en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韦峥,男,1998年出生。主要研究方向为等离子喷涂热障涂层热循环寿命的调控。E-mail:983095445@qq.com;

刘长波,男,1986年出生,博士,助理教授。主要研究方向为柔性光电子材料与器件。E-mail:liuchb@buaa.edu.cn

通讯作者:

雒晓涛,男,1986年出生,博士,教授,博士研究生导师。主要研究方向为热喷涂、冷喷涂表面涂层技术与增材制造。E-mail:luoxiaotao@mail.xjtu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20220926001

参考文献 1
蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Current situation and development trend of heavy-duty gas turbine [J].Chinese Journal of Electrical Engineering,2014,34(29):5096-5102.(in Chinese)
参考文献 2
周益春,杨丽,刘志远,等.涡轮叶片热障涂层隔热效果的研究进展[J].中国材料进展,2020,39(10):707-722,738.ZHOU Yichun,YANG Li,LIU Zhiyuan,et al.Research progress on insulation performance of thermal barrier coatings on turbine blade[J].Materials China,2020,39(10):707-722,738.(in Chinese)
参考文献 3
WANG Z,KULKAMI A,DESHPANDE S,et al.Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J].Acta Materialia,2003,51(18):5319-5334.
参考文献 4
PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gasturbine engine applications[J].Science,2002,296(5566):280-284.
参考文献 5
赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)
参考文献 6
程玉贤,王璐,袁福河.航空发动机涡轮叶片热障涂层应用的关键技术和问题[J].航空制造技术,2017,60(15):28-34.CHENG Yuxian,WANG Lu,YUAN Fuhe.Key technologies and problems of thermal barrier coating application on aeroengine turbine vane and blade[J].Aeronautical Manufacturing Technology,2017,60(15):28-34.(in Chinese)
参考文献 7
LI C J,LI Y,YANG G J,et al.Evolution of lamellar interface cracks during isothermal cyclic test of plasma-sprayed 8YSZ coating with a columnar-structured YSZ interlayer[J].Journal of Thermal Spray Technology,2013,22(8):1374-1382.
参考文献 8
宋佳楠,李少林,齐红宇,等.热障涂层失效行为与寿命预测研究进展[J].航空制造技术,2019,62(3):34-40.SONG Jianan,LI Shaolin,QI Hongyu,et al.Research on failure behavior and life prediction of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2019,62(3):34-40.(in Chinese)
参考文献 9
SHALAKA V S,EDWARD J,GILDERSLEEVE V.Segmentation crack formation dynamics during air plasma spraying of zirconia[J].Acta Materialia,2020,183:196-206
参考文献 10
俞泽新,于景业,吴良敏,等.无冷却喷涂工艺对其制备的热障涂层的裂纹系统和寿命的影响[J].焊接学报,2016,37(10):55-58.YU Zexin,YU Jingye,WU Liangmin,et al.Effect of thermal spraying parameters on cracking and thermal cycling life of thermal barrier coatings[J].Transactions of the China Welding Institution,2016,37(10):55-58.(in Chinese)
参考文献 11
凌锡祥,王玉璋,王星,等.层状热障涂层孔隙微结构对其隔热性能影响的数值研究[J].中国有色金属学报,2015,25(2):408-414.LING Xixiang,WANG Yuzhang,WANG Xing,et al.Numerical study on the influence of pore microstructure on thermal insulation properties[J].Chinese Journal of Nonferrous Metals,2015,25(2):408-414.(in Chinese)
参考文献 12
AHMADLAN S,JORDAN E H.Explanation of the effect of rapid cycling on oxidation,rumpling,microcracking and lifetime of air plasma sprayed thermal barrier coatings[J].Surface and Coating Technology,2014,244(15):109-116.
参考文献 13
DONG H,YANG G J,LI C X,et al.Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs[J].Journal of the American Ceramic Society,2014,97(4):1226-1232.
参考文献 14
李勇.热障涂层组织结构的控制及其对热震寿命的影响[D].西安:西安交通大学,2010.LI Yong.Controlling of the microstructure of thermal barrier coatings and its influences on the thermal cyclic lifetime[D].Xi’ an:Xi’ an Jiaotong University,2010.(in Chinese)
参考文献 15
张强.冷喷涂热障涂层MCrAlY高温合金结合层高温氧化行为的研究[D].西安:西安交通大学,2009.ZHANG Qiang.Study on oxidation behavior of cold-sprayed MCrAlY superalloy bond coating for thermal barrier coatings[D].Xi’ an:Xi’ an Jiaotong University,2009.(in Chinese)
参考文献 16
李美栓,辛丽,余家康,等.喇曼光谱方法测量金属表面氧化膜的残余应力[J].中国腐蚀与防护学报,1999(3):185-188.LI Meishuan,XIN Li,YU Jiakang,et al.Measurements of residual stress in oxide scales by Raman spectroscopy[J].Journal of Chinese Society for Corrosion and Protection,1999,19(3):185-188.(in Chinese)
参考文献 17
刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wenxiong,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Composites Nondestructive Testing Technology,2016(4):43-47.(in Chinese)
参考文献 18
EVANS A G,MUMM D R,HUTCHINSON J W,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505-553.
参考文献 19
董会.等离子喷涂热障涂层热循环寿命与裂纹扩展行为的研究[D].西安:西安交通大学,2015.DONG Hui.Study on thermal cycle life and crack propagation behavior of plasma coating[D].Xi’ an:Xi’ an Jiaotong University,2015.(in Chinese)
参考文献 20
DONG H,LI Changjiu,YANG G J,et al.Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal-cycling[J].Ceramics-International,2015,41(3):3481-3489.
参考文献 21
LI C J,DONG H,DING H,et al.The correlation of the TBC lifetimes in burner cycling test with thermal gradient and furnace isothermal cycling test by TGO effects[J].Journal of Thermal Spray Technology,2017,26(3):378-387.
目录contents

    摘要

    热障涂层在服役过程中相邻区域脱粘裂纹的扩展合并是造成陶瓷层最终剥落的重要原因,然而缺乏简单有效的无损测试方法。提出利用空腔高热阻在陶瓷层表面局部热积累,形成表面亮斑的特点,通过亮斑反向跟踪脱粘缺陷的新方法。结果表明,在界面处制备水溶性盐斑,继续喷涂陶瓷层后用水浴溶解的方式可在 YSZ 与金属粘结层界面有效预制特定外形与尺寸的人造脱粘裂纹缺陷;预制脱粘裂纹与表面高温亮斑尺寸呈正相关,且近似呈现为比例系数为 1.031 的线性关系,当预制裂纹直径大于 0.4 mm 时,可在涂层表面观测到亮斑,当预制裂纹直径大于 0.7 mm 时,用亮斑尺寸预测裂纹尺寸的相对误差低于 15%;在梯度热冲击循环下,热障涂层随热冲击次数的增加,表面首先出现亮斑,随后亮斑长大、合并,在 2500 次左右热循环时合并速度加快,最终陶瓷层在亮斑处局部剥落。基于脱粘裂纹对于纵向热流的阻碍作用,提出一种人造脱粘裂纹缺陷的预制方法,并确立一种通过测量表面亮斑尺寸估计内部裂纹尺寸的热障涂层无损测量方法。解决了热障涂层高温缺陷难以实时观测的问题,并进一步研究了其高温演变规律,可为热障涂层的寿命预测提供数据支持。

    Abstract

    Air-plasma-sprayed(APS) thermal barrier coatings(TBCs) are widely used for heat insulation in gas turbines. As reported by many studies in this field, the lifetime of as-sprayed coatings is one of the most concerning issues. The failure of the coatings is related to the formation and propagation of internal cracks. Effective nondestructive methods for characterizing and measuring the defects inside the coating may help establish theories for predicting the service life of TBCs, which are in great demand. However, current testing methods for detecting such defects are limited by the specimen and test environment requirements. The thermal resistance of the crack area perpendicular to the coating increases significantly because of the air in the debonding crack after the ceramic layer of the thermal barrier coating is locally delaminated with the metallic bond coat. According to our previous study, high thermal resistance in the vertical direction of the delamination crack area generated an increased local temperature on the corresponding surface of the ceramic layer and formed bright spots. In this study, we propose heating the ceramic layer surface of the thermal barrier coating with a flame and tracking the debonding defects by the bright spots on the coating surface. The experimental procedure is divided into three steps. First, by preparing salt spots on top of the bond coatings using flame spraying(FS) and resolving them in a water bath after spraying the ceramic layer, an effective method for internal defect prefabrication was established. Second, artificial defects between the ceramic and metallic bond coats of different sizes were fabricated through the FS process and observed using thermal imaging equipment to determine the lower limit of the debonding crack size observable based on the bright spot method. Finally, the evolution of the artificial debonding defects in a gradient thermal shock cycle was investigated. The results show that artificial delamination crack defects with specific shapes and sizes can be prefabricated at the interface between the YSZ and metal bonding layer by preparing water-soluble salt spots at the metallic-bond coating interface, flame-spraying through a mask, preparing the ceramic layer, and dissolving the salt spots with water. It was found that the surface bright spot size was linearly and positively correlated to the delamination crack size, with a slope of approximately 1.031. When the diameter of the preformed crack exceeded 0.4 mm, bright spots were observed on the coating surface. When the diameter of the preformed crack exceeded 0.7 mm, the relative error of predicting the crack size based on the bright spot size was less than 15%. Under gradient thermal shock cycling, with an increase in thermal shock time, the surface of the thermal barrier coating with a specific thermal growth oxide layer thickness first appeared as bright spots, and the bright spots grew and merged. After approximately 2500 thermal cycles, the merging speed increased, and finally, the ceramic layer locally peeled off at the bright spots. Based on the blocking effect of debonding cracks on the longitudinal heat flow, a prefabrication method for artificial debonding crack defects was proposed, and the corresponding relationship between the size of the bright spot on the surface and the size of the internal debonding crack defect was established. Based on the evolution of the size and shape of the bright spots on the surface, the propagation and merging behaviors of the debonding crack were revealed. An effective, nondestructive method for examining the details of internal cracks inside TBCs is established, which can fill the space for nondestructive testing of TBCs and help establish theories regarding TBC lifetimes.

  • 0 前言

  • 对更高转化效率的追求使得重型燃气轮机、航空发动机高温部件的服役环境温度不断提高,以重型燃气轮机为例,F 级重型燃气轮机的燃气初温为 1 400℃左右,单循环效率达到 38%,联合循环效率达到 57%;先进的 G / H / J 级燃气轮机燃气初温已经达到 1 500~1 600℃[1]。这对于材料的服役寿命提出了巨大考验。除了气膜冷却技术外,热障涂层 (TBCs)是降低高温合金部件温度,保证高温合金部件在高温下安全运行的重要技术手段[2-3]。目前工业应用的热障涂层主要包括金属粘结层、陶瓷隔热层,以及在服役过程中在金属粘结层表面形成的热生长氧化物层(TGO)三部分[4]。电子束物理气相沉积与大气等离子喷涂等不同工艺制备的热障涂层陶瓷层具有不同的显微结构特征[5-7],但其共同点在于,陶瓷层内部可形成横向裂纹与垂直裂纹。其中垂直裂纹有助于缓和由于受热变形而引起的横向热应变。大量的研究结果表明,对于热障涂层来说,在服役过程中 TGO 生长导致的横向裂纹的扩展、合并发生在陶瓷层内、陶瓷层与粘结层界面附近,是其失效的重要原因之一[8-15]。研究热障涂层失效过程,有助于掌握涂层失效机理,进而探寻延长涂层使用寿命的途径,同时有望实现热障涂层寿命的有效预测。现行的热障涂层无损检测技术主要包括 X 射线衍射法、荧光渗透检测法、超声波检测法、涡流检测法等[14-16]。其中 X 射线由于穿透能力有限,难以检测距表层 200 μm 左右的陶瓷-粘结层界面裂纹[16];荧光法是将渗透剂沿孔隙渗入样品内部,再用光源照射从而显化内部结构,其对于涂层等疏松结构适用性有限;超声波检测一般需将被测件浸入水中,在实际发动机部件的应用范围受限[17];涡流检测利用电磁感应现象,通过测量被测物体的感应量变化来进行检测,TBC 陶瓷材料的热阻较高,适用性不强[18]。热障涂层界面的脱粘裂纹充满空气,而空气的热阻远大于 YSZ 陶瓷,这导致有脱粘裂纹的区域垂直方向上热阻显著增加,在高温工作过程中,该区域处热量不断积累致使涂层表面相应区域温度升高,视觉观察时表现为局部的“亮斑”[19-21]。同时“亮斑”的大小与形状与下方的裂纹有一定的对应关系。然而热障涂层中自然形成的脱粘裂纹缺陷在梯度热冲击试验中表现出的亮斑尺寸和形状,依赖于脱粘裂纹缺陷本身尺寸且产生位置具有不确定性,不清楚可通过亮斑特征无损表征的脱粘裂纹缺陷下限,且难以对不同尺寸脱粘裂纹缺陷的扩展、合并演变规律进行考察。

  • 针对上述问题,本文首先采用超音速火焰喷涂、火焰喷涂、大气等离子喷涂等技术,在粘结层上预制氯化钠斑点,再沉积陶瓷层后在水中浸泡去除氯化钠,从而形成预置的脱粘缺陷,通过将表面亮斑尺寸与内部预置缺陷尺寸进行对比,建立二者之间的定量关系,从而提出基于表面高温亮斑的热障涂层内部裂纹无损检测技术。在此基础上,实现脱粘缺陷裂纹和其在热循环过程中的演变过程的定量表征。观察经历一定数量热循环测试后YSZ 表面亮斑的演变规律,有望对实际工况中热障涂层的循环寿命预测提供参考。

  • 1 试验准备

  • 1.1 试验概述

  • 首先,采用超音速火焰喷涂在高温合金基体表面制备 MCrAlY 粘结层。其次,如图1 所示,采用火焰喷涂(FS)结合具有不同直径圆孔的掩膜在金属粘结层表面制备不同尺寸的氯化钠斑点,随后采用大气等离子喷涂(APS)在整个试样表面分别制备两种厚度的 YSZ 陶瓷层,最后将制备的试样置于 80℃的水浴中,利用 YSZ 陶瓷层的多孔特性,溶解去除氯化钠,得到带人造脱粘裂纹缺陷的热障涂层。最后,进行梯度热冲击循环试验,以研究脱粘裂纹在热冲击循环条件下的扩展规律。

  • 图1 热障涂层内部预制裂纹示意图

  • Fig.1 Schematic diagram of internal pre-crack of thermal barrier coating

  • 1.2 试验材料

  • 带人造脱粘裂纹缺陷热障涂层制备过程中,选用φ 25.4 mm×3 mm 的镍基高温合金 Inconel738 (IN738)作为基体材料,以惰性气体气雾化方法制备的球形实心的 CoNiCrAlY 粉末(Praxair,Co210) 为粘结层原料,粘结层粉末化学成分(质量分数) 见表1。以空心团聚 8wt.%氧化钇稳定的氧化锆 (YSZ)粉末(Metco204B-NS,Sulzer Metco Inc.,New York,USA)为陶瓷层原料,粉末的粒径为 45~75 μm。

  • 表1 CoNiCrAlY 粉末化学成分(质量分数)

  • Table1 Chemical composition of CoNiCrAlY powder (wt.%)

  • 预制缺陷所用的氯化钠粉末需经过球磨制备,具体制备工艺如下:将工业氯化钠置于 80℃的烘箱中烘干 1 h 后,采用行星球磨机在转速为 180 r / min 的条件下球磨 0.5 h,然后,分别通过 150 目和 300 目筛子,筛取颗粒尺寸介于 50~100 μm 的粉末用于喷涂。

  • 1.3 带人造脱粘裂纹缺陷热障涂层制备

  • 首先,采用超音速火焰喷涂设备(HVOF,Praxair,JP8000),在高温合金基体上喷涂制备厚度约 150 μm 的热障涂层粘结层。喷涂参数见表2。

  • 表2 HVOF 喷涂参数

  • Table2 Deposition parameters of HVOF

  • 粘结层沉积完成后,为了验证表面亮斑尺寸与下方脱粘缺陷的对应关系,在粘结层上方采用 FS 制备厚度约 20 μm,直径 0.4、0.5、0.7、0.9、1.0、 1.2、1.6、2.1、2.7 及 4.0 mm 的氯化钠斑点。具体喷涂工艺参数见表3。

  • 表3 FS 喷涂参数

  • Table3 Deposition parameters of FS

  • 氯化钠斑点沉积完成后,采用 APS 制备厚度约为 250 μm 的 YSZ 层,喷涂参数见表4。

  • 表4 APS 喷涂参数

  • Table4 Deposition parameters of APS

  • 根据氯化钠易溶于水的特性,将制备的涂层在 60℃的自来水中浸泡 24 h,以溶解去除氯化钠到水中使得 YSZ 内部出现预置厚度的空隙。

  • 1.4 梯度热冲击循环试验

  • 采用梯度热循环试验机对上述方法制备的涂层进行热冲击试验,试验设备采用西安交通大学热喷涂实验室自主研制的梯度热循环系统。整个系统构成如图2 所示,主要包括加热装置、冷却装置、控制系统三部分。

  • 图2 梯度热循环系统

  • Fig.2 Gradient thermal cycling system

  • 试验采用氧气-丙烷火焰对 YSZ 涂层表面进行加热,同时采用压缩空气于基体侧进行冷却,随后用压缩空气同时对基体及 YSZ 表面进行冷却。试验过程中通过改变氧气与丙烷的比例及压缩空气流量,对试样表面温度及内部温度梯度进行调控。YSZ 表面温度采用波长为 1.6 μm 的比色测温仪 (E2RL-F2-L-0-0,Fluke Process Instruments)测定。热循环过程中采用数码相机记录高温过程中 YSZ 表面宏观特征,为避免预置裂纹扩展的影响,试样表面亮斑仅通过第一次热循环获取。单次热循环包括 2 min 加热和 2 min 冷却。经历 70 s 加热后 YSZ 表面温度约为 1 150℃(此时基体背面温度约为935℃),保温 50 s,随后经 120 s 冷却至 150℃ 以下。

  • 1.5 结果表征

  • 图3a 为利用 FLIR SC6X5 A615 型热像仪拍摄的试样处于梯度热循环高温阶段的红外照片,将其与图3b 摄像机拍摄的照片对比可以发现,红外照片中亮斑位置在相机照片中同样出现亮斑,如图中黑线所示,表明相应位置实际温度较周围区域更高。因此,后续试验中使用相机代替热像仪进行拍摄,尽可能靠近高温试样而不担心损坏,以获得更高分辨率的照片并提升工作效率。

  • 图3 用热像仪和数码相机拍摄的高温阶段试样照片

  • Fig.3 Photo of the specimen in high-temperature state shot by thermal image instrument (a) and digital camera (b)

  • 利用数码相机拍摄了相同时间间隔下涂层高温演变过程不同阶段的表面特征。同时,在一次热循环后,取每种预制裂纹尺寸的试样一个,进行金相制样,从而得到预制盐斑所在位置的截面形貌。为避免切割或磨抛过程中损伤涂层显微结构,在表征涂层微观形貌前,采用真空浸渗树脂方式对涂层浸渗使其内部孔隙结构固定。

  • 利用场发射扫描电子显微镜(SEM,MIRA 3 LMH,TESCAN,Czech Republic)对涂层的断面组织结构进行分析表征,并与数码相机照片进行对比,通过多个照片取样统计的方式确定平均裂纹尺寸,并建立表面亮斑与内部失效裂纹形貌、尺寸上的联系。进一步研究热障涂层高温热循环过程中内部失效裂纹的演变规律。

  • 2 结果与讨论

  • 2.1 涂层内部脱粘裂纹与表面亮斑的尺寸对应关系

  • 经历一次热循环不同尺寸预制裂纹试样沿脱粘裂纹缺陷直径方向切割后的抛光断面结构如图4 所示,通过预制水溶性盐斑的方法可制备的脱粘裂纹直径介于 0.4~4.0 mm,最终获得的脱粘裂纹缺陷直径与掩膜孔的直径相差范围在 12%以内,该结果表明利用掩膜沉积水溶性盐斑的方法可精确控制最终预制脱粘裂纹缺陷的尺寸。为了验证利用高温亮斑对内部裂纹进行等效替代方法的可行性,进一步对制备的不同尺度脱粘裂纹热障涂层进行梯度热循环试验,并利用相机对表面亮斑进行观测。首次梯度热循环过程中,具有不同尺度脱粘裂纹缺陷的热障涂层表面亮斑特征如图5 所示。

  • 图4 首次热循环后不同尺寸预制裂纹试样断面形貌

  • Fig.4 Cross-sections of specimens with different sizes of delaminated cracks after the first thermal cycle

  • 可以发现,在本文涉及的脱粘裂纹缺陷尺寸范围内,均可在陶瓷层表面观察到亮斑。这一结果表明,利用常规数码相机可用亮斑来观测的最小尺寸脱粘裂纹缺陷不大于 0.4 mm。为了进一步建立脱粘裂纹与 YSZ 层表面的定量关系,采用 Photoshop 软件中自带的“色调分离”功能,对数码相机拍摄的亮斑照片进行分析处理,取色调的中间值所在位置作为亮斑边缘,从而根据试样的实际尺寸计算出亮斑尺寸。由于观测仪器自身的分辨率限制,当亮斑尺寸过小时会出现测不准的情况。因此,试验过程中能准确检测的最小亮斑尺寸是一个重要参数。因此,对各试样预制裂纹处断面进行观察,测量脱粘裂纹尺寸 Sc,并与相应的表面亮斑尺寸 Ss进行对比,二者差值随脱粘裂纹尺寸的变化规律如图6 所示。当脱粘裂纹尺寸较小时,亮斑尺寸不能够直接反应出脱粘裂纹缺陷的尺寸,比如裂纹长度为 0.4 mm 时,与试验测得的亮斑尺寸差值达到 50%,随着裂纹尺寸的增加,相对误差降低,当裂纹长度为 0.7 mm 时误差降低至 15%以下。这里的误差来源一方面是样品的切割过程,另一方面是数码相机自身分辨率的限制。本文认为当误差小于 15%时裂纹尺寸可以准确统计,因此,在本次试验条件下能够准确反映裂纹尺寸的最小亮斑尺寸约为 0.7 mm。在试验过程中使用分辨率更高的数码相机,可以有效降低能够准确测量的最小裂纹尺寸。

  • 图5 首次热循环中不同尺寸预制裂纹试样高温区域照片

  • Fig.5 High-temperature regions of specimens with different sizes of delaminating cracks during the first thermal cycle

  • 图6 预制脱粘裂纹尺寸与相应亮斑尺寸差值随裂纹尺寸变化规律

  • Fig.6 Difference between the bright spots with different sizes and their crack counterparts

  • 上述结果表明,对于亮斑尺寸大于 0.7 mm 的试样来说,不同试样内部的预制裂纹尺寸与高温加热过程中表面亮斑尺寸相对差异较小。为了进一步明确表面亮斑与内部脱粘缺陷的形状、尺寸关系,选取一次循环后预制裂纹尺寸 0.7 mm 以上的试样进行统计学分析。分别计算不同预制裂纹试样经一次热循环后的内部脱粘裂纹尺寸平均值与表面高温区域亮斑尺寸平均值。如图7 所示,可以发现,涂层表面的亮斑尺寸与界面脱粘裂纹缺陷尺寸呈近似正相关的关系且比例系数近似为 1,可以认为二者近似相等。至此,本文验证了热障涂层热循环过程中内部脱粘缺陷的无损检测方法的可行性,建立了内部脱粘缺陷与表面高温亮斑尺寸之间的定量关系。

  • 图7 内部裂纹尺寸与表面亮斑尺寸的关系

  • Fig.7 Relationship between the delaminating cracks and their bright spot counterparts

  • 2.2 脱粘裂纹缺陷的演变规律

  • 由上节结果可知,在热障涂层高温热循环过程中,内部缺陷会导致涂层表面局部区域温度较其他区域升高而产生“亮斑”,其具体尺寸与相应的内部缺陷尺寸基本相等。因此,可以将亮斑尺寸视为内部缺陷尺寸。为了进一步研究给定脱粘裂纹缺陷的随梯度热冲击循环次数的演变规律,在粘结层与 YSZ 层预制了直径为 2.5 mm 的脱粘裂纹缺陷,测试了试样在单次 70 s 加热后,保温 50 s,随后经 120 s 冷却至 150℃以下条件下的在 4 000 次热冲击循环下的扩展规律。预制裂纹尺寸为 2.5 mm 的试样在不同热循环周次亮斑演变规律如图8 所示。

  • 图8 脱粘裂纹 2.5 mm 热障涂层高温热循环的演变过程

  • Fig.8 Evolution of thermal barrier coating with a2.5 mm-size delaminating crack under high temperature thermal cycling

  • 从图8 中可以发现,随着热循环过程的进行,除原本的预制裂纹所对应的亮斑以外,试样表面逐渐出现大量小尺寸亮斑,如黑色箭头所指。随后,相邻的小尺寸亮斑不断扩展、连接,最终形成大尺寸亮斑,当循环次数达到 4 000 次时,亮斑相应位置的陶瓷层失效剥落。为了进一步探究高温热循环过程中试样表面亮斑与内部裂纹的对应关系,分别对经历 1 次、2 000 次、4 000 次热循环的试样进行切割,相应试样的高温阶段表面照片与显微组织如图9 所示,切割位置如图中虚线所示。

  • 图9 热循环过程中试样表面(左)与内部裂纹(右)的对应关系

  • Fig.9 Corresponding relationship between the surface bright spots (left) during high temperature and the cross-sectional cracks (right)

  • 从图9 中可以看出,经历一次热循环的试样表面仅出现一个形状规整的圆形亮斑,其尺寸与内部预制裂纹尺寸相当;经历 2 000 次热循环后,亮斑尺寸仍与内部裂纹尺寸相当,约为 3 mm,且二者均较初始预制裂纹尺寸有所增加。经历 4 000 次热循环后,试样局部区域出现裂纹合并导致陶瓷层剥落,相应区域的大小仍与横截面观察到的裂纹尺寸相符。由此可见,不论对于预制裂纹状态的试样,或是热循环过程中的试样,其表面亮斑均能较好地反映内部裂纹的分布情况和尺寸大小。

  • 由于初始脱粘裂纹缺陷的尺寸为 2.5 mm,远大于 0.7 mm,因此可用表面亮斑尺寸的变化表征界面脱粘缺陷的演变规律,结果如图10 所示。

  • 图10 裂纹尺寸与热循环次数的关系

  • Fig.10 Relationship between the crack size and the thermal cycle number

  • 结果表明,热循环初期,随着循环次数的增加,裂纹尺寸增速较慢,在 2 000 次前除原有的 2.5 mm 直径预制裂纹所对应亮斑外并未出现其他较大的亮斑,相应地裂纹尺寸并未发生显著增长。这可能是因为裂纹合并初期相互接触,合并的裂纹数量较少。而热循环后期,YSZ 表面亮斑出现快速增大的现象,表明裂纹的尺寸生长速率出现明显加快,这说明涂层内部发生接触及合并的裂纹数量增加,其原因可能为在热循环过程中热应力的不断累积[12]

  • 结果也表明,不仅可采用梯度热冲击试验条件下,热障涂层 YSZ 陶瓷层表面是否产生亮斑与亮斑尺寸来定量检测新品热障涂层与服役一段时间后热障涂层有无脱粘裂纹缺陷,还可获得脱粘裂纹缺陷的精确尺寸。可进一步基于特定尺寸裂纹缺陷演变的规律,实现带脱粘裂纹缺陷热障涂层的寿命预测。

  • 3 结论

  • 通过在热障涂层金属粘结层与陶瓷层界面预制特定尺寸的人造缺陷,研究预制界面脱粘缺陷与梯度热冲击试验中涂层表面亮斑的尺寸对应关系,梯度热循环过程中特定尺寸的人造界面脱粘裂纹的扩展及合并行为。

  • (1)提出通过火焰喷涂及水浴溶解在 YSZ 与金属粘结层界面来有效预制特定外形与尺寸的人造脱粘裂纹缺陷的有效方法。

  • (2)确立预制脱粘裂纹与表面高温亮斑尺寸的线性正相关关系,进一步提出通过观察表面亮斑对高温裂纹的无损测量的精确方法,在裂纹尺寸大于 0.7 mm 时误差小于 15%。

  • (3)热循环过程中裂纹的扩展、合并导致 TBC 失效,且循环后期合并速度加快。阐明高温工况下的热障涂层内部裂纹演变规律,可为热障涂层的寿命预测打下基础。

  • 参考文献

    • [1] 蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Current situation and development trend of heavy-duty gas turbine [J].Chinese Journal of Electrical Engineering,2014,34(29):5096-5102.(in Chinese)

    • [2] 周益春,杨丽,刘志远,等.涡轮叶片热障涂层隔热效果的研究进展[J].中国材料进展,2020,39(10):707-722,738.ZHOU Yichun,YANG Li,LIU Zhiyuan,et al.Research progress on insulation performance of thermal barrier coatings on turbine blade[J].Materials China,2020,39(10):707-722,738.(in Chinese)

    • [3] WANG Z,KULKAMI A,DESHPANDE S,et al.Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J].Acta Materialia,2003,51(18):5319-5334.

    • [4] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gasturbine engine applications[J].Science,2002,296(5566):280-284.

    • [5] 赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)

    • [6] 程玉贤,王璐,袁福河.航空发动机涡轮叶片热障涂层应用的关键技术和问题[J].航空制造技术,2017,60(15):28-34.CHENG Yuxian,WANG Lu,YUAN Fuhe.Key technologies and problems of thermal barrier coating application on aeroengine turbine vane and blade[J].Aeronautical Manufacturing Technology,2017,60(15):28-34.(in Chinese)

    • [7] LI C J,LI Y,YANG G J,et al.Evolution of lamellar interface cracks during isothermal cyclic test of plasma-sprayed 8YSZ coating with a columnar-structured YSZ interlayer[J].Journal of Thermal Spray Technology,2013,22(8):1374-1382.

    • [8] 宋佳楠,李少林,齐红宇,等.热障涂层失效行为与寿命预测研究进展[J].航空制造技术,2019,62(3):34-40.SONG Jianan,LI Shaolin,QI Hongyu,et al.Research on failure behavior and life prediction of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2019,62(3):34-40.(in Chinese)

    • [9] SHALAKA V S,EDWARD J,GILDERSLEEVE V.Segmentation crack formation dynamics during air plasma spraying of zirconia[J].Acta Materialia,2020,183:196-206

    • [10] 俞泽新,于景业,吴良敏,等.无冷却喷涂工艺对其制备的热障涂层的裂纹系统和寿命的影响[J].焊接学报,2016,37(10):55-58.YU Zexin,YU Jingye,WU Liangmin,et al.Effect of thermal spraying parameters on cracking and thermal cycling life of thermal barrier coatings[J].Transactions of the China Welding Institution,2016,37(10):55-58.(in Chinese)

    • [11] 凌锡祥,王玉璋,王星,等.层状热障涂层孔隙微结构对其隔热性能影响的数值研究[J].中国有色金属学报,2015,25(2):408-414.LING Xixiang,WANG Yuzhang,WANG Xing,et al.Numerical study on the influence of pore microstructure on thermal insulation properties[J].Chinese Journal of Nonferrous Metals,2015,25(2):408-414.(in Chinese)

    • [12] AHMADLAN S,JORDAN E H.Explanation of the effect of rapid cycling on oxidation,rumpling,microcracking and lifetime of air plasma sprayed thermal barrier coatings[J].Surface and Coating Technology,2014,244(15):109-116.

    • [13] DONG H,YANG G J,LI C X,et al.Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs[J].Journal of the American Ceramic Society,2014,97(4):1226-1232.

    • [14] 李勇.热障涂层组织结构的控制及其对热震寿命的影响[D].西安:西安交通大学,2010.LI Yong.Controlling of the microstructure of thermal barrier coatings and its influences on the thermal cyclic lifetime[D].Xi’ an:Xi’ an Jiaotong University,2010.(in Chinese)

    • [15] 张强.冷喷涂热障涂层MCrAlY高温合金结合层高温氧化行为的研究[D].西安:西安交通大学,2009.ZHANG Qiang.Study on oxidation behavior of cold-sprayed MCrAlY superalloy bond coating for thermal barrier coatings[D].Xi’ an:Xi’ an Jiaotong University,2009.(in Chinese)

    • [16] 李美栓,辛丽,余家康,等.喇曼光谱方法测量金属表面氧化膜的残余应力[J].中国腐蚀与防护学报,1999(3):185-188.LI Meishuan,XIN Li,YU Jiakang,et al.Measurements of residual stress in oxide scales by Raman spectroscopy[J].Journal of Chinese Society for Corrosion and Protection,1999,19(3):185-188.(in Chinese)

    • [17] 刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wenxiong,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Composites Nondestructive Testing Technology,2016(4):43-47.(in Chinese)

    • [18] EVANS A G,MUMM D R,HUTCHINSON J W,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505-553.

    • [19] 董会.等离子喷涂热障涂层热循环寿命与裂纹扩展行为的研究[D].西安:西安交通大学,2015.DONG Hui.Study on thermal cycle life and crack propagation behavior of plasma coating[D].Xi’ an:Xi’ an Jiaotong University,2015.(in Chinese)

    • [20] DONG H,LI Changjiu,YANG G J,et al.Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal-cycling[J].Ceramics-International,2015,41(3):3481-3489.

    • [21] LI C J,DONG H,DING H,et al.The correlation of the TBC lifetimes in burner cycling test with thermal gradient and furnace isothermal cycling test by TGO effects[J].Journal of Thermal Spray Technology,2017,26(3):378-387.

  • 参考文献

    • [1] 蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.JIANG Hongde,REN Jing,LI Xueying,et al.Current situation and development trend of heavy-duty gas turbine [J].Chinese Journal of Electrical Engineering,2014,34(29):5096-5102.(in Chinese)

    • [2] 周益春,杨丽,刘志远,等.涡轮叶片热障涂层隔热效果的研究进展[J].中国材料进展,2020,39(10):707-722,738.ZHOU Yichun,YANG Li,LIU Zhiyuan,et al.Research progress on insulation performance of thermal barrier coatings on turbine blade[J].Materials China,2020,39(10):707-722,738.(in Chinese)

    • [3] WANG Z,KULKAMI A,DESHPANDE S,et al.Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J].Acta Materialia,2003,51(18):5319-5334.

    • [4] PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gasturbine engine applications[J].Science,2002,296(5566):280-284.

    • [5] 赵荻,安宇龙,赵晓琴,等.不同厚度8YSZ热障涂层的结构及性能表征[J].表面技术,2020,49(1):276-284.ZHAO Di,AN Yulong,ZHAO Xiaoqin,et al.Structure and properties of 8YSZ thermal barrier coatings with different thickness[J].Surface Technology,2020,49(1):276-284.(in Chinese)

    • [6] 程玉贤,王璐,袁福河.航空发动机涡轮叶片热障涂层应用的关键技术和问题[J].航空制造技术,2017,60(15):28-34.CHENG Yuxian,WANG Lu,YUAN Fuhe.Key technologies and problems of thermal barrier coating application on aeroengine turbine vane and blade[J].Aeronautical Manufacturing Technology,2017,60(15):28-34.(in Chinese)

    • [7] LI C J,LI Y,YANG G J,et al.Evolution of lamellar interface cracks during isothermal cyclic test of plasma-sprayed 8YSZ coating with a columnar-structured YSZ interlayer[J].Journal of Thermal Spray Technology,2013,22(8):1374-1382.

    • [8] 宋佳楠,李少林,齐红宇,等.热障涂层失效行为与寿命预测研究进展[J].航空制造技术,2019,62(3):34-40.SONG Jianan,LI Shaolin,QI Hongyu,et al.Research on failure behavior and life prediction of thermal barrier coatings[J].Aeronautical Manufacturing Technology,2019,62(3):34-40.(in Chinese)

    • [9] SHALAKA V S,EDWARD J,GILDERSLEEVE V.Segmentation crack formation dynamics during air plasma spraying of zirconia[J].Acta Materialia,2020,183:196-206

    • [10] 俞泽新,于景业,吴良敏,等.无冷却喷涂工艺对其制备的热障涂层的裂纹系统和寿命的影响[J].焊接学报,2016,37(10):55-58.YU Zexin,YU Jingye,WU Liangmin,et al.Effect of thermal spraying parameters on cracking and thermal cycling life of thermal barrier coatings[J].Transactions of the China Welding Institution,2016,37(10):55-58.(in Chinese)

    • [11] 凌锡祥,王玉璋,王星,等.层状热障涂层孔隙微结构对其隔热性能影响的数值研究[J].中国有色金属学报,2015,25(2):408-414.LING Xixiang,WANG Yuzhang,WANG Xing,et al.Numerical study on the influence of pore microstructure on thermal insulation properties[J].Chinese Journal of Nonferrous Metals,2015,25(2):408-414.(in Chinese)

    • [12] AHMADLAN S,JORDAN E H.Explanation of the effect of rapid cycling on oxidation,rumpling,microcracking and lifetime of air plasma sprayed thermal barrier coatings[J].Surface and Coating Technology,2014,244(15):109-116.

    • [13] DONG H,YANG G J,LI C X,et al.Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs[J].Journal of the American Ceramic Society,2014,97(4):1226-1232.

    • [14] 李勇.热障涂层组织结构的控制及其对热震寿命的影响[D].西安:西安交通大学,2010.LI Yong.Controlling of the microstructure of thermal barrier coatings and its influences on the thermal cyclic lifetime[D].Xi’ an:Xi’ an Jiaotong University,2010.(in Chinese)

    • [15] 张强.冷喷涂热障涂层MCrAlY高温合金结合层高温氧化行为的研究[D].西安:西安交通大学,2009.ZHANG Qiang.Study on oxidation behavior of cold-sprayed MCrAlY superalloy bond coating for thermal barrier coatings[D].Xi’ an:Xi’ an Jiaotong University,2009.(in Chinese)

    • [16] 李美栓,辛丽,余家康,等.喇曼光谱方法测量金属表面氧化膜的残余应力[J].中国腐蚀与防护学报,1999(3):185-188.LI Meishuan,XIN Li,YU Jiakang,et al.Measurements of residual stress in oxide scales by Raman spectroscopy[J].Journal of Chinese Society for Corrosion and Protection,1999,19(3):185-188.(in Chinese)

    • [17] 刘战伟,朱文颖,石文雄,等.热障涂层无损检测技术进展[J].航空制造技术,2016(4):43-47.LIU Zhanwei,ZHU Wenying,SHI Wenxiong,et al.Progress in the nondestructive testing of thermal barrier coatings[J].Composites Nondestructive Testing Technology,2016(4):43-47.(in Chinese)

    • [18] EVANS A G,MUMM D R,HUTCHINSON J W,et al.Mechanisms controlling the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46(5):505-553.

    • [19] 董会.等离子喷涂热障涂层热循环寿命与裂纹扩展行为的研究[D].西安:西安交通大学,2015.DONG Hui.Study on thermal cycle life and crack propagation behavior of plasma coating[D].Xi’ an:Xi’ an Jiaotong University,2015.(in Chinese)

    • [20] DONG H,LI Changjiu,YANG G J,et al.Propagation feature of cracks in plasma-sprayed YSZ coatings under gradient thermal-cycling[J].Ceramics-International,2015,41(3):3481-3489.

    • [21] LI C J,DONG H,DING H,et al.The correlation of the TBC lifetimes in burner cycling test with thermal gradient and furnace isothermal cycling test by TGO effects[J].Journal of Thermal Spray Technology,2017,26(3):378-387.

  • 手机扫一扫看