en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李婷,女,1991年出生,博士,高级工程师。主要研究方向为特种功能涂层。E-mail:tingli_1991@163.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221021001

参考文献 1
刘尚合.静电放电及危害防护[M].北京:北京邮电大学出版社,2004.LIU Shanghe.Electrostatic discharge and hazard prevention[M].Beijing:Beijing University of Posts and Telecommunications Press,2004.(in Chinese)
参考文献 2
孙理理,曾一兵,刘剑锋,等.欧洲运载火箭新型白色防静电涂料的发展现状[J].导弹与航天运载技术,2016(2):100-106.SUN Lili,ZENG Yibing,LIU Jianfeng,et al.Development situation of the new white antistatic coatings for european launchers[J].Missles and Space Vehicles,2016(2):100-106.(in Chinese)
参考文献 3
薛青.高超声速火箭气动加热数值计算方法研究[D].成都:电子科技大学,2009.XUE Qing.Study on numerical calculation method of aerodynamic heating for hypersonic rocket[D].Chengdu:University of Electronic Science and Technology,2009.(in Chinese)
参考文献 4
VOET A.Temperature effect of electrical resistivity of carbon black filled polymers[J].Rubber Chemistry and Technology,1981,54(1):42-50.
参考文献 5
AL-ALLAK H M,BRINKMANA W,WOODS J.IV characteristics of carbon black-loaded crystalline polyethylene[J].Journal of Materials Science,1993,28(1):117-120.
参考文献 6
万影,张力,闻荻江.丁睛橡胶/导电粒子复合材料的正温度系数(PTC)特性[J].材料开发与应用,1997,12(6):16-20.WAN Ying,ZHANG Li,WEN Dijiang.Positive temperature coefficient(PTC)effects of conductive particles/butadiene nitrile rubber composites[J].Materials Research and Application,1997,12(6):16-20.(in Chinese)
参考文献 7
OHE K,NAITO Y.A new resistor having an anomalously large positive temperature coefficient[J].Japanese Journal of Applied Physics,1971,10(1):99-108.
参考文献 8
MEYER J.Stability of polymer composites as positive-temperature-coefficient resistors[J].Polymer Engineering & Science,1974,14(10):706-716.
参考文献 9
MATHER P J,THOMAS K M.Carbon black/high density polyethylene conducting composite materials[J].Journal of Materials Science,1997,32:1711-1715.
参考文献 10
CHEN Z,HSU P C,LOPEZ J,et al.Fast and reversible thermoresponsive polymer switching materials for safer batteries[J].Nature Energy,2016,1(1):1-2.
参考文献 11
RYBAK A,BOITEUXG,MELIS F,et al.Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices[J].Composites Science and Technology,2010,70(2):410-416.
参考文献 12
王晨,程相林,赵建宏,等.复合炭系电热涂料的制备及电热性能研究[J].涂料工业,2021,51(11):32-38.WANG Chen,CHEN Xianglin,ZHAO Jianhong,Preparation and properties of composite carbon-based electrothermal coating[J].2021,51(11):32-38.(in Chinese)
参考文献 13
ZHAO Z,CHEN H,LIU X,et al.The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J].Cold Regions Science and Technology,2021,184:103234.
参考文献 14
MAAROUFI A,HABOUBI K,El AMARTI A,et al.Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders[J].Journal of Materials Science,2004,39(1):265-270.
参考文献 15
刘朝辉,向雪梅,邓智平,等.成膜树脂对防静电涂层高温电阻率影响研究[J].后勤工程学院学报,2011,27(4):64-67.LIU Zhaohui,XIANG Xuemei,DENG Zhiping,et al.Study on the influence of filmforming resin on the high temperature electric resistivity of antistatic coating[J].Journal of Logistical Engineering University.,2011,27(4):64-67.(in Chinese)
参考文献 16
JOUNI M,BOUDENNE A,BOITEUX G,et al.Electrical and thermal properties of polyethylene/silver nanoparticle composites[J].Polymer Composites,2013,34(5):778-786.
参考文献 17
ASARE E,EVANS J,NEWTON M,et al.Effect of particle size and shape on positive temperature coefficient(PTC)of conductive polymer composites(CPC)— A model study[J].Materials & Design,2016,97:459-463.
参考文献 18
LIU Y F,FENG L M,CHEN Y F,et al.Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multiwalled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect:Towards electromagnetic interference shielding and thermistors[J].Composites Science and Technology,2018,159:152-161.
参考文献 19
MIYASAKA K,WATANABE K,JOJIMA E,et al.Electrical conductivity of carbon-polymer composites as a function of carbon content[J].Journal of Materials Science,1982,17(6):1610-1616.
参考文献 20
SONG P,WANG G,ZHANG Y.Enhanced positive temperature coefficient effect by crosslinking reaction for silicone rubber/carbon black composites with high pressure sensitivity[J].Journal of Applied Polymer Science,2022,139(8):51682.
参考文献 21
NAGEL J,HANEMAN T,RAPP B E,et al.Enhanced PTC effect in polyamide/carbon black composites[J].Materials,2022,15(15):5400.
参考文献 22
李荣群,李威,苗金玲,等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程,2003,19(5):42-45.LI Rongqun,LI Wei,MIAO Jinling,et al.A new theoretical model for polymer PTC materials[J].Polymer Materials Science and Engineering,2003,19(5):42-45.(in Chinese)
参考文献 23
王文东.基于蒙特卡罗模拟的碳系填充型导电高分子材料渗流阈值研究[D].合肥:合肥工业大学,2019.WANG WENDONG.Study on percolation threshold of carbon-based conductive polymerbased on Monte Carlo Simulation[J].Hefei:Hefei University of Technology,2019.(in Chinese)
参考文献 24
BAUHOFER W,KOVACS J Z.A review and analysis of electrical percolation in carbon nanotube polymer composites[J].Composites Science & Technology,2009,69(10):1486-1498.
目录contents

    摘要

    箭体外表面防静电涂层通常既需承受一定的温度又需防静电性能,此时涂层的表面电阻率变化规律即温度-电阻效应,对防静电涂层的研制、开发及应用有着重要的意义。以有机硅改性丙烯酸为成膜物,通过选取典型的非金属导电填料—导电炭黑和金属导电填料—镍粉和银粉,制备一系列不同导电填料含量的防静电涂层,研究导电填料的种类和含量对防静电涂层温度电阻效应的影响。研究结果表明:导电填料的种类及含量对防静电涂层的温度-电阻效应影响显著。基于体积膨胀理论,导电炭黑涂层体系随温度升高而体积膨胀,导电网络被阻断,表面电阻率随温度的升高而增大,但其正温度系数(PTC)效应不显著,PTC 强度仅为 1.24,且导电炭黑含量与其 PTC 强度呈负相关;镍粉涂层体系的 PTC 效应显著,PCT 强度高达 106 ,且镍粉含量与其 PTC 强度也呈负相关;银粉涂层体系则在渗流阈值前 PTC 效应显著,PTC 强度为 4.58,而渗流阈值后则几乎不表现 PTC 效应。制备了含导电炭黑和镍粉的复合导电填料涂层体系,其 PTC 强度较纯镍粉涂层体系大大降低,可为箭体外表面防静电涂料的设计提供新的思路。

    Abstract

    Antistatic coatings on the surface of arrows are often subjected to certain heating environments; therefore, their antistatic performance should be retained with increasing temperature, and the content of conductive fillers should be as low as possible. Thus, the variation in the surface resistance of the antistatic coating, namely, the temperature-resistance effect, is significant for the development and application of antistatic coatings for arrows and for obtaining antistatic coatings with appropriate surface resistance, even at a certain high temperature. First, an amorphous organic silicone-modified acrylic polymer was utilized as the film former of the antistatic coating to avoid interference from the crystallization structures of the film former. Typical non-metallic conductive fillers, i.e., conductive carbon black, and two types of conductive metal fillers, i.e., nickel and silver powders, were selected to prepare various antistatic coatings. Subsequently, the influence of the type and content of conductive fillers on the temperature-resistance effect of the antistatic coating, as well as the corresponding changes in microstructures and mechanisms, were investigated by observing the changes in the surface resistance with increasing temperature and the microstructures from SEM graphs after the heating process. The results showed that the type and content of the conductive filler significantly influenced the temperature-resistance effect of the antistatic coating. Two typical theories corresponding to the two types of behaviors for different antistatic coatings were demonstrated: the volume expansion theory and stress model theory. For the conductive carbon black coating system, the positive temperature coefficient (PTC) effect was observed but was not significant, with a PTC strength of only 1.24. This can be attributed to the volume expansion theory. Here, the conductive network was blocked when the volume of the film former in the coating system expanded with increasing temperature, which was also observed from the changes in the microstructures, but the degree of volume expansion was limited. Moreover, increasing the content of fillers weakened the impact of the volume expansion, which led to a lower PTC strength with increasing content of conductive carbon black. Meanwhile, the percolation threshold had an important effect on the temperature resistance effect. The PTC effect of the silver powder coating system was significant because of the volume expansion theory before the percolation threshold, where the PTC strength was 4.58, and the PTC effect could be neglected after the percolation threshold because the limited volume expansion of the film former could not destroy the effective conductive network after the percolation threshold. Based on stress model theory, the PTC effect of the nickel powder coating system was significant, with a PTC strength of up to 106 . Here, the sudden stress increased with increasing temperature, leading to changes in the conductive filler position and the subsequent destruction of the conductive network. In addition, the nickel powder content was negatively correlated with the PTC strength, which also indicated that a higher filler content results in more conductive network chains. Furthermore, based on the above results, a coating system containing both conductive carbon black and nickel powder was prepared, whose PTC strength was significantly lower than that of the pure nickel powder coating system, but the surface resistance was much lower than that of the conductive carbon black coating system. An appropriate mixture and percolation threshold may provide important guidance for the design of antistatic coatings for rockets.

  • 0 前言

  • 火箭表面一般为绝缘性材料如硅橡胶类防热层等,在起吊、装配、运输、出筒时因接触、分离、摩擦、剪切应力作用等,涂层表面产生静电电荷累积形成较高电压,若不采取防静电措施,在静电放电时可能会对箭体造成危害。同时,运载火箭等在飞行过程中,由于大气中的灰尘或者冰的接触摩擦,其表面可达到数千伏的静电电位,若不采取有效的防静电措施,可能导致灾难性的后果[1]。目前,解决运载火箭外表面防静电问题的有效方法之一,是在外表面涂覆防静电涂层,该方法被广泛应用在国内外的火箭外表面,如长征系列火箭、阿里安系列火箭等[2]。同时,对于火箭箭体来说,其外表面在飞行过程中还伴随着气动加热,这导致箭体外表面在飞行过程中表面温度可升高至 200℃以上[3]。一般来说,防静电涂层多选用聚合物作为成膜物,构成导电高分子复合材料,该材料通常具有典型的温度-电阻效应,即电阻率随温度变化而变化[4-6]。箭体外表面的防静电涂层则要求该涂层在一定温度下仍保持较好的防静电作用。因此,防静电涂层的表面电阻率变化规律即温度-电阻效应,对防静电涂层的研制、开发及后期应用至关重要。

  • 防静电涂层主要包含成膜树脂和导电填料,二者均影响着涂层导电网络通路的形成状态,从而进一步影响涂层的表面电阻率。温度-电阻效应分为正温度系数(PTC)效应(电阻率随着温度的升高而增大)和负温度系数(NTC)效应(电阻率随温度的升高而降低)[7-9]。具有 PTC 效应的导电高分子复合材料在电子器件等领域有着广泛的应用[10-13]。研究者大多关注导电填料种类及配方设计对防静电涂层常温电阻的影响[14],如刘朝辉等[15]探究不同成膜树脂对防静电涂层高温电阻率影响规律。然而目前关于不同导电填料对防静电涂层温度-电阻效应的影响规律的研究较为少见。

  • 本文选用典型的不同导电填料,包括银粉、枝状镍粉、球状镍粉、导电炭黑,采用非晶态有机硅改性丙烯酸树脂为成膜物,探究不同导电填料类型及含量对防静电涂层温度-电阻效应的影响规律,同时揭示涂层不同的温度-电阻效应机理,为开发温度-电阻效应较弱的防静电涂层提供进一步的设计思路。

  • 1 试验准备

  • 1.1 试验用料及设备

  • 试验所用材料如下所述。

  • 树脂:单组分有机硅改性丙烯酸树脂,固含量 25±3%,天津灯塔涂料有限责任公司;枝状镍粉,电解法,Ni 含量 99%,粒度约 45 μm,真密度 8.9 g / cm3,安泰科技股份有限公司;球状镍粉,电解法,Ni 含量 95%,粒度约 40 μm,真密度 8.9 g / cm3,安泰科技股份有限公司;导电炭黑,密度 1.8 g / cm3,北京市欣奕博瑞化工厂;银粉,99.9%,粒度约 40 μm,密度 10.5 g / cm3,有研工程技术研究院有限公司;防沉剂,有机膨润土,BYK;乙酸丁酯,国药集团化学试剂有限公司。

  • 试验所用设备如下所述。

  • 手持式四探针电阻测试机:M-3,苏州晶格电子有限公司;扫描电子显微镜(SEM):Quanta FEG 650,美国赛默飞世尔科技公司;恒温加热台, JFTOOLS,东莞威铁克自动化科技有限公司。

  • 1.2 涂料及涂层制备

  • 涂料制备:以成膜物的质量为 M0,涂料中导电填料的体积含量(PVC)为 xPVC,导电填料的质量 M1 计算公式如式(1)所示:

  • M1=ρ1×M0×25%×xPVC
    (1)
  • xPVC为 10%为例说明涂料的制备过程,涂料配比见表1。根据计算的配比,先称取原材料,然后用玻璃棒手工搅拌混合,放置 3 h;之后,含炭黑配方使用球磨机分散 2 h,其他填料的配方涂料均使用高速分散机分散 10 min;最后采用 100 目过滤网过滤,得到最终涂料。其他 PVC 的涂料制备过程同上。

  • 表1 不同导电涂料配比表

  • Table1 Formula of different conductive coatings

  • 涂层制备:向涂料中加入涂料质量分数 60%的乙酸丁酯,用搅拌棒搅拌使涂料混合均匀,将溶液倒入喷枪中,设定喷枪压力为 0.3~0.6 MPa,喷涂距离为 250~350 mm,均匀喷涂铝基材表面,涂层厚度控制在 120~150 μm。常温固化 24 h,具体流程如图1 所示。

  • 图1 防静电涂料的制备流程示意图

  • Fig.1 Flow Char of the preparation of the antistatic coating

  • 1.3 结构表征及力学性能测试

  • 采用苏州晶格电子有限公司的 M-3 型号手持式四探针测试仪测试涂层表面电阻率,采用单晶硅片进行四探针测试仪的校正;采用东莞威铁克自动化科技有限公司的 JFTOOLS 恒温加热台进行涂层的加热,每个样品在加热台上恒温 2 min 后采用四探针测试仪进行表面电阻率的测定。

  • 2 结果与讨论

  • 2.1 导电填料种类对涂层高温表面电阻的影响

  • 一般来说,涂层中常用的导电填料主要分为炭系和金属系两类[16-17]。为探究不同导电填料对涂层高温电阻率的影响,采用典型的导电炭黑、枝状镍粉、球形镍粉和枝状银粉,以有机硅改性丙烯酸为成膜树脂,制备得到导电填料 PVC 为 10%的不同涂层体系。采用 PTC 强度来对涂层表面电阻率随温度的变化趋势进行定量表征,其中PTC强度(PTCT) α 的计算公式如式(2)所示:

  • α=ρmax/ρRT
    (2)
  • 式中,ρmax 为导电涂层表面电阻率的最大值,ρRT为导电涂层在常温时的表面电阻率。

  • 图2~4 分别为导电炭黑、银粉和镍粉涂层体系表面电阻率随温度变化曲线,表2 为其 PTC 强度的汇总表。如图2 所示,导电炭黑涂层体系的温度-表面电阻率趋势则较为明显,呈现标准的 PTC 曲线,即升温初期表面电阻率增加缓慢;随着温度进一步升高,表面电阻率明显增加,呈现 PTC 效应;随温度进一步增加,表面电阻率则明显下降。这里可用膨胀理论[18]和炭黑粒子的积聚理论[19]解释该现象,导电炭黑涂层体系导电的基本原理就是含链枝状导电炭黑聚集体的导电网络通路的建立[18],而表面电阻率随温度的变化主要来自于温度对体系导电网络通路的影响。具体来说:升温初期由于高聚物的热膨胀系数远远大于炭黑粒子的热膨胀系数,基体材料发生体积膨胀,导电网络被阻断,表面电阻率增加;随着温度进一步升高,如图3 所示,分子链段运动加剧,导电链大量的断开,同时炭黑聚集体也开始遭到破坏,使得涂层的表面电阻率明显增加[20],为典型的 PTC 曲线,此时α 为 1.24(~75℃),一般该温度与成膜物的玻璃化转变温度密切相关[21];但温度进一步增加时,原来被阻断的导电链,由于炭黑粒子的重新团聚,形成了新的导电网络,导致电阻率下降,呈现 NTC 效应。图4 可明显观察到升温后体积膨胀导致的涂层表面的开裂现象。

  • 图2 xPVC 为 10%的导电炭黑涂层体系表面电阻率随温度的变化

  • Fig.2 Surface resistivity vs temperature of the coating system containing conductive carbon black (xPVC is 10%)

  • 图3 导电炭黑涂层体系的 PTC 效应

  • Fig.3 PTC effect for the coating system containing conductive carbon black

  • 图4 xPVC为 10%的导电炭黑涂层体系升温前后的 SEM 照片

  • Fig.4 SEM photos of the coating system containing conductive carbon black before and after heating process (xPVC=10%)

  • 表2 不同导电涂料 PTC 强度汇总表(xPVC 为 10%)

  • Table2 PTC intensities of different conductive coatings (xPVC=10%)

  • 然而,含金属填料的涂层体系则表现出不一样的温度-电阻效应。对于含银粉的涂层体系 (xPVC=10%),如图5 所示,其 PTC 效应非常弱,表面电阻率变化并不显著。含银粉的涂层体系 PTC 强度较低的原因是,银粉的电导率较优,而此涂层体系中银粉的含量较高,银粉颗粒之间已经互相较密切地搭接,形成导电链,如图6 所示。高温下树脂基体虽然膨胀,但基体的膨胀并没有使银粉颗粒完全分离,银粉仍然处于搭接状态。图7 中 SEM 照片也可表明银粉的状态,导电链并没有因为成膜树脂的膨胀而减少,所以涂层的表面电阻率变化不大。但仍有一定的变化趋势,银粉的涂层体系也可以分为 3 个阶段。这里也可用体积膨胀理论解释。第一阶段随温度的升高,涂层的表面电阻率随温度的增加先升高,也在 75℃左右时达到最大值,这里主要是由于基体材料发生体积膨胀,网络发生一定程度的破坏;第二阶段则是随温度的进一步增加,涂层表面电阻率降低,这是由于基体材料的黏度下降,涂层的导电网络又重新建立,涂层表面电阻率降低; 第三阶段则在 225℃后涂层的表面电阻率略微上升,但仅有 0.2 Ω / □,这可能是银的轻微氧化,导致其表面电阻率略微上升。

  • 图5 xPVC=10%的银粉涂层体系表面电阻率随温度的变化

  • Fig.5 Surface resistivity vs. temperature of the coating system containing silver powder (xPVC =10%)

  • 图6 银粉涂层体系的 PTC 效应示意图

  • Fig.6 Schematic diagram of the PTC effect for the coating system containing silver powder

  • 图7 xPVC =10%的银粉涂层体系升温前后的 SEM 照片

  • Fig.7 SEM photos of the coating system containing conductive silver powder before and after heating process (xPVC =10%)

  • 然而,含镍粉的涂层体系则与含银粉的涂层体系表现不同。从图8 可以看出,含枝状镍粉涂层和球形镍粉涂层的温度-表面电阻率曲线趋势类似,呈现出典型的 PTC 效应。含镍粉的涂层体系的温度-表面电阻率曲线具体表现为:升温伊始,涂层表面电阻率随温度的升高增加的较慢,温度升高到 120℃左右时涂层的表面电阻率突然增大,150℃左右时达到最大值,含枝状镍粉涂层和球形镍粉涂层体系的α 均高达 106 以上,之后表面电阻率迅速下降。因此此处导电金属粉的形状对温度-电阻率曲线趋势影响不显著。进一步地,含镍粉涂层体系的温度-表面电阻率曲线与含导电炭黑涂层体系的曲线相差很大,这可能是由二者在高温下的导电机理不同造成的。

  • 图8 xPVC = 10%的镍粉涂层体系表面电阻率随温度的变化

  • Fig.8 Surface resistivity vs. temperature of the coating system containing nickel powder (xPVC =10%)

  • 为了排除高温下镍粉自身氧化带来的电阻率变化的干扰,将镍粉放到烘箱进行加温,测量不同温度下镍粉的电阻,如图9 所示。测试结果表明:随着温度的升高,镍粉的电阻逐渐降低,这说明含镍粉的涂层体系的表面电阻的增加与镍粉本身的性质变化无关,是由于和成膜树脂混合后导致了镍粉 / 涂层表面电阻率的增大,这进一步说明镍粉涂层高温导电机理的特殊性。

  • 图9 镍粉自身电阻随温度的变化

  • Fig.9 Resistivity vs. temperature of the nickel powder

  • 导电复合填料的温度电阻效应机理复杂,除体积膨胀理论外,研究者们也研究出一种应力模型理论[22]。对于含镍粉的涂层体系,其公认的导电机理主要是形成导电网络通路(接触导电),这是应力模型理论分析的基础。进一步基于应力模型理论分析该涂层体系电阻率和材料结构的演变规律:当温度升高时,材料出现体积或聚集态结构急剧变化,材料内部出现大量应力,从而推动导电粒子位置改变,偏离原来的平衡位置,原来连通的导电网链遭到破坏(图10),材料电阻率迅速上升,此时含镍粉的涂层体系表现出表面电阻率的迅速上升,体现极高的α 值;当温度进一步升高时,成膜物的黏度进一步下降,材料中应力衰减,导电粒子在基体弹力作用下逐渐恢复到原来的位置,导电网链重新连通,材料电阻率重新降低,此时含镍粉的涂层体系表面电阻率迅速下降。

  • 图10 镍粉涂层体系的 PTC 效应示意图

  • Fig.10 Schematic diagram of the PTC effect for the coating system containing nickel powder

  • 2.2 填料含量对涂层常温表面电阻率的影响

  • 图11 为不同导电填料 / 涂层体系表面电阻率随填料含量变化关系图。从图11 中可以看出,不同导电填料对涂层的常温表面电阻率影响不同,但均存在电阻率随填料含量增大而突变的情况,即渗流现象[11]。当导电填料填充量较低时,涂层的表面电阻率较大,这是因为导电填料填充量较小时,导电填料粒子彼此之间距离较远,难以形成导电通路。当涂层内导电填料含量增大到某一临界值(渗流阈值) 时,涂层的表面电阻率会突然减小几个数量级,这一现象称为“渗流”现象,超过此特征值后,随着导电填料含量的增大,电阻率的减小不明显。“渗流” 现象的出现是由于随着导电填料填充量的增加,导电填料粒子形成导电通路的几率增大,粒子的间隙减小,此时少量导电填料的加入就可以形成连续的网络结构,犹如导电填料粒子“列队”形成一个导电无限网链,类似于桥的功能,使自由电子载流体从高聚物的这一端经过桥达到另一端,造成涂层的导电性能的迅速增强,从而使绝缘体变成了半导体或导体。

  • 图11 不同导电填料 / 涂层体系表面电阻率和 PVC 的关系

  • Fig.11 Surface resistivity vs. PVC of the coating system containing different conductive fillers

  • 含银粉和镍粉的涂层体系的 PVC 渗流阈值均为 10%,而导电炭黑的涂层体系的 PVC 渗流阈值则为 5%,不同的渗流阈值来源于导电填料的导电性、形状等的差异[23-24]。导电炭黑涂层体系渗流阈值较含银粉和镍粉的涂层体系低的原因可能是其链枝状结构和高长径比,导致其更易相互连接形成导电网络通路[23]。在研究填料含量对涂层高温表面电阻率的影响时,掌握涂层体系的渗流阈值非常重要。

  • 2.3 填料含量对涂层高温表面电阻率的影响

  • 基于以上研究结果,分别探讨导电炭黑、银粉、镍粉填料含量对涂层高温表面电阻率的影响。图12 是含导电炭黑涂层体系不同含量导电炭黑时涂层的温度-表面电阻率曲线,随导电炭黑含量的增加,涂层的表面电阻率降低,但均显示了典型的微弱的 PTC 效应。从图12 中可以看出,涂层表面电阻率均随温度的增加先升高,在约 75℃达最大值,为典型的 PTC 效应,这是由导电网络的破坏导致的;之后表面电阻率下降,呈现 NTC 效应,这是由炭黑粒子的重新聚集导致导电网络重新形成的;且导电炭黑含量越高,涂层的表面电阻率随温度变化的程度越小,其 PTC 强度越低,如图13 所示。

  • 图12 不同导电炭黑含量的导电炭黑涂层体系表面电阻率随温度的变化曲线

  • Fig.12 Surface resistivity vs. temperature of the coating systems containing different content of conductive carbon black

  • 图13 不同导电炭黑含量涂层的 PTC 强度

  • Fig.13 α of the coating systems containing different content of conductive carbon black

  • 导电填料含量对含导电炭黑涂层体系的这种影响也可用体积膨胀理论进行解释。随着导电炭黑含量的增加,涂层内树脂的含量则减少,导电链的数量增加,涂层的表面电阻率下降,涂层受热产生的体积膨胀程度因树脂的减少而降低,涂层内部的网络通路受到更小的影响,因此涂层的表面电阻率受温度的影响程度也降低,表现为涂层 PTC 强度的降低。对于含导电炭黑涂层体系,由于其本身 PTC 效应微弱,这里涂层的 PVC 渗流阈值对涂层表面电阻率随温度的变化影响并不显著。

  • 图14 为银粉含量不同时,银粉涂层体系的温度-表面电阻率曲线,从图14 中可以看出,银粉含量不同时涂层的温度-表面电阻率曲线差别很大,尤其是处于“渗流阈值”现象临界点前后的涂层含量。 “渗流”现象前,导电粒子之间没有形成高效的导电网络通路,PVC 为 9%的涂层 PTC 效应显著,而“渗流”现象后,PVC 为 10%的涂层和 PVC 为 15%的涂层表面电阻率随温度变化不大。

  • 图14 不同银粉含量的银粉涂层体系表面电阻率随温度的变化曲线

  • Fig.14 Surface resistivity vs. temperature of the coating systems containing different content of silver powder

  • 不同银粉填料含量导电涂层的不同 PTC 效应与“渗流”现象密切相关。在“渗流”现象前,导电涂层没有形成足够多的导电链继而没有形成高效导电网络通路,此时其较高的 PTC 强度可以用热膨胀理论进行解释,即导电层中聚合物的热膨胀后导致银粒子之间的间隙变大,导致导电链断裂或隧道效应减弱,引起涂层的表面电阻率增大,表现为较强的 PTC 效应,α 为 4.58。同时,其表面电阻率最大值的温度为 75℃左右,与导电炭黑涂层体系的表现一致,这进一步说明了热膨胀理论在这里的适用性。而“渗流”现象后,导电涂层形成了高效导电网络通路,导电层中聚合物的热膨胀不足以破坏这种导电粒子间链接,因此涂层的表面电阻率变化不大。由此可知,渗流阈值对防静电涂层电阻率在高温下的演变规律很重要,在一定条件下,提高涂层中导电填料的含量,可以得到防静电效果较好的涂层,且此时涂层的 PTC 效应较弱。

  • 由上文可知,含枝状镍粉和球状镍粉涂层体系的 PTC 效应均很明显,呈现类似的温度电阻效应。因此这里选择枝状镍粉作为填料,来探究镍粉含量对涂层体系温度电阻效应的影响。图15 显示了镍粉含量不同时,涂层的温度-表面电阻率的变化规律。从图15 为可以看出,含镍粉的涂层体系的表面电阻率的突增点温度均在 150℃左右,与镍粉含量关系不大,但镍粉含量对该涂层体系的 PTC 强度有着较大的影响。如图16 所示,随着镍粉含量的增大,涂层的 PTC 强度逐渐降低。基于应力模型理论,这主要是由于涂层受热产生的内应力虽然改变镍粉粒子的排列,但镍粉含量越大,涂层中仍有更大的概率存在导电链,因此镍粉含量越高,涂层的 PTC 强度越低。

  • 图15 不同镍粉含量的镍粉涂层体系表面电阻率随温度的变化曲线

  • Fig.15 Surface resistivity vs. temperature of the coating systems containing different content of nickel powder

  • 图16 不同镍粉含量涂层体系的 PTC 强度

  • Fig.16 α of the coating systems containing different content of nickel powder

  • 对于含镍粉涂层体系,这里涂层的 PVC 渗流阈值对涂层表面电阻率随温度的变化影响较为显著。当导电填料含量接近渗流阈值时,涂层的 PTC 强度呈现较大程度的下降,这与涂层中存在导电链的概率密切相关。导电填料的含量越接近渗流阈值,涂层中存在导电链的概率越高,因此 PTC 强度越低。

  • 2.4 复合填料对涂层高温表面电阻率的影响

  • 基于以上研究,为得到 PTC 效应较弱同时导电性较好的防静电涂层体系,进一步研究了复合填料对涂层高温电阻的影响。试验选取树枝状镍粉和导电炭黑两种填料,按 1∶1 分别加入到成膜物中,制成 PVC 含量为 10%的涂料,然后喷涂在试样上进行温度-电阻率测试试验。从图17 中可以看出,复合填料对涂层高温表面电阻率的影响规律,复合填料涂层的温度-表面电阻率曲线与导电炭黑和镍粉涂层的温度-表面电阻率曲线均不相同。该复合涂层体系的温度-表面电阻率曲线也表现为导电炭黑涂层和镍粉涂层复合的综合效应。首先,复合涂层体系出现表面电阻率最大值时的温度与镍粉涂层的温度一致(~150℃),这是镍粉涂层体系的重要特征,但其 PTC 强度显著下降,这是导电炭黑带来的影响。综上,镍粉的加入增加了导电炭黑涂层的 PTC 强度,或者说导电炭黑的加入减小了镍粉涂层的 PTC 强度。

  • 图17 不同涂层体系表面电阻率随温度变化曲线

  • Fig.17 Surface resistivity vs. temperature of different coating systems

  • 这可能是因为经过球磨的导电炭黑能均匀地分散到树脂中,把树脂、炭黑和镍粉三者有效结合起来,减小了涂层因受热产生的内应力,因此涂层的的 PTC 强度较镍粉涂层体系显著下降,但由于镍粉的引入,其 PTC 强度又高于导电炭黑涂层体系。然而,对于防静电涂层的设计来说,在高温下表面电阻率最好不要发生明显的突变。因此,结合以上不同中导电填料 / 涂层体系的温度-电阻表现,这对于防静电涂层的设计具有重要指导意义,后期的涂层设计过程中导电填料最好采用炭系或复合填料体系。

  • 3 结论

  • (1)不同导电填料的防静电涂层体系的 PTC 效应不尽相同,主要是基于体积膨胀理论和应力模型理论。其中,含导电炭黑和银粉的涂层体系 PTC 效应不显著,其 PTC 效应基于体积膨胀理论,成膜物的体积膨胀较为有限,而含镍粉涂层的 PTC 效应显著,强度高达 106,可用应力模型理论进行解释。

  • (2)导电填料的含量,尤其是其渗流阈值对于防静电涂层的 PTC 效应影响显著,涂层中导电填料的含量大于渗流阈值的设计非常必要。

  • (3)提出复合涂层体系—导电炭黑和镍粉涂层体系,可结合此两者导电填料的特点,显著降低镍粉给涂层带来的 PTC 效应,也进一步降低了相同情况下导电炭黑的含量,更好地指导了箭体外表面防静电涂层的设计。

  • 参考文献

    • [1] 刘尚合.静电放电及危害防护[M].北京:北京邮电大学出版社,2004.LIU Shanghe.Electrostatic discharge and hazard prevention[M].Beijing:Beijing University of Posts and Telecommunications Press,2004.(in Chinese)

    • [2] 孙理理,曾一兵,刘剑锋,等.欧洲运载火箭新型白色防静电涂料的发展现状[J].导弹与航天运载技术,2016(2):100-106.SUN Lili,ZENG Yibing,LIU Jianfeng,et al.Development situation of the new white antistatic coatings for european launchers[J].Missles and Space Vehicles,2016(2):100-106.(in Chinese)

    • [3] 薛青.高超声速火箭气动加热数值计算方法研究[D].成都:电子科技大学,2009.XUE Qing.Study on numerical calculation method of aerodynamic heating for hypersonic rocket[D].Chengdu:University of Electronic Science and Technology,2009.(in Chinese)

    • [4] VOET A.Temperature effect of electrical resistivity of carbon black filled polymers[J].Rubber Chemistry and Technology,1981,54(1):42-50.

    • [5] AL-ALLAK H M,BRINKMANA W,WOODS J.IV characteristics of carbon black-loaded crystalline polyethylene[J].Journal of Materials Science,1993,28(1):117-120.

    • [6] 万影,张力,闻荻江.丁睛橡胶/导电粒子复合材料的正温度系数(PTC)特性[J].材料开发与应用,1997,12(6):16-20.WAN Ying,ZHANG Li,WEN Dijiang.Positive temperature coefficient(PTC)effects of conductive particles/butadiene nitrile rubber composites[J].Materials Research and Application,1997,12(6):16-20.(in Chinese)

    • [7] OHE K,NAITO Y.A new resistor having an anomalously large positive temperature coefficient[J].Japanese Journal of Applied Physics,1971,10(1):99-108.

    • [8] MEYER J.Stability of polymer composites as positive-temperature-coefficient resistors[J].Polymer Engineering & Science,1974,14(10):706-716.

    • [9] MATHER P J,THOMAS K M.Carbon black/high density polyethylene conducting composite materials[J].Journal of Materials Science,1997,32:1711-1715.

    • [10] CHEN Z,HSU P C,LOPEZ J,et al.Fast and reversible thermoresponsive polymer switching materials for safer batteries[J].Nature Energy,2016,1(1):1-2.

    • [11] RYBAK A,BOITEUXG,MELIS F,et al.Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices[J].Composites Science and Technology,2010,70(2):410-416.

    • [12] 王晨,程相林,赵建宏,等.复合炭系电热涂料的制备及电热性能研究[J].涂料工业,2021,51(11):32-38.WANG Chen,CHEN Xianglin,ZHAO Jianhong,Preparation and properties of composite carbon-based electrothermal coating[J].2021,51(11):32-38.(in Chinese)

    • [13] ZHAO Z,CHEN H,LIU X,et al.The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J].Cold Regions Science and Technology,2021,184:103234.

    • [14] MAAROUFI A,HABOUBI K,El AMARTI A,et al.Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders[J].Journal of Materials Science,2004,39(1):265-270.

    • [15] 刘朝辉,向雪梅,邓智平,等.成膜树脂对防静电涂层高温电阻率影响研究[J].后勤工程学院学报,2011,27(4):64-67.LIU Zhaohui,XIANG Xuemei,DENG Zhiping,et al.Study on the influence of filmforming resin on the high temperature electric resistivity of antistatic coating[J].Journal of Logistical Engineering University.,2011,27(4):64-67.(in Chinese)

    • [16] JOUNI M,BOUDENNE A,BOITEUX G,et al.Electrical and thermal properties of polyethylene/silver nanoparticle composites[J].Polymer Composites,2013,34(5):778-786.

    • [17] ASARE E,EVANS J,NEWTON M,et al.Effect of particle size and shape on positive temperature coefficient(PTC)of conductive polymer composites(CPC)— A model study[J].Materials & Design,2016,97:459-463.

    • [18] LIU Y F,FENG L M,CHEN Y F,et al.Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multiwalled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect:Towards electromagnetic interference shielding and thermistors[J].Composites Science and Technology,2018,159:152-161.

    • [19] MIYASAKA K,WATANABE K,JOJIMA E,et al.Electrical conductivity of carbon-polymer composites as a function of carbon content[J].Journal of Materials Science,1982,17(6):1610-1616.

    • [20] SONG P,WANG G,ZHANG Y.Enhanced positive temperature coefficient effect by crosslinking reaction for silicone rubber/carbon black composites with high pressure sensitivity[J].Journal of Applied Polymer Science,2022,139(8):51682.

    • [21] NAGEL J,HANEMAN T,RAPP B E,et al.Enhanced PTC effect in polyamide/carbon black composites[J].Materials,2022,15(15):5400.

    • [22] 李荣群,李威,苗金玲,等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程,2003,19(5):42-45.LI Rongqun,LI Wei,MIAO Jinling,et al.A new theoretical model for polymer PTC materials[J].Polymer Materials Science and Engineering,2003,19(5):42-45.(in Chinese)

    • [23] 王文东.基于蒙特卡罗模拟的碳系填充型导电高分子材料渗流阈值研究[D].合肥:合肥工业大学,2019.WANG WENDONG.Study on percolation threshold of carbon-based conductive polymerbased on Monte Carlo Simulation[J].Hefei:Hefei University of Technology,2019.(in Chinese)

    • [24] BAUHOFER W,KOVACS J Z.A review and analysis of electrical percolation in carbon nanotube polymer composites[J].Composites Science & Technology,2009,69(10):1486-1498.

  • 参考文献

    • [1] 刘尚合.静电放电及危害防护[M].北京:北京邮电大学出版社,2004.LIU Shanghe.Electrostatic discharge and hazard prevention[M].Beijing:Beijing University of Posts and Telecommunications Press,2004.(in Chinese)

    • [2] 孙理理,曾一兵,刘剑锋,等.欧洲运载火箭新型白色防静电涂料的发展现状[J].导弹与航天运载技术,2016(2):100-106.SUN Lili,ZENG Yibing,LIU Jianfeng,et al.Development situation of the new white antistatic coatings for european launchers[J].Missles and Space Vehicles,2016(2):100-106.(in Chinese)

    • [3] 薛青.高超声速火箭气动加热数值计算方法研究[D].成都:电子科技大学,2009.XUE Qing.Study on numerical calculation method of aerodynamic heating for hypersonic rocket[D].Chengdu:University of Electronic Science and Technology,2009.(in Chinese)

    • [4] VOET A.Temperature effect of electrical resistivity of carbon black filled polymers[J].Rubber Chemistry and Technology,1981,54(1):42-50.

    • [5] AL-ALLAK H M,BRINKMANA W,WOODS J.IV characteristics of carbon black-loaded crystalline polyethylene[J].Journal of Materials Science,1993,28(1):117-120.

    • [6] 万影,张力,闻荻江.丁睛橡胶/导电粒子复合材料的正温度系数(PTC)特性[J].材料开发与应用,1997,12(6):16-20.WAN Ying,ZHANG Li,WEN Dijiang.Positive temperature coefficient(PTC)effects of conductive particles/butadiene nitrile rubber composites[J].Materials Research and Application,1997,12(6):16-20.(in Chinese)

    • [7] OHE K,NAITO Y.A new resistor having an anomalously large positive temperature coefficient[J].Japanese Journal of Applied Physics,1971,10(1):99-108.

    • [8] MEYER J.Stability of polymer composites as positive-temperature-coefficient resistors[J].Polymer Engineering & Science,1974,14(10):706-716.

    • [9] MATHER P J,THOMAS K M.Carbon black/high density polyethylene conducting composite materials[J].Journal of Materials Science,1997,32:1711-1715.

    • [10] CHEN Z,HSU P C,LOPEZ J,et al.Fast and reversible thermoresponsive polymer switching materials for safer batteries[J].Nature Energy,2016,1(1):1-2.

    • [11] RYBAK A,BOITEUXG,MELIS F,et al.Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices[J].Composites Science and Technology,2010,70(2):410-416.

    • [12] 王晨,程相林,赵建宏,等.复合炭系电热涂料的制备及电热性能研究[J].涂料工业,2021,51(11):32-38.WANG Chen,CHEN Xianglin,ZHAO Jianhong,Preparation and properties of composite carbon-based electrothermal coating[J].2021,51(11):32-38.(in Chinese)

    • [13] ZHAO Z,CHEN H,LIU X,et al.The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J].Cold Regions Science and Technology,2021,184:103234.

    • [14] MAAROUFI A,HABOUBI K,El AMARTI A,et al.Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders[J].Journal of Materials Science,2004,39(1):265-270.

    • [15] 刘朝辉,向雪梅,邓智平,等.成膜树脂对防静电涂层高温电阻率影响研究[J].后勤工程学院学报,2011,27(4):64-67.LIU Zhaohui,XIANG Xuemei,DENG Zhiping,et al.Study on the influence of filmforming resin on the high temperature electric resistivity of antistatic coating[J].Journal of Logistical Engineering University.,2011,27(4):64-67.(in Chinese)

    • [16] JOUNI M,BOUDENNE A,BOITEUX G,et al.Electrical and thermal properties of polyethylene/silver nanoparticle composites[J].Polymer Composites,2013,34(5):778-786.

    • [17] ASARE E,EVANS J,NEWTON M,et al.Effect of particle size and shape on positive temperature coefficient(PTC)of conductive polymer composites(CPC)— A model study[J].Materials & Design,2016,97:459-463.

    • [18] LIU Y F,FENG L M,CHEN Y F,et al.Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multiwalled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect:Towards electromagnetic interference shielding and thermistors[J].Composites Science and Technology,2018,159:152-161.

    • [19] MIYASAKA K,WATANABE K,JOJIMA E,et al.Electrical conductivity of carbon-polymer composites as a function of carbon content[J].Journal of Materials Science,1982,17(6):1610-1616.

    • [20] SONG P,WANG G,ZHANG Y.Enhanced positive temperature coefficient effect by crosslinking reaction for silicone rubber/carbon black composites with high pressure sensitivity[J].Journal of Applied Polymer Science,2022,139(8):51682.

    • [21] NAGEL J,HANEMAN T,RAPP B E,et al.Enhanced PTC effect in polyamide/carbon black composites[J].Materials,2022,15(15):5400.

    • [22] 李荣群,李威,苗金玲,等.高分子PTC材料的一种新理论模型[J].高分子材料科学与工程,2003,19(5):42-45.LI Rongqun,LI Wei,MIAO Jinling,et al.A new theoretical model for polymer PTC materials[J].Polymer Materials Science and Engineering,2003,19(5):42-45.(in Chinese)

    • [23] 王文东.基于蒙特卡罗模拟的碳系填充型导电高分子材料渗流阈值研究[D].合肥:合肥工业大学,2019.WANG WENDONG.Study on percolation threshold of carbon-based conductive polymerbased on Monte Carlo Simulation[J].Hefei:Hefei University of Technology,2019.(in Chinese)

    • [24] BAUHOFER W,KOVACS J Z.A review and analysis of electrical percolation in carbon nanotube polymer composites[J].Composites Science & Technology,2009,69(10):1486-1498.

  • 手机扫一扫看