调控,同时要保证涂层表面材料具有较高的烧结抗力。

  • 参考文献

    • [1] 温俊峰.航空发动机发展简述与思考[J].世界科技研究与发展,1998,20(6):72-75.WEN Junfeng.Development in aero-engines—A brief history and some consideration[J].World SCI-Tech Research and Development,1998,20(6):72-75.(in Chinese)

    • [2] 洪杰,陈光.航空发动机半个世纪来发展的回顾[J].燃气涡轮试验与研究,1998,11(4):56-60.HONG Jie,CHEN Guang.Review on the development of aero-engines over the past half century[J].Gas Turbine Experiment and Research,1998,11(4):56-60.(in Chinese)

    • [3] 刘永泉,刘太秋,季路成.航空发动机风扇/压气机技术发展的若干问题与思考[J].航空学报,2015,36(8):2563-2576.LIU Yongquan,LIU Taiqiu,JI Lucheng.Some problems and thoughts in the development of aero-engine fan/compressor[J].Acta Aeronautica et Astronautica Sinica,2015,36(8):2563-2576.(in Chinese)

    • [4] 郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26.GUO Hongbo,GONG Shengkai,XU Huibin.Progress in thermal barrier coatings for advanced aeroengines[J].Materials China,2009,28(9):18-26.(in Chinese)

    • [5] 黄璇璇,郭双全,姚改成,等.航空发动机 SiC/SiC 复合材料环境障碍涂层研究进展[J].航空维修与工程,2017,2:28-31.HUANG Xuanxuan,GUO Shuangquan,YAO Gaicheng,et al.Research progress of environmental barrier coatings of SiC/SiC composite for aero-engine[J].Aviation Maintenance and Engineering,2017,2:28-31.(in Chinese)

    • [6] GOWARD G W.Recent developments in high temperature coatings for gas turbine airfoils[C]//High temperature corrosion.Proceedings of the International Conference,January 1,1981,San Diego,CA,1981.

    • [7] LEVINE S R,MILLER R A,STECURA S.Improved performance thermal barrier coatings[R].San Diego,USA:NASA,1983.

    • [8] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [9] STECURA S.Two layer thermal barrier coatings for high temperature components[R].USA:NASA Lewis Research Center,1977.

    • [10] BRINDLEY W J,LEONHARAT T A.Metallographic techniques for evaluation of thermal barrier coatings[J].Materials Characterization,1990,24:93-101.

    • [11] 魏绍斌,陆峰,何利民,等.热障涂层制备技术及陶瓷层材料的研究进展[J].热喷涂技术,2013,5(1):31-37.WEI Shaobin,LU Feng,HE Limin,et al.Progress in processing techniques and ceramic materials of thermal barrier coatings[J].Thermal Spray Technology,2013,5(1):31-37.(in Chinese)

    • [12] ZHANG D.Thermal barrier coatings prepared by electron beam physical vapor deposition(EB-PVD)[J].Thermal Barrier Coatings,2011,23:3-24.

    • [13] LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35:2814-2823.

    • [14] NIESSEN K V,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [15] 高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Pregress in plasma spray-physical vapor deposition thermal barrier caotings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)

    • [16] CLARKE D R,OECHSNER M,PADTURE N P.Thermal barrier coatings for more efficient gas-turbine engines[J].MRS Bulletin,2012,37(10):891-898.

    • [17] ROUX S,CAZALENS M,POINSOT T.Outletboundary-condition influence for large eddy simulation of combustion instabilities in gas turbines[J].Journal of Propulsion and Power,2008,24(3):541-546.

    • [18] SMIALEK J L,ARCHER F A,GARLICK R G.Turbine airfoil degradation in the Persian Gulf War[J].JOM,1994,46(12):39-41.

    • [19] BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.

    • [20] KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.

    • [21] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [22] WANG M,LAI X C,GUO S C,et al.CaO-MgOAl2O3-SiO2 corrosion behavior of air-plasma-sprayed(LaxYb1-x)2Zr2O7[J].Journal of the American Ceramic Society,2019,102(4):2029-2040.

    • [23] SHOJI S,KODAYASHI S,YAMADA I,et al.Chemical and mineralogical studies on volcanic ashes Ⅰ.Chemical composition of volcanic ashes and their classification[J].Soil Science and Plant Nutrition,1975,21(4):311-318.

    • [24] SONG W J,LAVALLÉE Y,HESS K U,et al.Volcanic ash melting under conditions relevant to ash turbine interactions[J].Nature Communication,2016,7(1):1-10.

    • [25] JACOB D J.Heterogeneous chemistry and tropospheric ozone[J].Atmospheric Environment,2000,34(12-14):2131-2159.

    • [26] 谢远云,何葵,周嘉,等.哈尔滨沙尘暴的化学特性及其物质源探讨[J].地理研究,2006,25(2):255-261.XIE Yuanyun,HE Kui,ZHOU Jia,et al.Chemical characteristic of duststorm deposits in Harbin and its matter origin[J].Geographical Research,2006,25(2):255-261.(in Chinese)

    • [27] KUEPPERS U,CIMARELLI C,HESS K U,et al.The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands[J].Journal of Applied Volcanology,2014,3(1):1-11.

    • [28] SIGURDSSON H,HOUGHTON B,MCNUTT S,et al.The encyclopedia of volcanoes[M].New York:Elsevier,2015.

    • [29] WU Y,SONG W J,DINGWELL D B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.

    • [30] MÜLLER D,HESS K U,KUEPPERS U,et al.Rheological and chemical interaction between volcanic ash and thermal barrier coatings[J].Surface and Coating Technology,2021,412:127409.

    • [31] GIORDANO D,RUSSELL J K,DINGWELL D B.Viscosity of magmatic liquids:A model[J].Earth and Planetary Science Letters,2008,271(1-4):123-134.

    • [32] FLUEGEL A.Glass viscosity calculation based on a global statistical modelling approach[J].Glass Technology-European Journal of Glass Science and Technology Part A,2007,48(1):13-30.

    • [33] BALE C W,BÉLISLE E,CHARTRAND P,et al.FactSage thermochemical software and databses-recent developments[J].Calphad,2009,33(2):295-311.

    • [34] WIESNER V L,VEMPATI U K,BANSAL N P.High temperature viscosity of calcium-magnesiumaluminosilicate glass from synthetic sand[J].Scripta Materialis,2016,124:189-192.

    • [35] POERSCHKE D L,BARTH T L,LEVI C G.Equilibrium relationships between thermal barrier oxides and silicate melts[J].Acta Materialia,2016,120:302-314.

    • [36] WIESNER V L,BANSAL N P.Mechanical and thermal properties of calcium-magnesium aluminosilicate(CMAS)glass[J].Journal of the European Ceramic Society,2015,35(10):2907-2914.

    • [37] MÜLLER D,DINGWELL D B.The influence of thermal barrier coating dissolution on CMAS melt viscosities[J].Journal of the European Ceramic Society,2021,41(4):2746-2752.

    • [38] GUO L,XIN H,LI Y Y,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.

    • [39] GIEHL C,BROOKER R A,MARXER H,et al.An experimental simulation of volcanic ash deposition in gas turbines and implications for jet engine safety[J].Chemical Geology,2017,461:160-170.

    • [40] PRATA A J.Satellite detection of hazardous volcanic clouds and the risk to global air traffic[J].Natural hazards,2009,51(2):303-324.

    • [41] GERTISSER R.Eyjafjallajökull volcano causes widespread disruption to European air traffic[J].Geology Today,2010,26(3):94-95.

    • [42] MILLÁN L,SANTEE M L,LAMBERT A,et al.The Hunga Tonga-Hunga Ha´apai hydration of the stratosphere[J].Geophysical Research Letter,2022,49(13):e2022GL099381.

    • [43] SONG W J,YANG S J,FUKUMOTO M,et al.Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J].Acta Materialia,2019,171:119-131.

    • [44] YANG S J,SONG W J,LAVALLÉE Y,et al.Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J].Corrosion Science,2020,170:108659.

    • [45] ZHANG X,SHAN X,WITHERS P J,et al.Tracking the calcium-magnesium-alumino-silicate(CMAS)infiltration into an air-plasma spray thermal barrier coating using X-ray imaging[J].Scripta Materialia,2020,176:94-98.

    • [46] MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.

    • [47] KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.

    • [48] LI Y Y,YU Y,GUO L,et al.Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis[J].Surface and Coatings Technology,2022,445:128701.

    • [49] CAI Z W,HONG H,PENG D,et al.Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading[J].Surface and Coatings Technology,2020,381:125146.

    • [50] WU J,GUO H B,GAO Y Z,et al.Microstructure and thermophysical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [51] LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack[J].Journal of Thermal Spray Technology,2010,19(1):148-155.

    • [52] CHEVALIER J,GREMILLARD L,VIRKAR A V,et al.The tetragonal-monoclinic transformation in zirconia:Lessons learnt and future trends[J].Journal of the American Ceramic Society,2009,92:1901-1920.

    • [53] XU G N,YANG L,ZHOU Y C.A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings[J].Corrosion Science,2021,190:109690.

    • [54] SONG J B,ZHANG X F,DENG C M,et al.Research of in situ modified PS-PVD thermal barrier coating against CMAS(CaO-MgO-Al2O3-SiO2)corrosion[J].Ceramics International,2016,42(2):3163-3169.

    • [55] MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.

    • [56] WANG L,GUO L,LI Z M,et al.Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate(CMAS)attack[J].Ceramics International,2015,41(9):11662-11669.

    • [57] LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layer[J].Ceramics International,2018,44(1):452-458.

    • [58] HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating[P].U.S.Patent:5871820,1999-02-16.

    • [59] NAGARAJ B A,ACKERMAN J F,STOWELL W R,et al.Thermal barrier coating protected by tantalum oxide and method for preparing same[P].U.S.Patent:6933066,2005-08-23.

    • [60] DREXLER J M,GLEDHILL A D,SHINODA K,et al.Jet engine coatings for resisting volcanic ash damage[J].Advanced Materials,2011,23(21):2419-2424.

    • [61] FANG H J,WANG W Z,HUANG J N,et al.Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J].Corrosion Science,2020,173(15):108764.

    • [62] MO Y,ZHANG Y Q,CHEN Z,et al.Effect of Er dopant on the corrosion resistance of YSZ in CMAS melt:experimental and first-principles study[J].Journal of Materials Science,2021,56(31):17542-17555.

    • [63] FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.

    • [64] MOCK C,WALOCK M J,GHOSHAL A,et al.Adhesion behavior of calcia-magnesia-alumino-silicates on gadolinia-yttria-stabilized zirconia composite thermal barrier coatings[J].Journal of Materials Research,2020,35(17):2335-2345.

    • [65] FANG H J,WANG W Z,HUANG J B,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesiumaluminum-silicate(CMAS)deposition:Experiments and first-principles calculation[J].Corrosion Science,2021,182:109230.

    • [66] MINERVINI L,GRIMES R W,SICKAFUS K E.Disorder in pyrochlore oxides[J].Journal of the American Ceramic Society,2000,83(8):1873-1878.

    • [67] WUENSCH B J,EBERMAN K W.Order-disorder phenomena in A2B2O7 pyrochlore oxides[J].JOM-Journal of the Minerals Metals & Materials Society,2000,52(7):19-21.

    • [68] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.

    • [69] GODBOLE E,VON DER HANDT A,POERSCHKE D.Apatite and garnet stability in the Al-Ca-Mg-Si-(Gd/Y/Yb)-O systems and implications for T/EBC:CMAS reactions[J].Journal of the American Ceramic Society,2022,105(2):1596-1609.

    • [70] WU Y,ZHENG L,HE W T,et al.Effects of Yb3+ doping on phase structure,thermal conductivity and fracture toughness of(Nd1-xYbx)2Zr2O7[J].Ceramics International,2019,45(3):3133-3139.

    • [71] WANG F,GUO L,WANG C M,et al.Calciummagnesium-alumina-silicate(CMAS)resistance characteristics of LnPO4(Ln = Nd,Sm,Gd)thermal barrier oxides[J].Journal of the European Ceramic Society,2017,37(1):289-296.

    • [72] GUO L,LI M Z,CHENG Y X,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:Preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.

    • [73] ZHANG C L,FEI J M,GUO L,et al.Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J].Ceramics International,2018,44(8):8818-8826.

    • [74] GUO L,YAN Z,YU Y,et al.CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1 250 ℃-1 350 ℃ [J].Corrosion Science,2019,154:111-122.

    • [75] COLLONGUES R,GOURIER D,KAHN A M,et al.Magnetoplumbite related oxides[J].Annual Review of Materials Science,1990,20(1):51-82.

    • [76] CUI J J,OUYANG J H,LIU Z G.Hot corrosion behavior of LaMgAl11O19 ceramic coated with molten CMAS deposits at temperature of 1 250 ℃ in air[J].Journal of Alloys and Compounds,2016,685:316-321.

    • [77] LI X Y,DENG Z Q,ZHAO H X,et al.CMAS-induced degradation of the SPS gadolinium magnesium hexaaluminate ceramic bulk at 1 260-1 500 ℃[J].Surface and Coating Technology,2022,440:128490.

    • [78] SUN Y W,WU H K,ZHAO H X,et al.High-temperature degradation of the in-situ laser-glazed plasma sprayed LaMgAl11O19 thermal barrier coating exposed to Ca-Mg-Al-silicate deposits[J].Corrosion Science,2020,176:108934.

    • [79] QU W W,LI S S,JING J,et al.The spreading behavior of CMAS melt on YSZ single crystal with low index orientation[J].Applied Surface Science,2020,527:146846.

    • [80] LI B T,CHEN Z,ZHENG H Z,et al.Wetting mechanism of CMAS melt on YSZ surface at high temperature:First-principles calculation[J].Applied Surface Science,2019,483:811-818.

    • [81] LOKACHARI S,SONG W J,FUKUMOTO M,et al.Novel thermal barrier coatings with hexagonal boron nitride additives resistant to molten volcanic ash wetting[J].Corrosion Science,2020,168:108587.

    • [82] YANG S J,SONG W J,DINGWELL D B,et al.Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings[J].Rare Metals,2022,41(2):469-481.

    • [83] GUO L,LI G,GAN Z L.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.

    • [84] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.

    • [85] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Advanced Materials,2008,20(21):4049-4054.

    • [86] LARMOUR I A,BELL S E J,Saunders G C.Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J].Angewandte Chemie International Edition,2007,46(10):1710-1712.

    • [87] ZHAO Y,TANG Y W,WANG X G,et al.Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy[J].Applied Surface Science,2010,256(22):6736-6742.

    • [88] BABU D J,MAIL M,BARTHLOTT W,et al.Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water(salvinia effect)[J].Advanced Materials Interfaces,2017,4(13):1700273.

    • [89] ZHANG B P,SONG W J,GUO H B.Wetting,infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J].Journal of the European Ceramic Society,2018,38(10):3564-3572.

    • [90] SONG W J,MAJOR Z,GUO Y Q,et al.Biomimetic super “silicate” phobicity and superhydrophobicity of ceramic material[J].Advanced Materials Interface,2022,9(32):2201267.

  • 参考文献

    • [1] 温俊峰.航空发动机发展简述与思考[J].世界科技研究与发展,1998,20(6):72-75.WEN Junfeng.Development in aero-engines—A brief history and some consideration[J].World SCI-Tech Research and Development,1998,20(6):72-75.(in Chinese)

    • [2] 洪杰,陈光.航空发动机半个世纪来发展的回顾[J].燃气涡轮试验与研究,1998,11(4):56-60.HONG Jie,CHEN Guang.Review on the development of aero-engines over the past half century[J].Gas Turbine Experiment and Research,1998,11(4):56-60.(in Chinese)

    • [3] 刘永泉,刘太秋,季路成.航空发动机风扇/压气机技术发展的若干问题与思考[J].航空学报,2015,36(8):2563-2576.LIU Yongquan,LIU Taiqiu,JI Lucheng.Some problems and thoughts in the development of aero-engine fan/compressor[J].Acta Aeronautica et Astronautica Sinica,2015,36(8):2563-2576.(in Chinese)

    • [4] 郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26.GUO Hongbo,GONG Shengkai,XU Huibin.Progress in thermal barrier coatings for advanced aeroengines[J].Materials China,2009,28(9):18-26.(in Chinese)

    • [5] 黄璇璇,郭双全,姚改成,等.航空发动机 SiC/SiC 复合材料环境障碍涂层研究进展[J].航空维修与工程,2017,2:28-31.HUANG Xuanxuan,GUO Shuangquan,YAO Gaicheng,et al.Research progress of environmental barrier coatings of SiC/SiC composite for aero-engine[J].Aviation Maintenance and Engineering,2017,2:28-31.(in Chinese)

    • [6] GOWARD G W.Recent developments in high temperature coatings for gas turbine airfoils[C]//High temperature corrosion.Proceedings of the International Conference,January 1,1981,San Diego,CA,1981.

    • [7] LEVINE S R,MILLER R A,STECURA S.Improved performance thermal barrier coatings[R].San Diego,USA:NASA,1983.

    • [8] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.

    • [9] STECURA S.Two layer thermal barrier coatings for high temperature components[R].USA:NASA Lewis Research Center,1977.

    • [10] BRINDLEY W J,LEONHARAT T A.Metallographic techniques for evaluation of thermal barrier coatings[J].Materials Characterization,1990,24:93-101.

    • [11] 魏绍斌,陆峰,何利民,等.热障涂层制备技术及陶瓷层材料的研究进展[J].热喷涂技术,2013,5(1):31-37.WEI Shaobin,LU Feng,HE Limin,et al.Progress in processing techniques and ceramic materials of thermal barrier coatings[J].Thermal Spray Technology,2013,5(1):31-37.(in Chinese)

    • [12] ZHANG D.Thermal barrier coatings prepared by electron beam physical vapor deposition(EB-PVD)[J].Thermal Barrier Coatings,2011,23:3-24.

    • [13] LIU Q M,HUANG S Z,HE A J.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J].Journal of Materials Science & Technology,2019,35:2814-2823.

    • [14] NIESSEN K V,GINDRAT M,REFKE A.Vapor phase deposition using plasma spray-PVD[J].Journal of Thermal Spray Technology,2010,19(1-2):502-509.

    • [15] 高丽华,于月光,贾芳,等.等离子物理气相沉积热障涂层研究进展[J].热喷涂技术,2017,9(2):1-8.GAO Lihua,YU Yueguang,JIA Fang,et al.Pregress in plasma spray-physical vapor deposition thermal barrier caotings[J].Thermal Spray Technology,2017,9(2):1-8.(in Chinese)

    • [16] CLARKE D R,OECHSNER M,PADTURE N P.Thermal barrier coatings for more efficient gas-turbine engines[J].MRS Bulletin,2012,37(10):891-898.

    • [17] ROUX S,CAZALENS M,POINSOT T.Outletboundary-condition influence for large eddy simulation of combustion instabilities in gas turbines[J].Journal of Propulsion and Power,2008,24(3):541-546.

    • [18] SMIALEK J L,ARCHER F A,GARLICK R G.Turbine airfoil degradation in the Persian Gulf War[J].JOM,1994,46(12):39-41.

    • [19] BOROM M P,JOHNSON C A,PELUSO L A.Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J].Surface and Coatings Technology,1996,86:116-126.

    • [20] KRÄMER S,YANG J,LEVI C G,et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS)deposits[J].Journal of the American Ceramic Society,2006,89(10):3167-3175.

    • [21] AYGUN A,VASILIEV A L,PADTURE N P,et al.Novel thermal barrier coatings that are resistant to hightemperature attack by glassy deposits[J].Acta Materialia,2007,55(20):6734-6745.

    • [22] WANG M,LAI X C,GUO S C,et al.CaO-MgOAl2O3-SiO2 corrosion behavior of air-plasma-sprayed(LaxYb1-x)2Zr2O7[J].Journal of the American Ceramic Society,2019,102(4):2029-2040.

    • [23] SHOJI S,KODAYASHI S,YAMADA I,et al.Chemical and mineralogical studies on volcanic ashes Ⅰ.Chemical composition of volcanic ashes and their classification[J].Soil Science and Plant Nutrition,1975,21(4):311-318.

    • [24] SONG W J,LAVALLÉE Y,HESS K U,et al.Volcanic ash melting under conditions relevant to ash turbine interactions[J].Nature Communication,2016,7(1):1-10.

    • [25] JACOB D J.Heterogeneous chemistry and tropospheric ozone[J].Atmospheric Environment,2000,34(12-14):2131-2159.

    • [26] 谢远云,何葵,周嘉,等.哈尔滨沙尘暴的化学特性及其物质源探讨[J].地理研究,2006,25(2):255-261.XIE Yuanyun,HE Kui,ZHOU Jia,et al.Chemical characteristic of duststorm deposits in Harbin and its matter origin[J].Geographical Research,2006,25(2):255-261.(in Chinese)

    • [27] KUEPPERS U,CIMARELLI C,HESS K U,et al.The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands[J].Journal of Applied Volcanology,2014,3(1):1-11.

    • [28] SIGURDSSON H,HOUGHTON B,MCNUTT S,et al.The encyclopedia of volcanoes[M].New York:Elsevier,2015.

    • [29] WU Y,SONG W J,DINGWELL D B,et al.Silicate ash-resistant novel thermal barrier coatings in gas turbines[J].Corrosion Science,2022,194:109929.

    • [30] MÜLLER D,HESS K U,KUEPPERS U,et al.Rheological and chemical interaction between volcanic ash and thermal barrier coatings[J].Surface and Coating Technology,2021,412:127409.

    • [31] GIORDANO D,RUSSELL J K,DINGWELL D B.Viscosity of magmatic liquids:A model[J].Earth and Planetary Science Letters,2008,271(1-4):123-134.

    • [32] FLUEGEL A.Glass viscosity calculation based on a global statistical modelling approach[J].Glass Technology-European Journal of Glass Science and Technology Part A,2007,48(1):13-30.

    • [33] BALE C W,BÉLISLE E,CHARTRAND P,et al.FactSage thermochemical software and databses-recent developments[J].Calphad,2009,33(2):295-311.

    • [34] WIESNER V L,VEMPATI U K,BANSAL N P.High temperature viscosity of calcium-magnesiumaluminosilicate glass from synthetic sand[J].Scripta Materialis,2016,124:189-192.

    • [35] POERSCHKE D L,BARTH T L,LEVI C G.Equilibrium relationships between thermal barrier oxides and silicate melts[J].Acta Materialia,2016,120:302-314.

    • [36] WIESNER V L,BANSAL N P.Mechanical and thermal properties of calcium-magnesium aluminosilicate(CMAS)glass[J].Journal of the European Ceramic Society,2015,35(10):2907-2914.

    • [37] MÜLLER D,DINGWELL D B.The influence of thermal barrier coating dissolution on CMAS melt viscosities[J].Journal of the European Ceramic Society,2021,41(4):2746-2752.

    • [38] GUO L,XIN H,LI Y Y,et al.Self-crystallization characteristics of calcium-magnesium-alumina-silicate(CMAS)glass under simulated conditions for thermal barrier coating applications[J].Journal of the European Ceramic Society,2020,40(15):5683-5691.

    • [39] GIEHL C,BROOKER R A,MARXER H,et al.An experimental simulation of volcanic ash deposition in gas turbines and implications for jet engine safety[J].Chemical Geology,2017,461:160-170.

    • [40] PRATA A J.Satellite detection of hazardous volcanic clouds and the risk to global air traffic[J].Natural hazards,2009,51(2):303-324.

    • [41] GERTISSER R.Eyjafjallajökull volcano causes widespread disruption to European air traffic[J].Geology Today,2010,26(3):94-95.

    • [42] MILLÁN L,SANTEE M L,LAMBERT A,et al.The Hunga Tonga-Hunga Ha´apai hydration of the stratosphere[J].Geophysical Research Letter,2022,49(13):e2022GL099381.

    • [43] SONG W J,YANG S J,FUKUMOTO M,et al.Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J].Acta Materialia,2019,171:119-131.

    • [44] YANG S J,SONG W J,LAVALLÉE Y,et al.Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J].Corrosion Science,2020,170:108659.

    • [45] ZHANG X,SHAN X,WITHERS P J,et al.Tracking the calcium-magnesium-alumino-silicate(CMAS)infiltration into an air-plasma spray thermal barrier coating using X-ray imaging[J].Scripta Materialia,2020,176:94-98.

    • [46] MERCER C,FAULHABER S,EVANS A G,et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate(CMAS)infiltration[J].Acta Materialia,2005,53(4):1029-1039.

    • [47] KRÄMER S,FAULHABER S,CHAMBERS M,et al.Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate(CMAS)penetration[J].Materials Science and Engineering:A,2008,490(1-2):26-35.

    • [48] LI Y Y,YU Y,GUO L,et al.Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis[J].Surface and Coatings Technology,2022,445:128701.

    • [49] CAI Z W,HONG H,PENG D,et al.Stress evolution in ceramic top coat of air plasma-sprayed thermal barrier coatings due to CMAS penetration under thermal cycle loading[J].Surface and Coatings Technology,2020,381:125146.

    • [50] WU J,GUO H B,GAO Y Z,et al.Microstructure and thermophysical properties of yttria stabilized zirconia coatings with CMAS deposits[J].Journal of the European Ceramic Society,2011,31(10):1881-1888.

    • [51] LI L,HITCHMAN N,KNAPP J.Failure of thermal barrier coatings subjected to CMAS attack[J].Journal of Thermal Spray Technology,2010,19(1):148-155.

    • [52] CHEVALIER J,GREMILLARD L,VIRKAR A V,et al.The tetragonal-monoclinic transformation in zirconia:Lessons learnt and future trends[J].Journal of the American Ceramic Society,2009,92:1901-1920.

    • [53] XU G N,YANG L,ZHOU Y C.A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings[J].Corrosion Science,2021,190:109690.

    • [54] SONG J B,ZHANG X F,DENG C M,et al.Research of in situ modified PS-PVD thermal barrier coating against CMAS(CaO-MgO-Al2O3-SiO2)corrosion[J].Ceramics International,2016,42(2):3163-3169.

    • [55] MOHAN P,YAO B,PATTERSON T,et al.Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J].Surface and Coatings Technology,2009,204(6-7):797-801.

    • [56] WANG L,GUO L,LI Z M,et al.Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate(CMAS)attack[J].Ceramics International,2015,41(9):11662-11669.

    • [57] LIU H,CAI J,ZHU J H.CMAS(CaO-MgO-Al2O3-SiO2)resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layer[J].Ceramics International,2018,44(1):452-458.

    • [58] HASZ W C,BOROM M P,JOHNSON C A.Protection of thermal barrier coating with an impermeable barrier coating[P].U.S.Patent:5871820,1999-02-16.

    • [59] NAGARAJ B A,ACKERMAN J F,STOWELL W R,et al.Thermal barrier coating protected by tantalum oxide and method for preparing same[P].U.S.Patent:6933066,2005-08-23.

    • [60] DREXLER J M,GLEDHILL A D,SHINODA K,et al.Jet engine coatings for resisting volcanic ash damage[J].Advanced Materials,2011,23(21):2419-2424.

    • [61] FANG H J,WANG W Z,HUANG J N,et al.Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J].Corrosion Science,2020,173(15):108764.

    • [62] MO Y,ZHANG Y Q,CHEN Z,et al.Effect of Er dopant on the corrosion resistance of YSZ in CMAS melt:experimental and first-principles study[J].Journal of Materials Science,2021,56(31):17542-17555.

    • [63] FAN W,BAI Y,LIU Y F,et al.Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J].Ceramics International,2019,45(12):15763-15767.

    • [64] MOCK C,WALOCK M J,GHOSHAL A,et al.Adhesion behavior of calcia-magnesia-alumino-silicates on gadolinia-yttria-stabilized zirconia composite thermal barrier coatings[J].Journal of Materials Research,2020,35(17):2335-2345.

    • [65] FANG H J,WANG W Z,HUANG J B,et al.Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesiumaluminum-silicate(CMAS)deposition:Experiments and first-principles calculation[J].Corrosion Science,2021,182:109230.

    • [66] MINERVINI L,GRIMES R W,SICKAFUS K E.Disorder in pyrochlore oxides[J].Journal of the American Ceramic Society,2000,83(8):1873-1878.

    • [67] WUENSCH B J,EBERMAN K W.Order-disorder phenomena in A2B2O7 pyrochlore oxides[J].JOM-Journal of the Minerals Metals & Materials Society,2000,52(7):19-21.

    • [68] SCHULZ U,BRAUE W.Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS(CaO-MgO-Al2O3-SiO2)and volcanic ash deposits[J].Surface and Coatings Technology,2013,235:165-173.

    • [69] GODBOLE E,VON DER HANDT A,POERSCHKE D.Apatite and garnet stability in the Al-Ca-Mg-Si-(Gd/Y/Yb)-O systems and implications for T/EBC:CMAS reactions[J].Journal of the American Ceramic Society,2022,105(2):1596-1609.

    • [70] WU Y,ZHENG L,HE W T,et al.Effects of Yb3+ doping on phase structure,thermal conductivity and fracture toughness of(Nd1-xYbx)2Zr2O7[J].Ceramics International,2019,45(3):3133-3139.

    • [71] WANG F,GUO L,WANG C M,et al.Calciummagnesium-alumina-silicate(CMAS)resistance characteristics of LnPO4(Ln = Nd,Sm,Gd)thermal barrier oxides[J].Journal of the European Ceramic Society,2017,37(1):289-296.

    • [72] GUO L,LI M Z,CHENG Y X,et al.Plasma sprayed nanostructured GdPO4 thermal barrier coatings:Preparation microstructure and CMAS corrosion resistance[J].Journal of the American Ceramic Society,2017,100(9):4209-4218.

    • [73] ZHANG C L,FEI J M,GUO L,et al.Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating[J].Ceramics International,2018,44(8):8818-8826.

    • [74] GUO L,YAN Z,YU Y,et al.CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1 250 ℃-1 350 ℃ [J].Corrosion Science,2019,154:111-122.

    • [75] COLLONGUES R,GOURIER D,KAHN A M,et al.Magnetoplumbite related oxides[J].Annual Review of Materials Science,1990,20(1):51-82.

    • [76] CUI J J,OUYANG J H,LIU Z G.Hot corrosion behavior of LaMgAl11O19 ceramic coated with molten CMAS deposits at temperature of 1 250 ℃ in air[J].Journal of Alloys and Compounds,2016,685:316-321.

    • [77] LI X Y,DENG Z Q,ZHAO H X,et al.CMAS-induced degradation of the SPS gadolinium magnesium hexaaluminate ceramic bulk at 1 260-1 500 ℃[J].Surface and Coating Technology,2022,440:128490.

    • [78] SUN Y W,WU H K,ZHAO H X,et al.High-temperature degradation of the in-situ laser-glazed plasma sprayed LaMgAl11O19 thermal barrier coating exposed to Ca-Mg-Al-silicate deposits[J].Corrosion Science,2020,176:108934.

    • [79] QU W W,LI S S,JING J,et al.The spreading behavior of CMAS melt on YSZ single crystal with low index orientation[J].Applied Surface Science,2020,527:146846.

    • [80] LI B T,CHEN Z,ZHENG H Z,et al.Wetting mechanism of CMAS melt on YSZ surface at high temperature:First-principles calculation[J].Applied Surface Science,2019,483:811-818.

    • [81] LOKACHARI S,SONG W J,FUKUMOTO M,et al.Novel thermal barrier coatings with hexagonal boron nitride additives resistant to molten volcanic ash wetting[J].Corrosion Science,2020,168:108587.

    • [82] YANG S J,SONG W J,DINGWELL D B,et al.Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings[J].Rare Metals,2022,41(2):469-481.

    • [83] GUO L,LI G,GAN Z L.Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications[J].Journal of Advanced Ceramics,2021,10(3):472-481.

    • [84] BARTHLOTT W,NEINHUIS C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202(1):1-8.

    • [85] ZORBA V,STRATAKIS E,BARBEROGLOU M,et al.Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J].Advanced Materials,2008,20(21):4049-4054.

    • [86] LARMOUR I A,BELL S E J,Saunders G C.Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J].Angewandte Chemie International Edition,2007,46(10):1710-1712.

    • [87] ZHAO Y,TANG Y W,WANG X G,et al.Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy[J].Applied Surface Science,2010,256(22):6736-6742.

    • [88] BABU D J,MAIL M,BARTHLOTT W,et al.Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water(salvinia effect)[J].Advanced Materials Interfaces,2017,4(13):1700273.

    • [89] ZHANG B P,SONG W J,GUO H B.Wetting,infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J].Journal of the European Ceramic Society,2018,38(10):3564-3572.

    • [90] SONG W J,MAJOR Z,GUO Y Q,et al.Biomimetic super “silicate” phobicity and superhydrophobicity of ceramic material[J].Advanced Materials Interface,2022,9(32):2201267.

  • 手机扫一扫看