en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周霆伟,男,1995年出生,博士研究生。主要研究方向为金属材料表面处理。E-mail:ztw1995@ahut.edu.cn

通讯作者:

何宜柱,男,1962年出生,教授,博士研究生导师。主要研究方向为金属材料。E-mail:heyizhu@ahut.edu.cn

中图分类号:TG142

DOI:10.11933/j.issn.1007−9289.20220816002

参考文献 1
PUTRA M,PRATAMA P S,PRABOWO A R.Failure of friction brake components against rapid braking process:A review on potential challenges and developments[J].Transportation Research Procedia,2021,55:653-660.
参考文献 2
ZHAI W,BAI L,ZHOU R,et al.Recent progress on wear resistant materials:designs,properties,and applications[J].Advanced Science,2021:2003739.
参考文献 3
CAI P,WANG C,GAO H,et al.Mechanomaterials:A rational deployment of forces and geometries in programming functional materials[J].Advanced Materials,2021:2007977.
参考文献 4
VARECHA D,BRONCEK J,KOHAR R,et al.Research of friction materials applicable to the multi-disc brake concept[J].Journal of Materials Research and Technology,2021,14:647-661.
参考文献 5
LI W,YANG X,XIAO J,et al.Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J].Ceramics International,2021,47(20):28754-28763.
参考文献 6
SHI X,WEN D,WANG S,et al.Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc[J].Optik-International Journal for Light and Electron Optics,2021,242:167227.
参考文献 7
LI X,LU L,LI J,et al.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J].Nature Reviews Materials,2020,5(9):706-723.
参考文献 8
王文权,桑娜,胡春华.表面纳米化对Dievar模具钢高能离子注渗WC层性能的影响[J].中国表面工程,2020,33(2):75-86.WANG Wenquan,SANG Na,HU Chunhua,et al.Effects of surface nano crystallization on properties of high eneray ion implanted WC layer on dievar die steel[J].China Surface Engineering,2020,33(02):25-30.(in Chinese)
参考文献 9
OLUGBADE T O,LU J.Literature review on the mechanical properties of materials after surface mechanical attrition treatment(SMAT)[J].Nano Materials Science,2020,2(1):3-31.
参考文献 10
李波,孙清,刘卓毅,等.超声滚压对7075铝合金耐腐蚀性能的影响[J].中国表面工程,2022,35(1):144-154.LI Bo,SUN Qing,LIU Zhuoyi,et al.Influence of ultrasonic rolling on corrosion resistance of 7075 luminum alloy[J].China Surface Engineering,2022,35(1):144-154.(in Chinese)
参考文献 11
宁江利,苑潇逸,吴蒙,等.表面机械研磨处理对热轧态 Mg-Gd-Y 合金微观组织和力学性能的影响[J].稀有金属材料与工程,2022,51(2):566-572.NING Jiangli,YUAN Xiaoyi,WU Meng,et al.Effect of surface mechanical grinding treatment on microstructure and mechanical properties of hot-rolled Mg-Gd-Y alloy[J].Rare Metal Materials and Engineering,2022,51(2):566-572.(in Chinese)
参考文献 12
王强,张炜.喷丸成形弹坑尺寸对2324铝合金疲劳性能的影响[J].中国表面工程,2020,33(1):18-23.WANG Qiang,ZHANG Wei.Effects of shot peening formation cater size on fatigue performance of 2324 aluminum alloy[J].China Surface Engineering,2020,33(1):18-23.(in Chinese)
参考文献 13
曹小建,吴昌将,顾镇媛,等.超声冲击纳米化的研究现状与进展[J].表面技术,2019,48(8):113-121.CAO Xiaojian,WU Changjiang,GU Zhenyuan,et al.Research status and progress of ultrasonic impact nanoscale[J].Surface Technology,2019,48(8):113-121.(in Chinese)
参考文献 14
LI Y,SHANG X,ZHAI M,et al.Surface characteristics and microstructure evolution of a nickel-base single crystal superalloy treated by ultrasonic shot peening[J].Journal of Alloys and Compounds,2022,919(25):165761.
参考文献 15
LIANG F,XU X,WANG P,et al.Microstructural origin of high scratch resistance in a gradient nanograined 316L stainless steel[J].Scripta Materialia,2022,220:114895.
参考文献 16
LI Y,LIAN Y,LI J,et al.Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel[J].Surface and Coatings Technology,2022,435:128250.
参考文献 17
CHEN C,ZHANG H.Characteristics of friction and wear of Al-Zn-Mg-Cu alloy after application of ultrasonic shot peening technology[J].Surface and Coatings Technology,2021,423:127615.
参考文献 18
GAO Y,LI X,KITCHEN M,et al.Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy[J].Transactions of Nonferrous Metals Society of China,2022,32(6):1910-1925.
参考文献 19
GHOSH S,BIBHANSHU N,SUWAS S,et al.Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility[J].Materials Science and Engineering:A,2021,820:141540.
参考文献 20
LIU Y X,CHEN H,WANG R Z,et al.Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer[J].International Journal of Fatigue,2021,147:106170.
参考文献 21
AN L,SUN Y T,LU S P,et al.Enhanced fatigue property of welded S355J2W steel by forming a gradient nanostructured surface layer[J].Acta Metallurgica Sinica(English Letters),2020,33(9):1252-1258.
参考文献 22
PETAN L,OCA A J L,GRUM J,et al.Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18-9-5 maraging steel[J].Surface & Coatings Technology,2016,307:262-270.
参考文献 23
LU J Z,LUO K Y,ZHANG Y K.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.
参考文献 24
DUTTA K,KISHOR R,SAHU L,et al.On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel[J].Materials Science and Engineering:A,2016,660:47-51.
参考文献 25
YIN C H,LIANG Y L,JIANG Y,et al.Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel[J].Applied Surface Science,2017,423:305-313.
参考文献 26
EL L M,WANG L,HARVEY T J,et al.Further understanding of rolling contact fatigue in rolling element bearings-a review[J].Tribology International,2019,140:105849.
参考文献 27
DAUTZENBERG J H,ZAAT J H.Quantitative determination of deformation by sliding wear[J].Wear,1973,23(1):9-19.
参考文献 28
ALPAS A T,HU H,ZHANG J.Plastic deformation and damage accumulation below the worn surfaces[J].Wear,1993,162:188-195.
参考文献 29
POUR A S,KIANI A R,BABAKHANI A.Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening[J].Vacuum,2017,144:152-159.
参考文献 30
WANG X,CHEN J G,SU G,et al.Plastic damage evolution in structural steel and its non-destructive evaluation[J].Journal of Materials Research and Technology,2020,9(2):1189-1199.
参考文献 31
SAHU S K,DATTA S.Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys:Comparison with conventional electrodischarge machining[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2019,233(2):384-402.
参考文献 32
BAKSHI S D,SINHA D,CHOWDHURY S G.Anisotropic broadening of XRD peaks of α′-Fe:Williamson-Hall and Warren-Averbach analysis using full width at half maximum(FWHM)and integral breadth(IB)[J].Materials Characterization,2018,142:144-153.
参考文献 33
BAKSHI S D.Wear of fine pearlite,nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.
参考文献 34
AAK R,AR B,BR K G,et al.Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo(P91)steel[J].Surface and Coatings Technology,2019,358:125-135.
参考文献 35
WANG Z D,SUN G F,LU Y,et al.Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J].Surface and Coatings Technology,2020,385:125403.
参考文献 36
DUTTA K,RAY K K.Ratcheting strain in interstitial free steel[J].Materials Science and Engineering:A 2013,575:127-135.
参考文献 37
DUTTA K,SIVAPRASAD S,TARAFDER S,et al.Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel[J].Materials Science & Engineering A,2010,527(29-30):7571-7579.
参考文献 38
KREETHI R,MONDAL A K,DUTTA K.Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions[J].Materials Science and Engineering:A,2017,679(2):66-74.
参考文献 39
BASSIM M N.Mathematical prediction of dislocation cell sizes with strain using the mesh-length theory of work hardening[J].Materials Science & Engineering A,1989,113:367-371.
参考文献 40
BAKSHI S D,SINHA D,CHOWDHURY S G,et al.Surface and sub-surface damage of 0.20 wt% Cmartensite during three-body abrasion[J].Wear,2018,394:217-227.
参考文献 41
DONG Y,KANG G,LIU Y,et al.Dislocation evolution in 316L stainless steel during multiaxial ratchetting deformation[J].Mater.Charact,2012,65:62-72.
参考文献 42
HAN D X,WANG G,REN J L,et al.Stick-slip dynamics in a Ni62Nb38 metallic glass film during nanoscratching[J].Acta Materialia,2017,136:49-60.
参考文献 43
ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.
参考文献 44
WU Y,QIANG L,JIAO J,et al.Investigating the wear behavior of Fe-based amorphous coatings under nanoscratch tests[J].Metals-Open Access Metallurgy Journal,2017,7(4):118.
参考文献 45
REN C X,WANCTG Q,HOU J P,et al.Effect of work-hardening capacity on the gradient layer properties of metallic materials processed by surface spinning strengthening[J].Materials Characterization,2021,177:111179.
参考文献 46
REN C X,WANG Q,ZHANG Z J,et al.Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening[J].Materials Science and Engineering:A,2019,754:593-601.
参考文献 47
REN C X,WANG Q,ZHANG Z J,et al.Surface strengthening behaviors of pure Cu with heterogeneous microstructures[J].Materials Science & Engineering A,2018,727:192-199.
参考文献 48
BAKSHI S D.Wear of fine pearlite nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.
参考文献 49
RODRÍGUEZ-ARANA B,SAN E A,PANERA M,et al.Investigation of a relationship between twin-disc wear rates and the slipping contact area on R260 grade rail[J].Tribology International,2022,168:107456.
参考文献 50
ZHANG R,ZHENG C L,BO L,et al.Effect of non-uniform microstructure on rolling contact fatigue performance of bainitic rail steel.International Journal of Fatigue,2022,159:106795.
参考文献 51
CHEN Y,REN R,PAN J,et al.Microstructure evolution of rail steels under different dry sliding conditions:A comparison between pearlitic and bainitic microstructures[J].Wear,2019,438:203011.
参考文献 52
HASAN S M,CHAKRABARTI D,SINGH S B.Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels[J].Wear,2018,408:151-159.
参考文献 53
FACCOLI M,PETROGALLI C,LANCINI M,et al.Rolling contact fatigue and wear behavior of highperformance railway wheel steels under various rolling-sliding contact conditions[J].Journal of Materials Engineering and Performance,2017,26(7-8):1-14.
目录contents

    摘要

    随着客运铁路高速化,列车制动盘的磨损日益加剧,严重威胁列车服役的安全性。为了提高低碳马氏体钢制动盘的耐磨性,采用表面机械研磨处理(SMAT)技术在材料表面制备梯度组织,进而延长材料的服役寿命。结果表明:经 SMAT 处理后,样品表面形成厚约 180 μm 的梯度应变层,切应变沿深度呈梯度分布。板条马氏体被挤压成塑性流线,在最表层形成亚微米晶和条状结构。微米划痕试验发现,样品表层材料的硬化率和摩擦性能随着深度呈梯度变化,耐磨性相比基体增强了 1.2 倍。在循环应力作用下,靠近样品表面的马氏体晶粒被细化,最表层材料的位错密度比基体提高了 14.6 倍,从而提高了制动盘钢的表面硬度和耐磨性。此外,与其他铁路耐磨材料相比,样品表现出较高的应变硬化速率。研究成果可为制动盘梯度应变层的工程应用提供参考。

    Abstract

    With the rapid development of passenger railways, the service environment of the train is becoming increasingly severe, affecting the braking system’ s stability. As one of the critical parts of the braking system, the wear damage of the brake disc of the high-speed rail seriously threatens the safety and comfort of electric multiple unit(EMU) trains. Fabrication of a gradient structure on the surface of a metal material can improve its wear resistance and prolong its service life. Specimens were obtained from a self-developed steel used in high-speed rail brake discs, whose heat treatment process includes a solid solution treatment, controlled rolling, quenching, and low-temperature tempering. A gradient strain(GS) layer was prepared on the surface of the specimen by a surface mechanical attrition treatment(SMAT) under room temperature and dry environment. In the SMAT, the test load was 800 N, the rotation speed was 400 rpm, and the treatment time was 30 min. The microstructure of the gradient strain layer was analyzed by scanning electron microscopy(Tescan MIRA3 XMU, USA). The surface layer and matrix of the specimens were analyzed by X-ray diffraction(Rigaku D / max2500pc, Japan). The mechanical properties and wear resistance of the GS layer were evaluated by a micrometer scratch tester(Rtec-HS100, USA). The matrix of the brake disc was mainly composed of a low-carbon lath martensite with a grain size of ~62.23 μm. The SMAT formed a gradient strain layer with a size of approximately 180 μm on the specimens. The shear strain was distributed along the depth gradient. According to the deformation extent, the gradient strain layer could be divided into two zones: severe plastic deformation(SPD) and slight plastic deformation(LPD) zones. The SPD zone is below the surface,where the martensite lath is most refined, forming submicron crystals and strip structures on the top surface. The plastic flow lines are parallel to the wear surface. The LPD zone is close to the matrix. The martensite lath is extruded into a plastic streamline with a curved shape and shallow degree of refinement. Micrometer scratch tests on the SPD zone, LPD zone, and matrix show the mechanical and frictional properties of the GS layer. Compared to the matrix, the scratch width, depth, coefficent of friction(COF), and wear volume in the SPD zone are smaller. Moreover, the wear resistance coefficient in the SPD zone is increased 1.2 times (0.867), compared to that of the matrix(0.389). The position of the X-ray diffraction peak of the topmost surface layer is almost consistent with that of the matrix but slightly shifted to a larger angle. The peaks are considerably widened. This indicates that no phase transition occurred on the topmost surface, and no additional crystalline phase was produced. In comparison to the matrix, the microstrain of the topmost surface of the specimens is increased, while the lattice constant is decreased. The dislocation density of the topmost surface of the specimens(9.8 × 1015 m−2 ) is increased 14.6 times compared to that of the matrix(0.63 × 1015 m−2 ). Therefore, grain refinement and significant increase in dislocation density are the main reasons for the high hardening degree and excellent wear resistance of the GS layer surface of the brake disc steel. In addition, compared to the railway wear-resistant materials, the sample exhibits a higher strain hardening rate, which could provide a reference for the engineering application of the gradient strain layer of the brake disc.

  • 0 前言

  • 随着客运高速化、货运重载化的发展,铁路行业对列车的结构性能提出了更高的要求[1-3]。制动盘作为列车的重要部件之一,在制动过程中通常会和车轮发生摩擦,导致磨损损坏甚至失效,严重威胁高速列车运行的安全性。因此,高耐磨性已成为开发制动盘材料时需要考虑的重要指标。制动盘的磨损经常发生在表面或表面附近,通过表面处理的方法既能提高材料的力学性能[4],又能节约成本。例如激光熔覆 WC / Ni60 涂层[5],将钢制刹车盘的耐磨性提高 6 倍左右。同时 Ni 基体激光熔覆涂层在磨损过程中形成的氧化膜有利于抑制氧化物的再生,具有良好的抗氧化性[6]。然而在高速、重载服役条件下,由于涂层与基体材料之间存在小的孔洞,结合强度较低,因此容易形成剥落,严重制约涂层在高铁制动盘上的应用。

  • 近年来,研究人员探究了一些提高耐磨性进而延长材料服役寿命的方法。目前,表面严重塑性变形(SPD)技术在细化微观组织和改善材料性能方面受到广泛关注[7-8]。该技术形成的高位错密度和细晶粒的梯度纳米结构能为材料带来良好的强韧性组合,同时也可以降低材料的制备成本[9]。基于上述原理,SPD 技术逐渐形成了表面机械磨损处理 [10-11]、高能喷丸[12]、超声冲击[13-14]等几种具有代表性的技术,也成为了改善材料性能的关键方法之一。LI 等[10]在 316L 不锈钢上预制梯度纳米结构表面层,发现材料的强度得到大幅提升的同时还保证了绝大部分的延展性。LIANG 等[15]发现残余压应力能提高梯度纳米结构的稳定性,相比粗晶结构表现出优异的抗划伤性能。LI 等[16]发现超音速微粒轰击能显著提高 DZ2 车轴钢表面的硬度和残余压应力,从而实现耐磨性的提升。CHEN 等[17] 经过 USSP 处理在 7A52 铝合金表面产生梯度纳米层,在摩擦磨损过程中能有效阻断基体与摩擦副的有效接触,延缓裂纹的萌生。此外,该技术在提高其他性能方面也发挥着积极作用,如表面显微硬度[18-19]、腐蚀[10]、疲劳[20-21]等。目前尚未发现有文献报道表面严重塑性变形技术对高铁刹车盘耐磨性能的影响。

  • 本文采用表面机械磨损处理在高铁制动盘材料上预制了梯度应变层,通过扫描电镜、X 射线衍射分析其微观组织演变及位错密度,借助微米划痕仪表征梯度应变层不同深度处的力学性能和耐磨性,并探讨最大硬度与表面强化指数的关系。

  • 1 材料与方法

  • 1.1 试验材料

  • 本试验所用制动盘材料由自主研发,生产工艺如图1 所示,包括固溶处理、控制轧制,淬火和低温回火。表1 列示了试验钢的化学成分(质量分数), C 含量较低仅有 0.22 wt.%,为低碳钢,Mn、Cr、 Mo 等合金元素的加入可以提高试验钢的淬透性。拉伸试验在美国 INSTRON5582 电子万能材料试验机上进行,试验结果见表2。

  • 图1 试验钢生产工艺图

  • Fig.1 Schematic diagram of the production process of the specimens

  • 表1 试验钢化学成分(质量分数)

  • Table1 Chemical composition of brake disc steel (wt.%)

  • 表2 试验钢力学性能

  • Table2 Main mechanical properties of brake disc steel

  • 1.2 微观结构表征

  • 试验钢的微观结构由场发射扫描电子显微镜(FESEM,Tescan MIRA3XMU,Brno,捷克共和国)进行表征,FESEM 试样通过机械抛光制备,然后用 4%硝酸酒精腐蚀。使用 X 射线衍射仪分别分析处理前后的样品。2θ 范围:30°~120°,使用 40 kV 电压进行加速,电流为 40 mA,扫描速率为 5(°)/ min。

  • 1.3 表面机械研磨处理

  • 机械研磨处理在室温和干燥环境下进行,试验载荷为 800 N,转动速度是 400 r / min,处理时间为 30 min,SMAT 设备示意图如图2 所示。

  • 图2 SMAT 设备及试样示意图

  • Fig.2 Schematic diagram of SMAT equipment and specimens

  • 1.4 微米划痕试验

  • 使用锥角为 120°的罗克韦尔 C 金刚石压头,在微米划痕试验机上测量了磨损试样的摩擦因数和磨损率。(划痕测试仪,Rtec-HS100,加利福尼亚州圣何塞,美国)。施加恒定的正压力,以 0.01 mm / s 的速度进行 5 N 的划痕试验,划痕总长度为 300 μm。

  • 1.5 显微硬度测试

  • 梯度应变层的显微硬度由 HMV-2 型维氏硬度试验机测试。将加工后的样品从磨损表面至基体方向,每隔 30 μm 测试一个测试点,共测试 12 个测试点,并重复 3 次。

  • 2 结果与讨论

  • 2.1 微观组织形貌

  • 试验钢的原始组织如图3 所示,经过热处理工艺处理后所得组织为典型低温回火的低碳板条马氏体,晶粒尺寸约为 62.23 μm。

  • 图3 试样原始组织表征

  • Fig.3 Characterization of the original microstructure of the specimens

  • 图4a 显示了试验钢的截面微观组织形貌,可以观察到,接触表面下的马氏体板条呈流线状,沿深度方向呈梯度分布,梯度层厚度约为 180 μm,这种组织的区域称为梯度应变层(Gradient strain layer,GS layer)。此外,梯度应变层可以分为 3 个区域,靠近表面的马氏体板条细化程度最深,塑性流线平行于磨损表面,称为严重塑性变形区( severe plastic deformation zone,SPD zone),见图4a Ⅰ区;而靠近基体的马氏体板条细化程度较浅,塑性流线呈弯曲状,被称为轻微塑性变形区(light plastic deformation zone,LPD zone),如图4a Ⅱ区所示;位于基体的马氏体板条方向则随机排列(图4a Ⅲ区)。然而有意思的是,可以看出从基体到表层的晶粒尺寸逐渐减小,这取决于循环加载条件下施加的应力参数或棘轮应变和位错的共同作用。据有关报道,在超高应变率塑性变形过程中,晶粒的细化主要是由高密度位错的产生及其在进一步变形过程中的堙灭和复合[22-23]造成的。

  • 对最表层组织(SPD zone)进一步观察,发现马氏体板条在高应力作用下被挤压碎化成亚微米级的颗粒状和长条状(图4b)。有研究表明,随着切应变的逐渐增大,材料内部的位错结构发生改变,由初始简单位错模式转变为复杂模式,位错胞结构逐渐形成,位错胞的取向差逐渐增多,促进了低角度晶界向高角度晶界的转变,最终导致晶粒破碎[24-25]

  • 图4 梯度应变层及其最表层的板条马氏体 SEM 像

  • Fig.4 SEM image of the GS layer

  • 2.2 剪切应变分析

  • 接触表面下的材料会受到正应力和切应力[26] 的作用,导致组织呈流变状,马氏体板条的弯折程度通常可以用来反映切应变的大小。等效切应变计算公式如下[27-28]

  • ε=tanθ3
    (1)
  • 式中,θ 为塑性流线上不同深度的剪切角,ε 为等效切应变。根据图5 确定板条马氏体塑性流线的位移场 yx),图5b 是切应变测量示意图,规定 x 轴是距表面深度方向,y 轴是平行于滚动方向。塑性流线位移场 yx)与深度 x 满足以下关系:

  • y(x)=211.008-32.961×exp(x/277.87763)
    (2)
  • 图5 切应变及其测量示意图

  • Fig.5 Schematic diagram of shear strain and its measurement

  • 式(1)中 tanθ 即为流变曲线切线的斜率,结合流变曲线的方程可以得出切应变 ε 随距表面深度 (Ds)变化的分布曲线方程:

  • ε=0.92397+8.48635×expDs/6.38908
    (3)
  • 图5c 为等效切应变沿深度分布图。经过估算,在 Ds 为 0~30 μm 内的区域塑变流线几乎与磨损表面平行,剪切角度 θ 接近 90°,因此此区域切应变较大,从距表面 30~180 μm 处,切应变随 DS 的增加而单调下降,越靠近基体应变下降的趋势越缓,最后在约 180 μm 处,切应变趋于 0。由此可知,靠近表面,应变积累的程度越高,切应变的变化越明显,GS layer 的深度约为 180 μm。

  • 2.3 XRD 分析

  • 为理解本文中晶粒细化的潜在控制机制,进行 XRD 表征。在本文试验钢的位错密度通过 XRD 衍射图谱和修正后的 Williamson-Hall 公式获得,图6 显示了试验钢基体和 GS layer 最表层的 XRD 衍射图谱。观察图6a 可知,预处理后,基体和 GS layer 表面的 XRD 衍射峰位置几乎保持不变,这说明它们没有发生相,也没有形成额外结晶相。然而,对 α(110 衍射峰)低角度峰(图6b)局部放大可以发现,GS layer 衍射峰较基体略微发生右移,这表明,试验钢在预处理过程中受到大应力作用导致晶格常数降低。衍射峰的半高宽通常用来指示晶粒的大小,半高宽越大,晶粒越细,GS layer 的衍射峰明显加宽(图6c),结合上述 SEM(图4),可能是由于试验钢在预处理过程中 GS layer 发生了晶粒细化以及局部存在高水平微应变[29-31]。修正后的 W-H 方法可以写成[32]式(4):

  • ΔK2π2M2b2K2ρC-1-qH2+kD2
    (4)
  • 修正后的 W-H 方法考虑了材料弹性的各向异性。式中,ΔK 为衍射峰宽化量;M 是位错分布参数;b 是 Burgers 矢量模,取 0.248 nm;K 为衍射矢量模,由 K=2sin θ / λ 算出,θ 是对应峰的布拉格角; ρ 为位错密度;C-为位错衬度因子;q 为位错特征参数;k 为形状参数,取 0.9;D 为晶粒尺寸;λx 射线波长,此处取 0.154 056 nm。令 α=(k / D 2,式 (4)可以改写为:

  • (ΔK)2-αK2πDM2b2ρC-1-qH2
    (5)
  • 图6 试样的 X 射线衍射图

  • Fig.6 X-ray diffraction patterns of the specimens

  • 不同衍射峰的 ΔK2-αK2H2 的拟合数据可根据式(5)计算,斜率则为π2M2b2ρC-q,因此可以求出材料的位错密度 ρ。将表3 的半高宽和表4 的参数数值代入式(5),得到修正后的 W-H 法线性拟合图,具体方法见文献[33]

  • 表3 试样基体和 GS layer 最表层的半高宽

  • Table3 Full-wave at half maximum (FWHM) in the matrix and the GS layer of the specimens

  • 表4 修正后 W-H 法的计算参数

  • Table4 Calculation parameters of the modified W-H method

  • 根据图6 和上述方法得到的拟合结果如图7 所示。试验钢基体的位错密度是 0.63×1015 m−2 ,表层的位错密度是 9.8×1015 m−2,位错密度提高了 14.6 倍。这说明试验钢的表面较基体出现更多的位错增值,位错密度大幅上升,促进了马氏体晶粒发生细化(图4b)。这是由于在变形开始时,会在试样表面和亚表面诱发更多的位错密度,并形成缠结,随着循环次数的增加不断增加[34-36]

  • 图7(∆K2 α)/ K2H2的变化曲线图

  • Fig.7 Variations of (∆K2 α) / K2 and H2

  • 当位错密度超过阈值时,试验钢在变形过程中,板条马氏体的板条内和板条界上的位错发生了合并和重新排列,由简单的位错线、位错堆积和初始位错壁转化为致密的缠结、清晰的位错壁和位错胞等严重的位错亚结构[37-38]。然而由 BASSIM 等[39]研究发现位错胞是低能的,可以容纳较大的位错密度。因此,这些新生的位错很容易在位错壁上重新排列分布,导致内应力降低,适应进一步的塑性变形。有研究表明[40],低碳马氏体钢的位错密度能达到 1015 m−2 数量级。因此,上述工作的计算结果具有一定参考意义。结合 FESEM 和 XRD 结果可知,经过循环载荷作用后,试验钢接触表层材料的位错密度大幅上升,形成亚微米结构。主要原因是其位错结构由简单的低密度位错模式转变为了复杂的高位错密度模式。与单轴相比,在多轴应力作用下位错发生多重滑移和交叉滑移,导致位错增殖的速度加快[41]

  • 2.4 划痕法表征 GS layer 耐磨性能

  • 为了定量分析 GS layer 的耐磨性,在样品 GS layer 不同区域[离表面 25 μm、55 μm、175 μm(过渡区)和 325 μm(基体处)]进行微米划痕试验。从图8a~8d 中可以看出,GS layer 不同距离处的划痕槽非常明显,其中深色区域是划痕凹槽,两侧明亮区域是压头堆积的置换材料。对于 175 μm(过渡区)和 325 μm(基体)区域,中间颜色更深,两侧颜色更亮,表明划痕深度和宽度较 25 μm 和 55 μm 处略微增大,堆积的材料明显增多。图8e 是垂直于划痕方向获得的划痕横截面的轮廓,从中可以观察到划痕典型部位(中间)处的深度和宽度等参数。对比分析这些参数,结果进一步证实了随着距表面深度的增加,划痕槽更深更宽。

  • 图8 梯度应变层不同深度处的划痕横截面形貌及轮廓和划痕真实深度随划痕距离的变化曲线

  • Fig.8 Cross-sectional morphology of scratches at different depths of the gradient strain layer and the contour, and the variation curve of the true depth of scratches with scratch distance

  • 图8f 为划痕真实深度(hture)随划痕距离变化及示意图。可以看出,对于 25、55、175 和 325 μm 处的划痕 hture 值,随划痕距离变化表现出明显的波动,分析认为这是由粘滑行为引起的[42]。在 25、55、 175 和 325 μm处 hture最大波动幅度分别为 0.16、0.1、 0.13 和 0.25 μm。

  • 图9 为恒定法向载荷下,距离表面不同深度摩擦因数值随划痕横向位移的变化图。可以看出,摩擦因数随着划痕位移的增大,先增大再逐渐趋于平缓。此外,摩擦因数与距表面深度的变化也具有相似的规律,随着深度的增加,摩擦因数也在增大。当距离表面 325 μm 时,摩擦因数最大,约为 0.08。摩擦因数越大,说明此时划痕处的侧向力越大,划痕面的破坏程度越大,即划痕两侧产生的堆积更多 (图8a~8d)。

  • 图9 在距表面不同深度处摩擦因数随横向位移的变化

  • Fig.9 Variation of the friction factor values with lateral displacement at different distances from the surface

  • 磨损量通常用于定量评估材料的耐磨性,磨损量越小,材料耐磨性越强[42-43]。本文中由于划伤去除材料的体积取决于压头的参数,因此可在划痕试验结束后对划痕进行测量。磨损体积 V 通过式(6) 获得[44]

  • V=-l/2l/2 Chtrue 2(x)dx
    (6)
  • 式中,l 表示横向位移,htruex)指划痕距离 x 处的真实深度,C 是压头参数的面积系数。由于距离表面不同深度处划痕的真实深度波动很大(图8f),因此无法准确测出 htrue 2x的函数。为了更好地描述磨损体积,本文采用平均真实深度(htrue)和截面轮廓获得磨损体积 V=S×L,如图10 所示。磨损率 W 定义为每单位载荷在某一点处划去单位距离体积的损失,即:

  • W=VFL=SF
    (7)
  • 式中,V 是磨损体积,F 是试验压力,L 是划痕总距离,S 是划痕槽截面面积。通常把磨损率的倒数定义为耐磨系数,用来评估材料抵抗磨损的能力,即ε=1W,结果见表5 和图10。分析表5 和图10 可以发现,与基体相比,具有较低磨损体积、磨损率和较高耐磨系数的表层具有更好的耐磨性,提高了 1.2 倍。

  • 表5 梯度应变层不同深度处划痕的平均真实深度、宽度、磨损体积、磨损率和耐磨系数

  • Table5 Values of the average true depth, scratch width, scratch volume, wear rate, and wear-resistance coefficient calculated for scratches at different depth of GS layer

  • 图10 与表面不同距离处的磨损体积和耐磨系数沿划痕横截面的深度变化

  • Fig.10 Wear volume and wear resistance coefficient at different distances from the surface (the insert shows depth variation along the cross section of a scratch)

  • 3 讨论

  • 上述结果表明,制动盘试样表层在循环载荷作用下形成梯度结构,切应变和力学性能呈梯度分布,如相关文献所揭示的那样[19-21],低合金钢或碳钢中 GS layer 的形成通常由表面梯度变形过程下的位错活动主导。在表层较深的区域,在应变累积作用下,原始铁素体晶粒中形成位错壁和位错缠结。然后由于与位错相互作用更加强烈,错向小和空间减小,逐渐转变为亚晶界,从而增加亚表层的应变和应变速率。最后,在高应变和应变速率下,在表层形成具有高取向位错的晶界和亚微米级尺寸的晶粒。

  • 与基体相比,试验钢表层在机械研磨预处理过程中由于受到应力作用,会产生机械强化,引起梯度层中微观结构和显微硬度的变化。显微硬度从最表层的最大显微硬度 HVM逐渐降低到基体显微硬度HVm,为了加深对显微硬度衰减趋势和相应梯度特性的理解,提出以下指数模型[45],如图11 所示,

  • H=HVm+HVM-HVmexp(-Rd)
    (8)
  • 式中,H 是硬化层中任何位置的显微硬度,HVmHVM分别是梯度层的基体显微硬度、最大显微硬度,d 是距离表层的厚度,R 是表面强化指数[46-47]。随着表面强化指数的增加,显微硬度迅速下降,因此,表面强化指数可以用来反映显微硬度随深度降低的速率。

  • 最大显微硬度是表征硬化层的重要参数,揭示顶部表面的严重晶粒细化。硬化层的厚度则表示沿深度度方向的塑性极限。鉴于显微硬度测量的误差,并与拉伸行为中的屈服强度(δ0.2)的定义相比,将值为 1.02HVm 的距离定义为梯度层的厚度 λ [48]。图11给出了试验钢经过机械研磨预处理后梯度显微硬度层,硬度最大值(445 HV)出现在晶粒细化最严重的表层,即晶粒细化到亚微米级别(图4b),之后降低到基体 278 HV,硬化层厚度约为 180 μm (图5a),表面强化指数为 0.006 6。

  • 图11 试样梯度应变层显微硬度的分布图

  • Fig.11 Microhardness distributions in the GS layer of the specimens

  • 将本文得到的最大显微硬度增量比、梯度层厚度和表面强化指数与目前已公布的数据进行对比,如图12 和表6 所示,发现试验钢拥有更大的表面强化指数,且随着表面强化指数的增大,已报道材料均呈现最大显微硬度比迅速增大,而梯度层厚度降低的趋势。

  • 对于最大显微硬度增量比,是梯度层的一个重要特性,可以描述最大的表面强化效果,而梯度层厚度揭示了表面机械强化引起的塑性变形的局限性,梯度层厚度较大的梯度层具有更广泛的塑性变形能力。当表面强化指数 R 较低时,意味着梯度层具有较低的显微硬度阻尼率,硬化层中的显微硬度缓慢下降,可以获得更大尺寸的梯度层厚度,表明具有良好塑性变形能力的金属易于被强化。当表面强化指数 R 较高时,材料难以被外部应力挤压变形,硬化层中的显微硬度会发生明显的下降。因此理想的梯度层是 HVM / HVmR 值较高和 λ 较低的梯度层,这分别表示最大的强化效果,快的下降趋势和较小的梯度层厚度的梯度层。特定的 GS layer 厚度、最大表层显微硬度与表面强化指数的关系,可以为高速列车制动盘的选择和铁路用耐磨材料的开发选择提供指导。

  • 图12 相关铁路耐磨材料的最大显微硬度比及梯度层厚度和表面强化指数之间的变化

  • Fig.12 Variations of the GS layer properties of the surface strengthened metallic materials and work-hardening exponent of the wear-resistant railway materials

  • 表6 相关铁路耐磨材料的表面强化指数、最大显微硬度比和梯度层厚度比

  • Table6 The surface strengthening index, maximum microhardness ratio and GS layer thickness ratio of relevant railway wear-resistant materials

  • 4 结论

  • (1)制动盘表面梯度应变层(GS layer)的马氏体板条发生严重塑性变形,呈纤维状,在最表层被细化成亚微米级片层及条状结构。

  • (2)用 SMAT 技术可以显著提高制动盘样品的摩擦性能,距表面越近,材料的硬度和耐磨性越高; 与基体相比,材料最表层处的磨损率和位错密度分别提高了 1.2 和 14.6 倍。

  • (3)与相关铁路耐磨材料相比,试验材料具有较小的梯度层厚、更大的显微硬度增量比和较高的表面强化指数,可为在类似环境服役的铁路耐磨材料提供参考。

  • 参考文献

    • [1] PUTRA M,PRATAMA P S,PRABOWO A R.Failure of friction brake components against rapid braking process:A review on potential challenges and developments[J].Transportation Research Procedia,2021,55:653-660.

    • [2] ZHAI W,BAI L,ZHOU R,et al.Recent progress on wear resistant materials:designs,properties,and applications[J].Advanced Science,2021:2003739.

    • [3] CAI P,WANG C,GAO H,et al.Mechanomaterials:A rational deployment of forces and geometries in programming functional materials[J].Advanced Materials,2021:2007977.

    • [4] VARECHA D,BRONCEK J,KOHAR R,et al.Research of friction materials applicable to the multi-disc brake concept[J].Journal of Materials Research and Technology,2021,14:647-661.

    • [5] LI W,YANG X,XIAO J,et al.Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J].Ceramics International,2021,47(20):28754-28763.

    • [6] SHI X,WEN D,WANG S,et al.Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc[J].Optik-International Journal for Light and Electron Optics,2021,242:167227.

    • [7] LI X,LU L,LI J,et al.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J].Nature Reviews Materials,2020,5(9):706-723.

    • [8] 王文权,桑娜,胡春华.表面纳米化对Dievar模具钢高能离子注渗WC层性能的影响[J].中国表面工程,2020,33(2):75-86.WANG Wenquan,SANG Na,HU Chunhua,et al.Effects of surface nano crystallization on properties of high eneray ion implanted WC layer on dievar die steel[J].China Surface Engineering,2020,33(02):25-30.(in Chinese)

    • [9] OLUGBADE T O,LU J.Literature review on the mechanical properties of materials after surface mechanical attrition treatment(SMAT)[J].Nano Materials Science,2020,2(1):3-31.

    • [10] 李波,孙清,刘卓毅,等.超声滚压对7075铝合金耐腐蚀性能的影响[J].中国表面工程,2022,35(1):144-154.LI Bo,SUN Qing,LIU Zhuoyi,et al.Influence of ultrasonic rolling on corrosion resistance of 7075 luminum alloy[J].China Surface Engineering,2022,35(1):144-154.(in Chinese)

    • [11] 宁江利,苑潇逸,吴蒙,等.表面机械研磨处理对热轧态 Mg-Gd-Y 合金微观组织和力学性能的影响[J].稀有金属材料与工程,2022,51(2):566-572.NING Jiangli,YUAN Xiaoyi,WU Meng,et al.Effect of surface mechanical grinding treatment on microstructure and mechanical properties of hot-rolled Mg-Gd-Y alloy[J].Rare Metal Materials and Engineering,2022,51(2):566-572.(in Chinese)

    • [12] 王强,张炜.喷丸成形弹坑尺寸对2324铝合金疲劳性能的影响[J].中国表面工程,2020,33(1):18-23.WANG Qiang,ZHANG Wei.Effects of shot peening formation cater size on fatigue performance of 2324 aluminum alloy[J].China Surface Engineering,2020,33(1):18-23.(in Chinese)

    • [13] 曹小建,吴昌将,顾镇媛,等.超声冲击纳米化的研究现状与进展[J].表面技术,2019,48(8):113-121.CAO Xiaojian,WU Changjiang,GU Zhenyuan,et al.Research status and progress of ultrasonic impact nanoscale[J].Surface Technology,2019,48(8):113-121.(in Chinese)

    • [14] LI Y,SHANG X,ZHAI M,et al.Surface characteristics and microstructure evolution of a nickel-base single crystal superalloy treated by ultrasonic shot peening[J].Journal of Alloys and Compounds,2022,919(25):165761.

    • [15] LIANG F,XU X,WANG P,et al.Microstructural origin of high scratch resistance in a gradient nanograined 316L stainless steel[J].Scripta Materialia,2022,220:114895.

    • [16] LI Y,LIAN Y,LI J,et al.Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel[J].Surface and Coatings Technology,2022,435:128250.

    • [17] CHEN C,ZHANG H.Characteristics of friction and wear of Al-Zn-Mg-Cu alloy after application of ultrasonic shot peening technology[J].Surface and Coatings Technology,2021,423:127615.

    • [18] GAO Y,LI X,KITCHEN M,et al.Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy[J].Transactions of Nonferrous Metals Society of China,2022,32(6):1910-1925.

    • [19] GHOSH S,BIBHANSHU N,SUWAS S,et al.Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility[J].Materials Science and Engineering:A,2021,820:141540.

    • [20] LIU Y X,CHEN H,WANG R Z,et al.Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer[J].International Journal of Fatigue,2021,147:106170.

    • [21] AN L,SUN Y T,LU S P,et al.Enhanced fatigue property of welded S355J2W steel by forming a gradient nanostructured surface layer[J].Acta Metallurgica Sinica(English Letters),2020,33(9):1252-1258.

    • [22] PETAN L,OCA A J L,GRUM J,et al.Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18-9-5 maraging steel[J].Surface & Coatings Technology,2016,307:262-270.

    • [23] LU J Z,LUO K Y,ZHANG Y K.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [24] DUTTA K,KISHOR R,SAHU L,et al.On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel[J].Materials Science and Engineering:A,2016,660:47-51.

    • [25] YIN C H,LIANG Y L,JIANG Y,et al.Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel[J].Applied Surface Science,2017,423:305-313.

    • [26] EL L M,WANG L,HARVEY T J,et al.Further understanding of rolling contact fatigue in rolling element bearings-a review[J].Tribology International,2019,140:105849.

    • [27] DAUTZENBERG J H,ZAAT J H.Quantitative determination of deformation by sliding wear[J].Wear,1973,23(1):9-19.

    • [28] ALPAS A T,HU H,ZHANG J.Plastic deformation and damage accumulation below the worn surfaces[J].Wear,1993,162:188-195.

    • [29] POUR A S,KIANI A R,BABAKHANI A.Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening[J].Vacuum,2017,144:152-159.

    • [30] WANG X,CHEN J G,SU G,et al.Plastic damage evolution in structural steel and its non-destructive evaluation[J].Journal of Materials Research and Technology,2020,9(2):1189-1199.

    • [31] SAHU S K,DATTA S.Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys:Comparison with conventional electrodischarge machining[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2019,233(2):384-402.

    • [32] BAKSHI S D,SINHA D,CHOWDHURY S G.Anisotropic broadening of XRD peaks of α′-Fe:Williamson-Hall and Warren-Averbach analysis using full width at half maximum(FWHM)and integral breadth(IB)[J].Materials Characterization,2018,142:144-153.

    • [33] BAKSHI S D.Wear of fine pearlite,nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.

    • [34] AAK R,AR B,BR K G,et al.Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo(P91)steel[J].Surface and Coatings Technology,2019,358:125-135.

    • [35] WANG Z D,SUN G F,LU Y,et al.Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J].Surface and Coatings Technology,2020,385:125403.

    • [36] DUTTA K,RAY K K.Ratcheting strain in interstitial free steel[J].Materials Science and Engineering:A 2013,575:127-135.

    • [37] DUTTA K,SIVAPRASAD S,TARAFDER S,et al.Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel[J].Materials Science & Engineering A,2010,527(29-30):7571-7579.

    • [38] KREETHI R,MONDAL A K,DUTTA K.Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions[J].Materials Science and Engineering:A,2017,679(2):66-74.

    • [39] BASSIM M N.Mathematical prediction of dislocation cell sizes with strain using the mesh-length theory of work hardening[J].Materials Science & Engineering A,1989,113:367-371.

    • [40] BAKSHI S D,SINHA D,CHOWDHURY S G,et al.Surface and sub-surface damage of 0.20 wt% Cmartensite during three-body abrasion[J].Wear,2018,394:217-227.

    • [41] DONG Y,KANG G,LIU Y,et al.Dislocation evolution in 316L stainless steel during multiaxial ratchetting deformation[J].Mater.Charact,2012,65:62-72.

    • [42] HAN D X,WANG G,REN J L,et al.Stick-slip dynamics in a Ni62Nb38 metallic glass film during nanoscratching[J].Acta Materialia,2017,136:49-60.

    • [43] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.

    • [44] WU Y,QIANG L,JIAO J,et al.Investigating the wear behavior of Fe-based amorphous coatings under nanoscratch tests[J].Metals-Open Access Metallurgy Journal,2017,7(4):118.

    • [45] REN C X,WANCTG Q,HOU J P,et al.Effect of work-hardening capacity on the gradient layer properties of metallic materials processed by surface spinning strengthening[J].Materials Characterization,2021,177:111179.

    • [46] REN C X,WANG Q,ZHANG Z J,et al.Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening[J].Materials Science and Engineering:A,2019,754:593-601.

    • [47] REN C X,WANG Q,ZHANG Z J,et al.Surface strengthening behaviors of pure Cu with heterogeneous microstructures[J].Materials Science & Engineering A,2018,727:192-199.

    • [48] BAKSHI S D.Wear of fine pearlite nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.

    • [49] RODRÍGUEZ-ARANA B,SAN E A,PANERA M,et al.Investigation of a relationship between twin-disc wear rates and the slipping contact area on R260 grade rail[J].Tribology International,2022,168:107456.

    • [50] ZHANG R,ZHENG C L,BO L,et al.Effect of non-uniform microstructure on rolling contact fatigue performance of bainitic rail steel.International Journal of Fatigue,2022,159:106795.

    • [51] CHEN Y,REN R,PAN J,et al.Microstructure evolution of rail steels under different dry sliding conditions:A comparison between pearlitic and bainitic microstructures[J].Wear,2019,438:203011.

    • [52] HASAN S M,CHAKRABARTI D,SINGH S B.Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels[J].Wear,2018,408:151-159.

    • [53] FACCOLI M,PETROGALLI C,LANCINI M,et al.Rolling contact fatigue and wear behavior of highperformance railway wheel steels under various rolling-sliding contact conditions[J].Journal of Materials Engineering and Performance,2017,26(7-8):1-14.

  • 参考文献

    • [1] PUTRA M,PRATAMA P S,PRABOWO A R.Failure of friction brake components against rapid braking process:A review on potential challenges and developments[J].Transportation Research Procedia,2021,55:653-660.

    • [2] ZHAI W,BAI L,ZHOU R,et al.Recent progress on wear resistant materials:designs,properties,and applications[J].Advanced Science,2021:2003739.

    • [3] CAI P,WANG C,GAO H,et al.Mechanomaterials:A rational deployment of forces and geometries in programming functional materials[J].Advanced Materials,2021:2007977.

    • [4] VARECHA D,BRONCEK J,KOHAR R,et al.Research of friction materials applicable to the multi-disc brake concept[J].Journal of Materials Research and Technology,2021,14:647-661.

    • [5] LI W,YANG X,XIAO J,et al.Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs[J].Ceramics International,2021,47(20):28754-28763.

    • [6] SHI X,WEN D,WANG S,et al.Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc[J].Optik-International Journal for Light and Electron Optics,2021,242:167227.

    • [7] LI X,LU L,LI J,et al.Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J].Nature Reviews Materials,2020,5(9):706-723.

    • [8] 王文权,桑娜,胡春华.表面纳米化对Dievar模具钢高能离子注渗WC层性能的影响[J].中国表面工程,2020,33(2):75-86.WANG Wenquan,SANG Na,HU Chunhua,et al.Effects of surface nano crystallization on properties of high eneray ion implanted WC layer on dievar die steel[J].China Surface Engineering,2020,33(02):25-30.(in Chinese)

    • [9] OLUGBADE T O,LU J.Literature review on the mechanical properties of materials after surface mechanical attrition treatment(SMAT)[J].Nano Materials Science,2020,2(1):3-31.

    • [10] 李波,孙清,刘卓毅,等.超声滚压对7075铝合金耐腐蚀性能的影响[J].中国表面工程,2022,35(1):144-154.LI Bo,SUN Qing,LIU Zhuoyi,et al.Influence of ultrasonic rolling on corrosion resistance of 7075 luminum alloy[J].China Surface Engineering,2022,35(1):144-154.(in Chinese)

    • [11] 宁江利,苑潇逸,吴蒙,等.表面机械研磨处理对热轧态 Mg-Gd-Y 合金微观组织和力学性能的影响[J].稀有金属材料与工程,2022,51(2):566-572.NING Jiangli,YUAN Xiaoyi,WU Meng,et al.Effect of surface mechanical grinding treatment on microstructure and mechanical properties of hot-rolled Mg-Gd-Y alloy[J].Rare Metal Materials and Engineering,2022,51(2):566-572.(in Chinese)

    • [12] 王强,张炜.喷丸成形弹坑尺寸对2324铝合金疲劳性能的影响[J].中国表面工程,2020,33(1):18-23.WANG Qiang,ZHANG Wei.Effects of shot peening formation cater size on fatigue performance of 2324 aluminum alloy[J].China Surface Engineering,2020,33(1):18-23.(in Chinese)

    • [13] 曹小建,吴昌将,顾镇媛,等.超声冲击纳米化的研究现状与进展[J].表面技术,2019,48(8):113-121.CAO Xiaojian,WU Changjiang,GU Zhenyuan,et al.Research status and progress of ultrasonic impact nanoscale[J].Surface Technology,2019,48(8):113-121.(in Chinese)

    • [14] LI Y,SHANG X,ZHAI M,et al.Surface characteristics and microstructure evolution of a nickel-base single crystal superalloy treated by ultrasonic shot peening[J].Journal of Alloys and Compounds,2022,919(25):165761.

    • [15] LIANG F,XU X,WANG P,et al.Microstructural origin of high scratch resistance in a gradient nanograined 316L stainless steel[J].Scripta Materialia,2022,220:114895.

    • [16] LI Y,LIAN Y,LI J,et al.Effect of supersonic fine particle bombardment on the surface integrity and wear performance of DZ2 axle steel[J].Surface and Coatings Technology,2022,435:128250.

    • [17] CHEN C,ZHANG H.Characteristics of friction and wear of Al-Zn-Mg-Cu alloy after application of ultrasonic shot peening technology[J].Surface and Coatings Technology,2021,423:127615.

    • [18] GAO Y,LI X,KITCHEN M,et al.Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy[J].Transactions of Nonferrous Metals Society of China,2022,32(6):1910-1925.

    • [19] GHOSH S,BIBHANSHU N,SUWAS S,et al.Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility[J].Materials Science and Engineering:A,2021,820:141540.

    • [20] LIU Y X,CHEN H,WANG R Z,et al.Fatigue behaviors of 2205 duplex stainless steel with gradient nanostructured surface layer[J].International Journal of Fatigue,2021,147:106170.

    • [21] AN L,SUN Y T,LU S P,et al.Enhanced fatigue property of welded S355J2W steel by forming a gradient nanostructured surface layer[J].Acta Metallurgica Sinica(English Letters),2020,33(9):1252-1258.

    • [22] PETAN L,OCA A J L,GRUM J,et al.Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18-9-5 maraging steel[J].Surface & Coatings Technology,2016,307:262-270.

    • [23] LU J Z,LUO K Y,ZHANG Y K.Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J].Acta Materialia,2010,58(11):3984-3994.

    • [24] DUTTA K,KISHOR R,SAHU L,et al.On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel[J].Materials Science and Engineering:A,2016,660:47-51.

    • [25] YIN C H,LIANG Y L,JIANG Y,et al.Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel[J].Applied Surface Science,2017,423:305-313.

    • [26] EL L M,WANG L,HARVEY T J,et al.Further understanding of rolling contact fatigue in rolling element bearings-a review[J].Tribology International,2019,140:105849.

    • [27] DAUTZENBERG J H,ZAAT J H.Quantitative determination of deformation by sliding wear[J].Wear,1973,23(1):9-19.

    • [28] ALPAS A T,HU H,ZHANG J.Plastic deformation and damage accumulation below the worn surfaces[J].Wear,1993,162:188-195.

    • [29] POUR A S,KIANI A R,BABAKHANI A.Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening[J].Vacuum,2017,144:152-159.

    • [30] WANG X,CHEN J G,SU G,et al.Plastic damage evolution in structural steel and its non-destructive evaluation[J].Journal of Materials Research and Technology,2020,9(2):1189-1199.

    • [31] SAHU S K,DATTA S.Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys:Comparison with conventional electrodischarge machining[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,2019,233(2):384-402.

    • [32] BAKSHI S D,SINHA D,CHOWDHURY S G.Anisotropic broadening of XRD peaks of α′-Fe:Williamson-Hall and Warren-Averbach analysis using full width at half maximum(FWHM)and integral breadth(IB)[J].Materials Characterization,2018,142:144-153.

    • [33] BAKSHI S D.Wear of fine pearlite,nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.

    • [34] AAK R,AR B,BR K G,et al.Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo(P91)steel[J].Surface and Coatings Technology,2019,358:125-135.

    • [35] WANG Z D,SUN G F,LU Y,et al.Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J].Surface and Coatings Technology,2020,385:125403.

    • [36] DUTTA K,RAY K K.Ratcheting strain in interstitial free steel[J].Materials Science and Engineering:A 2013,575:127-135.

    • [37] DUTTA K,SIVAPRASAD S,TARAFDER S,et al.Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel[J].Materials Science & Engineering A,2010,527(29-30):7571-7579.

    • [38] KREETHI R,MONDAL A K,DUTTA K.Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions[J].Materials Science and Engineering:A,2017,679(2):66-74.

    • [39] BASSIM M N.Mathematical prediction of dislocation cell sizes with strain using the mesh-length theory of work hardening[J].Materials Science & Engineering A,1989,113:367-371.

    • [40] BAKSHI S D,SINHA D,CHOWDHURY S G,et al.Surface and sub-surface damage of 0.20 wt% Cmartensite during three-body abrasion[J].Wear,2018,394:217-227.

    • [41] DONG Y,KANG G,LIU Y,et al.Dislocation evolution in 316L stainless steel during multiaxial ratchetting deformation[J].Mater.Charact,2012,65:62-72.

    • [42] HAN D X,WANG G,REN J L,et al.Stick-slip dynamics in a Ni62Nb38 metallic glass film during nanoscratching[J].Acta Materialia,2017,136:49-60.

    • [43] ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24(8):981-988.

    • [44] WU Y,QIANG L,JIAO J,et al.Investigating the wear behavior of Fe-based amorphous coatings under nanoscratch tests[J].Metals-Open Access Metallurgy Journal,2017,7(4):118.

    • [45] REN C X,WANCTG Q,HOU J P,et al.Effect of work-hardening capacity on the gradient layer properties of metallic materials processed by surface spinning strengthening[J].Materials Characterization,2021,177:111179.

    • [46] REN C X,WANG Q,ZHANG Z J,et al.Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening[J].Materials Science and Engineering:A,2019,754:593-601.

    • [47] REN C X,WANG Q,ZHANG Z J,et al.Surface strengthening behaviors of pure Cu with heterogeneous microstructures[J].Materials Science & Engineering A,2018,727:192-199.

    • [48] BAKSHI S D.Wear of fine pearlite nanostructured bainite and martensite[J].Wear,2013,308(1-2):46-53.

    • [49] RODRÍGUEZ-ARANA B,SAN E A,PANERA M,et al.Investigation of a relationship between twin-disc wear rates and the slipping contact area on R260 grade rail[J].Tribology International,2022,168:107456.

    • [50] ZHANG R,ZHENG C L,BO L,et al.Effect of non-uniform microstructure on rolling contact fatigue performance of bainitic rail steel.International Journal of Fatigue,2022,159:106795.

    • [51] CHEN Y,REN R,PAN J,et al.Microstructure evolution of rail steels under different dry sliding conditions:A comparison between pearlitic and bainitic microstructures[J].Wear,2019,438:203011.

    • [52] HASAN S M,CHAKRABARTI D,SINGH S B.Dry rolling/sliding wear behaviour of pearlitic rail and newly developed carbide-free bainitic rail steels[J].Wear,2018,408:151-159.

    • [53] FACCOLI M,PETROGALLI C,LANCINI M,et al.Rolling contact fatigue and wear behavior of highperformance railway wheel steels under various rolling-sliding contact conditions[J].Journal of Materials Engineering and Performance,2017,26(7-8):1-14.

  • 手机扫一扫看