en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王兴涛,男,1997年出生,硕士研究生。主要研究方向为功能材料。E-mail:xingt_wang@163.com

通讯作者:

孙金峰,男,1982年出生,博士,副教授。主要研究方向为功能材料。E-mail:sunjinfeng@hebust.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20221103003

参考文献 1
YEH Jienwei.Alloy dsign strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.
参考文献 2
CANTOR Brian.Multicomponent and high entropy alloys[J].Entropy,2014,16(9):4749-4768.
参考文献 3
秦刚.高熵合金价电子浓度与组织性能的相关性[D].哈尔滨:哈尔滨工业大学,2020.QIN Gang.Correlation between valence electron concentration and microstructure and properties of high entropy alloys[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)
参考文献 4
FU Yu,LI J,LUO H,et al.Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J].Journal of Materials Science & Technology,2021,80:217-233.
参考文献 5
OTTO Frederik,DLOUHý A,SOMSEN C,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013,61(15):5743-5755.
参考文献 6
MOGHADDAM Ahmadostovari,SHABUROVA Nataliyaa,SAMODUROVA Mariann,et al.Additive manufacturing of high entropy alloys:A practical review[J].Journal of Materials Science & Technology,2021,77:131-162.
参考文献 7
KUMAR Jitesh,LINDA Albert,SADHASIVAM M,et al.The effect of Al addition on solid solution strengthening in CoCrFeMnNi:Experiment and modelling[J].Acta Materialia,2022,238:118208.
参考文献 8
ASTAFUROVA Elena,MELNIKOV Evgenii,ASTAFUROV Sergey,et al.A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal-mechanical treatments[J].Materials Letters,2021,285:129073.
参考文献 9
SHIM Sanghun,MOON Jongun,POURALIAKBAR Hesam,et al.Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures[J].Journal of Alloys and Compounds,2022,897:163217.
参考文献 10
XU Zhenlin,ZHANG Hui,DU Xiaojie,et al.Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J].Corrosion Science,2020,177:108954.
参考文献 11
时运,杜晓东,庄鹏程,等.等离子熔覆技术的研究现状及展望[J].表面技术,2019,48(12):23-33.SHI Yun,DU Xiaodong,ZHUANG Pengcheng,et al.Research status and prospect of plasma cladding technology[J].Surface Technology,2019,48(12):23-33.(in Chinese)
参考文献 12
魏民,万强,李晓峰,等.熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响[J].表面技术,2019,48(6):138-143.WEI Min,WAN Qiang,LI Xiaofeng,et al.Effect of cladding current on microstructure and properties of FeCoCrNiMn high entropy alloy coating[J].Surface Technology,2019,48(6):138-143.(in Chinese)
参考文献 13
WANG Jiying,ZHANG Baosen,YU Yaqiu,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.
参考文献 14
YE Fuxing,JIAO Zhipeng,YAN Shuai,et al.Microbeam plasma arc remanufacturing:effects of Al on microstructure,wear resistance,corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J].Vacuum,2020,174:109178.
参考文献 15
颜雪,徐健晏,管相合,等.等离子体控制优化激光烧结 Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)高熵合金涂层的组织与性能[J].中国有色金属学报,2023,33(1):168-188.YAN Xue,XU Jianyan,GUAN Xianghe,et al.Plasma control optimization of the microstructure of laser sintered Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)high entropy alloy coating[J].Transactions of Nonferrous Metals Society of China,2023,33(1):168-188.(in Chinese)
参考文献 16
MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
参考文献 17
张勇,陈明彪,杨潇,等.高熵合金先进技术[M].北京:化学工业出版社,2018.ZHANG Yong,CHEN Mingbiao,YANG Xiao,et al.Advanced technology of high entropy alloy[M].Beijing:Chemical Industry Press,2018.(in Chinese)
参考文献 18
刘囝.CrFeNiSiAlx 系高熵合金力学性能的第一性原理计算研究[D].阜新:辽宁工程技术大学,2021.LIU Jian.First-principles calculation of mechanical properties of CrFeNiSiAlx high entropy alloys[D].Fuxin:Liaoning Technical University,2021.(in Chinese)
参考文献 19
CANTOR B.Multicomponent high-entropy Cantor alloys[J].Progress in Materials Science,2021,120:100754.
参考文献 20
GUO Sheng,NG Chun,LU Jian,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J].Journal of Applied Physics,2011,109(10):103505.
参考文献 21
沙明红.CoCrFeNi-M 高熵合金的制备、结构及性能研究[D].鞍山:辽宁科技大学,2021.SHA Minghong.Preparation structure and properties of CoCrFeNi-M high entropy alloy[D].Aushan:University of Science and Technology Liaoning,2021.(in Chinese)
参考文献 22
ZHANG Ying,HAN Tengfei,XIAO Meng,et al.Effect of iron content on microstructure and properties of FexNi2Co2CrTiNb high-entropy alloy coating[J].Optik,2020,204:164168.
参考文献 23
王锦铭.合金凝固过程固-液界面能表征及微观组织数值模拟[D].济南:山东大学,2021.WANG Jinming.Characterization of solid-liquid interface energy and numerical simulation of microstructure during solidification of alloy[D].Jinan:Shandong University,2021.(in Chinese)
参考文献 24
ZHANG Shiyi,HAN Bin,LI Meiyan,et al.Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating[J].Surface and Coatings Technology,2021,417:127218.
参考文献 25
WEN Xin,CUI Xiufang,JIN Guo,et al.Design and characterization of FeCrCoAlMn0.5Mo0.1 highentropy alloy coating by ultrasonic assisted laser cladding[J].Journal of Alloys and Compounds,2020,835:155449.
参考文献 26
张松,吴臣亮,伊俊振,等.FexCoCrAlCu/Q235 激光合金化层组织及性能研究[J].中国激光,2014,41(8):103-107.ZHANG Song,WU chenliang,YI junzhen,et al.Study on microstructure and properties of FexCoCrAlCu/Q235 laser alloying layer[J].China laser,2014,41(8):103-107.(in Chinese)
参考文献 27
OLIVEIRA J P,CURADO T M,ZENG Z,et al.Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy[J].Materials & Design,2020,189:108505.
参考文献 28
张保森,程江波,徐滨士.等离子熔覆(CuCoCrFeNi)(95)B5 高熵合金涂层研究[J].稀有金属材料与工程,2014,43(5):1128-1132.ZHANG Baosen,CHENG Jiangbo,XU Binshi.Study on high entropy alloy coating of(CuCoCrFeNi)(95)B5[J].Rare Metal Materials and Engineering,2014,43(5):1128-1132.(in Chinese)
参考文献 29
FAN Qingkai,CHEN Chao,FAN Chenglei,et al.Effect of high Fe content on the microstructure,mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding[J].Surface and Coatings Technology,2021,418:127242.
参考文献 30
EMAMIAN Ali,CORBIN Stephen F,KHAJEPOUR Amir.The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding[J].Surface and Coatings Technology,2011,206(1):124-131.
参考文献 31
MASEMOLA Khumo,POPOOLA Patricia,MALATJI Nicholus.The effect of annealing temperature on the microstructure,mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic high entropy alloy[J].Journal of Materials Research and Technology,2020,9(3):5241-5251.
参考文献 32
WANG Zhipeng,FANG Qihong,LI Jia,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys[J].Journal of Materials Science & Technology,2018,34(2):349-354.
参考文献 33
ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.
参考文献 34
TUNG Chungchin,YEH Jienwei,SHUN Taotsung,et al.On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J].Materials Letters,2007,61(1):1-5.
参考文献 35
JIANG Y Q,LI J,JUAN Y F,et al.Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J].Journal of Alloys and Compounds,2019,775:1-14.
参考文献 36
YE Qingfeng,FENG Kai,LI Zhuguo,et al.Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J].Applied Surface Science,2017,396:1420-1426.
参考文献 37
CUI Chen,WU Meiping,MIAO Xiaojin,et al.Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding[J].Journal of Alloys and Compounds,2022,890:161826.
参考文献 38
LUO Hong,LI Zhiming,MINGERS Andream,et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J].Corrosion Science,2018,134:131-139.
参考文献 39
RUI He,MEIPING Wu,CHEN Cui,et al.Effects of laser energy density on microstructure and corrosion resistance of FeCrNiMnAl high entropy alloy coating[J].Optics & Laser Technology,2022,152:108188.
目录contents

    摘要

    对高熵合金涂层的成分设计已有较多探究,但针对无 Co 系高熵合金涂层研究较少。采用等离子熔覆技术在 E32 钢上制备 AlCrFeMnNi 高熵合金涂层,利用金相显微镜、SEM、EDS、XRD 等对涂层的组织形貌、相结构及元素分布等进行观察分析,采用显微硬度计、电化学工作站、XPS 表征涂层的硬度分布及耐腐蚀性能。结果表明,等离子熔覆制备的高熵合金涂层无裂纹、气孔等宏观缺陷,涂层为 BCC 结构;涂层平均硬度为 411.6 HV0.5,为基体硬度的 2 倍以上;在质量分数 3.5%的 NaCl 溶液中涂层的自腐蚀电位为−0.35 V,自腐蚀电流密度为 507 nA / cm2 ,基体的自腐蚀电位为−0.92 V,自腐蚀电流密度为 256 μA / cm2 ,涂层的自腐蚀电位和极化电流密度较基体有大幅度提升,涂层的固溶强化作用和晶格畸变作用以及 BCC 结构的螺旋位错强化是提升涂层硬度的原因,均匀的元素分布和致密的钝化膜是其耐蚀性好的主要原因。通过等离子熔覆技术得到高强度、耐腐蚀性好无 Co 系高熵合金的涂层,可对易制备、低成本的高熵合金涂层的开发、制备和应用提供一定的技术支持。

    Abstract

    Compared with traditional alloys, high-entropy alloys (HEAs) with simple structures exhibit good mechanical properties and low corrosion resistance. These unique properties indicate that HEAs can be applied in extreme environments such as high temperatures, high corrosion, and high wear. However, common HEAs contain expensive and rare metals, which limit their large-scale application. Because pure metals can no longer satisfy the requirements of future development, an HEA@ metal composite composed of a protective coating of HEA on a metal matrix, in which the HEA act as reinforcement, is expected to enhance their performance. To date, many reports have focused on revealing the reinforcement mechanism of HEA coatings with Co; however, few studies have focused on HEA coatings without Co. In this study, we successfully prepared a series of AlCrFeMnNi HEA coatings on an E32 steel matrix using a plasma cladding technique. The effects of composition and structure on the HEA@ metal composites were studied. X-ray diffraction, metallographic microscopy, scanning electron microscopy, energy dispersive spectroscopy, and microhardness tests were used to characterize the distribution of the elements, microstructure phase, and hardness of the coatings. In addition, potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion experiments were performed for a 3.5% NaCl solution using an electrochemical workstation to determine the corrosion resistance performance. Finally, X-ray photoelectron spectroscopy was performed on the soaked coatings to analyze the passive film formation. The results showed that the AlCrFeMnNi HEA coating prepared using plasma cladding had a BCC structure, which was consistent with the HEA particles used in this study. No macroscopic defects, such as cracks and pores, occurred at the interface between the HEA coating layer and the metal matrix, indicating good metallurgical bonding. Because of the dilution of the substrate, the Fe content in the AlCrFeMnNi HEA coating increased considerably, and the microstructure of the AlCrFeMnNi HEA coating changed from columnar dendrites to coarse equiaxed crystals, indicating that an increase in Fe content has a significant effect on the microstructure of the AlCrFeMnNi HEA coating. The average hardness of the coating was 411.6 HV0.5, which was twice that of the substrate. The enhancement of the hardness can be summarized as follows: First, the disordered atomic distribution of the HEA coating can significantly increase the solid-solution strengthening and lattice distortion of the coating, thus resulting in superior hardness of the coating. Second, the intrinsic helical dislocations in the BCC structure can significantly increase the hardness of the HEA coating. In addition, the rapid cooling process during plasma cladding positively influence the hardness of the coating. In 3.5 wt.% NaCl solution, the self-corrosion potential of the AlCrFeMnNi HEA coating was −0.35 V and the self-corrosion current density was 507 nA / cm2 . In comparison, the self-corrosion potential and current density of the substrate were −0.92 V and 256 μA / cm2 , respectively. Both the self-corrosion potential and polarization current density of the coating increased significantly compared with those of the substrate, demonstrating excellent corrosion resistance. The uniform distribution of elements and dense passive film were the main reasons for its superior corrosion resistance. Although the AlCrFeMnNi HEA coating exhibited excellent hardness and corrosion resistance, the uncertainty caused by the dilution of the matrix considerably increased the uncertainty of the structure and properties of the HEA coating. Thus, the contingency resulting from the dilution of the matrix must be explored further. Consequently, plasma cladding a non-Co HEA onto a metal matrix can enhance strength and corrosion resistance. This study provides technical support for the development and application of large-scale and low-cost high-entropy alloy coatings.

  • 0 前言

  • 高熵合金(也称多主元合金)主要是指由 5 种及 5 种以上组元,每种组元原子百分比在 5%~35% 或结构趋于单一且混型熵高于 1.5RR 为摩尔气体常数)的新型合金[1-3]。高的混合熵和多元素的协同作用,使其表现出比传统合金更简单的结构以及更加优异的力学性能和耐腐蚀性能[4]

  • 在众多高熵合金体系中,具有单一 FCC 结构、优异的热稳定性和延展性的 CoCrFeMnNi 系高熵合金在高熵合金研发中占有重要地位,是很多高熵合金体系开发的基础[5-6];但其较低的屈服强度和抗拉强度无法满足工业生产加工要求[7],但通过合理的成分设计可以提高 CoCrFeMnNi 系高熵合金的强度,ASTAFUROVA 等[8]通过引入间隙 C 的方式,增加了 CoCrFeMnNi 高熵合金的晶格畸变,大幅度提高了 CoCrFeMnNi 高熵合金的强度;SHIM 等[9] 通过氮掺杂,铸态 CoCrFeMnNi 高熵合金中的沉淀物由 σ 相转变为 Cr2N,进一步影响了晶粒细化和沉淀强化,提高了 CoCrFeMnNi 高熵合金的极限抗拉强度、伸长率及应变硬化。因此,由适当的成分设计,可以获得高硬度、高耐磨、高耐蚀等特性组合的高熵合金。

  • 除成分设计之外,徐振林等[10]发现 CoCrFeMnNi 高熵合金涂层耐腐蚀性比铸态 CoCrFeMnNi 高熵合金进一步提升。因此,高熵合金涂层化可进一步发挥高熵合金的性能,同时高熵合金涂层可节约更多原料,更有利于高熵合金的应用。在高熵合金涂层制备方法中,等离子熔覆技术具有极高的能量密度、快的凝固速度和冷却速度,同时具有设备成本低、操作简单、对工作环境要求低的优点[11],是一项优秀的涂层制备技术。

  • 魏民等[12]以等摩尔比 Co、Cr、Fe、Mn、Ni 粉末为原料,利用等离子熔覆技术在 65Mn 钢上制备出单相结构的 FeCoCrNiMn 高熵合金涂层;WANG 等[13]以CoCrFeMnNi高熵合金粉末和金属Ti粉末作原料,制备出由简单固溶体和 σ 相组成的(CoCrFeMnNi)85Ti15高熵合金涂层;YE 等[14]在 Q235 钢用等离子熔覆技术制备了仅由 FCC、BCC 固溶体组成的 AlCoCrFeMnNi 高熵合金涂层,硬度达 5.45 GPa,且耐腐蚀性优于 304 不锈钢。

  • 以上分析表明, CoCrFeMnNi 系高熵合金在制备保护涂层领域具有优秀的开发潜力。但该系高熵合金组成中含有价格昂贵和资源稀缺的 Co 元素,导致涂层成本增加,因而制备简单、低成本但同时具有优秀综合性能的保护涂层十分必要。在高熵合金常用元素中,Al 有助于提高合金表面稳定性,并有利于提高合金的抗氧化性和硬度[15],是一种很好的替代 Co 元素的选择。因此,本文选择 AlCrFeMnNi 高熵合金粉末为原料,利用等离子熔覆技术制备 AlCrFeMnNi 高熵合金涂层,对其组织结构、硬度、耐蚀性进行系统研究,并从电化学角度对其腐蚀行为进行分析,为研制易制备、低成本、结构简单、高强度、耐腐蚀的保护涂层提供了试验基础与数据支撑。

  • 1 试验准备

  • 1.1 样品制备

  • 基材选用 E32 钢,尺寸为 66 mm×37 mm× 6 mm。熔覆粉末为粒度在 60 μm 左右球形 AlCrFeMnNi 高熵合金粉末,其形貌、成分和结构如图1 所示。

  • 图1 AlCrFeMnNi 高熵合金粉末相关信息

  • Fig.1 Information about alcrfemnni high entropy alloy powder

  • 熔覆前对 E32 钢板进行除锈、去油处理,试验采用自制改造的等离子熔覆设备,熔覆电流为 133 A,送粉量 17 g / min,转移弧电压 40 V,摆动幅度为 9 mm,摆频为 53 次 / min,送粉气和保护气为氩气。

  • 1.2 结构表征及性能测试

  • 熔覆结束后用线切割工作台将样品按表征要求进行切割截取金相试样,对试样截面采用砂纸打磨抛光,配置王水腐蚀截面 5 s 左右,之后用无水乙醇清洗,在 Leica DMC 4500 倒置金相显微镜观察涂层金相组织。

  • 利用 X 射线衍射仪(D / max.2400),扫描角度为 2θ=5°~120°、扫描速度 5(°)/ min,扫描电镜 (ZEISS EVO 18),能谱仪(ZEISS ULTRA 55)对熔覆层相组成、微观组织、元素分布进行分析。

  • 使用 HXD-1000 数字式显微硬度计进行显微硬度测试,从涂层表面到基体,每隔 0.2 mm 取 5~7 个点进行测试,加载载荷 500 g,持续时间 10 s。

  • 在 Gamry-Interface1010E 电化学工作站上对样品进行 Tafel、EIS 测试,测试溶液为 3.5 wt.%NaCl 溶液,Tafel 测试条件为:扫描速率 1 mV / S,测试电位−1.5~1.5 V;EIS 测试条件为:振幅 10 mV,频率范围 100 kHz~0.1 Hz。试验前将试样浸泡于 3.5 wt.%NaCl 溶液中 1 h,至开路电位稳定,之后进行极化曲线、交流阻抗测试。

  • 将涂层浸泡在 3.5 wt.%NaCl 溶液中 72 h,之后用 X 射线光电子能谱仪(ThermoFischer,ESCALAB 250Xi)分析涂层钝化膜组成。

  • 2 结果与讨论

  • 2.1 高熵合金涂层结构的热力学依据

  • 高熵合金涂层由于高熵效应抑制了金属间化合物的形成,并倾向生成 BCC、FCC 等简单固溶体结构[16]。在预测 HEAs 体系的固溶体形成时,通常首先考虑吉布斯自由能ΔGmix [17],其表示为:

  • ΔGmix =ΔHmix -TΔSmix
    (1)
  • 式中,ΔHmix 和ΔSmix 分别是混合焓和混合熵,T 是温度。

  • 低的吉布斯自由能导致金属间化合物难以形成。在固溶体形成过程中ΔHmixTΔSmix 相互竞争: ΔHmix 反映元素偏聚和形成金属间化合物的趋势,被认为是阻碍固溶体形成的阻力;而ΔSmix 可以增加体系的混乱程度,降低体系原子有序化和偏析程度,从而抑制金属间化合物的生成和相分离的发生,通常被认为是固溶体形成的驱动力[18]

  • N 元合金体系混合焓可表示为:

  • ΔHmix=i=1,ijn 4ΔHijmixcicj
    (2)
  • 式中,cicj 是第 ij 个组分的摩尔含量,ΔHijmix 为二元液态合金混合焓,其值可用Miedema模型计算。

  • N 元合金体系的混合熵可以表示为:

  • ΔSmix =-Rin cilnci
    (3)
  • 式中,R=8.314 J /(K·mol)是气体常数,ci 是第 i个组分的摩尔含量。

  • 为了进一步描述混合焓和混合熵的竞争结果,参数 被提出,表示为:

  • Ω=ΔSmix in ciTmiΔHmix
    (4)
  • 式中,ΔHmix 为混合焓,ΔSmix 为合金体系的混合熵,ci 是第 i 个组分的摩尔含量,Tm为元素熔点。

  • 由吉布斯自由能公式可知,高的混合熵会抑制金属间化合物的形成,而要想达到这一目的,参数 必须大于 1。

  • 同时,根据 Hume-Ruthery 规则,原子尺寸差(δ) 在固溶体形成中也起重要作用,参数 δ 表征原子尺寸失配,产生局部弹性应变,决定体系拓扑不稳定性[1619],对于 HEAs 系统,δ 可表示为:

  • δ-=in ci1-γiin ciγi2
    (5)
  • 式中,ci 是第 i 个组分的摩尔含量;γi为元素的原子半径。

  • 对于高熵合金体系,通常,当满足 >1.1 且 δ<6.5 %,或 δ<6.5 %,−15 kJ / mol< ΔHmix < 5 kJ / mol 且 12 J /(K · mol)< ΔSmix < 17.5 J /(K·mol)时易形成固溶体相[17],虽然ΔSmix、 ΔHmixδ 可以预测固溶体的形成,但不能有效地确定这些随机固溶体的确切晶体结构,如 BCC 或者 FCC

  • 因此,GUO 等[20]从电子结构的角度出发,提出以价电子浓度(VEC)来预测 HEAs 的相稳定性, VEC 越低,主元之间“引力”越弱,原子排列趋于松散,BCC 相稳定,反之 FCC 相稳定[320],对于 HEAs 系统,VEC 可表示为:

  • VEC=in ci(VEC)i
    (6)
  • 式中,ci 为第 i 个组分的摩尔含量,VECi为第 i 个元素的 VEC

  • 考虑到熔覆过程中粉末的烧损和基体的稀释问题,制备的 AlCrFeMnNi 涂层的热力学参数的计算,基于表1 所示的实际元素组成,原子相关参数列于表2 中,涉及的元素之间的原子对的 Miedema 模型计算的混合焓列于表3 中。将根据式(2)~(5) 计算得到的 AlCrFeMnNi 涂层及粉末的热力学参数结果列于表4。计算结果表明,AlCrFeMnNi 粉末的热力学参数在固溶体形成范围内,同时 VEC 值偏低,这意味着 AlCrFeMnNi 粉末是以 BCC 结构为主的固溶体结构,这一结果与图1 所示结果相吻合。而 AlCrFeMnNi 涂层由基体稀释作用导致其混合熵降低,但在高温作用下混合熵的作用大于混合焓 (=2.44),并且涂层 VEC 值仍然处于较低水平,因此制备的 AlCrFeMnNi 涂层很有可能保持以 BCC 结构为主体的固溶体结构。

  • 表1 AlCrFeMnNi 涂层成分

  • Table1 Composition of AlCrFeMnNi coating

  • 表2 元素原子信息

  • Table2 Element atomic information

  • 表3 元素之间原子对的 Miedema 模型计算的焓值(kJ / mol)

  • Table3 Enthalpy calculated by Miedema model of atomic pairs between elements (kJ / mol)

  • 表4 热力学参数的计算结果

  • Table4 Calculation results of thermodynamic parameters

  • 2.2 高熵合金涂层的成分与相结构

  • 图2 给出 AlCrFeMnNi 涂层的 XRD 图谱,并将 AlCrFeMnNi 涂层图谱与 Fe (标准卡片 PDF#85-1410)进行比对。可以看出,涂层为简单 BCC 相结构,符合热力学参数计算结果的预期。虽然 AlCrFeMnNi 涂层的主要成分很多,但 BCC 结构的相组成非常简单,是多组分 HEAs 的典型相结构。

  • 图2 AlCrFeMnNi 涂层的 XRD 图谱

  • Fig.2 XRD pattern of AlCrFeMnNi coating

  • 在涂层形成过程中,除了在熔覆过程中“熵” 作用外,元素之间较正的混合焓令涂层各元素分布更加“随机”。分布混乱的元素及组元原子半径的差异增大了 AlCrFeMnNi 涂层凝固时的固液界面能,降低界面的迁移速率,抑制了金属原子的长距离扩散,同时等离子熔覆处理期间的高冷却速率,导致金属间化合物生长速率降低,因而促进固溶体的形成[21-23]

  • 从图2 中得知,在熔覆过程中 AlCrFeMnNi 涂层发生了明显的择优取向现象:(110)晶面衍射峰的强度远高于(200)晶面的衍射峰,这是表面能和应变能相协调的结果[12]。高熵合金涂层严重的晶格畸变以及等离子熔覆技术的快速冷却引起的热应力,导致 AlCrFeMnNi 涂层中产生较大的应变能,而 BCC 结构中(110)晶面表面能最低,能够调节涂层过高的应变能,因此在熔覆过程中 AlCrFeMnNi 涂层择优取向(110)晶面。

  • 在 XRD 图案中,峰的总增宽(βT)是由于微晶尺寸引起的增宽(βD)和微应变引起的增宽(βε) 的综合效应,如下所示:

  • βT=βD+βε
    (7)
  • 根据 Scherer 方程,可知:

  • βD=KλDcosθ
    (8)
  • 式中,K 是形状因子,λ = 0.154 06 nm 是 X 射线源的波长,D 是微晶尺寸,θ 是峰值位置。

  • 同理,由微应变导致的 XRD 峰加宽显示为:

  • βε=4εtanθ
    (9)
  • 式中,ε 为应变,θ 为峰值位置。根据 Williamson-Hall (W-H)作图法,式(7)~(9)可以表示为:

  • βTcosθ=ε(4sinθ)+KλD
    (10)
  • 式中,ε 是直线的斜率,将涂层的 Williamson-Hall (W-H)线性拟合图列于图3,从图3 中线性拟合的斜率得到应变(ε)的值为 0.008 49,高于 ZHANG 等[24]通过激光熔覆制备的 CoCrFeNiSi 涂层,这意味着本研究制备的涂层具有更高的晶格畸变。

  • 图3 威廉姆森-霍尔(W-H)线性拟合图

  • Fig.3 Williamson-Hall (W-H) liner fitting graph.

  • 2.3 涂层的微观结构

  • 由于基体的熔化,在 AlCrFeMnNi 涂层和基体之间有一个稀释区,如图4 所示。其基体熔深约 1.25 mm,涂层高度约 2.25 mm。在涂层熔覆中,稀释率(FD)被定义为由基体熔化贡献的表面层总体积的百分比,可利用基底熔深和涂层高度进行表示[25]

  • FD=hh+H
    (11)
  • 式中,h 为基体熔深,H 为涂层高度,计算其稀释率为 35.7 %。

  • 图4 试样横截面 SEM 图

  • Fig.4 SEM diagram of sample cross-section

  • 图5 展示了 AlCrFeMnNi 涂层金相组织和 EDS 结果,如图5a 所示,涂层组织致密、连续,未发现气孔和裂纹等缺陷,涂层与基体呈现明显的冶金结合,生成典型的柱状枝晶,生长方向垂直于界面。

  • 图5 AlCrFeMnNi 涂层的横截面微观结构和 EDS 结果

  • Fig.5 Cross-sectional microstructure and EDS results of AlCrFeMnNi coating

  • 在凝固过程中,固液界面附近熔体内的 G(温度梯度)与 R(凝固速率)之比决定凝固组织的结晶形态,G / R 的数值由高到低对应的结晶组织为柱状晶、树枝晶、等轴晶。涂层底部,固液界面处 R 趋近于零,G 最大,G / R 值很大。受 G 的主要影响,与最大温度梯度相平行的晶粒优先生长,从而形成垂直基体的柱状晶[26-28],凝固示意图如图6[12];在涂层底部柱状晶内观察到羽毛状枝晶,如图5c 所示,图5d 的 EDS 分析结果表明,这种特殊的羽毛形态是由 Fe 元素富集导致的[29]

  • 涂层中上部出现粗大的等轴晶,如图5a,这是成分过冷被抑制的结果[30]:随着 G 减小,温度梯度作用减弱,同时在成分过冷的影响下,会促使涂层组织由柱状晶向树枝晶及等轴晶转变[29]。但由于基体的稀释作用大量 Fe 元素从基体进入涂层,如图5b,过高的 Fe 元素减少了成分过冷的范围,抑制了树枝晶的生成[30],最终使得涂层形成粗大的等轴晶。

  • 图6 涂层凝固示意图

  • Fig.6 Schematic diagram of coating solidification.

  • 图7 显示了等离子熔覆 AlCrFeMnNi 涂层的表面微观结构和相应的 EDS 元素分布图。可以看出,表面同样形成了等轴晶组织,并有少量的羽毛状组织,相应的 EDS 图表明 AlCrFeMnNi 涂层的元素均匀分布在组织中。

  • 图7 AlCrFeMnNi 涂层的表面微观结构图像(A)和相应的 Ni(B)、Fe(C)、Cr(D)、Al(E)、Mn(F)的 EDS 元素分布图

  • Fig.7 Surface microstructure image of AlCrFeMnNi coating (A) and the corresponding EDS element distribution of Ni (B) , Fe (C) , Cr (D) , Al (E) and Mn (F)

  • 2.4 涂层的硬度

  • 图8 为 AlCrFeMnNi 涂层硬度变化曲线,从图中可以看出,涂层硬度高于基体,涂层平均硬度为 411.6 HV0.5,是基体硬度的 2 倍以上,并且通过等离子熔覆工艺制备出的 AlCrFeMnNi 涂层的硬度,高于通过电弧熔炼和铸造工艺制备的 AlCrFeMnNi 涂层[31]。AlCrFeMnNi 涂层的高硬度得益于高熵合金固有的强烈固溶强化效应和晶格畸变效应,同时等离子熔覆急速冷却的凝固过程也会对涂层硬度有积极影响。

  • 图8 AlCrFeMnNi 涂层硬度变化曲线

  • Fig.8 Hardness change curve of AlCrFeMnNi coating

  • 高熵合金原子的随机无序占位,使得周围异类原子出现的概率大幅度增加,同时大原子半径的元素(Al)会增加涂层的弹性模量和晶格畸变,使高熵合金的固溶强化和晶格畸变更加强烈[32];而晶格畸变产生的内应力和系统中大原子半径的元素(Al) 会阻碍位错的运动,使得高熵合金表现出优异的硬度[1732-34]。此外,通过图2 可知,AlCrFeMnNi 涂层结构以 BCC 结构占主导,以螺位错为主的 BCC 结构,在形变时可提供更大的晶格阻力。同时 AlCrFeMnNi 涂层以(110)晶面为主要晶面,BCC 结构中(110)晶面原子面网密度低,这意味着该类晶面间距更小和晶格摩擦更大,晶面滑动更加困难,涂层的硬度更强[34]。等离子熔覆技术高的冷却速率有利于提高涂层各组元间的溶解度,达到增强固溶强化效果[2233],进一步强化涂层。

  • 2.5 涂层腐蚀行为分析

  • 图9 显示了 AlCrFeMnNi 涂层与基体的在 3.5 wt.%NaCl 溶液中得到的 Tafel 曲线,由曲线可以看出 AlCrFeMnNi 涂层的阳极曲线为近钝化状态。这表明 AlCrFeMnNi 涂层形成了薄且相对致密的钝化膜,并且钝化膜的形成和溶解保持着动态平衡。利用 Gamry Echem Analyst 软件对 Tafel 曲线拟合得到腐蚀参数。从图中得知涂层的自腐蚀电位高,自腐蚀电流密度小,腐蚀速率更低,表明涂层比基体的整体抗腐蚀能力好[35-37]

  • 图9 基体与涂层的极化曲线

  • Fig.9 Polarization curves of substrate and coating

  • 为进一步验证涂层的耐腐蚀性,利用电化学阻抗谱(EIS)方法进行验证,并在 3.5 wt.%NaCl 溶液中对 AlCrFeMnNi 涂层和基体进行 72 h 的浸泡试验。

  • AlCrFeMnNi 涂层与基体的 Nyquist 图如图10 所示,二者曲线呈现相似的轮廓。这表明所有样品表面上发生的电化学行为相似,但涂层半圆的半径明显大于基体,这意味着涂层的耐腐蚀性优于基体,与极化曲线的结果一致[1435]

  • 图10 基体与涂层的奈奎斯特图

  • Fig.10 Nyquist diagram of substrate and coating

  • 图11 显示了 AlCrFeMnNi 涂层与基体在 3.5 wt.%NaCl 溶液中浸泡 72 h 前后的表面相貌,图11c、11d 显示了基体浸泡前后的表面形貌,可看到基体表面组织被严重破坏,部分组织难以识别;相比来说涂层的组织几乎不变,表现出优秀的耐腐蚀性。这可归因于涂层中高含量的 Ni、Cr、Al 元素与氧元素发生反应生成致密的钝化膜,提高了涂层的耐腐蚀性[35-37]

  • 图11 AlCrFeMnNi 涂层与 E32 钢基体在 3.5 wt.%NaCl 溶液中浸泡 72h 前后的表面相貌

  • Fig.11 Surface appearance of AlCrFeMnNi coating and E32 steel matrix before and after soaking in 3.5 wt.%NaCl solution for 72 h

  • 为了进一步探索涂层的耐腐蚀机理,对经过浸泡试验后的涂层表面进行 XPS 测试,图12 显示了浸泡腐蚀后涂层表面的 Cr 2p、Al2p、Fe2p、C 1s、 Ni2p、Mn 2p 和 O 1s 的 XPS 高分辨率光谱,各金属元素以金属单质和对相应的价态金属存在,C 1s 峰的出现是由XPS制备过程中样品不可避免的污染引起的。

  • 图12 在 3.5 wt.% NaCl 溶液中 AlCrFeMnNi 涂层的 XPS 光谱

  • Fig.12 XPS spectra of the AlCrFeMnNi coating in 3.5 wt.% NaCl solution

  • 在金属光谱中分为 0 价态金属和价态金属(图12),表明各金属元素在涂层腐蚀过程中形成金属氧化物或金属氢氧化物。腐蚀之后涂层中 Fe 含量大幅度降低(表5)而其他元素比重几乎不变,这是发生了 Fe 元素的选择性溶解。Fe 转化形成的 Fe3+稳定性更好,使得钝化后涂层表面更加稳定[37];Cr 伴随着 Fe 选择性溶解形成丰富的 Cr3+和 Cr6+,可进一步形成能够隔离电解质和氧的 Cr2O3 和具有修复钝化膜功能的 CrO3;Ni 可以调控 Fe 和 Cr 的整体溶解速率,调控钝化膜的损耗速率,同时 Ni、Al、Mn 形成的氧化物和氢氧化物可以参与钝化膜的形成,增加钝化膜的厚度与致密度[37-38]

  • 表5 AlCrFeMnNi 涂层腐蚀前后成分变化(at.%)

  • Table5 Changes of composition of AlCrFeMnNi coating before and after corrosion (at. %)

  • O 1s 中 O2− 物质由 Al、Mn、Cr、Ni 和 Fe 氧化物组成。OH 则证明在钝化膜中形成金属氢氧化物 [如 Cr(OH)3 等],但金属氢氧化物致密性低于金属氧化物,结构松散的金属氢氧化物更容易令原子溶解[39],但从腐蚀后的成分来看,除了 Fe 元素损失较大外,其余元素百分比几乎不变甚至还略微增大,这有可能是金属氢氧化物在中性环境中形成结构更加致密的金属氧化物,阻碍了 Cl-对金属的腐蚀,其反应方程式如下[3739]

  • MMx++xe-Cl-Mx++xH2OM (OH) x+xH+M (OH) xMOx2+x2H2OM=Al, Ni, Mn, Cr, Fe

  • O 1s 光谱的第三个峰表明钝化膜中存在结合水(H2O)。结合水可将溶解的金属离子重新组装起来,形成一层新的薄膜以防止进一步的腐蚀[37]

  • 金属的耐腐蚀性高度依赖于溶液中形成的钝化膜的组成和结构,如图12所示,涂层在3.5 wt.%NaCl 溶液中形成的钝化膜的主要成分是金属氧化物和氢氧化物,至少有 3 种机制影响涂层钝化膜的形成:首先钝化过程中 Fe 的选择性溶解,使 Cr 的衍生物在钝化膜中富集,同时均匀的元素分布会生成均匀的钝化膜,减少元素损耗;金属元素转变形成的金属氧化物和氢氧化物是组成钝化膜的主要成分,并且金属氧化物占主要作用(氢氧化物是中间产物,氧化物是最终产物);结合水是构建新一层钝化膜的重要构成部分。

  • 3 结论

  • (1)采用等离子熔覆技术制备了良好冶金结合、无裂纹的 AlCrFeMnNi 高熵合金涂层,基体的稀释作用使得涂层形成粗大的等轴晶组织。

  • (2)AlCrFeMnNi 涂层表现出比基体更高的硬度和更优异的耐腐蚀性,均匀分布的元素使涂层产生更高的硬度,并且在 3.5 wt.%NaCl 溶液腐蚀环境下涂层生成的致密均匀的钝化膜,有利于提高涂层的耐蚀性。

  • (3)所得结果可为无 Co 系高熵涂层发展提供一定的技术支持,但是基体的稀释作用对涂层的影响仍需要进一步探索。

  • 参考文献

    • [1] YEH Jienwei.Alloy dsign strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.

    • [2] CANTOR Brian.Multicomponent and high entropy alloys[J].Entropy,2014,16(9):4749-4768.

    • [3] 秦刚.高熵合金价电子浓度与组织性能的相关性[D].哈尔滨:哈尔滨工业大学,2020.QIN Gang.Correlation between valence electron concentration and microstructure and properties of high entropy alloys[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [4] FU Yu,LI J,LUO H,et al.Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J].Journal of Materials Science & Technology,2021,80:217-233.

    • [5] OTTO Frederik,DLOUHý A,SOMSEN C,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013,61(15):5743-5755.

    • [6] MOGHADDAM Ahmadostovari,SHABUROVA Nataliyaa,SAMODUROVA Mariann,et al.Additive manufacturing of high entropy alloys:A practical review[J].Journal of Materials Science & Technology,2021,77:131-162.

    • [7] KUMAR Jitesh,LINDA Albert,SADHASIVAM M,et al.The effect of Al addition on solid solution strengthening in CoCrFeMnNi:Experiment and modelling[J].Acta Materialia,2022,238:118208.

    • [8] ASTAFUROVA Elena,MELNIKOV Evgenii,ASTAFUROV Sergey,et al.A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal-mechanical treatments[J].Materials Letters,2021,285:129073.

    • [9] SHIM Sanghun,MOON Jongun,POURALIAKBAR Hesam,et al.Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures[J].Journal of Alloys and Compounds,2022,897:163217.

    • [10] XU Zhenlin,ZHANG Hui,DU Xiaojie,et al.Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J].Corrosion Science,2020,177:108954.

    • [11] 时运,杜晓东,庄鹏程,等.等离子熔覆技术的研究现状及展望[J].表面技术,2019,48(12):23-33.SHI Yun,DU Xiaodong,ZHUANG Pengcheng,et al.Research status and prospect of plasma cladding technology[J].Surface Technology,2019,48(12):23-33.(in Chinese)

    • [12] 魏民,万强,李晓峰,等.熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响[J].表面技术,2019,48(6):138-143.WEI Min,WAN Qiang,LI Xiaofeng,et al.Effect of cladding current on microstructure and properties of FeCoCrNiMn high entropy alloy coating[J].Surface Technology,2019,48(6):138-143.(in Chinese)

    • [13] WANG Jiying,ZHANG Baosen,YU Yaqiu,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.

    • [14] YE Fuxing,JIAO Zhipeng,YAN Shuai,et al.Microbeam plasma arc remanufacturing:effects of Al on microstructure,wear resistance,corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J].Vacuum,2020,174:109178.

    • [15] 颜雪,徐健晏,管相合,等.等离子体控制优化激光烧结 Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)高熵合金涂层的组织与性能[J].中国有色金属学报,2023,33(1):168-188.YAN Xue,XU Jianyan,GUAN Xianghe,et al.Plasma control optimization of the microstructure of laser sintered Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)high entropy alloy coating[J].Transactions of Nonferrous Metals Society of China,2023,33(1):168-188.(in Chinese)

    • [16] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [17] 张勇,陈明彪,杨潇,等.高熵合金先进技术[M].北京:化学工业出版社,2018.ZHANG Yong,CHEN Mingbiao,YANG Xiao,et al.Advanced technology of high entropy alloy[M].Beijing:Chemical Industry Press,2018.(in Chinese)

    • [18] 刘囝.CrFeNiSiAlx 系高熵合金力学性能的第一性原理计算研究[D].阜新:辽宁工程技术大学,2021.LIU Jian.First-principles calculation of mechanical properties of CrFeNiSiAlx high entropy alloys[D].Fuxin:Liaoning Technical University,2021.(in Chinese)

    • [19] CANTOR B.Multicomponent high-entropy Cantor alloys[J].Progress in Materials Science,2021,120:100754.

    • [20] GUO Sheng,NG Chun,LU Jian,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J].Journal of Applied Physics,2011,109(10):103505.

    • [21] 沙明红.CoCrFeNi-M 高熵合金的制备、结构及性能研究[D].鞍山:辽宁科技大学,2021.SHA Minghong.Preparation structure and properties of CoCrFeNi-M high entropy alloy[D].Aushan:University of Science and Technology Liaoning,2021.(in Chinese)

    • [22] ZHANG Ying,HAN Tengfei,XIAO Meng,et al.Effect of iron content on microstructure and properties of FexNi2Co2CrTiNb high-entropy alloy coating[J].Optik,2020,204:164168.

    • [23] 王锦铭.合金凝固过程固-液界面能表征及微观组织数值模拟[D].济南:山东大学,2021.WANG Jinming.Characterization of solid-liquid interface energy and numerical simulation of microstructure during solidification of alloy[D].Jinan:Shandong University,2021.(in Chinese)

    • [24] ZHANG Shiyi,HAN Bin,LI Meiyan,et al.Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating[J].Surface and Coatings Technology,2021,417:127218.

    • [25] WEN Xin,CUI Xiufang,JIN Guo,et al.Design and characterization of FeCrCoAlMn0.5Mo0.1 highentropy alloy coating by ultrasonic assisted laser cladding[J].Journal of Alloys and Compounds,2020,835:155449.

    • [26] 张松,吴臣亮,伊俊振,等.FexCoCrAlCu/Q235 激光合金化层组织及性能研究[J].中国激光,2014,41(8):103-107.ZHANG Song,WU chenliang,YI junzhen,et al.Study on microstructure and properties of FexCoCrAlCu/Q235 laser alloying layer[J].China laser,2014,41(8):103-107.(in Chinese)

    • [27] OLIVEIRA J P,CURADO T M,ZENG Z,et al.Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy[J].Materials & Design,2020,189:108505.

    • [28] 张保森,程江波,徐滨士.等离子熔覆(CuCoCrFeNi)(95)B5 高熵合金涂层研究[J].稀有金属材料与工程,2014,43(5):1128-1132.ZHANG Baosen,CHENG Jiangbo,XU Binshi.Study on high entropy alloy coating of(CuCoCrFeNi)(95)B5[J].Rare Metal Materials and Engineering,2014,43(5):1128-1132.(in Chinese)

    • [29] FAN Qingkai,CHEN Chao,FAN Chenglei,et al.Effect of high Fe content on the microstructure,mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding[J].Surface and Coatings Technology,2021,418:127242.

    • [30] EMAMIAN Ali,CORBIN Stephen F,KHAJEPOUR Amir.The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding[J].Surface and Coatings Technology,2011,206(1):124-131.

    • [31] MASEMOLA Khumo,POPOOLA Patricia,MALATJI Nicholus.The effect of annealing temperature on the microstructure,mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic high entropy alloy[J].Journal of Materials Research and Technology,2020,9(3):5241-5251.

    • [32] WANG Zhipeng,FANG Qihong,LI Jia,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys[J].Journal of Materials Science & Technology,2018,34(2):349-354.

    • [33] ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.

    • [34] TUNG Chungchin,YEH Jienwei,SHUN Taotsung,et al.On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J].Materials Letters,2007,61(1):1-5.

    • [35] JIANG Y Q,LI J,JUAN Y F,et al.Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J].Journal of Alloys and Compounds,2019,775:1-14.

    • [36] YE Qingfeng,FENG Kai,LI Zhuguo,et al.Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J].Applied Surface Science,2017,396:1420-1426.

    • [37] CUI Chen,WU Meiping,MIAO Xiaojin,et al.Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding[J].Journal of Alloys and Compounds,2022,890:161826.

    • [38] LUO Hong,LI Zhiming,MINGERS Andream,et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J].Corrosion Science,2018,134:131-139.

    • [39] RUI He,MEIPING Wu,CHEN Cui,et al.Effects of laser energy density on microstructure and corrosion resistance of FeCrNiMnAl high entropy alloy coating[J].Optics & Laser Technology,2022,152:108188.

  • 参考文献

    • [1] YEH Jienwei.Alloy dsign strategies and future trends in high-entropy alloys[J].Jom,2013,65(12):1759-1771.

    • [2] CANTOR Brian.Multicomponent and high entropy alloys[J].Entropy,2014,16(9):4749-4768.

    • [3] 秦刚.高熵合金价电子浓度与组织性能的相关性[D].哈尔滨:哈尔滨工业大学,2020.QIN Gang.Correlation between valence electron concentration and microstructure and properties of high entropy alloys[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [4] FU Yu,LI J,LUO H,et al.Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J].Journal of Materials Science & Technology,2021,80:217-233.

    • [5] OTTO Frederik,DLOUHý A,SOMSEN C,et al.The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J].Acta Materialia,2013,61(15):5743-5755.

    • [6] MOGHADDAM Ahmadostovari,SHABUROVA Nataliyaa,SAMODUROVA Mariann,et al.Additive manufacturing of high entropy alloys:A practical review[J].Journal of Materials Science & Technology,2021,77:131-162.

    • [7] KUMAR Jitesh,LINDA Albert,SADHASIVAM M,et al.The effect of Al addition on solid solution strengthening in CoCrFeMnNi:Experiment and modelling[J].Acta Materialia,2022,238:118208.

    • [8] ASTAFUROVA Elena,MELNIKOV Evgenii,ASTAFUROV Sergey,et al.A comparative study of a solid solution hardening in carbon-alloyed FeMnCrNiCo0.95C0.05 high-entropy alloy subjected to different thermal-mechanical treatments[J].Materials Letters,2021,285:129073.

    • [9] SHIM Sanghun,MOON Jongun,POURALIAKBAR Hesam,et al.Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures[J].Journal of Alloys and Compounds,2022,897:163217.

    • [10] XU Zhenlin,ZHANG Hui,DU Xiaojie,et al.Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing[J].Corrosion Science,2020,177:108954.

    • [11] 时运,杜晓东,庄鹏程,等.等离子熔覆技术的研究现状及展望[J].表面技术,2019,48(12):23-33.SHI Yun,DU Xiaodong,ZHUANG Pengcheng,et al.Research status and prospect of plasma cladding technology[J].Surface Technology,2019,48(12):23-33.(in Chinese)

    • [12] 魏民,万强,李晓峰,等.熔覆电流对FeCoCrNiMn高熵合金涂层组织与性能的影响[J].表面技术,2019,48(6):138-143.WEI Min,WAN Qiang,LI Xiaofeng,et al.Effect of cladding current on microstructure and properties of FeCoCrNiMn high entropy alloy coating[J].Surface Technology,2019,48(6):138-143.(in Chinese)

    • [13] WANG Jiying,ZHANG Baosen,YU Yaqiu,et al.Study of high temperature friction and wear performance of(CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding[J].Surface and Coatings Technology,2020,384:125337.

    • [14] YE Fuxing,JIAO Zhipeng,YAN Shuai,et al.Microbeam plasma arc remanufacturing:effects of Al on microstructure,wear resistance,corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J].Vacuum,2020,174:109178.

    • [15] 颜雪,徐健晏,管相合,等.等离子体控制优化激光烧结 Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)高熵合金涂层的组织与性能[J].中国有色金属学报,2023,33(1):168-188.YAN Xue,XU Jianyan,GUAN Xianghe,et al.Plasma control optimization of the microstructure of laser sintered Ni(30)Cr(25)Al(15)Co(15)Mo(5)Ti(5)Y(5)high entropy alloy coating[J].Transactions of Nonferrous Metals Society of China,2023,33(1):168-188.(in Chinese)

    • [16] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [17] 张勇,陈明彪,杨潇,等.高熵合金先进技术[M].北京:化学工业出版社,2018.ZHANG Yong,CHEN Mingbiao,YANG Xiao,et al.Advanced technology of high entropy alloy[M].Beijing:Chemical Industry Press,2018.(in Chinese)

    • [18] 刘囝.CrFeNiSiAlx 系高熵合金力学性能的第一性原理计算研究[D].阜新:辽宁工程技术大学,2021.LIU Jian.First-principles calculation of mechanical properties of CrFeNiSiAlx high entropy alloys[D].Fuxin:Liaoning Technical University,2021.(in Chinese)

    • [19] CANTOR B.Multicomponent high-entropy Cantor alloys[J].Progress in Materials Science,2021,120:100754.

    • [20] GUO Sheng,NG Chun,LU Jian,et al.Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J].Journal of Applied Physics,2011,109(10):103505.

    • [21] 沙明红.CoCrFeNi-M 高熵合金的制备、结构及性能研究[D].鞍山:辽宁科技大学,2021.SHA Minghong.Preparation structure and properties of CoCrFeNi-M high entropy alloy[D].Aushan:University of Science and Technology Liaoning,2021.(in Chinese)

    • [22] ZHANG Ying,HAN Tengfei,XIAO Meng,et al.Effect of iron content on microstructure and properties of FexNi2Co2CrTiNb high-entropy alloy coating[J].Optik,2020,204:164168.

    • [23] 王锦铭.合金凝固过程固-液界面能表征及微观组织数值模拟[D].济南:山东大学,2021.WANG Jinming.Characterization of solid-liquid interface energy and numerical simulation of microstructure during solidification of alloy[D].Jinan:Shandong University,2021.(in Chinese)

    • [24] ZHANG Shiyi,HAN Bin,LI Meiyan,et al.Microstructure and high temperature erosion behavior of laser cladded CoCrFeNiSi high entropy alloy coating[J].Surface and Coatings Technology,2021,417:127218.

    • [25] WEN Xin,CUI Xiufang,JIN Guo,et al.Design and characterization of FeCrCoAlMn0.5Mo0.1 highentropy alloy coating by ultrasonic assisted laser cladding[J].Journal of Alloys and Compounds,2020,835:155449.

    • [26] 张松,吴臣亮,伊俊振,等.FexCoCrAlCu/Q235 激光合金化层组织及性能研究[J].中国激光,2014,41(8):103-107.ZHANG Song,WU chenliang,YI junzhen,et al.Study on microstructure and properties of FexCoCrAlCu/Q235 laser alloying layer[J].China laser,2014,41(8):103-107.(in Chinese)

    • [27] OLIVEIRA J P,CURADO T M,ZENG Z,et al.Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy[J].Materials & Design,2020,189:108505.

    • [28] 张保森,程江波,徐滨士.等离子熔覆(CuCoCrFeNi)(95)B5 高熵合金涂层研究[J].稀有金属材料与工程,2014,43(5):1128-1132.ZHANG Baosen,CHENG Jiangbo,XU Binshi.Study on high entropy alloy coating of(CuCoCrFeNi)(95)B5[J].Rare Metal Materials and Engineering,2014,43(5):1128-1132.(in Chinese)

    • [29] FAN Qingkai,CHEN Chao,FAN Chenglei,et al.Effect of high Fe content on the microstructure,mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding[J].Surface and Coatings Technology,2021,418:127242.

    • [30] EMAMIAN Ali,CORBIN Stephen F,KHAJEPOUR Amir.The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding[J].Surface and Coatings Technology,2011,206(1):124-131.

    • [31] MASEMOLA Khumo,POPOOLA Patricia,MALATJI Nicholus.The effect of annealing temperature on the microstructure,mechanical and electrochemical properties of arc-melted AlCrFeMnNi equi-atomic high entropy alloy[J].Journal of Materials Research and Technology,2020,9(3):5241-5251.

    • [32] WANG Zhipeng,FANG Qihong,LI Jia,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys[J].Journal of Materials Science & Technology,2018,34(2):349-354.

    • [33] ZHANG Mina,ZHOU Xianglin,YU Xiangnan,et al.Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J].Surface and Coatings Technology,2017,311:321-329.

    • [34] TUNG Chungchin,YEH Jienwei,SHUN Taotsung,et al.On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J].Materials Letters,2007,61(1):1-5.

    • [35] JIANG Y Q,LI J,JUAN Y F,et al.Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J].Journal of Alloys and Compounds,2019,775:1-14.

    • [36] YE Qingfeng,FENG Kai,LI Zhuguo,et al.Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating[J].Applied Surface Science,2017,396:1420-1426.

    • [37] CUI Chen,WU Meiping,MIAO Xiaojin,et al.Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding[J].Journal of Alloys and Compounds,2022,890:161826.

    • [38] LUO Hong,LI Zhiming,MINGERS Andream,et al.Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution[J].Corrosion Science,2018,134:131-139.

    • [39] RUI He,MEIPING Wu,CHEN Cui,et al.Effects of laser energy density on microstructure and corrosion resistance of FeCrNiMnAl high entropy alloy coating[J].Optics & Laser Technology,2022,152:108188.

  • 手机扫一扫看