en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭美玲,女,1988年出生,博士,讲师。主要研究方向为表面工程与纳米摩擦学。E-mail:guomeiling@xaut.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220713001

参考文献 1
FAN F R,TIAN Z Q,WANG Z L.Flexible triboelectric generator[J].Nano Energy,2012,1(2):328-334.
参考文献 2
XIANG S,TANG J,YANG L,et al.Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability[J].npj Flexible Electronics,2022,6(1):59.
参考文献 3
HU S,YUAN Z,LI R,et al.Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines[J].Nano Letters,2022,22(13):5584-5591.
参考文献 4
WANG Y,CHEN T,SUN S,et al.A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy[J].Nano Research,2022,15(4):3246-3253.
参考文献 5
ZHANG C,HE L,ZHOU L,et al.Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J].Joule,2021,5(6):1613-1623.
参考文献 6
WANG Z L.From contact electrification to triboelectric nanogenerators[J].Reports on Progress in Physics,2021,84(9):096502.
参考文献 7
ZHANG W,DENG L,YANG L,et al.Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning[J].Nano Energy,2020,77:105174.
参考文献 8
禹健,郭艳婕,杨雷.固-液摩擦纳米发电机[J].机械工程学报,2021,57(21):160-181.YU Jian,GUO Yanjie,YANG Lei.Solid-liquid triboelectric nanogenerator[J].Journal of Mechanical Engineering,2021,57(21):160-181.(in Chinese)
参考文献 9
ZHANG R,LIN H,PAN Y,et al.Liquid-liquid triboelectric nanogenerator for harvesting distributed energy[J].Advanced Functional Materials,2022,32(51):2208393.
参考文献 10
XIONG J,THANGAVEL G,WANG J,et al.Self-healable sticky porous elastomer for gas-solid interacted power generation[J].Science Advances,2020,6(29):eabb4246.
参考文献 11
JIANG D,XU M,DONG M,et al.Water-solid triboelectric nanogenerators:An alternative means for harvesting hydropower[J].Renewable and Sustainable Energy Reviews,2019,115:109366.
参考文献 12
汪家道,禹营,陈大融.超疏水表面形貌效应的研究进展[J].科学通报,2006,51(18):2097-2099.WANG Jiadao,YU Ying,CHEN Darong.Progress in surface profile of superhydrophobic surface[J].Chinese Science Bulletin,2006,51(18):2097-2099.(in Chinese)
参考文献 13
柯清平,李广录,郝天歌,等.超疏水模型及其机理[J].化学进展,2010,22(2-3):284-290.KE Qingping,LI Guanglu,HAO Tiange,et al.Superhydrophobicity:Theoretical models and mechanism[J].Progress in Chemistry,2010,22(2-3):284-290.(in Chinese)
参考文献 14
MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.
参考文献 15
杨钦,罗荘竹,谭生,等.超疏水自清洁涂层防结冰技术的研究进展[J].中国表面工程,2016,29(4):10-22.YANG Qin,LUO Zhuangzhu,TAN Sheng,et al.Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J].China Surface Engineering,2016,29(4):10-22.(in Chinese)
参考文献 16
WANG F X,TAY T E,SUN Y Y,et al.Low-voltage and-surface energy SWCNT/poly(dimethylsiloxane)(PDMS)nanocomposite film:Surface wettability for passive anti-icing and surface-skin heating for active deicing[J].Composites Science and Technology,2019,184:107872.
参考文献 17
魏凯,张优,王菊萍,等.超疏水泡沫镍材料的制备及其油水分离性能[J].中国表面工程,2021,34(6):168-174.WEI Kai,ZHANG You,WANG Jupin,et al.Preparation of superhydrophobic nickel foam and its oil-water separation performance[J].China Surface Engineering,2021,34(6):168-174.(in Chinese)
参考文献 18
WU X,LI X,PING J,et al.Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces[J].Nano Energy,2021,90:106592.
参考文献 19
CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.
参考文献 20
GUO M,WANG C,YANG Z,et al.Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvesting[J].Electronics,2022,11(10):1651.
参考文献 21
ZOU Y,XU J,CHEN K,et al.Advances in nanostructures for high-performance triboelectric nanogenerators[J].Advanced Materials Technologies,2021,6(3):2000916.
参考文献 22
ZHOU Q,LEE K,KIM K N,et al.High humidity-and contamination-resistant triboelectric nanogenerator with superhydrophobic interface[J].Nano Energy,2019,57:903-910.
参考文献 23
向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.(in Chinese)
参考文献 24
CHEN X,XIONG J,PARIDA K,et al.Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting[J].Nano Energy,2019,64:103904.
参考文献 25
HUANG J,FU X,LIU G,et al.Micro/nanostructures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J].Nano Energy,2019,62:638-644.
参考文献 26
孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)
参考文献 27
AHN J,ZHAO Z J,CHOI J,et al.Morphologycontrollable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator[J].Nano Energy,2021,85:105978.
参考文献 28
TSEREPI A D,VLACHOPOULOU M E,GOGOLIDES E.Nanotexturing of poly(dimethylsiloxane)in plasmas for creating robust super-hydrophobic surfaces[J].Nanotechnology,2006,17(15):3977.
参考文献 29
闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)
参考文献 30
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
参考文献 31
AHN J H,HWANG J Y,KIM C G,et al.Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity[J].Nano Energy,2020,67:104269.
参考文献 32
PARVEZ A N,RAHAMAN M H,KIM H C,et al.Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxanereduced graphene oxide nanocomposite surface[J].Composites Part B:Engineering,2019,174:106923.
参考文献 33
LIN Z H,CHENG G,LEE S,et al.Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process[J].Advanced Materials,2014,26(27):4690-4696.
参考文献 34
MARIELLO M,FACHECHI L,GUIDO F,et al.Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMSEcoflex™[J].Nano Energy,2021,83:105811.
目录contents

    摘要

    超疏水表面在防污减阻、油水分离、生物医用等领域应用广泛,在摩擦发电蓝色能源收集领域展现出新的应用前景,但其大面积制造及结构形貌的精确调控仍充满挑战。提出光刻和模塑成形相结合的微纳多级表面的可控制造工艺,分别以光刻工艺制造的微米孔和 V 形孔阳极氧化铝纳米孔为微米尺度和纳米尺度模板,采用一步模塑成形工艺实现微纳多级表面的构建,并通过改变模板尺寸简易并精确调控微纳多级表面的形貌和结构尺寸。通过接触角测量仪分析发现,相比单级纳米表面和单级微米表面,构建的微纳多级表面疏水性能显著提升,并实现超疏水,静态接触角最高达 158°,滚动角仅为 2°。最后开展超疏水微纳多级表面在水能收集方面的应用研究,采用搭建的固−液摩擦纳米发电测试装置分析表面结构对摩擦电输出性能的影响。结果表明:相比平膜和单级微米表面,微纳多级表面由于摩擦面面积增加和疏水性能增强产生更加优异的电输出信号。当水流速度为 8 mL / s 时,微纳多级表面的输出电压峰值最高为 46 V,短路电流峰值最高为 6.3 μA。提出了一步模塑成形工艺,实现了超疏水微纳多级表面的大面积、可调控制造,基于微纳多级表面构建的固-液摩擦纳米发电机有望应用于水能收集、自驱动传感等领域。

    Abstract

    Superhydrophobic surfaces have been widely used in antifouling, drag reduction, oil-water separation, and biomedicine applications. New triboelectric nanogenerator(TENG) applications have recently emerged for harvesting blue energy. However, large-area and controllable fabrication of superhydrophobic surfaces remains challenging. When a superhydrophobic surface is used in a TENG, the effects of its structure and morphology on the triboelectric output remain unknown. Here, a large-area, controllable, and scalable fabrication strategy is developed to manufacture superhydrophobic micro / nano hierarchical surface, and its application in a water-solid contact TENG is reported. A one-step photolithography and molding process is proposed to fabricate a micro / nano hierarchical surface composed of micropillars and nanopillars. The micropillars were formed using a lithographic mask equipped with a microhole array, and the nanopillars duplicated the structure of a V-shaped anodic aluminum oxide(AAO) mold. The structure of the micro / nano hierarchical surface can be controlled accurately and conveniently by regulating the size of the lithographic mask and AAO mold. Using scanning electron microscopy(SEM) observation, a series of micro / nano hierarchical structures were successfully fabricated. The micropillars and nanopillars showed high accuracy and good consistency. Subsequently, the hydrophobicity of the micro / nano hierarchical surface was analyzed using a contact-angle measurement system. The results indicate that, compared with the single-level nano surface and the single-level micro surface, the micro / nano hierarchical surface exhibits superior hydrophobic properties and achieves superhydrophobicity. This is because the surface exhibits a Cassie-Baxter wetting state, and the constructed micro / nano hierarchical structures can inhibit water droplets from immersing into the gap and obtain superhydrophobic properties. For the micro / nano hierarchical surface, as the center distance of the micropillars increased, the contact area between the surface and the water droplet decreased; thus, the hydrophobic performance was further enhanced. Specifically, when the center distance of the lithographic mask was 28 μm, the fabricated micro / nano hierarchical surface showed a static contact angle of 158° and a sliding angle of 2°. Finally, the micro / nano hierarchical surface was applied for water energy harvesting. The effect of the surface structure on the output performance of the water-solid contact TENG was analyzed using a testing setup with water continuously dripping onto the surface. The results show that the constructed micro / nano hierarchical surface generates a more robust triboelectric output compared to the flat surface and the single-level microsurface. This outstanding output performance originated from the higher charge density caused by the larger friction surface and superhydrophobic properties. For the micro / nano hierarchical surface, as the center distance of the micropillars increased, the triboelectric output was further enhanced owing to the more hydrophobic structure. Specifically, at a flow rate of 8 mL / s, the output voltage and short-circuit current of the water-solid contact TENG based on the micro / nano hierarchical surface with a mask center distance of 28 μm are approximately 46 V and 6.3 μA, respectively. In addition, the effect of the flow rate on the output performance was studied. As the flow rate increased, the output peak value and output frequency increased, which was attributed to the sufficient friction and faster contact-separation process at high flow rates. Therefore, the proposed photolithography and molding process realizes the large-area and controllable superhydrophobic micro / nano hierarchical surface fabrication. Applying the micro / nano hierarchical surface in water-solid contact TENG demonstrates its suitable potential applications in water energy harvesting and self-powered sensor devices.

  • 0 前言

  • 摩擦纳米发电机(Triboelectric nanogenerator,TENG)自 2012 年由王中林院士团队首次提出便受到研究者们的广泛关注,其工作原理是基于界面摩擦起电效应和静电感应效应的耦合[1],可以将不同形式的机械能转化为电能,包括人体运动[2]、振动[3]、风能[4]、水能[5]等,具有结构简单、造价低廉、效率高等特点[6]。经过数 10 年的发展,摩擦纳米发电已形成了丰富的理论体系,衍生出多种器件结构形式。按照摩擦接触界面可以分为固-固摩擦[7]、液-固摩擦[8]、液-液摩擦[9]、气-固摩擦[10]等。固-液摩擦纳米发电机是基于液-固界面摩擦,俘获蓝色能源的新型发电装置,可用于水波、水滴、水流等不同类型的水能收集[811]。固-液摩擦纳米发电机主要由液体摩擦材料、固体摩擦材料和电极材料组成,其中,固体摩擦材料的结构和特性对于发电机的输出性能具有至关重要的影响。

  • 超疏水表面是指具有非常大的接触角,且水滴能够在其表面轻易流动[12-13]。由于超疏水表面具有优异的憎水性,在自清洁[14]、防结冰[15-16]、油水分离[17]等领域已得到广泛应用。近年来,超疏水表面作为固体摩擦材料在摩擦发电蓝色能源收集领域展现出新的应用前景。这是由于超疏水表面可以在其倾斜时,使滴落在表面的水滴快速并完全滑落,对于固-液摩擦纳米发电机输出性能的提升具有重要作用[18]

  • 构建多级微纳结构是获得超疏水表面、提升摩擦纳米发电机性能的重要方法[19-20]。ZOU 等[21]将用于高性能摩擦纳米发电机的微纳多级结构的制造方法归纳为模板法、附加法、刻蚀法和褶皱法 4 类。模板法主要通过复刻 Si 模板或自然界的物质表面 (如荷叶等)获得超疏水微纳多级结构,由于结构化表面的摩擦面面积增大使得表面电荷密度增加,水能收集特性增强[22-23]。CHEN 等[24]采用静电纺丝工艺制备了 SiO2 / P(VDF-TrFE)多级微纳表面,属于附加法。制备的表面具有高透明、可拉伸、超疏水、自清洁等特点,在俘获机械能和水能领域都展现出优势。当水流速度为 10.7 mL / s 时,构建的固-液摩擦纳米发电机的输出电压和短路电流分别为 36 V 和 10 μA。刻蚀法主要通过采用激光或等离子体在表面刻蚀加工纳米碗、纳米锥、纳米线或纳米柱等并辅以纳米颗粒获得表面微纳结构,制备的表面也展现出优异的超疏水性能和俘能特性[25-26]。AHN 等[27]则采用褶皱法制备了集微米图案、纳米图案和褶皱于一体的多级微纳表面,接触角达 152.5°,相比平膜,其摩擦电输出性能增强 608%。综上,构建微纳多级结构可通过增大摩擦面面积提高表面电荷密度以及增加表面粗糙度增强疏水性,最终提升表面的水能收集特性。然而,如何实现微纳多级表面微米尺度和纳米尺度结构的简易精确调控仍是一大难题,表面结构形貌对摩擦电输出性能的影响仍有待进一步探讨。

  • 本文提出采用光刻和模塑成形工艺,分别以光刻工艺制造的微米孔结构和 V 形孔阳极氧化铝 (Anodic aluminum oxide,AAO)纳米孔结构为微米尺度和纳米尺度模板,采用一步模塑成形工艺实现微纳多级表面的构建,并通过改变模板尺寸简易并精确调控表面的结构尺寸。然后利用接触角测量仪分析结构尺寸对表面静态接触角和滚动角的影响规律,最后采用搭建的固-液摩擦纳米发电测试装置对比分析不同结构表面的摩擦电输出性能。

  • 1 试验方法

  • 1.1 微纳多级表面的可控制造

  • 采用光刻和模塑成形工艺制造微纳多级表面,具体过程如图1 所示。试验选用 V 形孔 AAO(上海上木科技有限公司)作为纳米结构模板,如图1a 所示。首先,以 V 形孔 AAO 为模板,旋涂 AZP4260 正型光刻胶,旋涂速度为 1 000 r / min,旋涂时间为 35 s。由于填充到 AAO 纳米尺度孔洞的 AZP4620 光刻胶后续难以显影去除,所以在旋涂 AZP4260 光刻胶之前先旋涂一层 PMGI 光刻胶作为牺牲层,旋涂速度为 1 500 r / min,旋涂时间为 30 s。光刻胶经烘干固化后,膜厚约为 13 μm,如图1b 所示。随后在光刻胶表面放置具有微米孔洞阵列的掩膜板后,使用双面对准光刻机进行紫外曝光,曝光时间为 32 s,如图1c 所示。接着,将已曝光的样品进行显影,先后浸于 5‰的 NaOH 溶液中 60 s 和 MF319 显影液中 90 s 将曝光部分的光刻胶溶解,得到光刻工艺制造的微米孔结构和 V 形孔 AAO 纳米孔结构复合的微纳多级结构模板,如图1d 所示。然后采用翻模技术制备微纳多级表面。选用紫外固化光学胶 NOA81 作为翻模材料,经旋涂后在表面贴附导电 PET(ITO-PET)薄膜,随后放在紫外灯下进行固化,选择紫外光波长为 350 nm,固化时间为 10 min,如图1e 所示。待 NOA 完全固化后,脱模得到微纳多级表面,如图1f 所示。已有研究表明,通过八氟环丁烷(C4F8)等离子体处理在结构表面沉积碳氟化合物薄膜进行表面化学修饰可以降低表面自由能[28]。因此,为进一步增强微纳多级表面的疏水性,最后采用C4F8等离子体对其处理60 s进行表面氟化改性。

  • 图1 微纳多级表面制造过程示意图

  • Fig.1 Schematic illustration of the fabrication process of the micro / nano hierarchical surface

  • 在制造过程中,通过改变 AAO 模板的尺寸并调节微米孔洞掩膜板的直径和中心距,可简易并精确调控微纳多级表面的结构形貌,为研究多级结构特征对固-液摩擦发电性能的影响提供制造技术支撑。本试验选用 V 形孔 AAO 模板的孔顶部直径为 350 nm,孔底部直径为 110 nm,孔中心间距为 450 nm,孔深为 450 nm,如图1a 所示,选用掩膜板微米孔洞的直径均为 7 μm,中心距分别为 14、21 和 28 μm。

  • 此外,本试验制备了单级微米表面和单级纳米表面用作对比分析。在微纳多级表面制备过程中,将图1a 中的 AAO 模板更换为平面模板,经图1b~1f 所示的旋涂光刻胶、掩膜曝光、显影及翻模技术可制备得到单级微米表面。直接以 V 形孔 AAO 为模板,经旋涂紫外固化光学胶并脱模可制备得到单级纳米表面。

  • 1.2 固-液摩擦纳米发电器件

  • 基于微纳多级表面的固-液摩擦纳米发电器件采用单电极模式。将微纳多级表面贴附的 ITO-PET薄膜作为电极,导电胶带粘贴在 ITO 表面将导线引出用于收集摩擦电信号。然后将整体置于载玻片上以提供支撑,防止微纳多级表面在水流冲击下发生过度变形。

  • 1.3 结构表征及性能测试

  • 采用Hitachi SU-8010型场发射扫描电子显微镜 (Scanning electron microscope,SEM)观察微纳多级表面的微观形貌。采用 Dataphysics OCA20 型接触角测量仪分析去离子水在微纳多级表面上的静态接触角和滚动角,去离子水液滴大小为 3 μL。

  • 为评估微纳多级表面的水能收集特性,搭建如图2 所示的固-液摩擦纳米发电测试装置。基于微纳多级表面的固-液摩擦纳米发电器件(如图2 右上角插图所示)固定在测试样品台上,去离子水经蠕动泵抽取通过管道滴落在微纳多级表面形成固-液摩擦纳米发电机。采用负载为 100 MΩ的 Tektronix DPO3034 型示波器测量输出的电压信号,采用 SR570 型电流放大器测量输出的电流信号。通过调节蠕动泵的转速可以控制水流的滴落速度,本试验中流速调节范围为 2~10 mL / s。测试样品台可上下移动控制水流的滴落高度,也可侧向倾斜调节样品台的倾斜角度,本试验中水流的滴落高度设置为 3.5 cm,样品台的倾斜角度设置为 15°。

  • 图2 固-液摩擦纳米发电测试装置图

  • Fig.2 Testing setup for water-solid contact TENG

  • 2 结果与讨论

  • 2.1 微纳多级表面的微观形貌

  • 图3a~3c 所示为不同放大倍数下掩膜板微米孔洞中心距分别为 14、21 和28 μm 制备得到的微纳多级表面的 SEM 照片。从图中可以看出,制备的微纳多级表面在大面积范围内结构一致,微米尺度微柱的直径均接近 7 μm,微柱的中心距与掩膜板中心距一致,纳米尺度结构基本与 AAO 模板结构一致。因此,采用光刻和模塑成形工艺可复刻微米尺度和纳米尺度复合结构,实现微纳多级表面的大面积、可调控、可扩展制造。

  • 图3 微纳多级表面、单级微米表面和单级纳米表面的 SEM 照片

  • Fig.3 SEM images of micro / nano hierarchical surfaces, single-level micro surface, and single-level nano surface

  • 为后续对比分析,制备了单级微米表面和单级纳米表面。图3d 所示为采用微米孔洞中心距为 14 μm的掩膜板制备得到的单级微米表面的SEM照片,图3e 所示为制备得到的单级纳米表面的微观形貌。

  • 2.2 微纳多级表面的超疏水特性

  • 表面的疏水性对于固-液摩擦发电性能的提升至关重要。图4 所示为去离子水在不同结构表面的静态接触角。可以看出,单级纳米表面的静态接触角为 140°,掩膜板中心距为 14 μm 的单级微米表面的接触角为 146°,均表现出疏水特性。通过将纳米微柱和微米微柱相结合,构建的微纳多级表面的接触角增加至 150°,展现出超疏水特性。这表明通过构建微纳多级结构可以增强表面的疏水特性。分析其原因,是本试验中不同结构的疏水表面均呈现为 Cassie-Baxter 润湿模型。该模型中,水滴并未浸入到微柱结构的间隙中,而是被微柱结构间的气穴隔开,水滴同时与固体、气体接触,形成固-液-气三相复合接触表面。在 Cassie-Baxter 润湿模型下,液滴的接触角与固-液接触面积的大小呈负相关,接触面积越小,静态接触角越大[29-30]。相比单级纳米表面和单级微米表面,构建微米结构和纳米结构复合的微纳多级表面可显著降低接触面积,从而使静态接触角增加,疏水性能增强。

  • 对于微纳多级表面,从图4 中可以看出,随着掩膜板微米孔洞中心距从 14 μm 增加至 21 μm 和 28 μm,表面的接触角从 150°增加至 156°和 158°,疏水性能进一步提升,且均表现出超疏水特性。这是由于掩模板中心距增加使得微纳多级表面微米微柱的间距增大,水滴与表面的接触面积减小,最终微纳多级表面展现出更大的接触角和更优异的超疏水特性。

  • 图4 去离子水在单级纳米表面、单级微米表面和微纳多级表面的静态接触角

  • Fig.4 Water contact angle of single-level nano surface, single-level micro surface, and micro / nano hierarchical surfaces

  • 除静态接触角外,滚动角也是评价表面疏水性能的一项重要指标。特别是对于固-液摩擦纳米发电机,小的滚动角能够使液滴快速并完全离开固体表面,防止表面形成水膜以屏蔽摩擦电荷,对于发电性能的提升具有重要作用。图5 显示了水滴在不同表面即将滑落时的试验台角度,即表面的滚动角。从图5 中可以看出,单级微米表面的滚动角较大,为 36°。构建微纳多级结构后,表面的滚动角显著降低。掩膜板微米孔洞中心距为 14、21 和28 μm 的微纳多级表面的滚动角分别为 10°、4°和2°。由于本试验中固−液摩擦纳米发电机测试样品台的倾斜角度为15°,因此,当水流滴落在样品台上的微纳多级表面时,水滴能够全部快速滑落,从而减少水膜残留,缩短接触−分离周期,提升摩擦发电性能。

  • 图5 单级微米表面和微纳多级表面的滚动角

  • Fig.5 Sliding angle of single-level micro surface and micro / nano hierarchical surfaces

  • 2.3 基于微纳多级表面的固-液摩擦纳米发电机的电输出性能

  • 基于微纳多级表面的固-液摩擦纳米发电机的工作原理如图6 所示。当水流滴落在结构表面时(如图6a),液滴与结构表面产生接触起电,电子会从液滴转移到结构表面,使结构表面带负电,水滴表面产生等量的正电荷(图6b)。当水滴与结构表面充分接触摩擦后,结构表面的电荷量达到最大值。随后当水流继续滴落时,水滴与结构表面的接触面积呈现动态变化过程,通过静电感应效应将在外电路中诱导产生摩擦电信号,具体过程如图6c~6f 所示。在水流滴落过程中,当水滴与表面的接触面积较小时(图6c),液滴表面感应出的正电荷不足以补偿结构表面的负电荷。此时,静电感应效应将驱动电子从 ITO 电极转移到地面,通过在 ITO 电极中产生正电荷达到平衡,该过程会在外电路中产生一个瞬时电流(图6d)。随着水流的滴落,当水滴与表面的接触面积继续增加时(图6e),结构表面的负电荷能够全部被水滴下表面感应出的阳离子补偿。此时,ITO 电极中多余的正电荷将驱动地面中的电子流入并中和该部分正电荷,该过程会在外电路中产生一个相反方向的瞬时电流(图6f)。在水流持续滴落的过程中,水滴与结构表面的接触面积经历从小到大再减小的循环动态变化过程,因此,固液摩擦纳米发电机将发生如图6c~6f所示的循环变化过程,最终在外电路中产生交变的电流信号。

  • 基于上述工作原理,采用搭建的固-液摩擦纳米发电测试装置测量相同水流速度下,不同结构表面固-液摩擦纳米发电机的俘能特性。图7 所示为水流流速为 8 mL / s 时,基于不同结构表面的固-液摩擦纳米发电机的输出电压和短路电流。从图中可以看出,相比平膜和单级微米表面,微纳多级表面的输出电压峰值和短路电流峰值显著增加。这表明,构建微纳多级结构可以增强表面的水能收集特性。这是由于一方面,建立微纳多级结构能够增加摩擦面的表面积,当水流滴落与该表面接触摩擦时,微纳多级表面会产生更多的摩擦电荷,在后续水流滴落过程中将使 ITO 电极中感应出更多的电荷量。另一方面,微纳多级结构的构建使表面的疏水性能显著增强,这样更多的滴落在结构表面的水滴将会弹跳并离开表面,而非残留在结构表面形成水膜。残留的水膜会通过在下表面感应产生阳离子来补偿结构表面的负电荷,那么在 ITO 电极中感应出的电荷量将会减少。因此,具备超疏水特性的微纳多级表面可通过减少水膜残留,使滴落的水滴尽可能完全离开结构表面,最终增强外电路中的摩擦电输出。

  • 对于微纳多级表面,从图7 中可以看出,随着掩膜板微米孔洞中心距从 14 μm 增加至 21 μm 和 28 μm,摩擦电输出性能逐渐增强。当掩膜板微米孔洞中心距为28 μm 时,固-液摩擦纳米发电机的输出性能最优,输出电压峰值约为 46 V,短路电流峰值约为 6.3 μA。分析其原因与掩膜板中心距增加后,超疏水性能的增强密切相关。当水流滴落时,优异的疏水性能使更多的水滴弹跳并离开结构表面,水滴与结构表面接触面积的变化程度更大,在外电路中感应出的电荷量更多。

  • 图6 固-液摩擦纳米发电机工作原理

  • Fig.6 Working mechanism of water-solid contact TENG

  • 图7 流速为 8 mL / s 时,基于不同表面的固-液摩擦纳米发电机的电输出性能

  • Fig.7 Output performance of water-solid contact TENGs based on different structures at a flowing velocity of 8 mL / s

  • 进一步地,分析水流速度对固-液摩擦纳米发电机电输出性能的影响。图8 所示为掩膜板微米孔洞中心距为 28 μm 的微纳多级表面在流速为 2~10 mL / s 下的输出电压和短路电流。结果表明,随着水流速度增加,摩擦电输出峰值显著增加。这是由于流速增加后,水滴与结构表面的接触摩擦更加充分,结构表面产生的摩擦电荷密度增加,从而使器件的电输出性能增强。同时还发现,随着流速的增加,摩擦电输出曲线变得更加密集,即摩擦电的输出频率增大。分析其原因,是流速增加使得水滴与结构表面的接触-分离周期缩短,充放电速度提高。

  • 图8 基于掩膜板中心距为 28 μm 的微纳多级表面的固-液摩擦纳米发电机在不同流速下的电输出性能

  • Fig.8 Output performance of water-solid contact TENG based on the micro / nano hierarchical surface with mask center distance of 28 μm at different flowing velocities

  • 表1 列出了本文提出的固-液摩擦纳米发电机的性能与已报道的研究结果的对比。可以看出,基于微纳多级表面的固-液摩擦纳米发电机展现出优异的超疏水和电输出性能。分析其原因,一方面微纳多级结构的构建使得摩擦面面积增加,表面电荷量增大,另一方面通过构建微纳结构获得的超疏水特性使滴落在表面的水滴快速并尽可能完全滑落,动态接触-分离过程加深、加快,这都使得固-液摩擦纳米发电机的电输出性能显著增强。因此,本文提出的基于微纳多级表面的固-液摩擦纳米发电机有望在水能收集、自驱动传感等领域展现潜在的应用前景。

  • 表1 固-液摩擦纳米发电机性能对比

  • Table1 Output performance comparison between reported water-solid contact TENGs and this work

  • 3 结论

  • (1)采用光刻和模塑成形工艺直接复刻微米尺度和纳米尺度模板的复合结构获得微纳多级表面,并可通过改变模板尺寸简易并精确调控结构尺寸,实现微纳复合多级表面的大面积、可调控、可扩展制造。

  • (2)制造的微纳多级表面可通过抑制水滴浸入微柱结构的间隙使其与水滴的接触面积减小,最终展现出优异的超疏水特性:静态接触角为 158°、滚动角为 2°。

  • (3)制造的微纳多级表面可通过增加摩擦面面积和增强表面疏水性使其水能收集特性显著提升。当水流速度为 8 mL / s 时,基于微纳多级表面的固-液摩擦纳米发电机展现出优异的电输出性能:输出电压峰值约为 46 V,短路电流峰值约为 6.3 μA。

  • 参考文献

    • [1] FAN F R,TIAN Z Q,WANG Z L.Flexible triboelectric generator[J].Nano Energy,2012,1(2):328-334.

    • [2] XIANG S,TANG J,YANG L,et al.Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability[J].npj Flexible Electronics,2022,6(1):59.

    • [3] HU S,YUAN Z,LI R,et al.Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines[J].Nano Letters,2022,22(13):5584-5591.

    • [4] WANG Y,CHEN T,SUN S,et al.A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy[J].Nano Research,2022,15(4):3246-3253.

    • [5] ZHANG C,HE L,ZHOU L,et al.Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J].Joule,2021,5(6):1613-1623.

    • [6] WANG Z L.From contact electrification to triboelectric nanogenerators[J].Reports on Progress in Physics,2021,84(9):096502.

    • [7] ZHANG W,DENG L,YANG L,et al.Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning[J].Nano Energy,2020,77:105174.

    • [8] 禹健,郭艳婕,杨雷.固-液摩擦纳米发电机[J].机械工程学报,2021,57(21):160-181.YU Jian,GUO Yanjie,YANG Lei.Solid-liquid triboelectric nanogenerator[J].Journal of Mechanical Engineering,2021,57(21):160-181.(in Chinese)

    • [9] ZHANG R,LIN H,PAN Y,et al.Liquid-liquid triboelectric nanogenerator for harvesting distributed energy[J].Advanced Functional Materials,2022,32(51):2208393.

    • [10] XIONG J,THANGAVEL G,WANG J,et al.Self-healable sticky porous elastomer for gas-solid interacted power generation[J].Science Advances,2020,6(29):eabb4246.

    • [11] JIANG D,XU M,DONG M,et al.Water-solid triboelectric nanogenerators:An alternative means for harvesting hydropower[J].Renewable and Sustainable Energy Reviews,2019,115:109366.

    • [12] 汪家道,禹营,陈大融.超疏水表面形貌效应的研究进展[J].科学通报,2006,51(18):2097-2099.WANG Jiadao,YU Ying,CHEN Darong.Progress in surface profile of superhydrophobic surface[J].Chinese Science Bulletin,2006,51(18):2097-2099.(in Chinese)

    • [13] 柯清平,李广录,郝天歌,等.超疏水模型及其机理[J].化学进展,2010,22(2-3):284-290.KE Qingping,LI Guanglu,HAO Tiange,et al.Superhydrophobicity:Theoretical models and mechanism[J].Progress in Chemistry,2010,22(2-3):284-290.(in Chinese)

    • [14] MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.

    • [15] 杨钦,罗荘竹,谭生,等.超疏水自清洁涂层防结冰技术的研究进展[J].中国表面工程,2016,29(4):10-22.YANG Qin,LUO Zhuangzhu,TAN Sheng,et al.Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J].China Surface Engineering,2016,29(4):10-22.(in Chinese)

    • [16] WANG F X,TAY T E,SUN Y Y,et al.Low-voltage and-surface energy SWCNT/poly(dimethylsiloxane)(PDMS)nanocomposite film:Surface wettability for passive anti-icing and surface-skin heating for active deicing[J].Composites Science and Technology,2019,184:107872.

    • [17] 魏凯,张优,王菊萍,等.超疏水泡沫镍材料的制备及其油水分离性能[J].中国表面工程,2021,34(6):168-174.WEI Kai,ZHANG You,WANG Jupin,et al.Preparation of superhydrophobic nickel foam and its oil-water separation performance[J].China Surface Engineering,2021,34(6):168-174.(in Chinese)

    • [18] WU X,LI X,PING J,et al.Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces[J].Nano Energy,2021,90:106592.

    • [19] CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.

    • [20] GUO M,WANG C,YANG Z,et al.Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvesting[J].Electronics,2022,11(10):1651.

    • [21] ZOU Y,XU J,CHEN K,et al.Advances in nanostructures for high-performance triboelectric nanogenerators[J].Advanced Materials Technologies,2021,6(3):2000916.

    • [22] ZHOU Q,LEE K,KIM K N,et al.High humidity-and contamination-resistant triboelectric nanogenerator with superhydrophobic interface[J].Nano Energy,2019,57:903-910.

    • [23] 向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.(in Chinese)

    • [24] CHEN X,XIONG J,PARIDA K,et al.Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting[J].Nano Energy,2019,64:103904.

    • [25] HUANG J,FU X,LIU G,et al.Micro/nanostructures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J].Nano Energy,2019,62:638-644.

    • [26] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [27] AHN J,ZHAO Z J,CHOI J,et al.Morphologycontrollable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator[J].Nano Energy,2021,85:105978.

    • [28] TSEREPI A D,VLACHOPOULOU M E,GOGOLIDES E.Nanotexturing of poly(dimethylsiloxane)in plasmas for creating robust super-hydrophobic surfaces[J].Nanotechnology,2006,17(15):3977.

    • [29] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [30] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [31] AHN J H,HWANG J Y,KIM C G,et al.Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity[J].Nano Energy,2020,67:104269.

    • [32] PARVEZ A N,RAHAMAN M H,KIM H C,et al.Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxanereduced graphene oxide nanocomposite surface[J].Composites Part B:Engineering,2019,174:106923.

    • [33] LIN Z H,CHENG G,LEE S,et al.Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process[J].Advanced Materials,2014,26(27):4690-4696.

    • [34] MARIELLO M,FACHECHI L,GUIDO F,et al.Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMSEcoflex™[J].Nano Energy,2021,83:105811.

  • 参考文献

    • [1] FAN F R,TIAN Z Q,WANG Z L.Flexible triboelectric generator[J].Nano Energy,2012,1(2):328-334.

    • [2] XIANG S,TANG J,YANG L,et al.Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability[J].npj Flexible Electronics,2022,6(1):59.

    • [3] HU S,YUAN Z,LI R,et al.Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines[J].Nano Letters,2022,22(13):5584-5591.

    • [4] WANG Y,CHEN T,SUN S,et al.A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy[J].Nano Research,2022,15(4):3246-3253.

    • [5] ZHANG C,HE L,ZHOU L,et al.Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J].Joule,2021,5(6):1613-1623.

    • [6] WANG Z L.From contact electrification to triboelectric nanogenerators[J].Reports on Progress in Physics,2021,84(9):096502.

    • [7] ZHANG W,DENG L,YANG L,et al.Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning[J].Nano Energy,2020,77:105174.

    • [8] 禹健,郭艳婕,杨雷.固-液摩擦纳米发电机[J].机械工程学报,2021,57(21):160-181.YU Jian,GUO Yanjie,YANG Lei.Solid-liquid triboelectric nanogenerator[J].Journal of Mechanical Engineering,2021,57(21):160-181.(in Chinese)

    • [9] ZHANG R,LIN H,PAN Y,et al.Liquid-liquid triboelectric nanogenerator for harvesting distributed energy[J].Advanced Functional Materials,2022,32(51):2208393.

    • [10] XIONG J,THANGAVEL G,WANG J,et al.Self-healable sticky porous elastomer for gas-solid interacted power generation[J].Science Advances,2020,6(29):eabb4246.

    • [11] JIANG D,XU M,DONG M,et al.Water-solid triboelectric nanogenerators:An alternative means for harvesting hydropower[J].Renewable and Sustainable Energy Reviews,2019,115:109366.

    • [12] 汪家道,禹营,陈大融.超疏水表面形貌效应的研究进展[J].科学通报,2006,51(18):2097-2099.WANG Jiadao,YU Ying,CHEN Darong.Progress in surface profile of superhydrophobic surface[J].Chinese Science Bulletin,2006,51(18):2097-2099.(in Chinese)

    • [13] 柯清平,李广录,郝天歌,等.超疏水模型及其机理[J].化学进展,2010,22(2-3):284-290.KE Qingping,LI Guanglu,HAO Tiange,et al.Superhydrophobicity:Theoretical models and mechanism[J].Progress in Chemistry,2010,22(2-3):284-290.(in Chinese)

    • [14] MILLES S,SOLDERA M,KUNTZE T,et al.Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J].Applied Surface Science,2020,525:146518.

    • [15] 杨钦,罗荘竹,谭生,等.超疏水自清洁涂层防结冰技术的研究进展[J].中国表面工程,2016,29(4):10-22.YANG Qin,LUO Zhuangzhu,TAN Sheng,et al.Research progress in anti-icing technology of superhydrophobic self-cleaning coating[J].China Surface Engineering,2016,29(4):10-22.(in Chinese)

    • [16] WANG F X,TAY T E,SUN Y Y,et al.Low-voltage and-surface energy SWCNT/poly(dimethylsiloxane)(PDMS)nanocomposite film:Surface wettability for passive anti-icing and surface-skin heating for active deicing[J].Composites Science and Technology,2019,184:107872.

    • [17] 魏凯,张优,王菊萍,等.超疏水泡沫镍材料的制备及其油水分离性能[J].中国表面工程,2021,34(6):168-174.WEI Kai,ZHANG You,WANG Jupin,et al.Preparation of superhydrophobic nickel foam and its oil-water separation performance[J].China Surface Engineering,2021,34(6):168-174.(in Chinese)

    • [18] WU X,LI X,PING J,et al.Recent advances in water-driven triboelectric nanogenerators based on hydrophobic interfaces[J].Nano Energy,2021,90:106592.

    • [19] CHO H,CHUNG J,SHIN G,et al.Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators:The role of hierarchical structures[J].Nano Energy,2019,56:56-64.

    • [20] GUO M,WANG C,YANG Z,et al.Controllable and scalable fabrication of superhydrophobic hierarchical structures for water energy harvesting[J].Electronics,2022,11(10):1651.

    • [21] ZOU Y,XU J,CHEN K,et al.Advances in nanostructures for high-performance triboelectric nanogenerators[J].Advanced Materials Technologies,2021,6(3):2000916.

    • [22] ZHOU Q,LEE K,KIM K N,et al.High humidity-and contamination-resistant triboelectric nanogenerator with superhydrophobic interface[J].Nano Energy,2019,57:903-910.

    • [23] 向静,王宏,朱恂,等.荷叶表面的复刻及微纳结构对疏水性能的影响[J].化工学报,2019,70(9):3545-3552.XIANG Jing,WANG Hong,ZHU Xun,et al.Fast replication method for lotus leaf and effect of micro-nanostructure on hydrophobic properties[J].CIESC Journal,2019,70(9):3545-3552.(in Chinese)

    • [24] CHEN X,XIONG J,PARIDA K,et al.Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting[J].Nano Energy,2019,64:103904.

    • [25] HUANG J,FU X,LIU G,et al.Micro/nanostructures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J].Nano Energy,2019,62:638-644.

    • [26] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [27] AHN J,ZHAO Z J,CHOI J,et al.Morphologycontrollable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator[J].Nano Energy,2021,85:105978.

    • [28] TSEREPI A D,VLACHOPOULOU M E,GOGOLIDES E.Nanotexturing of poly(dimethylsiloxane)in plasmas for creating robust super-hydrophobic surfaces[J].Nanotechnology,2006,17(15):3977.

    • [29] 闫德峰,刘子艾,潘维浩,等.多功能超疏水表面的制造和应用研究现状[J].表面技术,2021,50(5):1-19.YAN Defeng,LIU Ziai,PAN Weihao,et al.Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J].Surface Technology,2021,50(5):1-19.(in Chinese)

    • [30] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [31] AHN J H,HWANG J Y,KIM C G,et al.Unsteady streaming flow based TENG using hydrophobic film tube with different charge affinity[J].Nano Energy,2020,67:104269.

    • [32] PARVEZ A N,RAHAMAN M H,KIM H C,et al.Optimization of triboelectric energy harvesting from falling water droplet onto wrinkled polydimethylsiloxanereduced graphene oxide nanocomposite surface[J].Composites Part B:Engineering,2019,174:106923.

    • [33] LIN Z H,CHENG G,LEE S,et al.Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process[J].Advanced Materials,2014,26(27):4690-4696.

    • [34] MARIELLO M,FACHECHI L,GUIDO F,et al.Multifunctional sub-100 µm thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible AlN and soft parylene C-PDMSEcoflex™[J].Nano Energy,2021,83:105811.

  • 手机扫一扫看