en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

庞桂兵,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为特种精密加工、精密仪器设计与制造。E-mail:pangguibingsx@163.com

通讯作者:

樊双蛟,女,1982年出生,博士,副教授,硕士研究生导师。主要研究方向为工业工程、特种精密加工。E-mail:fan_sj@dlpu.edu.cn

中图分类号:TG662

DOI:10.11933/j.issn.1007−9289.20221031002

参考文献 1
GAO Wei,YANG Shenqiang,TIAN Jianyan,et al.Research on the optimization model of the abrasive blocks using weighted case-based reasoning[J].Mathematical Problems in Engineering,2019,2019:1-12.
参考文献 2
刘文浩,陈燕,张东阳.基于低频交变磁场的陶瓷管内表面磁力研磨加工[J].中国表面工程,2021,34(5):146-154.LIU Wenhao,CHEN Yan,ZHANG Dongyang.Magnetic abrasive finishing of ceramic tube inner surface based on low frequency alternating field[J].China Surface Engineering,2021,34(5):146-154.(in Chinese)
参考文献 3
GUO Jiang,FENG Wenhe,JONG Henry,et al.Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method[J].Journal of Manufacturing Processes,2020,49(C):204-213.
参考文献 4
ZELINKO A,WELZEL F,BIERMANN D,et al.Tool type and macrostructure for magnetic abrasive finishing of flat surfaces on CNC machine tools[J].Production Engineering,2022,16(4):523-533.
参考文献 5
陈博文,孙树峰,王茜,等.材料表面激光抛光技术研究进展[J].中国表面工程,2021,34(6):74-89.CHEN Bowen,SUN Shufeng,WANG Xi,et al.Research progress of laser polishing technology for material surface[J].China Surface Engineering,2021,34(6):74-89.(in Chinese)
参考文献 6
廖明,韩冰,陈燕,等.钛合金管内表面的电化学磁力研磨复合光整试验[J].中国表面工程,2016,29(3):123-131.LIAO Ming,HAN Bing,CHEN Yan,et al.Inner surface of titanium alloy tube by eletrochemical magnetic abrasive compound finishing[J].China Surface Engineering,2016,29(3):123-131.(in Chinese)
参考文献 7
刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)
参考文献 8
周泳全,张卫,肖海兵,等.连续激光高速抛光冷作模具钢的表面粗糙度及性能[J].表面技术,2020,49(2):347-353.ZHOU Yongquan,ZHANG Wei,XIAO Haibing,et al.Roughness and property of CW laser high speed polishing of die steel[J].Surface Technology,2020,49(2):347-353.(in Chinese)
参考文献 9
姚燕生,周瑞根,张成林,等.增材制造复杂金属构件表面抛光技术[J].航空学报,2022,43(4):244-256.YAO Yansheng,ZHOU Ruigen,ZHANG Chenglin,et al.Surface polishing technology for additive manufacturing complex metal componentas[J].Acta Aeronautica et Astronautica Sinica,2022,43(4):244-256.(in Chinese)
参考文献 10
王振东,庞桂兵,辛开开,等.两步法电化学加工薄壁钼长管的数学建模与实验研究[J].中国机械工程,2020,31(4):425-431.WANG Zhendong,PANG Guibing,XIN Kaikai,et al.Mathematical modeling and experimental study on two-step electrochemical machining of thin-wall long pipes of molybdenum[J].China Mechanical Engineering,2020,31(4):425-431.(in Chinese)
参考文献 11
CHEN Y,ZHOU X,CHEN P,et al.Electrochemical machining gap prediction with multi-physics coupling model based on two-phase turbulence flow[J].Chinese Journal of Aeronautics,2020,33(3):1057-1063.
参考文献 12
LIU Guixian,ZHANG Yongjun,NATSU Wataru.Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool[J].International Journal of Machine Tools and Manufacture,2019,142:66-75.
参考文献 13
罗红平,张清荣,刘桂贤,等.电解加工电源研究现状及发展趋势[J].机械工程学报,2021,57(13):201-213.LUO Hongping,ZHANG Qingrong,LIU Guixian,et al.The state of the art and development of power supply technology in ECM[J].Journal of Mechanical Engineering,2021,57(13):201-213.(in Chinese)
参考文献 14
CHEN Yuanlong,JIANG Lijun,FANG Ming,et al.Multi-time scale simulation of pulse electrochemical machining process with multi-physical model[J].The International Journal of Advanced Manufacturing Technology,2020,110(7-8):2203-2210.
参考文献 15
WANG Jiangtao,XU Zhengyang,GENG Tianyu,et al.Dependency of the pulsed electrochemical machining characteristics of Inconel 718 in NaNO3 solution on the pulse current[J].Science China Technological Sciences,2022,65(10):2485-2502.
参考文献 16
WANG H,ZHOU J J,XU W J.The research of carbon steel surface finished by pulse electrochemical finishing technology[J].Key Engineering Materials.2005,524(291-292):573-578.
参考文献 17
ZHOU Jinjin,PANG Guibing,WANG Hui,et al.Research on pulse electrochemical finishing using a moving cathode[J].International Journal of Manufacturing Technology and Management,2005,7(2-4):352-365.
参考文献 18
马宁,刘家宁,陈阳,等.电化学抛光铜的实验研究[J].表面技术,2018,47(7):83-89.MA Ning,LIU Jianing,CHEN Yang,et al.Experimental study on electrochemical polishing of copper[J].Surface Technology,2018,47(7):83-89.(in Chinese)
参考文献 19
王辉,翟小兵,李洪友,等.成型轧辊表面的脉冲电化学光整加工技术研究[J].制造技术与机床,2009(11):95-97.WANG Hui,ZHAI Xiaobing,LI Hongyou,et al.The finishing of shaping roller by pulse electrochemical technology[J].Manufacturing Technology & Machine Tool,2009(11):95-97.(in Chinese)
参考文献 20
阿达依·谢尔亚孜旦,周进锦,庞桂兵,等.螺旋锥齿轮脉冲电化学光整加工工艺实验研究[J].机械科学与技术,2009,28(4):476-481.ADAYI·Xieeryazidan,ZHOU Jinjin,PANG Guibing,et al.Pulse electrochemical finishing process for spiral bevel gears[J].Mechanical Science and Technology for Aerospace Engineering,2009,28(4):476-481.(in Chinese)
参考文献 21
XU Zhengyang,LIU Jia,ZHU Dong,et al.Electrochemical machining of burn-resistant Ti40 alloy[J].Chinese Journal of Aeronautics,2015,28(4):1263-1272.
参考文献 22
TAHIRI Mutlu Hakan,FIKRI Gökpinar,ESRA Gökpinar,et al.A new computational approach test for one-way ANOVA under heteroscedasticity[J].Communications in Statistics Theory and Methods,2017,46(16):8236-8256.
参考文献 23
SAHBAZ Cafer,BAHSI Emrullah,INCE Bayram,et al.Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins[J].Scanning,2016,38(5):448-454.
参考文献 24
李建平,边永亮,霍鹏,等.喷雾机风送式环形喷管喷雾装置设计与试验优化[J].农业机械学报,2021,52(9):79-88.LI Jianping,BIAN Yongliang,HUO Peng,et al.Design and experimental optimization of spray device for air-fed annular nozzle of sprayer[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):79-88.(in Chinese)
参考文献 25
张存鹰,赵波.超声振动辅助加工表面微结构及其特性研究进展[J].表面技术,2019,48(5):259-274.ZHANG Cunying,ZHAO Bo.Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J].Surface Technology,2019,48(5):259-274.(in Chinese)
参考文献 26
成大先.机械设计手册[M].北京:化学工业出版社,2008.CHENG Daxian.Handbook of mechanical design[M].Beijing:Chemical Industry Press,2008.
目录contents

    摘要

    探究脉冲电化学光整(PECF)加工过程中表面形貌变化特性及其工艺能力。在能实现表面良好加工效果的参数范围内,对 304 不锈钢车削与磨削表面进行脉冲电化学光整加工,通过对加工前后表面微观形貌变化规律的对比分析,研究脉冲电化学光整加工工艺对不同表面的整平能力。试验结果表明:脉冲电化学光整加工车削和磨削表面所能获得的最终表面粗糙度大体相当,加工后两种表面粗糙度 RaRzRsm值处于同一量级,分别达到 0.09、0.7、50 μm 左右。表面微观形貌趋于一致,表面完整性良好,表面特征指标不具有显著差异性。脉冲电化学光整加工车削和磨削表面的形貌变化过程有所差别,车削表面存在由原始表面形貌向脉冲电化学光整加工表面形貌转变的一段中间过程,磨削表面形貌则在短时间内迅速转变为脉冲电化学光整加工表面形貌。对原始表面较为粗糙的零件或者难以采用磨削加工的薄壁件,PECF 加工是一种具有实际应用价值的加工方式,且对于一些具有特殊要求的功能性表面形貌,车削后进行 PECF 加工可能成为一种新的加工方法。

    Abstract

    The changes in surface morphology and processing ability were investigated during pulse electrochemical finishing (PECF) of 304 stainless steel surfaces. To realize optimal surface finishing effects, the turning and grinding surfaces were processed via PECF. Surface profile images and roughness parameter values were obtained using a probe-type roughness meter. These data were analyzed and summarized to understand the changes in surface topography characteristics during processing. Variance analysis was performed on the surface roughness before and after machining to verify the rules governing surface topography changes during the process. Scanning electron microscope(SEM) and atomic force microscope(AFM) were employed to observe and compare surface micro-morphology before and after processing, confirming the leveling ability of PECF. During machining, height parameters Ra and Rz exhibited similar overall change trends, with “inflection points” appearing at 17.5 s and 7.5 s, respectively. The width parameter Rsm showed a pattern of initially rising and then falling to varying degrees. A one-factor variance analysis of the roughness parameters of the two surfaces before and after processing revealed that the F values of the roughness parameters Ra, Rz, Rsm, Rc, and Rq of the two surfaces before processing were greater than F0.01(1,4)=21.198, indicating that there were significant differences in various roughness indicators between the turning and grinding surfaces. However, after PECF processing, the F values of roughness parameters Ra, Rz, Rsm, Rc, and Rq of the two surfaces were less than F0.05(1,4)=7.708, indicating that there were no significant differences in surface roughness indices after the two surfaces were processed via PECF, and the surface topography became more uniform. The post-processing roughness values Ra, Rz, and Rsm for both surfaces were of the same order of magnitude, and they were approximately 0.09 μm, 0.7 μm, and 50 μm, respectively. The surfaces displayed good integrity and high quality. PECF led to different morphology changes in the turning and grinding surfaces. There was an intermediate process in the turning surface of the original surface morphology when compared to the surface morphology by PECF, where micro-burrs were leveled while macro-contour undulations retained turning contour characteristics. This finding suggests a potential new method for forming functional surface topographies with specific requirements. Conversely, the grinding surface morphology quickly transformed into the surface morphology by PECF in a short time. By combining SEM and AFM images with the statistical analysis of the surface topography parameters, it can be concluded that turning + PECF processing can realize a similar surface topographic effect as turning + grinding + PECF processing. Direct PECF processing on the turning surface can significantly reduce surface roughness values Ra and Rz. Through short-duration, single-step processing, the resulting surface roughness range can surpass that obtained by grinding, which is beneficial for shortening the processing cycle and enhancing efficiency. PECF machining is a valuable method for processing parts with rough original surfaces or thin-walled parts that are challenging to grind. PECF after turning can become a new machining approach for functional surface morphologies with specific requirements.

  • 0 前言

  • 光整加工是提高工件表面质量的有效手段[1-3]。光整加工工艺的表面粗糙度整平能力和整平质量决定了工艺的适用性,整平能力越强、整平质量越好,工艺的适用性就越广,工艺能力范围就越宽[4-6]。对于一些零件,甚至可实现粗加工之后直接光整加工,能有效提高加工效率和降低加工成本[7-9]

  • 电化学加工是重要的光整加工技术之一,具有不受工件材料硬度制约、无刀具磨损、无残余加工应力和热应力、不产生微观裂纹、毛刺等特点[10-12],研究表明电化学加工中采用脉冲电流可以实现较好的表面粗糙度整平效果[13-15]。根据目前文献,脉冲电化学光整(Pulse electrochemical finishing,PECF) 加工技术研究主要集中在精加工后表面的光整, WANG 等[16]利用 NaNO3溶液(10%~30%)对磨削后的碳钢表面进行 PECF 加工,将表面粗糙度 Ra 值从 0.217~1.13 μm 降到 0.041 μm;ZHOU 等[17] 利用移动阴极式 PECF 加工技术对磨削后的 40Cr 表面进行光整加工,将 Ra 从 0.5 μm 降到 0.065 μm。马宁等[18]采用溶液配比为 55%磷酸+0.3%抗坏血酸+0.2%乙烯硫脲的电解液对磨削加工后的紫铜片进行 PECF 加工,将 Ra 从 100 nm 降低到 17 nm。王辉等[19]采用 PECF 加工对 9CrMo 轧辊表面进行光整加工,将轧辊 Ra 从 1.33 μm 降低到 0.277 μm。原始表面较为粗糙的 PECF 加工方面,阿达依·谢尔亚孜旦等[20]研究了 20CrNiMo 材质的螺旋锥齿轮齿面 PECF 加工,将齿面 Ra 值从 2.5~3.2 μm 降低到 0.1 μm;XU 等[21]通过 PECF 加工将 TiAl 合金材质的叶片 Ra 从 5.5 μm 左右降低到 0.9~1.8 μm。上述研究针对不同材料,采用不同实施方式,对 PECF 加工的整平能力进行了有益探索。

  • 光整加工过程本质上是表面微观形貌演化的过程,表面整平特性的背后是微观形貌的变化机理和规律,研究微观形貌的变化规律和机理是掌握光整加工工艺能力的基础。本文以生产中常用的 304 材料为例,以车削与磨削两种具有不同表面粗糙度的原始表面作为粗、精加工表面的研究对象,对比分析微观轮廓及表面形貌在光整加工过程中的变化,探究 PECF 加工表面粗糙度的整平机理,以及表面形貌特性的变化规律,为较为系统地掌握 PECF 加工工艺能力提供依据。

  • 1 试验设计

  • 1.1 试验装置

  • 图1 显示了扫描式阴极 PECF 加工的原理,图2 显示了相应的试验装置。电源的正极与负极分别与工件和阴极连接,工件转速、阴极位置由控制系统调节,工件上与阴极相对应的部分为加工区域。加工时循环电解液会充满加工间隙,随着工具阴极扫过工件表面,实现工件的光整加工。

  • 图1 扫描式阴极 PECF 加工原理图

  • Fig.1 Schematic diagram of PECF with a scanning cathode

  • 图2 扫描式阴极 PECF 加工试验装置图

  • Fig.2 Experimental device of PECF with a scanning cathode

  • 1.2 试验条件

  • 试验条件和试件材料成分见表1 和表2。

  • 表1 试验条件

  • Table1 Experimental conditions

  • 表2 304 材料材质成分

  • Table2 Composition of 304 material wt / %

  • 1.3 试验方案

  • 试验参数选取在前期试验中证明能够获得良好表面粗糙度的参数值,列于表3。对车削和磨削表面进行脉冲电化学光整加工,每隔 2.5 s 测量试件表面粗糙度值、表面轮廓曲线与材料去除量,分析表面形貌特征的变化;进行加工前后表面粗糙度参数指标的单因素分析,讨论表面形貌的差异性;观测加工前后工件表面 SEM 图像、AFM 图像,对比加工前后微观形貌变化。

  • 表3 实验参数

  • Table3 Experimental parameters

  • 2 试验结果与分析

  • 2.1 表面形貌变化分析

  • 图3 为 PECF 加工车削和磨削表面粗糙度轮廓变化图。图3a1 和 3b1 为工件原始轮廓,两种原始表面形貌差异较大,车削表面粗糙度轮廓最大波峰高度大于磨削表面,最小波谷深度要小于磨削表面; 车削表面轮廓算术平均中线上的波峰与波谷交替分布,而磨削表面波峰与波谷随机分布。图3a2~3a5 和图3b2~3b5 分别为二者在 PECF 加工过程中的轮廓形貌变化,粗糙轮廓逐渐整平的同时,尖峰状微观轮廓逐渐被圆角化,整体呈现平坦化,持续一段时间加工后,二者表面微观形貌趋于一致。

  • 图3 PECF 加工过程中粗糙度轮廓的变化

  • Fig.3 Change of roughness profile in PECF

  • 结合图4 所示的 Ra 值与材料去除量变化规律分析,PECF 加工车削与磨削表面分别在 17.5 s 与 7.5 s 附近时 Ra 变化出现“拐点”,此时二者的 Ra 值基本在 0.2 μm 左右,车削表面轮廓由初始的低频波为主的特征转变为频率较高的波形特征,而磨削表面轮廓由初始的高频波为主的特征转变为频率较低的波形特征,去除量分别为 0.085 mm 和 0.039 mm,说明达到同样的粗糙度,车削表面的去除量和加工时间要远大于磨削表面。经过 37.5 s 加工后,二者的Ra 值分别为0.101 4 μm和 0.080 6 μm, Ra 值基本不再降低,如图5 所示,Rz 值的变化趋势与 Ra 值的变化趋势基本相同。车削和磨削表面高度参数大幅降低的同时,宽度参数 Rsm 值先有不同程度的升高,然后又缓慢降低。结合图3 所示的表面粗糙度曲线,二者的表面微观形貌总体上都是由 “尖峰状”变为“波浪状”,但是变化规律并不一致。

  • 图4 表面粗糙度 Ra 值与材料去除量变化

  • Fig.4 Variation of Ra value and material removal

  • 图5 表面粗糙度 RzRsm值变化

  • Fig.5 Variation of surface roughness Rz and Rsm

  • 车削表面与磨削表面 PECF 过程中变化规律的差异性可以根据法拉第定律得到解释。波峰与波谷处因加工间隙的差异会使整平速率产生差异,波峰的整平速度 vp 与波谷的整平速度 vg 的表达式为:

  • vp=ηωσUΔvg=ηωσUΔ+Rz
    (1)
  • 式中,η 为电流效率,A / cm2ω 为阳极体积电化学当量,cm 3 /(A· min);σ 为电解液电导率,S / cm; U 为加工电压,V;Δ 为加工间隙,mm;Rz 为轮廓表面最大高度,μm。

  • 根据式(1)可以分别计算车削与磨削工件表面整平的速度 v1v2,其速度为 vpvg的差值:

  • v1=ηωσUΔ-ηωσUΔ+Rz1=ηωσURz1ΔΔ+Rz1v2=ηωσUΔ-ηωσUΔ+Rz2=ηωσURz2ΔΔ+Rz2
    (2)
  • 式中,Rz1为车削表面粗糙度 Rz值,μm;Rz2 为磨削表面粗糙度 Rz 值,μm。

  • 因为车削表面 Rz大于磨削表面,通过 v1v2 之间的差值不难得出因波峰高度的差异性,车削表面整平速率快于磨削表面,与图4 中 Ra 下降的趋势一致。

  • 2.2 表面粗糙度单因素方差分析

  • 为了确定加工前后及加工过程中表面形貌的差异及变化规律,采用单因素方差分析法确定加工前后和加工过程中表面形貌特征的差异性。单因素方差分析(One-way ANOVA)通过比较各组内样本观测值之间的差异与组间观测值平均值的差异,确定因素对试验影响的显著程度[22-25]。本文对 3 次重复试验的两组表面粗糙度参数进行方差分析,因素为参数 RaRzRsmRcRq,方差分析中水平 r=2,每个水平下的样本容量 s=3,则 dfA= 1,dfE= 4。取显著水平 α=0.01 和 α=0.05,则 Fα(1,4)可通过 F 分布表得到,F0.05(1,4)=7.708,F0.01(1,4)=21.198,比较 FFα可得:

  • (1)当 FF0.01(1,4)时,认为对比的两个表面粗糙度数值差异较大,表面形貌差异高度显著。

  • (2)当 F0.05(1,4)FF0.01(1,4)时,认为对比的两个表面粗糙度数值具有一定的差异,表面形貌差异显著。

  • (3)当 FF0.05(1,4)时,认为对比的两个表面粗糙度数值不具有差异,表面形貌差异不显著。

  • 2.2.1 加工前后表面粗糙度单因素方差分析

  • 根据 2.1 的结果,加工 37.5 s 后的表面形貌特征呈现为完全 PECF 加工表面形貌特征,因此在表1 条件下,对车削与磨削表面进行 3 次时长 37.5 s 的 PECF 加工,表4 是加工前后表面粗糙度各项指标值。表4 中,A1、A2、A3 为车削加工表面,B1、 B2、B3 为磨削加工表面;a1、a2、a3 分别为车削表面经 37.5 s 脉冲电化学加工后表面,b1、b2、b3 分别为磨削表面经 37.5 s 脉冲电化学加工后表面。对表4 中第 1 组所示的原始粗糙度指标逐项进行单因素方差分析,结果示于表5。RaRzRsmRcRq 值的分析结果中 F 值均大于 F0.01(1,4)=21.198,说明车削和磨削两种表面的多项粗糙度指标存在明显差异,可以判定表面质量具有显著差异。对表4 中第 2 组所示的加工后粗糙度指标数值逐项进行单因素方差分析,结果示于表6。RaRzRsmRcRq 的分析结果中 F 值均得到不同程度的降低,其数值均小于 F0.05(1,4)=7.708,说明两种表面经过 PECF 加工后,表面粗糙度指标无明显差异,加工后的表面形貌参数表现出一致性。对比第 1 组与第 2 组的分析结果可知,对于粗糙度指标存在显著差异性的初始表面,通过 PECF 加工可以短时间内消除其表面粗糙度指标差异,使加工后的表面形貌趋于一致。

  • 表4 工件表面各项粗糙度指标

  • Table4 Roughness indexes of workpiece surface

  • 表5 第 1 组各项指标单因素方差分析

  • Table5 One-way ANOVA of group 1

  • 表6 第 2 组各项指标单因素方差分析

  • Table6 One-way ANOVA of group 2

  • 2.2.2 加工过程中表面粗糙度单因素方差分析

  • 对 PECF 加工过程中相邻两个测量时间的表面形貌特性进行单因素方差分析,从 F 值的变化情况可以判断表面形貌特征在加工过程中的转变情况。单因素方差分析分组情况见表7。

  • 表7 单因素方差分析分组

  • Table7 Grouping of one-way ANOVA

  • 车削表面 PECF 加工过程中 F 值的变化如图6a 所示。根据 F 值的变化趋势可以发现,表面轮廓高度特征参数 RaRzRcRp 变化趋势表现出一定的规律性。在整体加工过程中,轮廓表面波峰高度 Rq 的差异性最明显。表面轮廓宽度特征值 Rsm 整体变化较为平坦。在第 1 组与第 6 组的时间附近,F 值出现突变,说明 0 s 到 2.5 s、12.5 s 到 15 s 这两个时间段表面特性发生了显著变化。结合表面形貌图分析,在 2.5 s 到 12.5 s 之间,轮廓局部微尖峰和微凹谷被去除,形貌演化为整体上起伏明显但微观光滑的形貌特征,且这一形貌特征在 2.5 s 到 12.5 s 之间相对稳定;15 s 加工以后的表面特性不再显著变化,转变为完全的 PECF 加工表面形貌特征。在加工过程中车削表面特征变化主要体现在轮廓高度特征的变化。

  • 磨削表面加工过程中 F 值的变化如图6b 所示。根据 F 值的变化趋势可以发现,表面轮廓高度与宽度特征参数变化趋势的规律具有一致性。在第 1 组到第 3 组时间范围内,F 值变化显著,第 1 组的时间范围内,轮廓表面宽度特征参数 Rsm变化最明显。而在第 2 组和第 3 组的时间范围内,轮廓表面高度特征参数的变化差异性较为明显。结合表面形貌图分析可知,在 0 s 到 7.5 s 之间,短时间内表面轮廓特性发生了根本性变化。在 0 s 到 2.5 s 之间,磨削表面特征变化主要体现在轮廓高度特征的变化,轮廓波峰的高度逐渐下降,波谷深度逐渐变小,而轮廓形貌依然维持以低频波为主的形貌特征。2.5 s 到 7.5 s 之间,磨削表面轮廓在维持低频波形特征的同时,对表面轮廓波峰和波谷进行修整。7.5 s 加工以后,F 值未呈现显著变化,可以判定 7.5 s 之前为磨削表面微观形貌转变为脉冲电化学加工表面形貌的过渡阶段。

  • 图6 表面粗糙度单因素分析 F 值变化

  • Fig.6 Change of F value of one-way ANOVA of surface roughness

  • 2.3 表面微观形貌分析

  • 图7 所示为工件表面 SEM 扫描图像。如图7a 所示,车削加工表面存在较为明显的微观毛刺与局部缺陷。如图7b 所示,磨削加工表面横向加工纹路更为密集,波峰与波谷起伏明显。如图7c 和图7d 所示,经过 PECF 光整加工后,车削和磨削表面均没有明显毛刺,横向密集的切削纹路或磨削纹路被去除,表现为横向稀疏的流痕纹理。

  • 图7 工件表面 SEM 扫描图像

  • Fig.7 SEM image of workpiece surface

  • 图8 所示为工件表面 AFM 扫描图像。如图8a 和图8b 所示,车削表面波谷与波峰宽度较宽,磨削表面波谷与波峰宽度较窄,波峰与波谷离散分布,二者宽度和深度呈现无规律变化,车削与磨削表面差异明显。经过 PECF 光整加工后,二者微观形貌趋于相同,表面平整,无明显波峰与波谷,如图8c 和 8d 所示。

  • 图8 AFM 扫描图像

  • Fig.8 AFM image of workpiece surface

  • 2.4 综合分析

  • 表8 显示了 PECF 加工、车削(粗、精)、磨削 (粗、精)的满足经济性加工的工艺能力范围[26]。 PECF 加工的表面粗糙度 Ra 值能在一道工序内从大于 2.6 μm 降低到 0.1 μm 左右,跨越 6 个表面粗糙度等级;表面粗糙度 Rz 值能在一道工序内从大于 10 μm 降低到 1 μm 左右,跨越 4 个等级。结合表面 SEM 图像、AFM 图像以及表面形貌参数统计分析可知,车削+PECF 加工能够获得和车削+磨削+ PECF 加工类似的表面形貌效果。车削表面直接进行 PECF 加工可以大幅降低表面粗糙度 RaRz值,在一道工序内通过短时间加工,所获得的表面粗糙度范围可跨域磨削加工,有利于缩短加工周期、提高加工效率,对于较为粗糙表面的整平,以及一些难以采用磨削加工的薄壁件加工等,车削+PECF 加工工艺具有良好的实际应用价值。

  • 表8 PECF 光整加工工艺能力分析

  • Table8 Analysis of PECF’s process capability

  • 研究 PECF 加工车削和磨削表面的形貌变化过程表明,二者在加工过程中,表面形貌特征变化的规律有所差别,车削表面存在由原始表面形貌向 PECF 加工表面形貌转变的一段中间过程,这为形成一些具有特殊要求的功能性表面形貌可能提供了一种新方法。磨削表面形貌则在短时间内迅速转变为 PECF 加工表面形貌。

  • 3 结论

  • (1)PECF 加工车削和磨削表面的形貌特征变化规律有所差别。车削表面存在由原始表面形貌向 PECF 加工表面形貌转变的一段中间过程,这一过程中表面形貌上的微小毛刺被整平,而轮廓宏观起伏特性保留车削轮廓的特点,可能这为一些具有特殊要求的功能性表面形貌的形成提供了一种新的方法。

  • (2)原始表面粗糙度差异较大的车削和磨削表面经过 PECF 加工后表面微观形貌趋于一致,表面完整性良好,表面特征指标不具有显著差异性。对原始表面较为粗糙的零件,或者难以采用磨削加工的薄壁件,PECF 加工是一种具有实际应用价值的加工方式。

  • 参考文献

    • [1] GAO Wei,YANG Shenqiang,TIAN Jianyan,et al.Research on the optimization model of the abrasive blocks using weighted case-based reasoning[J].Mathematical Problems in Engineering,2019,2019:1-12.

    • [2] 刘文浩,陈燕,张东阳.基于低频交变磁场的陶瓷管内表面磁力研磨加工[J].中国表面工程,2021,34(5):146-154.LIU Wenhao,CHEN Yan,ZHANG Dongyang.Magnetic abrasive finishing of ceramic tube inner surface based on low frequency alternating field[J].China Surface Engineering,2021,34(5):146-154.(in Chinese)

    • [3] GUO Jiang,FENG Wenhe,JONG Henry,et al.Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method[J].Journal of Manufacturing Processes,2020,49(C):204-213.

    • [4] ZELINKO A,WELZEL F,BIERMANN D,et al.Tool type and macrostructure for magnetic abrasive finishing of flat surfaces on CNC machine tools[J].Production Engineering,2022,16(4):523-533.

    • [5] 陈博文,孙树峰,王茜,等.材料表面激光抛光技术研究进展[J].中国表面工程,2021,34(6):74-89.CHEN Bowen,SUN Shufeng,WANG Xi,et al.Research progress of laser polishing technology for material surface[J].China Surface Engineering,2021,34(6):74-89.(in Chinese)

    • [6] 廖明,韩冰,陈燕,等.钛合金管内表面的电化学磁力研磨复合光整试验[J].中国表面工程,2016,29(3):123-131.LIAO Ming,HAN Bing,CHEN Yan,et al.Inner surface of titanium alloy tube by eletrochemical magnetic abrasive compound finishing[J].China Surface Engineering,2016,29(3):123-131.(in Chinese)

    • [7] 刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)

    • [8] 周泳全,张卫,肖海兵,等.连续激光高速抛光冷作模具钢的表面粗糙度及性能[J].表面技术,2020,49(2):347-353.ZHOU Yongquan,ZHANG Wei,XIAO Haibing,et al.Roughness and property of CW laser high speed polishing of die steel[J].Surface Technology,2020,49(2):347-353.(in Chinese)

    • [9] 姚燕生,周瑞根,张成林,等.增材制造复杂金属构件表面抛光技术[J].航空学报,2022,43(4):244-256.YAO Yansheng,ZHOU Ruigen,ZHANG Chenglin,et al.Surface polishing technology for additive manufacturing complex metal componentas[J].Acta Aeronautica et Astronautica Sinica,2022,43(4):244-256.(in Chinese)

    • [10] 王振东,庞桂兵,辛开开,等.两步法电化学加工薄壁钼长管的数学建模与实验研究[J].中国机械工程,2020,31(4):425-431.WANG Zhendong,PANG Guibing,XIN Kaikai,et al.Mathematical modeling and experimental study on two-step electrochemical machining of thin-wall long pipes of molybdenum[J].China Mechanical Engineering,2020,31(4):425-431.(in Chinese)

    • [11] CHEN Y,ZHOU X,CHEN P,et al.Electrochemical machining gap prediction with multi-physics coupling model based on two-phase turbulence flow[J].Chinese Journal of Aeronautics,2020,33(3):1057-1063.

    • [12] LIU Guixian,ZHANG Yongjun,NATSU Wataru.Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool[J].International Journal of Machine Tools and Manufacture,2019,142:66-75.

    • [13] 罗红平,张清荣,刘桂贤,等.电解加工电源研究现状及发展趋势[J].机械工程学报,2021,57(13):201-213.LUO Hongping,ZHANG Qingrong,LIU Guixian,et al.The state of the art and development of power supply technology in ECM[J].Journal of Mechanical Engineering,2021,57(13):201-213.(in Chinese)

    • [14] CHEN Yuanlong,JIANG Lijun,FANG Ming,et al.Multi-time scale simulation of pulse electrochemical machining process with multi-physical model[J].The International Journal of Advanced Manufacturing Technology,2020,110(7-8):2203-2210.

    • [15] WANG Jiangtao,XU Zhengyang,GENG Tianyu,et al.Dependency of the pulsed electrochemical machining characteristics of Inconel 718 in NaNO3 solution on the pulse current[J].Science China Technological Sciences,2022,65(10):2485-2502.

    • [16] WANG H,ZHOU J J,XU W J.The research of carbon steel surface finished by pulse electrochemical finishing technology[J].Key Engineering Materials.2005,524(291-292):573-578.

    • [17] ZHOU Jinjin,PANG Guibing,WANG Hui,et al.Research on pulse electrochemical finishing using a moving cathode[J].International Journal of Manufacturing Technology and Management,2005,7(2-4):352-365.

    • [18] 马宁,刘家宁,陈阳,等.电化学抛光铜的实验研究[J].表面技术,2018,47(7):83-89.MA Ning,LIU Jianing,CHEN Yang,et al.Experimental study on electrochemical polishing of copper[J].Surface Technology,2018,47(7):83-89.(in Chinese)

    • [19] 王辉,翟小兵,李洪友,等.成型轧辊表面的脉冲电化学光整加工技术研究[J].制造技术与机床,2009(11):95-97.WANG Hui,ZHAI Xiaobing,LI Hongyou,et al.The finishing of shaping roller by pulse electrochemical technology[J].Manufacturing Technology & Machine Tool,2009(11):95-97.(in Chinese)

    • [20] 阿达依·谢尔亚孜旦,周进锦,庞桂兵,等.螺旋锥齿轮脉冲电化学光整加工工艺实验研究[J].机械科学与技术,2009,28(4):476-481.ADAYI·Xieeryazidan,ZHOU Jinjin,PANG Guibing,et al.Pulse electrochemical finishing process for spiral bevel gears[J].Mechanical Science and Technology for Aerospace Engineering,2009,28(4):476-481.(in Chinese)

    • [21] XU Zhengyang,LIU Jia,ZHU Dong,et al.Electrochemical machining of burn-resistant Ti40 alloy[J].Chinese Journal of Aeronautics,2015,28(4):1263-1272.

    • [22] TAHIRI Mutlu Hakan,FIKRI Gökpinar,ESRA Gökpinar,et al.A new computational approach test for one-way ANOVA under heteroscedasticity[J].Communications in Statistics Theory and Methods,2017,46(16):8236-8256.

    • [23] SAHBAZ Cafer,BAHSI Emrullah,INCE Bayram,et al.Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins[J].Scanning,2016,38(5):448-454.

    • [24] 李建平,边永亮,霍鹏,等.喷雾机风送式环形喷管喷雾装置设计与试验优化[J].农业机械学报,2021,52(9):79-88.LI Jianping,BIAN Yongliang,HUO Peng,et al.Design and experimental optimization of spray device for air-fed annular nozzle of sprayer[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):79-88.(in Chinese)

    • [25] 张存鹰,赵波.超声振动辅助加工表面微结构及其特性研究进展[J].表面技术,2019,48(5):259-274.ZHANG Cunying,ZHAO Bo.Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J].Surface Technology,2019,48(5):259-274.(in Chinese)

    • [26] 成大先.机械设计手册[M].北京:化学工业出版社,2008.CHENG Daxian.Handbook of mechanical design[M].Beijing:Chemical Industry Press,2008.

  • 参考文献

    • [1] GAO Wei,YANG Shenqiang,TIAN Jianyan,et al.Research on the optimization model of the abrasive blocks using weighted case-based reasoning[J].Mathematical Problems in Engineering,2019,2019:1-12.

    • [2] 刘文浩,陈燕,张东阳.基于低频交变磁场的陶瓷管内表面磁力研磨加工[J].中国表面工程,2021,34(5):146-154.LIU Wenhao,CHEN Yan,ZHANG Dongyang.Magnetic abrasive finishing of ceramic tube inner surface based on low frequency alternating field[J].China Surface Engineering,2021,34(5):146-154.(in Chinese)

    • [3] GUO Jiang,FENG Wenhe,JONG Henry,et al.Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method[J].Journal of Manufacturing Processes,2020,49(C):204-213.

    • [4] ZELINKO A,WELZEL F,BIERMANN D,et al.Tool type and macrostructure for magnetic abrasive finishing of flat surfaces on CNC machine tools[J].Production Engineering,2022,16(4):523-533.

    • [5] 陈博文,孙树峰,王茜,等.材料表面激光抛光技术研究进展[J].中国表面工程,2021,34(6):74-89.CHEN Bowen,SUN Shufeng,WANG Xi,et al.Research progress of laser polishing technology for material surface[J].China Surface Engineering,2021,34(6):74-89.(in Chinese)

    • [6] 廖明,韩冰,陈燕,等.钛合金管内表面的电化学磁力研磨复合光整试验[J].中国表面工程,2016,29(3):123-131.LIAO Ming,HAN Bing,CHEN Yan,et al.Inner surface of titanium alloy tube by eletrochemical magnetic abrasive compound finishing[J].China Surface Engineering,2016,29(3):123-131.(in Chinese)

    • [7] 刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)

    • [8] 周泳全,张卫,肖海兵,等.连续激光高速抛光冷作模具钢的表面粗糙度及性能[J].表面技术,2020,49(2):347-353.ZHOU Yongquan,ZHANG Wei,XIAO Haibing,et al.Roughness and property of CW laser high speed polishing of die steel[J].Surface Technology,2020,49(2):347-353.(in Chinese)

    • [9] 姚燕生,周瑞根,张成林,等.增材制造复杂金属构件表面抛光技术[J].航空学报,2022,43(4):244-256.YAO Yansheng,ZHOU Ruigen,ZHANG Chenglin,et al.Surface polishing technology for additive manufacturing complex metal componentas[J].Acta Aeronautica et Astronautica Sinica,2022,43(4):244-256.(in Chinese)

    • [10] 王振东,庞桂兵,辛开开,等.两步法电化学加工薄壁钼长管的数学建模与实验研究[J].中国机械工程,2020,31(4):425-431.WANG Zhendong,PANG Guibing,XIN Kaikai,et al.Mathematical modeling and experimental study on two-step electrochemical machining of thin-wall long pipes of molybdenum[J].China Mechanical Engineering,2020,31(4):425-431.(in Chinese)

    • [11] CHEN Y,ZHOU X,CHEN P,et al.Electrochemical machining gap prediction with multi-physics coupling model based on two-phase turbulence flow[J].Chinese Journal of Aeronautics,2020,33(3):1057-1063.

    • [12] LIU Guixian,ZHANG Yongjun,NATSU Wataru.Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool[J].International Journal of Machine Tools and Manufacture,2019,142:66-75.

    • [13] 罗红平,张清荣,刘桂贤,等.电解加工电源研究现状及发展趋势[J].机械工程学报,2021,57(13):201-213.LUO Hongping,ZHANG Qingrong,LIU Guixian,et al.The state of the art and development of power supply technology in ECM[J].Journal of Mechanical Engineering,2021,57(13):201-213.(in Chinese)

    • [14] CHEN Yuanlong,JIANG Lijun,FANG Ming,et al.Multi-time scale simulation of pulse electrochemical machining process with multi-physical model[J].The International Journal of Advanced Manufacturing Technology,2020,110(7-8):2203-2210.

    • [15] WANG Jiangtao,XU Zhengyang,GENG Tianyu,et al.Dependency of the pulsed electrochemical machining characteristics of Inconel 718 in NaNO3 solution on the pulse current[J].Science China Technological Sciences,2022,65(10):2485-2502.

    • [16] WANG H,ZHOU J J,XU W J.The research of carbon steel surface finished by pulse electrochemical finishing technology[J].Key Engineering Materials.2005,524(291-292):573-578.

    • [17] ZHOU Jinjin,PANG Guibing,WANG Hui,et al.Research on pulse electrochemical finishing using a moving cathode[J].International Journal of Manufacturing Technology and Management,2005,7(2-4):352-365.

    • [18] 马宁,刘家宁,陈阳,等.电化学抛光铜的实验研究[J].表面技术,2018,47(7):83-89.MA Ning,LIU Jianing,CHEN Yang,et al.Experimental study on electrochemical polishing of copper[J].Surface Technology,2018,47(7):83-89.(in Chinese)

    • [19] 王辉,翟小兵,李洪友,等.成型轧辊表面的脉冲电化学光整加工技术研究[J].制造技术与机床,2009(11):95-97.WANG Hui,ZHAI Xiaobing,LI Hongyou,et al.The finishing of shaping roller by pulse electrochemical technology[J].Manufacturing Technology & Machine Tool,2009(11):95-97.(in Chinese)

    • [20] 阿达依·谢尔亚孜旦,周进锦,庞桂兵,等.螺旋锥齿轮脉冲电化学光整加工工艺实验研究[J].机械科学与技术,2009,28(4):476-481.ADAYI·Xieeryazidan,ZHOU Jinjin,PANG Guibing,et al.Pulse electrochemical finishing process for spiral bevel gears[J].Mechanical Science and Technology for Aerospace Engineering,2009,28(4):476-481.(in Chinese)

    • [21] XU Zhengyang,LIU Jia,ZHU Dong,et al.Electrochemical machining of burn-resistant Ti40 alloy[J].Chinese Journal of Aeronautics,2015,28(4):1263-1272.

    • [22] TAHIRI Mutlu Hakan,FIKRI Gökpinar,ESRA Gökpinar,et al.A new computational approach test for one-way ANOVA under heteroscedasticity[J].Communications in Statistics Theory and Methods,2017,46(16):8236-8256.

    • [23] SAHBAZ Cafer,BAHSI Emrullah,INCE Bayram,et al.Effect of the different finishing and polishing procedures on the surface roughness of three different posterior composite resins[J].Scanning,2016,38(5):448-454.

    • [24] 李建平,边永亮,霍鹏,等.喷雾机风送式环形喷管喷雾装置设计与试验优化[J].农业机械学报,2021,52(9):79-88.LI Jianping,BIAN Yongliang,HUO Peng,et al.Design and experimental optimization of spray device for air-fed annular nozzle of sprayer[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):79-88.(in Chinese)

    • [25] 张存鹰,赵波.超声振动辅助加工表面微结构及其特性研究进展[J].表面技术,2019,48(5):259-274.ZHANG Cunying,ZHAO Bo.Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J].Surface Technology,2019,48(5):259-274.(in Chinese)

    • [26] 成大先.机械设计手册[M].北京:化学工业出版社,2008.CHENG Daxian.Handbook of mechanical design[M].Beijing:Chemical Industry Press,2008.

  • 手机扫一扫看