en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

方修洋,男,1984年出生,博士,讲师,硕士研究生导师。主要研究方向机械装备表面强化技术及结构强度。E-mail:fangxiuyang@home.swjtu.edu.cn

通讯作者:

蔡振兵,男,1981年出生,博士,研究员,博士研究生导师。主要研究方向为摩擦学、表面工程和材料服役行为。E-mail:czb-jiaoda@126.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221004002

参考文献 1
ZHU J,YAN P,JIAO L,et al.Effect of cutting fluids on corrosion properties and turning surface quality of Fe-based superalloy[J].Advances in Mechanical Engineering,2017,11(9):1-9.
参考文献 2
BHATTI N A,WAHAB M A.Fretting fatigue crack nucleation:A review[J].Tribology International,2018(121):121-138.
参考文献 3
YU T D,FU G Z,YU Y Q,et al.Wear characteristics of the nuclear control rod drive mechanism(CRDM)movable latch serviced in high temperature water[J].Chinese Journal of Mechanical Engineering,2022,35(2):111-120.
参考文献 4
YANG Q,ZHOU W,ZHENG X,et al.Investigation of shot peening combined with plasma-sprayed CuNiIn coating on the fretting fatigue behavior of Ti-6Al-4V dovetail joint specimens[J].Surface and Coatings Technology,2019(358):833-842.
参考文献 5
陈寰,李春林,岳雅楠,等.锆合金表面Cr涂层在高温压缩下的界面开裂行为[J].中国表面工程,2022,4(35):30-40.CHEN Huan,LI Chunlin,YUE Yanan,et al.Interface cracking behavior of Cr coating on zirconium alloy under high temperature compression[J].China Surface Engineering,2022,4(35):30-40.(in Chinese)
参考文献 6
杨启.TC4 钛合金榫结构的微动疲劳损伤及喷丸防护机理研究[D].大连:大连理工大学,2019.YANG Qi.Investigation of fretting fatigue damage and shot-peening palliative mechanisms of TC4 alloy dovetail joints[D].Dalian:Dalian University of Technology,2019.(in Chinese)
参考文献 7
吴瑛,雷丽萍,曾攀.喷丸对H13钢单边带缺口试样疲劳裂纹扩展行为的影响[J].中国表面工程,2017,4(30):117-126.WU Ying,LEI Liping,ZENG Pan.Effect of shot peening on fatigue crack propagation behavior of single notched H13 steel specimens[J].China Surface Engineering,2017,4(30):117-126.(in Chinese)
参考文献 8
高国强,陈金祥,薛红前,等.7B50-T7751 铝合金喷丸强化表面形态衍化及其对疲劳性能的影响研究[J].中国表面工程,2022,4(35):187-195.GAO Guoqiang,CHEN Jinxiang,XUE Hongqian,et al.Surface morphology evolution together with its effect on fatigue properties in shot peening of aluminum alloy 7B50-T7751[J].China Surface Engineering,2022,4(35):187-195.(in Chinese)
参考文献 9
HAGER J C,SANDERS J,SHARMA S,et al.Gross slip fretting wear of CrCN,TiAlN,Ni,and CuNiIn coatings on Ti6Al4V interfaces[J].Wear,2007,1(263):430-443.
参考文献 10
MARY C,FOUVRY S,MARTIN J M,et al.High temperature fretting wear of a Ti alloy/CuNiIn contact[J].Surface and Coatings Technology,2008,5-7(203):691-698.
参考文献 11
LIU D X,ZHU X D,BIN T,et al.Fretting fatigue improvement of Ti6Al4V by coating and shot peening[J].Journal of Materials Sciences and Technology,2005,2(21):246-250.
参考文献 12
江庆红.喷丸处理对增材钛合金性能影响研究[D].哈尔滨:哈尔滨工业大学,2019.JIANG Qinghong.Effect of shot peening on properties of additive manufactured titanium alloy[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)
参考文献 13
FENG S,SONG J,LIU F,et al.Photocatalytic properties,mechanical strength and durability of TiO2/cement composites prepared by a spraying method for removal of organic pollutants[J].Chemosphere,2020(254):126813.
参考文献 14
MA A.The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying[J].Tribology International,2020(145):106156.
参考文献 15
RAJASEKARAN B,RAMAN S G S,JOSHI S V,et al.Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading[J].Materials Science and Engineering:A,2008,1-2(479):83-92.
参考文献 16
NIU Z,ZHOU W,WANG C,et al.Fretting wear mechanism of plasma-sprayed CuNiIn coating on Ti-6Al-4V substrate under plane/plane contact[J].Surface and Coatings Technology,2021(408):126794.
参考文献 17
DONG S,WANG Y,ZENG J,et al.Performance of plasma-sprayed CuNiIn coatings and Mo coatings subjected to fretting fatigue[J].Nano Materials Science,2020,2(2):140-150.
参考文献 18
杨红超,于洋,刘德林,等.喷丸对DD6单晶合金表层状态及低周疲劳性能的影响[J].失效分析与预防,2021,3(16):155-160,172.YANG Hongchao,YU Yang,LIU Delin,et al.Influence of shot peening on surface state and low-cycle fatigue performance of DD6 single crystal superalloy[J].Failure Analysis and Prevention,2021,3(16):155-160,172.(in Chinese)
参考文献 19
SOADY K A,MELLOR B G,WEST G D,et al.Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue[J].International Journal of Fatigue,2013(54):106-117.
参考文献 20
SUNDE S L,BERTO F,HAUGEN B.Predicting fretting fatigue in engineering design[J].International Journal of Fatigue,2018(117):314-326.
参考文献 21
SUN S Y,LI L,YUE Z F,et al.Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature[J].Tribology International,2020(142):105986.
参考文献 22
ZHANG P,LI S X,ZHANG Z F.General relationship between strength and hardness[J].Materials Science and Engineering:A,2011,1(529):62-73.
参考文献 23
WANG J,GAO Y,WEI X.Investigations of the effects of combination treatments on the fretting fatigue resistance of GH4169 superalloy at an elevated temperature[J].Surface and Coatings Technology,2021(426):127758.
目录contents

    摘要

    汽轮机叶片榫结构接触部位易发生微动疲劳失效,但行业内仍缺乏有效解决措施,因此开展了不同载荷下不同表面改性技术处理后 10705BX 铁基高温合金榫结构微动疲劳试验研究。分别对原始未处理(AS)、喷丸处理(SP)及喷丸与 CuNiIn 涂层复合处理(SC)的 10705BX 铁基高温合金榫结构试样的微动疲劳性能进行测试分析,在微动疲劳试验前后,对原始、喷丸处理及复合处理后的 10705BX 铁基高温合金的表截面形貌、断口形貌及力学性能进行表征分析。结果表明:原始、喷丸处理和复合处理试样表面粗糙度 Sa 分别为 0.08、3.38 和 13.65 μm。喷丸处理后表面硬度提高了 16%,加工硬化层深度约为 80 μm,微动疲劳寿命相较原始试样提高了 7.8 倍。复合处理的涂层平均厚度约为 50 μm,微动疲劳寿命相较原始试样提高了 4.2 倍,相比较喷丸处理来说,复合处理后材料的微动疲劳寿命提升较弱。原始、喷丸处理和复合处理试样的裂纹均为多疲劳源萌生,但是喷丸和复合处理后的裂纹源数量明显减少。喷丸处理和复合处理后裂纹的扩展速率均显著提高。喷丸后试样表层获得加工硬化层并且引入残余压应力,主要提升了裂纹萌生寿命。喷丸处理及喷丸与 CuNiIn 涂层复合处理方法有望成为提升汽轮机叶片服役寿命的重要备选途径。

    Abstract

    The 10705BX iron-based superalloy has the advantages of high yield strength, corrosion resistance, and oxidation resistance. It is widely used for manufacturing high-temperature components, such as turbine discs, blades, and fasteners. However, under actual working conditions, the tenon structure of a turbine is subjected to alternating cyclic loads, resulting in fretting fatigue cracks until failure, which eventually leads to accidents. Surface modification technology forms a work-hardening layer and introduces residual stress; thus, the fretting fatigue properties of materials can be improved using this method. To date, the fretting fatigue properties of 10705BX iron-based superalloys and related surface-strengthening techniques have not been reported. Fretting fatigue tests were performed on 10705BX iron-based superalloy tenon structures treated using different surface modification techniques under different loads to extend the service life of the turbine. The fretting fatigue tests were conducted using a high-frequency fatigue-testing machine. The specific test parameters were as follows: a peak load of 22 kN, stress ratio of 0.1, and frequency values of 128–138 Hz. The fretting fatigue properties of the 10705BX iron-based superalloy dovetail structure were compared after as-received (AS), shot peening (SP), and shot peening + coating composite treatments (SC), respectively. Subsequently, the surface and cross-sectional morphologies, fracture characteristics, and mechanical properties were analyzed. The results showed that the surface roughness Sa values of the AS, SP, and SC samples were 0.08, 3.38, and 13.65 μm, respectively. The surface hardness increased by 16.28% after SP. The hardened layer depth was approximately 80 μm. Based on the KAM chart of EBSD analysis, the stress in the 0–80 μm region from the surface depth of the sample after SP treatment was relatively high owing to the high residual compressive stress introduced by shot peening. The fretting fatigue lifetime after SP was 7.8 times longer than that of AS. The fretting fatigue lifetime after SC was 4.2 times longer than that after AS. The average coating thickness was approximately 50 μm. Compared to the SP treatment, the fretting fatigue life of the SC treatment was low. This was because, after the SC treatment, the hardness of the hardened layer below the coating decreased slightly, reducing the anti-fretting fatigue performance. During plasma-spraying CuNiIn coating, the thermal effect of thermal spraying can somewhat reduce the residual stress introduced by shot peening, reducing the anti-fretting fatigue property of the sample. However, because the CuNiIn coating was soft, it exhibited good fretting wear resistance. When subjected to cyclic loading, ductile deformation occurs easily, and it has a lubricating effect, reducing stress concentration, and improving fatigue life. The cracks in the AS, SP, and SC samples were initiated by multiple fatigue sources. However, the number of crack sources after SP and SC decreased significantly. The fretting fatigue fracture mechanism of 10705BX did not change after SP and SC treatments but expanded in the cleavage mode. However, the crack propagation rate increased. The fatigue band spacings in the rapid expansion zone of the AS, SP, and SC treatments were 0.39, 0.83, and 0.84 μm, respectively. An increase in the fatigue-band spacing indicates an increase in the crack growth rate. The crack initiation lifetime increased because of the formation of a hardened layer and the compressive residual stress after SP. SP and SC treatments are expected to be important alternative methods for extending the service life of turbine blades.

  • 0 前言

  • 10705BX 铁基高温合金具有高屈服强度、耐腐蚀、抗氧化等优点,广泛应用于汽轮机涡轮盘、叶片和紧固件等高温部件的制造[1]。然而,在实际工况下,汽轮机的榫结构承受循环的交变载荷,产生微动疲劳裂纹直至失效,最终导致事故的发生[2-3]。表面改性技术有形成加工硬化层和引入残余应力等效果,因此可以通过此方法来提升材料的微动疲劳性能。目前,国内外有关 10705BX 铁基高温合金微动疲劳性能及相关表面强化技术未见相关报道。

  • 已有的常见表面改性技术主要有等离子喷涂、喷丸、激光冲击强化、离子注入、气相沉积、复合表面处理等[4-5]。其中喷丸强化技术作为典型的强化手段,在工程领域内广泛使用。其主要原理为:在表面形成加工硬化层来增强抗微动磨损性能;引入表面残余压应力来抵消微动过程中的拉应力,阻碍裂纹的萌生和扩展[6]。吴瑛等[7]采用喷丸处理 H13 钢,发现喷丸处理后的试样表面存在 80 μm 的硬化层,引入了约 200 μm 深度的残余压应力层,峰值达到了 639.9 MPa。高国强等[8]研究了不同喷丸覆盖率作用下对 7B50-T7751 铝合金疲劳性能的影响,发现 100%覆盖率时残余应力层为 30 μm,峰值达到了 300 MPa,300%覆盖率时残余应力层为 50 μm,峰值达到了 345 MPa,600%覆盖率时残余应力层为 55 μm,峰值达到了 386 MPa。

  • CuNiIn 涂层具有良好的抗微动磨损性能、耐腐蚀性能和耐高温性能,是一种许多方面性能都十分优秀的软质涂层[9-10],相关研究较多,但是对其微动疲劳性能研究较少。LIU 等[11]研究了许多对微动疲劳性能有所影响的表面技术,其研究结果表明, CuNiIn 涂层可以减弱接触面应力集中,抵抗微动磨损,喷丸与 CuNiIn 涂层的复合处理对材料的微动疲劳性能提升效果较好。

  • 本文选用 10705BX 铁基高温合金作为研究对象,研究了喷丸强化和复合处理对 10705BX 高温合金榫试样表面完整性的影响规律。最后,在 16 kN 峰值载荷下对比了原始试样、喷丸试样和复合处理试样的微动疲劳寿命、裂纹扩展速率、断口形貌,为铁基高温合金表面防护提供试验数据和工艺参考。

  • 1 材料与方法

  • 1.1 试验材料

  • 试验选用 10705BX 铁基高温合金作为原始材料,其化学成分(质量分数)如表1 所示。锻造后的铁基高温合金进行了固溶、时效热处理。

  • 表1 10705BX 铁基高温合金的化学成分(质量分数)

  • Table1 Chemical composition of 10705BX iron-based superalloy (wt.%)

  • 1.2 试验方法

  • 榫试样和微动垫的几何尺寸如图1a 所示。在中机 GPS100 高频疲劳试验机上对原始试样、喷丸强化后试样和复合处理后试样进行微动疲劳试验。通过过渡配合将微动垫装配在微动垫夹具中,再将榫试样安装在夹具上,通过拉-拉载荷完全固定,如图1b 所示。同时将自主研制的裂纹监测系统的光学显微镜放置在榫试样一侧进行裂纹监测。具体试验参数为:峰值载荷为 22 kN,应力比为 0.1,频率为 128~138 Hz,试验温度为室温。

  • 将榫试样研磨抛光后,进行喷丸强化和复合处理,榫试样与微动垫接触的两个侧面作为加工面,喷丸和涂层的覆盖率为 100%,强化加工示意图如图2 所示。喷丸流程根据标准(SAE)-AMS-S-13165-1997 进行。复合处理过程为先喷丸,再喷砂,然后等离子喷涂 CuNiIn 涂层。

  • 图1 试样尺寸和微动疲劳示意图

  • Fig.1 Specimen Dimensions and Fretting Fatigue Schematic

  • 图2 强化加工示意图

  • Fig.2 Schematic diagram of strengthening processing

  • 1.3 结构表征及力学性能测试

  • 在微动疲劳试验前,为了得到试样表面形貌,使用白光干涉仪(SuperView W1,中图仪器,中国)。为了得到强化前后 10705BX 的物相组成,使用 X射线衍射仪(XRD,Empyrean,Panalytical,荷兰),选取 2θ 的范围为 20°~100°。为了得到强化前后硬度变化的结果,使用显微硬度计(KELITI-000ZB,科理特,中国),载荷 200 g,保压时间 15 s。为了对强化后表层微观组织进行分析,利用电子背散射衍射(EBSD,Nordly Max3,Oxford,英国)。在微动疲劳试验时,为了得到裂纹扩展数据,使用自建裂纹监测系统对微动疲劳裂纹扩展进行监测。在微动疲劳试验之后,为了得到试样的表面形貌、截面形貌和断口形貌,使用光学显微镜( OM, VHX-6000,Keyence,日本)和扫描电子显微镜 (SEM,Phenom Pro,飞纳,中国)。

  • 2 结果与讨论

  • 2.1 表截面形貌及显微硬度分析

  • 图3 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 高温合金试样的表面特征。三维形貌和二维轮廓反映出原始试样表面较为平整光滑,表面粗糙度 Sa 较小,为 0.08 μm;喷丸强化后,经过高速球形弹丸连续的冲击,试样表面发生了严重的塑性变形,形成大量的凹坑和凸起[12]Sa 增大至 3.38 μm;CuNiIn 涂层的 Sa 增大至 13.65 μm,如图3a、3b 所示。涂层具有较高的粗糙度的原因是:涂层中存在未熔融粉末颗粒以及喷雾动力学导致的粉末颗粒分布不均匀[13]。图3c 为通过 SEM 得到的 AS、 SP 和 SC 的表面形貌,可以看出 AS 表面存在大量加工痕迹,SP 表面变得光滑,是因为喷丸过程中弹丸冲击试样表面导致加工痕迹被压实。SC 表面为层状结构和孔洞缺陷。在喷涂过程中,CuNiIn 粉末颗粒飞行速度较低,有充足的时间与高温等离子体进行热量交换,进而导致 CuNiIn 颗粒发生熔化。熔融态的 CuNiIn 颗粒流动性较好,表面为层状堆叠结构,孔洞缺陷的存在是等离子喷涂制备涂层的固有特征[14-16]

  • 图3 原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 高温合金试样的表面特征

  • Fig.3 Surface characteristics of 10705BX superalloy specimens after as-received, shot-peening, shot-peening and CuNiIn Coating

  • 图4 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理试样的 XRD 图谱和喷丸前后(110)晶面衍射峰半高宽。CuNiIn 涂层具有 Cu0.81Ni0.19 衍射峰,喷丸后 10705BX 没有出现新的衍射峰,与基体一样呈现为 α-Fe 衍射峰,这说明喷丸后材料没有发生明显相变,如图4a 所示。喷丸会引入残余应力,并使表层晶粒细化,从而改变试样的表层结构,故喷丸后(110)晶面衍射峰出现了宽化效应[6],如图4b 所示。

  • 图4 原始、喷丸、喷丸与 CuNiIn 涂层复合处理试样的 XRD 图谱和喷丸前后(110)晶面衍射峰半高宽

  • Fig.4 XRD patterns of as-received, shot-peening, shot-peening and CuNiIn coating composite samples, and (110) crystal plane diffraction peak width at half maximum before and after shot-peening

  • 图5显示了喷丸与CuNiIn涂层复合处理的截面形貌和 EDS 元素映射分析。可以看出等离子喷涂的 CuNiIn涂层厚度在40~100 μm,平均厚度为50 μm,也可观察到层状结构和气孔缺陷,如图5a 所示。涂层含有 Cu、Ni、In 元素,证明此涂层为 CuNiIn 涂层,如图5b 所示。

  • 图5 喷丸与 CuNiIn 涂层复合处理的截面形貌和 EDS 元素映射分析

  • Fig.5 Cross-sectional morphology and EDS element mapping analysis of shot-peening and CuNiIn coating composite strengthening

  • 表2 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理后试样的表面显微硬度。喷丸可以在 10705BX 表面形成加工硬化层,提高表面硬度。原始试样的表面显微硬度为 301±1 HV0.2。喷丸后试样表面显微硬度增加到 151±6 HV0.2,提升了 16%。复合处理试样的表面为 CuNiIn 涂层,涂层的硬度为 164±12 HV0.2,这与DONG S等[17]的研究结果类似。尽管复合处理试样表面的 CuNiIn 涂层硬度远低于基体,但因为它是一种软质涂层,有良好的抗微动磨损性能,当其承受循环载荷时,易发生韧性变形,具有润滑效果,减小应力集中,提高疲劳寿命[15-16]

  • 表2 表面显微硬度(HV0.2

  • Table2 Surface microhardness (HV0.2)

  • 图6 为喷丸、喷丸与 CuNiIn 涂层复合处理后沿深度方向的显微硬度云图。使用显微硬度计,沿喷丸处理试样和复合处理试样的横截面深度方向进行显微硬度测试,测试深度为 0 μm 到 160 μm,每个深度相隔 50 μm 测 2 个点。可以看出,喷丸后形成的硬化层深度约为 80 μm。复合处理后涂层的平均厚度约为 50 μm,形成的硬化层深度约为 80 μm。但是深度为 40~70 μm 区域的硬度低于基体,这是因为涂层喷涂过程的热效应会造成喷丸层残余压应力的释放[14],破坏了喷丸产生的加工硬化层导致硬度降低,同时基材表面对涂层约束力不足也是导致硬度降低的原因。

  • 图6 喷丸、喷丸与 CuNiIn 涂层复合处理后沿深度方向的显微硬度云图

  • Fig.6 Microhardness cloud image along the depth direction after shot-peening, shot-peening and CuNiIn coating

  • 2.2 截面晶粒及塑性变形分析

  • 为了获取试样在不同处理工艺下沿试样深度方向晶粒及塑性变形行为,借助 EBSD 技术对试样截面形貌进行分析。图7 为喷丸后 10705BX 铁基高温合金沿截面深度方向的 IPF 图和 KAM 图。如图7a 所示,经喷丸处理后试样表面一定深度范围内材料晶粒位向分布发生了显著改变,可推断出喷丸后试样表层位错密度增大[18]。如图7b 所示,EBSD 分析的 KAM 图可以反映材料内部的塑形变形程度,图中绿色表示具有较高应力的局部位错,蓝色表示无应力的局部位错,可以观察到深度为 0~80 μm 的区域应力较高,这是因为喷丸引入了大量残余压应力,与硬度的结果相对应。基体部分也可观察到明显的绿色线条,这是因为回火马氏体材料内部存在一定的内在取向偏差[19]

  • 图7 喷丸后 10705BX 铁基高温合金沿截面深度方向的 IPF 图和 KAM 图

  • Fig.7 IPF map and KAM map of 10705BX iron-based superalloy after shot-peening along the depth direction of the section

  • 2.3 微动疲劳寿命、裂纹形貌和断口分析

  • 图8 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳寿命及裂纹形貌。在工程上,零件的疲劳寿命通常分为两部分:萌生寿命和扩展寿命。裂纹均萌生于试样接触表面,故表面改性对萌生寿命影响较大。裂纹的扩展区均为基体,所以在外载荷相同时,不同表面处理试样的扩展寿命理论上是近乎相同的,而扩展寿命为总寿命减去萌生寿命[20-21]。因此,当微动疲劳总寿命增加时,可以认为是萌生寿命增加,扩展寿命不变。喷丸处理和复合处理后,榫结构 10705BX 的微动疲劳寿命相比于原始试样分别提高了 7.8 倍和 4.2 倍,如图8 所示。这是因为喷丸形成了加工硬化层,提升了试样表层的硬度,导致材料的局部屈服极限得到了提升,还引入了残余压应力,抵消了所受的部分拉应力,提升了材料的微动疲劳性能[22]。喷丸处理和复合处理后试样的萌生寿命大幅提高,复合处理对 10705BX 微动疲劳性能的提升效果不及单独喷丸处理。这是因为复合处理后,涂层下面的硬化层表层的硬度会有一定程度的降低,导致抗微动疲劳性能的减弱。也有研究表明,等离子喷涂 CuNiIn 涂层时,热喷涂的热效应会在一定程度上减弱喷丸引入的残余应力,从而降低基体部分的抗微动疲劳性能[14]

  • 图8 原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳寿命及裂纹形貌

  • Fig.8 Fretting fatigue life and crack morphology of 10705BX iron-based superalloy treated with as-received, shot-peening, shot-peening and CuNiIn coating

  • 图9 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳裂纹的截面形貌和断口裂纹源。由于榫结构的特殊形状,在其接触前端区域易发生应力集中,故整个接触区域可分为严重磨损区和轻微磨损区,如图9a 所示。3 种工艺均为多疲劳源裂纹萌生,其中喷丸处理和复合处理后的裂纹源数量明显减少,如图9b 所示。

  • 图9 原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳裂纹的截面形貌和断口裂纹源

  • Fig.9 Cross-sectional morphologies and fracture sources of fretting fatigue cracks in 10705BX iron-based superalloy after as-received, shot-peening, shot-peening and CuNiIn coating composite strengthening

  • 图10 显示了原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳裂纹扩展速率和 5 mm 处疲劳条带。在试验过程中,测得喷丸和复合处理后裂纹扩展速率增加,如图10a 所示。疲劳条带的存在,证明喷丸处理和复合处理后 10705BX 的微动疲劳断裂机制没有发生变化,均以解理方式扩展。可用疲劳条带间的距离来表示单次循环裂纹扩展的速率,距离变大表明扩展速率加快[23]。原始、喷丸处理和复合处理试样快速扩展区的疲劳条带间距分别为 0.39、0.83 和 0.84 μm,疲劳条带间距的增加说明了裂纹扩展速率的加快,这与试验所得结果相吻合,如图10b 所示。

  • 图10 原始、喷丸、喷丸与 CuNiIn 涂层复合处理后 10705BX 铁基高温合金微动疲劳裂纹扩展速率和 5 mm 处疲劳条带

  • Fig.10 Fretting fatigue crack growth rate and fatigue band at 5 mm of 10705BX iron-based superalloy after as-received, shot-peening, shot-peening and CuNiIn coating

  • 3 结论

  • (1)喷丸处理后,在 10705BX 表面形成了较深的硬化层,约为 80 μm,使得微动疲劳寿命提高了 7.8 倍。

  • (2)喷丸与 CuNiIn 涂层复合处理后,10705BX 微动疲劳寿命提高了 4.2 倍。复合处理对微动疲劳性能的提升效果较弱,这与复合处理后硬化层表层硬度降低和热喷涂的热效应导致表层残余应力降低有关。

  • (3)喷丸处理及喷丸与 CuNiIn 涂层复合处理的方法有望成为提升汽轮机叶片服役寿命的重要备选途径。但后续需要继续对高温环境下喷丸处理及复合处理后的 10705BX 微动疲劳性能进行深入研究。

  • 参考文献

    • [1] ZHU J,YAN P,JIAO L,et al.Effect of cutting fluids on corrosion properties and turning surface quality of Fe-based superalloy[J].Advances in Mechanical Engineering,2017,11(9):1-9.

    • [2] BHATTI N A,WAHAB M A.Fretting fatigue crack nucleation:A review[J].Tribology International,2018(121):121-138.

    • [3] YU T D,FU G Z,YU Y Q,et al.Wear characteristics of the nuclear control rod drive mechanism(CRDM)movable latch serviced in high temperature water[J].Chinese Journal of Mechanical Engineering,2022,35(2):111-120.

    • [4] YANG Q,ZHOU W,ZHENG X,et al.Investigation of shot peening combined with plasma-sprayed CuNiIn coating on the fretting fatigue behavior of Ti-6Al-4V dovetail joint specimens[J].Surface and Coatings Technology,2019(358):833-842.

    • [5] 陈寰,李春林,岳雅楠,等.锆合金表面Cr涂层在高温压缩下的界面开裂行为[J].中国表面工程,2022,4(35):30-40.CHEN Huan,LI Chunlin,YUE Yanan,et al.Interface cracking behavior of Cr coating on zirconium alloy under high temperature compression[J].China Surface Engineering,2022,4(35):30-40.(in Chinese)

    • [6] 杨启.TC4 钛合金榫结构的微动疲劳损伤及喷丸防护机理研究[D].大连:大连理工大学,2019.YANG Qi.Investigation of fretting fatigue damage and shot-peening palliative mechanisms of TC4 alloy dovetail joints[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [7] 吴瑛,雷丽萍,曾攀.喷丸对H13钢单边带缺口试样疲劳裂纹扩展行为的影响[J].中国表面工程,2017,4(30):117-126.WU Ying,LEI Liping,ZENG Pan.Effect of shot peening on fatigue crack propagation behavior of single notched H13 steel specimens[J].China Surface Engineering,2017,4(30):117-126.(in Chinese)

    • [8] 高国强,陈金祥,薛红前,等.7B50-T7751 铝合金喷丸强化表面形态衍化及其对疲劳性能的影响研究[J].中国表面工程,2022,4(35):187-195.GAO Guoqiang,CHEN Jinxiang,XUE Hongqian,et al.Surface morphology evolution together with its effect on fatigue properties in shot peening of aluminum alloy 7B50-T7751[J].China Surface Engineering,2022,4(35):187-195.(in Chinese)

    • [9] HAGER J C,SANDERS J,SHARMA S,et al.Gross slip fretting wear of CrCN,TiAlN,Ni,and CuNiIn coatings on Ti6Al4V interfaces[J].Wear,2007,1(263):430-443.

    • [10] MARY C,FOUVRY S,MARTIN J M,et al.High temperature fretting wear of a Ti alloy/CuNiIn contact[J].Surface and Coatings Technology,2008,5-7(203):691-698.

    • [11] LIU D X,ZHU X D,BIN T,et al.Fretting fatigue improvement of Ti6Al4V by coating and shot peening[J].Journal of Materials Sciences and Technology,2005,2(21):246-250.

    • [12] 江庆红.喷丸处理对增材钛合金性能影响研究[D].哈尔滨:哈尔滨工业大学,2019.JIANG Qinghong.Effect of shot peening on properties of additive manufactured titanium alloy[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [13] FENG S,SONG J,LIU F,et al.Photocatalytic properties,mechanical strength and durability of TiO2/cement composites prepared by a spraying method for removal of organic pollutants[J].Chemosphere,2020(254):126813.

    • [14] MA A.The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying[J].Tribology International,2020(145):106156.

    • [15] RAJASEKARAN B,RAMAN S G S,JOSHI S V,et al.Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading[J].Materials Science and Engineering:A,2008,1-2(479):83-92.

    • [16] NIU Z,ZHOU W,WANG C,et al.Fretting wear mechanism of plasma-sprayed CuNiIn coating on Ti-6Al-4V substrate under plane/plane contact[J].Surface and Coatings Technology,2021(408):126794.

    • [17] DONG S,WANG Y,ZENG J,et al.Performance of plasma-sprayed CuNiIn coatings and Mo coatings subjected to fretting fatigue[J].Nano Materials Science,2020,2(2):140-150.

    • [18] 杨红超,于洋,刘德林,等.喷丸对DD6单晶合金表层状态及低周疲劳性能的影响[J].失效分析与预防,2021,3(16):155-160,172.YANG Hongchao,YU Yang,LIU Delin,et al.Influence of shot peening on surface state and low-cycle fatigue performance of DD6 single crystal superalloy[J].Failure Analysis and Prevention,2021,3(16):155-160,172.(in Chinese)

    • [19] SOADY K A,MELLOR B G,WEST G D,et al.Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue[J].International Journal of Fatigue,2013(54):106-117.

    • [20] SUNDE S L,BERTO F,HAUGEN B.Predicting fretting fatigue in engineering design[J].International Journal of Fatigue,2018(117):314-326.

    • [21] SUN S Y,LI L,YUE Z F,et al.Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature[J].Tribology International,2020(142):105986.

    • [22] ZHANG P,LI S X,ZHANG Z F.General relationship between strength and hardness[J].Materials Science and Engineering:A,2011,1(529):62-73.

    • [23] WANG J,GAO Y,WEI X.Investigations of the effects of combination treatments on the fretting fatigue resistance of GH4169 superalloy at an elevated temperature[J].Surface and Coatings Technology,2021(426):127758.

  • 参考文献

    • [1] ZHU J,YAN P,JIAO L,et al.Effect of cutting fluids on corrosion properties and turning surface quality of Fe-based superalloy[J].Advances in Mechanical Engineering,2017,11(9):1-9.

    • [2] BHATTI N A,WAHAB M A.Fretting fatigue crack nucleation:A review[J].Tribology International,2018(121):121-138.

    • [3] YU T D,FU G Z,YU Y Q,et al.Wear characteristics of the nuclear control rod drive mechanism(CRDM)movable latch serviced in high temperature water[J].Chinese Journal of Mechanical Engineering,2022,35(2):111-120.

    • [4] YANG Q,ZHOU W,ZHENG X,et al.Investigation of shot peening combined with plasma-sprayed CuNiIn coating on the fretting fatigue behavior of Ti-6Al-4V dovetail joint specimens[J].Surface and Coatings Technology,2019(358):833-842.

    • [5] 陈寰,李春林,岳雅楠,等.锆合金表面Cr涂层在高温压缩下的界面开裂行为[J].中国表面工程,2022,4(35):30-40.CHEN Huan,LI Chunlin,YUE Yanan,et al.Interface cracking behavior of Cr coating on zirconium alloy under high temperature compression[J].China Surface Engineering,2022,4(35):30-40.(in Chinese)

    • [6] 杨启.TC4 钛合金榫结构的微动疲劳损伤及喷丸防护机理研究[D].大连:大连理工大学,2019.YANG Qi.Investigation of fretting fatigue damage and shot-peening palliative mechanisms of TC4 alloy dovetail joints[D].Dalian:Dalian University of Technology,2019.(in Chinese)

    • [7] 吴瑛,雷丽萍,曾攀.喷丸对H13钢单边带缺口试样疲劳裂纹扩展行为的影响[J].中国表面工程,2017,4(30):117-126.WU Ying,LEI Liping,ZENG Pan.Effect of shot peening on fatigue crack propagation behavior of single notched H13 steel specimens[J].China Surface Engineering,2017,4(30):117-126.(in Chinese)

    • [8] 高国强,陈金祥,薛红前,等.7B50-T7751 铝合金喷丸强化表面形态衍化及其对疲劳性能的影响研究[J].中国表面工程,2022,4(35):187-195.GAO Guoqiang,CHEN Jinxiang,XUE Hongqian,et al.Surface morphology evolution together with its effect on fatigue properties in shot peening of aluminum alloy 7B50-T7751[J].China Surface Engineering,2022,4(35):187-195.(in Chinese)

    • [9] HAGER J C,SANDERS J,SHARMA S,et al.Gross slip fretting wear of CrCN,TiAlN,Ni,and CuNiIn coatings on Ti6Al4V interfaces[J].Wear,2007,1(263):430-443.

    • [10] MARY C,FOUVRY S,MARTIN J M,et al.High temperature fretting wear of a Ti alloy/CuNiIn contact[J].Surface and Coatings Technology,2008,5-7(203):691-698.

    • [11] LIU D X,ZHU X D,BIN T,et al.Fretting fatigue improvement of Ti6Al4V by coating and shot peening[J].Journal of Materials Sciences and Technology,2005,2(21):246-250.

    • [12] 江庆红.喷丸处理对增材钛合金性能影响研究[D].哈尔滨:哈尔滨工业大学,2019.JIANG Qinghong.Effect of shot peening on properties of additive manufactured titanium alloy[D].Harbin:Harbin Institute of Technology,2019.(in Chinese)

    • [13] FENG S,SONG J,LIU F,et al.Photocatalytic properties,mechanical strength and durability of TiO2/cement composites prepared by a spraying method for removal of organic pollutants[J].Chemosphere,2020(254):126813.

    • [14] MA A.The fretting fatigue performance of Ti–6Al–4V alloy influenced by microstructure of CuNiIn coating prepared via thermal spraying[J].Tribology International,2020(145):106156.

    • [15] RAJASEKARAN B,RAMAN S G S,JOSHI S V,et al.Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading[J].Materials Science and Engineering:A,2008,1-2(479):83-92.

    • [16] NIU Z,ZHOU W,WANG C,et al.Fretting wear mechanism of plasma-sprayed CuNiIn coating on Ti-6Al-4V substrate under plane/plane contact[J].Surface and Coatings Technology,2021(408):126794.

    • [17] DONG S,WANG Y,ZENG J,et al.Performance of plasma-sprayed CuNiIn coatings and Mo coatings subjected to fretting fatigue[J].Nano Materials Science,2020,2(2):140-150.

    • [18] 杨红超,于洋,刘德林,等.喷丸对DD6单晶合金表层状态及低周疲劳性能的影响[J].失效分析与预防,2021,3(16):155-160,172.YANG Hongchao,YU Yang,LIU Delin,et al.Influence of shot peening on surface state and low-cycle fatigue performance of DD6 single crystal superalloy[J].Failure Analysis and Prevention,2021,3(16):155-160,172.(in Chinese)

    • [19] SOADY K A,MELLOR B G,WEST G D,et al.Evaluating surface deformation and near surface strain hardening resulting from shot peening a tempered martensitic steel and application to low cycle fatigue[J].International Journal of Fatigue,2013(54):106-117.

    • [20] SUNDE S L,BERTO F,HAUGEN B.Predicting fretting fatigue in engineering design[J].International Journal of Fatigue,2018(117):314-326.

    • [21] SUN S Y,LI L,YUE Z F,et al.Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature[J].Tribology International,2020(142):105986.

    • [22] ZHANG P,LI S X,ZHANG Z F.General relationship between strength and hardness[J].Materials Science and Engineering:A,2011,1(529):62-73.

    • [23] WANG J,GAO Y,WEI X.Investigations of the effects of combination treatments on the fretting fatigue resistance of GH4169 superalloy at an elevated temperature[J].Surface and Coatings Technology,2021(426):127758.

  • 手机扫一扫看