en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈晶晶,男,1989年出生,硕士,讲师。发表论文20余篇。主要研究方向为机械表/界面摩擦磨损与防护润滑。E-mail:chenjingjingfzu@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20211215001

参考文献 1
SAKHAEE-POUR A.Elastic properties of single-layered graphene sheet[J].Solid State Communications,2009,149(1-2):91-95.
参考文献 2
MOROZOV S V,NOVOSELOW K S,KATSNELSON M I,et al.Giant intrinsic carrier mobilities in graphene and its bilayer[J].Physical Review Letter,2008,100(1):016602
参考文献 3
BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
参考文献 4
TANG Y L,PENG P,WANG S Y,et al.Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper[J].Chemistry of Materials,2017,29(19):8404-8411.
参考文献 5
LI S Z,LI Q Y,CARPICK R W,et al.The evolving quality of frictional contact with graphene[J].Nature,2016,539:541-545.
参考文献 6
WANG S Y,HAN S B,XIN G Q,et al.High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites[J].Materials and Design,2018,139(5):181-187.
参考文献 7
XU K,DUAN X Y,L Y,et al.Research on rapid growth of monolayer graphene by vertical cold-wall CVD method[J].Journal of Experimental Nanoscience,2020,15(1):417-426.
参考文献 8
ZHANG S,HUANG P,WANG F.Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites:A molecular dynamics simulation[J].Materials and Design,2020,190:108555
参考文献 9
SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.
参考文献 10
YANG Z,WANG D,LU Z,et al.Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites[J].Apply Physical Letter,2016,109(19):191909.
参考文献 11
CHU K,WANG F,WANG X H,et al.Interface design of graphene/copper composites by matrix alloying with titanium[J].Materials and Design,2018,144(15):290-303.
参考文献 12
LONG X J,LI B,WANG L,Shock response of Cu/graphene nanolayered composites[J].Carbon,2016,103(16):457-463.
参考文献 13
KIM Y,LEE J,YEOM M S,et al.Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J].Nature Communication,2013,4(12):2114.
参考文献 14
HUANG Y L,YANG Z Y,LU Z X,et al.Nanoindentation of bio-inspired graphene/nickel nanocomposites:A molecular dynamics simulation[J].Computational Materials Science,2021,186(6):109969.
参考文献 15
ZHAO B,PENG X H,FU T,et al.Strengthening mechanisms of graphene coated copper under nanoindentation[J].Computational Materials Science,2018,144(6):42-49.
参考文献 16
BARTOLUCCI S F,PARAS J,RAFIFIEE M A,et al.Graphene-aluminum nanocomposites[J].Materials Science & Engineering A,2021,528(27):7933-7937.
参考文献 17
LATIEF F H,SHERIF E S M.Effects of sintering temperature and graphite addition on the mechanical properties of aluminum[J].Journal of Industrial and Engineering Chemistry,2018,18(6):2129-2134.
参考文献 18
WANG Y Q,TANG S,GUO J.Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining[J].Applied Surface Science,2020,510(20):145492.
参考文献 19
XIANG H G,LI H T,FU T,et al.Formation of prismatic loops in AlN and GaN under nanoindentation[J].Acta Materialia,2017,138(6):131-139.
参考文献 20
CUIY H,LI H T,XIANG H G,et al.Plastic deformation in zinc-blende AlN under nanoindentation:A molecular dynamics simulation[J].Applied Surface Science,2019,466(1):757-764.
参考文献 21
GUO J,CHEN J J,WANG Y Q.Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation:A molecular dynamics study[J].Ceramic International,2020,46(8):12686-12694.
参考文献 22
PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
参考文献 23
FOILES S M,BASKES M I,DAW M S,Embedded-atom-method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt,and their alloys[J].Physical Review B,1988,33(12):7983-7991.
参考文献 24
WANG Z J,LI Q J,LI Y,et al.Sliding of coherent twin boundaries[J].Nature Communication,2017,1108(15):1-7.
参考文献 25
ZHANG M,CHEN J,XU T.Effect of grain boundary deformation on mechanical properties in nanocrystalline Cu film investigated by using phase field and molecular dynamics simulation methods[J].Journal of Applied physical,2020,127(2):125303
参考文献 26
STUART S J,TUTEIN A B,Harrison J A.A reactive potential for hydrocarbons with inter-molecular interactions[J].Journal of Chemical Physics,2000,112(5):6472-6486.
参考文献 27
NOSE S.A unified formulation of the constant temperature molecular dynamics methods[J].Journal of Chemical Physic,1984,81(12):511-519.
参考文献 28
HUANG S P,MAINARDI D S,BALUENA P B,Structure and dynamics of graphite-supported bimetallic nanoclusters[J].Surface Science,2003,545(3):163-179.
参考文献 29
FUENTES C M,RHODES B H,FOWLKES J D,et al,Molecular dynamics study of the dewetting of copper on graphite and graphene:Implications for nanoscale self-assembly[J].Physical Review E,2011,83(5):41603.
参考文献 30
QIAN Y,SHANG F L,WAN Q.A molecular dynamics study on indentation response of single crystalline wurtzite GaN[J].Journal of Applied Physics,2018,24(11):115102.
参考文献 31
FAN X,RUI Z,CAO H,et al,Nanoindentation of γ-TiAl with different crystal surfaces by molecular dynamics simulations[J].Materials,2019,12(6):770-777.
参考文献 32
JOHNSON K J,Contact mechanics[M].Belfast:Cambridge University Press,1985.
参考文献 33
GOEL S,BEAKE B,CHAN C,et al.Twinning anisotropy of tantalum during nano-indentation[J].Material Science Engineering A,2015,627(11):249-261.
参考文献 34
WENG S B,CHEN J J,ZHOU J Q,et al.Analysis of elastic-plastic deformation behaviors and failure mechanisms for single crystal copper induced by nanoindentation[J].Surface Technology,2021,50(5):216-223.
目录contents

    摘要

    对铜 / 石墨烯塑性变形行为与强化性能分析对膜-基界面耦合提升金属材料使役性能起促进作用,也为纳米铜强韧机制理解提供有益参鉴价值。基于纳米压痕法对石墨烯膜-单晶铜基底的接触特性展开全原子模拟。分析基底表面有无石墨烯、覆石墨烯层数、基底晶面不同的塑性变形行为与力学强化性能,探讨石墨烯边界效应的褶皱对界面接触质量与强化性能的影响。研究表明:对铜 / 石墨烯而言,纳米压痕时的载荷与位移曲线保持线性关系,主要源于石墨烯面内弹性变形呈均匀化; 相比纯铜,铜表面覆石墨烯的承载性更高,其弹性模量与硬度随覆石墨烯层数增加而线性增大。结果指出:铜表面覆三层石墨烯的硬度与弹性模量比纯铜提高约 7.4 倍,其强化效应源自石墨烯受载产生的面内均匀弹性变形与压头−膜基界面接触质量的协同作用;石墨烯褶皱处的应力集中易诱驱铜上表面产生类褶皱波纹的塑性变形痕迹。相比双边界固定的石墨烯而言,单边界固定的石墨烯褶皱变形更大,界面接触质量有所增加,而强化效果相比却降低 28%。当覆石墨烯层数相同时,不同晶面铜 / 石墨烯的力学性能和膜−基界面塑性变形有着显著各向异性特征。研究结果对微机电系统金属器件力学性能提升有重要作用。

    Abstract

    Copper metal is widely used in micro / nano-electromechanical systems, such as mechanical controllers, precision measuring instruments, power appliances, and other important engineering applications because of its excellent mechanical properties, electrical conductivity, and heat dissipation. However, in practice, copper metal materials are often not conducive under complex and harsh service conditions, such as high temperature, high pressure, high speed, high fatigue, corrosive media, and other harsh environments, which cause severe wear and tear of metal parts. Therefore, higher requirements should be imposed on the mechanical strength of copper metal in service, and the main causes of its dynamic contact deformation and strengthening properties should be evaluated. Graphene can improve the mechanical surface/interface contact properties of copper owing to its excellent mechanical properties, high carrier concentration, good thermal conductivity, and low shear properties. The static and dynamic contact behavior of the graphene membrane-substrate interface is primarily studied through atomic force microscopy, finite element calculations, and molecular dynamics simulations; however, finite elements cannot satisfy the requirements of nanoscale space–time and energy-scale calculations, and precision experimental measurements are very limited in revealing the dynamic contact behavior of the atomic-scale interface and costly in studying the mechanism. The molecular dynamics method can be used to study dynamic contact properties and reveal the strengthening mechanism of the membrane-substrate interface at the atomic scale, which can effectively prevent the shortage of precision instrumentation and finite element calculations and is useful for studying the constitutive correlation between dynamic microstructural deformation and mechanical properties. Thus, understanding this plastic deformation information and mechanical strengthening of copper surfaces covered with multilayer graphene is useful for improving the metal material performance of membrane-base interface coupling. Furthermore, it can provide meaningful insights into the performance of copper materials with strengthened and toughened features. Hence, in this study, the dynamic contact characteristics between an indenter and Cu/graphene were explored using a nanoindentation method. The effects of some influencing factors on the copper deformation characteristics were analyzed, such as the copper surface with or without the graphene layer, number of graphene layers, and various crystal planes. The wrinkle contribution of graphene with a fixed double boundary(XY) and single boundary(Y) to the interface contact mass distribution and strengthening was investigated. The analysis results indicated that the elastic deformation of graphene produced load-displacement curves with a linearly increasing trend during the nanoindentation process. The calculation results showed that the Cu surface with the graphene layer effectively improved the material-bearing capacity compared with the surface without graphene. The mechanical properties (hardness and elasticity modulus) exhibited a linear increase with the addition of graphene layers. In addition, the hardness and Young’ s modulus were almost 7.4 times those of pure copper, and the strengthening mechanism was derived from the synergistic effects between graphene deformation and homogenization features induced by external loads and the interface contact mass distribution. In terms of double-boundary fixed graphene. The loading-induced wrinkle deformation for single-boundary fixed graphene was larger, and the interface contact quality improved. Furthermore, the corresponding enhancement effect was reduced by 28% compared with that of single-boundary fixed graphene. For the same number of graphene layers, the mechanical properties and plastic deformation of the membrane-base interface exhibited evident anisotropy features for a copper base covered by graphene with different crystal planes. The results of this study can be used to significantly improve the mechanical properties of metallic devices used in microelectromechanical systems.

  • 0 前言

  • 金属铜因优异的力学性能和导电散热性在微 / 纳机电系统、射频机械控制器、精密测量仪、电力电器等重要工程领域有广泛应用,而实践表明金属铜材料常面临服役工况的复杂与恶劣性,比如高温、高压、高速、高疲劳、腐蚀介质等苛刻环境,给金属部件磨损失效带来极大的危害与灾难。据此,亟须对金属铜使役力学强度性能提出更高要求,并评估其动态接触变形与强化性能的主因。然而,石墨烯因其优异力学性能[1]、载流子浓度高[2]、热导率佳[3-4]、低剪切性[5],可对机械表 / 界面接触性能起到改善作用[6-7]。目前对石墨烯膜-基底界面的静 / 动态接触行为的研究主要以原子力显微镜、微 / 纳压划痕仪、有限元计算、分子动力学模拟(简称 MD)为主,而有限元无法满足纳尺度时空与能量尺度的计算要求,精仪试验测量在洞悉原子尺度界面的动态接触行为十分受限,机制解释方面所需代价高昂。用分子动力学法能从原子尺度研究膜-基界面的动态接触特性与揭晓其强化机理,不仅能有效规避精密仪测量与有限元计算的不足,而且是研究动态微结构变形与其力学性能间的构效关联的一种有益方法。

  • ZHANG 等[8]用石墨烯替代多晶金属晶界,发现金属 / 石墨烯复合材料的强度与应变硬化能力会显著提升,指出多晶金属的石墨烯晶界起到对位错的封堵作用。SHUANG 等[9]从原子尺度分析了石墨烯边界效应对铜变形影响,表明 Cu / 石墨烯纳米薄片的压缩过程中,游离石墨烯的强化效果不如周期性边界明显,这可能是由于被压缩的铜从各个方向溢出石墨烯薄片后,游离石墨烯边缘充当位错源。 YANG 等[10]用 MD 法研究了石墨烯层间距与石墨烯长度对镍基复合材料的拉伸性能,其强化主因是基底内石墨烯会对金属位错产生阻滞作用,阻碍膜-基界面的应力传递与扩展。CHU 等[11]发现界面Ti8C5 纳米层会诱驱 Cu / 石墨烯间结合性更紧密,增强了 Cu / 石墨烯复合材料的力学性能。LONG 等[12]分析冲击响应下的 Cu / 石墨烯界面出现散裂,是造成抗拉强度降低主因,高温对石墨烯形成的缺陷更易造成铜原子穿过石墨烯界面。KIM 等[13]对铜 / 石墨烯、镍 / 石墨烯的复合材料展开单轴压缩试验,指出金属表面覆石墨烯的机械强度比纯金属提高的主因是金属内的石墨烯界面扮演了位错传播约束与阻碍的功能。HUANG 等[14]指出金属镍内加入石墨烯片可有效阻断位错传播,并随石墨烯层长增加,仿生纳米复合材料的强度和硬度降低,而增加石墨烯层长可避免石墨烯片端的位错形核。ZHAO 等[15]研究铜表面覆单层石墨烯受载产生断裂经历了3 个阶段,指出断裂后的石墨烯仍保持一定强化性,对铜衬底界面附近位错滑移行为有显著影响。另外,在研磨过程,重载负荷会严重破坏金属内嵌入石墨烯的均匀性与完整性,促进石墨烯界面与金属内位错的耦合反应,导致负强化效应出现[16-17]。综上分析,国内文献对此相关研究尚无报道,而国外研究目前加石墨烯强化金属性能提升主要集中于压缩、拉伸、压痕相关研究[8-17],尚未报道膜-基界面接触质量与强化性能的关联,极少分析石墨烯边界效应的褶皱不同对界面接触质量与强化性能的贡献。

  • 本文通过构建纳尺度铜 / 石墨烯三维模型,基于纳米压痕法研究铜表面覆石墨烯受载诱导的动态接触变形与力学强化性能。研究成果将对石墨烯褶皱效应调控金属韧塑化具有一定基础理论价值,也对低维原子晶体材料与金属间的膜-基界面耦合提升材料使役性能起到一定指导意义。

  • 1 分子动力学理论计算

  • 1.1 条件设置

  • 基于 MD 法建立铜 / 石墨烯的三维物理模型 (图1a 和图1b)。运用纳米压痕法测量材料硬度、弹性模量等力学性能[18]。单晶铜 XYZ 尺寸分别为 20.8、20.8、15 nm,晶向依次为[112¯]、[1¯10]、 [111 ],模型 XY 轴用周期性边界,Z 轴用自由边界。此外,铜基被划分为固定层、恒温层、牛顿层 (图1c),恒温层和牛顿层统称运动层。铜晶格常数为 0.361 5 nm,石墨烯晶格常数为 0.246 nm。铜表面覆 1 层、2 层、3 层石墨烯分别简写为 Cu+1LG、 Cu+2LG、Cu+3LG(图1b)。石墨烯层间为 AB 堆垛(图1d),保持层间距为 0.34 nm[5](图1d),并固定石墨烯 XY 双边界。压痕前,虚拟压头底部离铜上表面距离为 2 nm,压头视为无原子刚性球,压头半径R = 4 nm,它排斥与其接触的所有原子,可有效评估材料力学性能与变形特性[19],其相互作用描述见式(1):

  • V(r)=k(R-r)3, r<R,0, rR.
    (1)
  • 式中,k 是压头刚度,k=10 eV Å−3[19]R 是压头半径,r 是压头中心与其最近邻原子中心之间的距离。

  • 图1 石墨烯覆盖铜表面的分子动力学建模模型(a)单晶铜纳米压痕测试图(b)铜表面覆石墨烯层数模型(c)压痕模拟示意图(d)石墨烯堆垛形式

  • Fig.1 Molecular dynamic model of cooper covered with multilayer graphene (a) Atomic physical model of copper substrate in nanoindentation (b) Copper covered with grapheme (c) Schematic diagram of nanoindentation test (d) Stacking form of graphene layer

  • 建模后,用共轭梯度算法优化该模型,为了解室温铜 / 石墨烯的变形特性,给予运动层 300 K 下初始速度,并用 Langevin 控温 300 K。基于 NVE 系综对运动层原子位移和速度更新,积分时间步长为 1fs。模型充分弛豫 300 ps 后,再给予压头 40 m / s[20-21]沿 Z 轴竖直向下方向加载基底。压头下降最大位移 D = 6 nm,最大压深不超过其半径 R 值。达最大压深时,压头以原速返回卸载,卸载位移用 D1 表示。整个 MD 计算基于开源 LAMMPS 软件完成[22]

  • 1.2 势函数描述

  • 嵌入原子势[23](EAM)适合描述金属原子间相互作用,该势在描述 Cu 塑性变形有优势[24-25],其表达式如式(2):层间石墨烯基于 Airebo 势函数[26]; 石墨烯与单晶 Cu 相互作用基于经典 LJ 势,被相关文献[27-29]证明有效,其表达式如式(3):

  • Etot=12ij ϕijrij+i Eiρi
    (2)
  • U=4εσ/rij12-σ/rij6
    (3)
  • 式中, Etot 为总能量,等式右边第一项为原子 ij 间对势,第二项为嵌入势;式(3)中,ε 为势井深度,σ 为零势能点,rij 代表原子间相互作用的距离,描述铜与石墨烯间范德华力 ε = 0.019 996 eV、 σ = 0.322 5 nm [28-29]

  • 1.3 结构类型识别

  • 运用 CNA 方法[30]识别受载的单晶铜内部结构类型,绿色原子表示面心立方结构(FCC),红色原子表示密排六方结构(HCP),蓝色原子表示体心立方结构(BCC),白色原子表示非晶(Other)。

  • 1.4 物理量计算

  • 纳米压痕硬度计算[31]根据公式 H = Fmax / SF 表示压深时的最大载荷,S 表示压头与基底间接触面积;复合弹性模量计算[32]依据经典接触理论公式 (4);另基于表达式(5)计算了接触区 von Mises stress 分布,可描述材料受载破坏度[33];运用剪切应变表达式(6)描述接触区变形特性[21]。铜基底塑性变形强烈度用位错密度表示,即基底内受载产生的位错总长与总体积之间的比值。

  • F=43E*a12δ32
    (4)
  • σMises =σxx-σyy2+σyy-σzz2+σzz-σxx2+6τxy2+τyz2+τzx22
    (5)
  • ηiM ises =6ηxy2+6ηyz2+6ηxz2+ηxy-ηyy2+ηyy-ηzz2+ηzz-ηxx26
    (6)
  • 式中, EFaδ 分别表示弹性模量、载荷、压头半径、接触位移,σxxσyyσzzτxyτyzτzx分别表示应力张量的 6 个分量,ηxxηyyηzzηxzηxyηyz分别表示剪切应变的 6 个分量。

  • 2 结果与分析

  • 2.1 载荷与位移曲线分析

  • 图2a 显示了(111)面单晶铜、单晶铜表面覆不同层数石墨烯的载荷与位移曲线。从图2a 可知,纳米压痕法测纯铜、铜表面覆石墨烯的承载性有显著差异,铜 / 石墨烯的承载性对石墨烯层数表现出强烈依赖性。结果表明,覆 3 层石墨烯的承载力 (4 300.74 nN)比纯铜(940.60 nN)提高近 4.6 倍,强化了纯铜抗载能力,表明金属表面覆石墨烯涂层时,能对机械零件表面起很好的抗载与防护作用,可适用于高频、高速、高载工况服役环境,其机理详见下文阐述。加载期,因铜基发生位错形核与繁衍增值,以致纯铜塑性变形期间的载荷-位移曲线呈非线性关系,此变形阶段对应的微结构演化详情可查文献[34]。当铜表面覆石墨烯时,其对应载荷-位移曲线却呈线性关系;随着石墨烯层数增加,铜材料抗载性也逐渐增大,但不会改变载荷与位移曲线呈线性递增的趋势。结果表明,对铜 / 石墨烯而言,在载荷诱导下,石墨烯面内力致弹性变形的作用 (图2b),有效提高了铜金属表面防护性。从图2b 知,在加载期,覆石墨烯层数越多,石墨烯面内弹性变形范围更宽广,紧密接触区变形也更剧烈;卸载期,覆石墨烯层数越多,面内变形恢复越快,表明石墨烯具有优异面内弹性变形恢复功能(图3); 此外,随覆石墨烯层数增加,铜 / 石墨烯材料本征抗变形能力也会显著增强。纳米压痕时,石墨烯受载产生的面内弹性变形是引起铜 / 石墨烯复合材料载荷与位移曲线呈线弹性关系的主因。无论加载与卸载,石墨烯面内变形表现出均匀分布特征,此变形特征有助于法向载荷沿四周蔓延传播。

  • 图2 石墨烯覆盖铜表面的纳米压痕载荷与位移曲线关系及石墨烯变形图(a)纯铜、铜表面覆石墨烯的载荷与位移曲线(b)铜表面覆不同石墨烯层数的变形差异

  • Fig.2 Curve of loading versus displacement and glaphene deformation for cooper covered with multilayer graphene (a) Curve of load versus displacement by comparing pure Cu substrate and pure Cu covered with graphene layers (b) Comparison of the in-plane deformation of upper copper surface coated with various graphene layers numbers

  • 图3 石墨烯覆盖铜表面的力学性能与石墨烯变形图(a)铜表面覆不同石墨烯层数的力学性能统计(b)铜表面覆三层石墨烯的变形差异(c)石墨烯变形

  • Fig.3 Mechanical properties and glaphene deformation for cooper covered with multilayer graphene (a) Mechanical properties statistics for copper substrate coated with different graphene layers (b) Deformation otherness of copper covered with three graphene layers (c) Graphene deformation

  • 2.2 基底晶面与覆石墨烯层数的影响

  • 从表1 可知,对不同晶面纯铜力学性能而言, (111)面>(001)面,主要原因是不同晶面原子排列密度不同,具体为(111)面密度>(001)面密度;对相同晶面铜而言,铜表面覆 3 层石墨烯的硬度与弹性模量的增幅比纯铜提高了近 7.4 倍,力学性能得以显著提升,可极大改善金属铜承重性与耐冲击性,适应用于极端工况使役环境。其主因有两方面:一方面是石墨烯面内变形呈均匀化(图4d),另一方面是压头与膜-基间的界面接触质量。图4e 为压头下降位移最大时,压头与膜-基间的界面接触质量计算示意图,基于离压头外表面为 4.34 nm 距离内,统计有两两相互作用的接触原子表示界面接触质量,该计算法验证有效,于 2016 年发表在《Nature》期刊[5]。图4a 为对应界面接触质量,根据原子高度着色。从图4a 知,当铜晶面不同时,覆单层石墨烯的界面接触质量差异很小;当铜晶面相同时,随着铜表面覆石墨烯层数增加,边缘界面接触出现减小,实际接触质量增加(见图4c)。图4b 示出铜表面覆石墨烯的界面接触质量比纯铜要少,表明石墨烯变形弹性阶段可有效降低压头与膜基间的界面接触质量,在机械两接触表面起第三体防护润滑作用。图4d 示出铜表面覆 3 层石墨烯时,从下往上看,最底层石墨烯变形最突出,倒数第二层石墨烯其次,最上层石墨烯最弱。覆石墨烯层数相同时,不同晶面铜基底的复合材料力学性能表现出明显差异,具体为(111)面力学性能较(001)面更佳,表明通过对基底晶面设计可有效调控铜 / 石墨烯复合材料的力学强化性。

  • 表1 不同晶面的铜表面覆石墨烯层数不同的硬度和弹性模量统计

  • Table1 Hardness and Young’ s modulus for copper with various crystal plane covered with various graphene layers

  • 图4 接触质量与石墨烯剪切变形图(a)虚拟压头与膜-基间界面接触质量(b)(c)铜表面覆石墨烯层数不同的接触原子数(d)不同石墨烯层数的剪切应变度(e)接触原子计算示意图

  • Fig.4 Interface contact quality and graphene deformation for cooper covered with multilayer graphene (a) Interface contact quality between virtual indenter and copper bases (b) (c) Effect of various copper crystal planes on contact atom numbers (d) Degree of shear strains for different graphene layers (e) Statistical diagram of contacting atom

  • 为了解铜 / 石墨烯材料膜-基界面接触特性,用图5a 示出铜上表面变形分布,黑色虚线圈表示虚拟压头外围轮廓。从图5a 知,载荷诱导下,相比纯铜而言,有石墨烯覆盖的铜表面变形分布范围更广(见黑色圈圈虚线外围),并随石墨烯层数增加,其分布范围越宽广。此外,最底层的石墨烯受载产生的褶皱变形会诱驱铜上表面有类褶皱条纹的压印痕出现 (图5a 白色箭头),结果表明受载诱导下的石墨烯面内变形会进一步促进铜上表面受迫产生一定塑性变形。图5c 定量统计了图5b 所示的铜塑性变形的位错密度与晶体结构类型数目。图5b 与图5c 示出覆石墨烯层数越多,铜基位错密度出现增加,对应的基底塑性变形程度更剧烈,主要以非晶产生与密排六方结构出现为主的塑性变形。

  • 图5 剪切应变与位错分布的定性与定量分析(a)纯铜应变分布比较(b)铜表面覆不同石墨烯层数的应变和位错分布比较(c)铜表面覆不同石墨烯层数的位错密度和位错分布类型情况

  • Fig.5 Analysis of shear strain and dislocation distribute (a) Comparison of strain deformation for pure Cu (b) Comparison of dislocation distribution for pure Cu with covered multilayer grapheme (c) Quantitative analysis of dislocation density and dislocation types

  • 从图6a 可知,不同晶面铜表面受载产生的变形表现出各向异性,(110)晶面铜上表面较其余两个晶面的剪切变形分散性较小,但不同晶面铜在石墨烯褶皱变形驱动力影响下,会出现不同程度的褶皱条纹分布。图6b 示出当铜表面覆相同石墨烯层数时,不同晶面铜在载荷作用下,基底位错密度随压头下降位移的增加呈线性递增,其中,(111)晶面铜与(001)晶面铜的位错密度差异较小,(110)晶面位错密度最小。图6c 示出当基底晶面相同时,随覆石墨烯层数增加,石墨烯层间应力集中度也越高,自然驱使紧密接触区的铜 / 石墨烯的膜-基界面集聚应力(图6d);当覆相同石墨烯层数时,不同晶面铜在接触边缘处的应力分布也有差别,这与不同晶面原子密度有关。此外,铜基受载产生的应力主要集中在亚表层中(图6d)。

  • 图6 石墨烯覆盖铜表面的剪切应变与应力分布图(a)不同晶面的铜对应应变(b)不同晶面的铜对应位错密度(c)石墨烯受载诱导的应力集中(d)铜基底受载诱导的应力集中

  • Fig.6 Shear strain deformation and stress distribution for cooper covered with multilayer grapheme (a) Various copper crystal plane effect on strain deformation (b) Various copper crystal plane effect on dislocation density, respectively (c) Stress concentration induced by loads for grapheme (d) Stress concentration induced by loads for copper substrate.

  • 2.3 石墨烯边界效应影响

  • 为研究边界效应对铜 / 石墨烯强化性能影响,将石墨烯 Y 单边界固定作为对照。图7 和图8 示出石墨烯Y单边界固定和XY双边全固定对铜 / 石墨烯的力学性能与变形行为。从图7a 可知,石墨烯 Y 单边界固定时,铜 / 石墨烯材料承载性、硬度、弹性模量与覆石墨烯层数呈线性增加关系,同石墨烯 XY 双边界固定所展现的力学性能增强趋势有一致性。在覆相同石墨烯层数时,石墨烯 XY 双边界固定的铜 / 石墨烯材料硬度和弹性模量明显高于 Y 单边界固定,表明单边界固定的铜 / 石墨烯材料力学性能(承载性、硬度、弹性模量)会出现减弱效果,降低幅度达 28%。可见,石墨烯边界固定与否对铜 / 石墨烯材料的强化性能有明显影响,其主因见下文阐述。从图7b 知,相比石墨烯 XY 全固定,仅固定 Y 轴的石墨烯变形呈现不均匀性,其褶皱变形尤为显著,随石墨烯层数增加而越加明显。另外,加载期石墨烯的面内变形差异,会改变压头与膜基间的界面接触质量(见图7d~7e)。从图7d~7e 知,石墨烯 XY 双边界固定时的界面接触质量比 Y 单边界固定要低,与不同晶面的铜作为基底无关,表明石墨烯边界固定与否产生的褶皱变形会对界面接触质量起重要影响,进而改变材料强化性能。

  • 图7c 示出图7b 对应的石墨烯应力分布。结果表明:无论石墨烯单边界固定还是双边界固定,覆 3 层石墨烯的应力分布较 1 层石墨烯更集中;相比单边界固定,双边界固定的石墨烯应力集中分布更均匀,而单边界固定的石墨烯褶皱变形处应力更易集中,该应力集中会诱驱铜表面产生不同程度类褶皱纹带痕迹(图8)。从图7f 知,覆石墨烯层数越多,铜 / 石墨烯的承载性越强,铜产生位错密度也越大,塑性变形相应更激烈,而无论石墨烯单边界还是双边界固定,铜位错密度差异很小,表明双边界固定较单边界固定的石墨烯在铜 / 石墨烯的复合材料力学性能表现中相对更高的主因源于石墨烯变形差异及膜-基间界面接触质量分布的共同作用。观察图8 可知,铜表面有不同程度剪切带产生,与覆石墨烯层数呈正相关性。石墨烯双边界固定相比单边界固定,铜表面发生变形更剧烈,与铜晶面不同和覆膜层数无关,主要原因是石墨烯受载产生的褶皱效应会一进步驱动铜表面产生剪切变形。相同石墨烯层数下,不同晶面的铜上表面受载产生的剪切变形程度各不同,其中(110)晶面的剪切变形较其余两个晶面程度更强。

  • 图7 石墨烯覆盖铜表面的力学性能、石墨烯剪切变形、应力分布受石墨烯单、双边界固定的影响(a)力学性能(b)(c)石墨烯变形、应力分布的影响(d)不同界面的接触质量(e)覆石墨烯层数的界面接触质量(f)位错密度分布

  • Fig.7 Effect of single-boundary graphene fixed and double-boundary graphene fixed on mechanical property, shear deformation, stress distribution for cooper covered with multilayer graphene (a) Mechanical property (b) Strain deformation (c) Stress distribution (d) Interface contact atom (e) Interface contact atom (f) Dislocation density

  • 图8 石墨烯单边界、双边界固定对不同晶面的铜和铜表面覆不同层数石墨烯的变形影响

  • Fig.8 Effect of single-boundary graphene fixed or double-boundary graphene fixed on shear deformation for upper copper surface with various crystal plane and copper surface coated with different graphene layer

  • 3 结论

  • 从原子尺度由浅入深地探析纳米压痕诱导铜表面覆石墨烯的动态接触特性,揭示铜表面覆石墨烯的力学性能强化机制,从微观展示膜-基界面的接触变形受石墨烯层数与不同晶面铜基底的依赖性。得出以下结论:

  • (1)铜表面覆石墨烯能极大提高铜材料的承载性、硬度、弹性模量,其强化效果同覆石墨烯的层数增加而线性递增,该线性递增关系与石墨烯单边界固定或双边界固定无关,其强化效果主要源于石墨烯面内内凹均匀变形特性和压头与膜基间的界面接触质量共同作用。

  • (2)相同石墨烯层数下,(111)面铜覆石墨烯膜的力学性能比(001)面更佳,表明通过对基底晶面的选择可调控铜金属表面覆石墨烯膜的力学性能变化,不同晶面的铜基底呈现的力学性能表现出明显的各向异性特征。另外,相比双边界固定的石墨烯,单边界石墨烯固定时的褶皱条纹处的应力集中会诱驱铜上表面受迫产生类褶皱条纹式塑性变形的波痕。

  • (3)铜表面覆石墨烯层数越多,铜 / 石墨烯承载性越大,铜基内产生的位错密度也越多;覆相同石墨烯层数时,单边界固定的石墨烯强化性能要弱于双边界固定的石墨烯,而铜塑性变形的位错密度几乎不变。纳米压痕时,双边界固定的石墨烯四周变形呈均匀性,单边界固定的石墨烯褶皱变形更大,易诱导界面接触质量的增加,而强化效果降幅达到 28%。

  • 参考文献

    • [1] SAKHAEE-POUR A.Elastic properties of single-layered graphene sheet[J].Solid State Communications,2009,149(1-2):91-95.

    • [2] MOROZOV S V,NOVOSELOW K S,KATSNELSON M I,et al.Giant intrinsic carrier mobilities in graphene and its bilayer[J].Physical Review Letter,2008,100(1):016602

    • [3] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.

    • [4] TANG Y L,PENG P,WANG S Y,et al.Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper[J].Chemistry of Materials,2017,29(19):8404-8411.

    • [5] LI S Z,LI Q Y,CARPICK R W,et al.The evolving quality of frictional contact with graphene[J].Nature,2016,539:541-545.

    • [6] WANG S Y,HAN S B,XIN G Q,et al.High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites[J].Materials and Design,2018,139(5):181-187.

    • [7] XU K,DUAN X Y,L Y,et al.Research on rapid growth of monolayer graphene by vertical cold-wall CVD method[J].Journal of Experimental Nanoscience,2020,15(1):417-426.

    • [8] ZHANG S,HUANG P,WANG F.Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites:A molecular dynamics simulation[J].Materials and Design,2020,190:108555

    • [9] SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.

    • [10] YANG Z,WANG D,LU Z,et al.Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites[J].Apply Physical Letter,2016,109(19):191909.

    • [11] CHU K,WANG F,WANG X H,et al.Interface design of graphene/copper composites by matrix alloying with titanium[J].Materials and Design,2018,144(15):290-303.

    • [12] LONG X J,LI B,WANG L,Shock response of Cu/graphene nanolayered composites[J].Carbon,2016,103(16):457-463.

    • [13] KIM Y,LEE J,YEOM M S,et al.Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J].Nature Communication,2013,4(12):2114.

    • [14] HUANG Y L,YANG Z Y,LU Z X,et al.Nanoindentation of bio-inspired graphene/nickel nanocomposites:A molecular dynamics simulation[J].Computational Materials Science,2021,186(6):109969.

    • [15] ZHAO B,PENG X H,FU T,et al.Strengthening mechanisms of graphene coated copper under nanoindentation[J].Computational Materials Science,2018,144(6):42-49.

    • [16] BARTOLUCCI S F,PARAS J,RAFIFIEE M A,et al.Graphene-aluminum nanocomposites[J].Materials Science & Engineering A,2021,528(27):7933-7937.

    • [17] LATIEF F H,SHERIF E S M.Effects of sintering temperature and graphite addition on the mechanical properties of aluminum[J].Journal of Industrial and Engineering Chemistry,2018,18(6):2129-2134.

    • [18] WANG Y Q,TANG S,GUO J.Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining[J].Applied Surface Science,2020,510(20):145492.

    • [19] XIANG H G,LI H T,FU T,et al.Formation of prismatic loops in AlN and GaN under nanoindentation[J].Acta Materialia,2017,138(6):131-139.

    • [20] CUIY H,LI H T,XIANG H G,et al.Plastic deformation in zinc-blende AlN under nanoindentation:A molecular dynamics simulation[J].Applied Surface Science,2019,466(1):757-764.

    • [21] GUO J,CHEN J J,WANG Y Q.Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation:A molecular dynamics study[J].Ceramic International,2020,46(8):12686-12694.

    • [22] PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

    • [23] FOILES S M,BASKES M I,DAW M S,Embedded-atom-method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt,and their alloys[J].Physical Review B,1988,33(12):7983-7991.

    • [24] WANG Z J,LI Q J,LI Y,et al.Sliding of coherent twin boundaries[J].Nature Communication,2017,1108(15):1-7.

    • [25] ZHANG M,CHEN J,XU T.Effect of grain boundary deformation on mechanical properties in nanocrystalline Cu film investigated by using phase field and molecular dynamics simulation methods[J].Journal of Applied physical,2020,127(2):125303

    • [26] STUART S J,TUTEIN A B,Harrison J A.A reactive potential for hydrocarbons with inter-molecular interactions[J].Journal of Chemical Physics,2000,112(5):6472-6486.

    • [27] NOSE S.A unified formulation of the constant temperature molecular dynamics methods[J].Journal of Chemical Physic,1984,81(12):511-519.

    • [28] HUANG S P,MAINARDI D S,BALUENA P B,Structure and dynamics of graphite-supported bimetallic nanoclusters[J].Surface Science,2003,545(3):163-179.

    • [29] FUENTES C M,RHODES B H,FOWLKES J D,et al,Molecular dynamics study of the dewetting of copper on graphite and graphene:Implications for nanoscale self-assembly[J].Physical Review E,2011,83(5):41603.

    • [30] QIAN Y,SHANG F L,WAN Q.A molecular dynamics study on indentation response of single crystalline wurtzite GaN[J].Journal of Applied Physics,2018,24(11):115102.

    • [31] FAN X,RUI Z,CAO H,et al,Nanoindentation of γ-TiAl with different crystal surfaces by molecular dynamics simulations[J].Materials,2019,12(6):770-777.

    • [32] JOHNSON K J,Contact mechanics[M].Belfast:Cambridge University Press,1985.

    • [33] GOEL S,BEAKE B,CHAN C,et al.Twinning anisotropy of tantalum during nano-indentation[J].Material Science Engineering A,2015,627(11):249-261.

    • [34] WENG S B,CHEN J J,ZHOU J Q,et al.Analysis of elastic-plastic deformation behaviors and failure mechanisms for single crystal copper induced by nanoindentation[J].Surface Technology,2021,50(5):216-223.

  • 参考文献

    • [1] SAKHAEE-POUR A.Elastic properties of single-layered graphene sheet[J].Solid State Communications,2009,149(1-2):91-95.

    • [2] MOROZOV S V,NOVOSELOW K S,KATSNELSON M I,et al.Giant intrinsic carrier mobilities in graphene and its bilayer[J].Physical Review Letter,2008,100(1):016602

    • [3] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.

    • [4] TANG Y L,PENG P,WANG S Y,et al.Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper[J].Chemistry of Materials,2017,29(19):8404-8411.

    • [5] LI S Z,LI Q Y,CARPICK R W,et al.The evolving quality of frictional contact with graphene[J].Nature,2016,539:541-545.

    • [6] WANG S Y,HAN S B,XIN G Q,et al.High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites[J].Materials and Design,2018,139(5):181-187.

    • [7] XU K,DUAN X Y,L Y,et al.Research on rapid growth of monolayer graphene by vertical cold-wall CVD method[J].Journal of Experimental Nanoscience,2020,15(1):417-426.

    • [8] ZHANG S,HUANG P,WANG F.Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites:A molecular dynamics simulation[J].Materials and Design,2020,190:108555

    • [9] SHUANG F,AIFANTIS K E.Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions:A molecular dynamics study[J].Carbon,2021,172:50-70.

    • [10] YANG Z,WANG D,LU Z,et al.Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites[J].Apply Physical Letter,2016,109(19):191909.

    • [11] CHU K,WANG F,WANG X H,et al.Interface design of graphene/copper composites by matrix alloying with titanium[J].Materials and Design,2018,144(15):290-303.

    • [12] LONG X J,LI B,WANG L,Shock response of Cu/graphene nanolayered composites[J].Carbon,2016,103(16):457-463.

    • [13] KIM Y,LEE J,YEOM M S,et al.Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J].Nature Communication,2013,4(12):2114.

    • [14] HUANG Y L,YANG Z Y,LU Z X,et al.Nanoindentation of bio-inspired graphene/nickel nanocomposites:A molecular dynamics simulation[J].Computational Materials Science,2021,186(6):109969.

    • [15] ZHAO B,PENG X H,FU T,et al.Strengthening mechanisms of graphene coated copper under nanoindentation[J].Computational Materials Science,2018,144(6):42-49.

    • [16] BARTOLUCCI S F,PARAS J,RAFIFIEE M A,et al.Graphene-aluminum nanocomposites[J].Materials Science & Engineering A,2021,528(27):7933-7937.

    • [17] LATIEF F H,SHERIF E S M.Effects of sintering temperature and graphite addition on the mechanical properties of aluminum[J].Journal of Industrial and Engineering Chemistry,2018,18(6):2129-2134.

    • [18] WANG Y Q,TANG S,GUO J.Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining[J].Applied Surface Science,2020,510(20):145492.

    • [19] XIANG H G,LI H T,FU T,et al.Formation of prismatic loops in AlN and GaN under nanoindentation[J].Acta Materialia,2017,138(6):131-139.

    • [20] CUIY H,LI H T,XIANG H G,et al.Plastic deformation in zinc-blende AlN under nanoindentation:A molecular dynamics simulation[J].Applied Surface Science,2019,466(1):757-764.

    • [21] GUO J,CHEN J J,WANG Y Q.Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation:A molecular dynamics study[J].Ceramic International,2020,46(8):12686-12694.

    • [22] PLIMPTON S J.Fast parallel algorithms for short-range molecular dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

    • [23] FOILES S M,BASKES M I,DAW M S,Embedded-atom-method functions for the fcc metals Cu,Ag,Au,Ni,Pd,Pt,and their alloys[J].Physical Review B,1988,33(12):7983-7991.

    • [24] WANG Z J,LI Q J,LI Y,et al.Sliding of coherent twin boundaries[J].Nature Communication,2017,1108(15):1-7.

    • [25] ZHANG M,CHEN J,XU T.Effect of grain boundary deformation on mechanical properties in nanocrystalline Cu film investigated by using phase field and molecular dynamics simulation methods[J].Journal of Applied physical,2020,127(2):125303

    • [26] STUART S J,TUTEIN A B,Harrison J A.A reactive potential for hydrocarbons with inter-molecular interactions[J].Journal of Chemical Physics,2000,112(5):6472-6486.

    • [27] NOSE S.A unified formulation of the constant temperature molecular dynamics methods[J].Journal of Chemical Physic,1984,81(12):511-519.

    • [28] HUANG S P,MAINARDI D S,BALUENA P B,Structure and dynamics of graphite-supported bimetallic nanoclusters[J].Surface Science,2003,545(3):163-179.

    • [29] FUENTES C M,RHODES B H,FOWLKES J D,et al,Molecular dynamics study of the dewetting of copper on graphite and graphene:Implications for nanoscale self-assembly[J].Physical Review E,2011,83(5):41603.

    • [30] QIAN Y,SHANG F L,WAN Q.A molecular dynamics study on indentation response of single crystalline wurtzite GaN[J].Journal of Applied Physics,2018,24(11):115102.

    • [31] FAN X,RUI Z,CAO H,et al,Nanoindentation of γ-TiAl with different crystal surfaces by molecular dynamics simulations[J].Materials,2019,12(6):770-777.

    • [32] JOHNSON K J,Contact mechanics[M].Belfast:Cambridge University Press,1985.

    • [33] GOEL S,BEAKE B,CHAN C,et al.Twinning anisotropy of tantalum during nano-indentation[J].Material Science Engineering A,2015,627(11):249-261.

    • [34] WENG S B,CHEN J J,ZHOU J Q,et al.Analysis of elastic-plastic deformation behaviors and failure mechanisms for single crystal copper induced by nanoindentation[J].Surface Technology,2021,50(5):216-223.

  • 手机扫一扫看