en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

魏晨阳,男,1998年出生,硕士研究生。主要研究方向为轻合金PVD表面强化。E-mail:weichenyang@nimte.ac.cn

通讯作者:

汪爱英,女,1975年出生,博士,研究员,博士研究生导师。主要研究方向为表面强化涂层与功能改性。E-mail:aywang@nimte.ac.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20221102001

参考文献 1
曹景竹,王祝堂.Al 合金在航空航天器中的应用(1)[J].轻合金加工技术,2013,41(2):1-5.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(1)[J].Light Alloy Fabrication Technology,2013,41(2):1-5.(in Chinese)
参考文献 2
曹景竹,王祝堂.Al 合金在航空航天器中的应用(2)[J].轻合金加工技术,2013,41(3):1-12.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(2)[J].Light Alloy Fabrication Technology,2013,41(3):1-12.(in Chinese)
参考文献 3
杨甄鑫,廖抒华.轻质合金在汽车轻量化中的应用[J].汽车零部件,2021(1):107-113.YANG Zhenxin,LIAO Shuhua.Application of light alloy in automobile lightweight[J].Automobile Parts,2021(1):107-113.(in Chinese)
参考文献 4
CHEN L,CAO X,LU Z,et al.Improving the tribological properties of diamond-like carbon film applied under methane by tailoring sliding interface[J].International Journal of Refractory Metals and Hard Materials,2021,94:105380.
参考文献 5
KABIR M S,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.
参考文献 6
曾群锋,曹倩,ERDEMIR Ali,等.类金刚石膜超低摩擦行为的研究进展[J].中国表面工程,2018,31(4):1-19.ZENG Qunfeng,CAO Qian,ERDEMIR Ali,et al.Current development situation of superlow friction behavior of dlc films[J].China Surface Engineering,2018,31(4):1-19.(in Chinese)
参考文献 7
卓国海,柯培玲,李晓伟,等.不同过渡层对DLC薄膜力学性能和摩擦学性能的影响[J].中国表面工程,2015,28(6):39-47.ZHUO Haiguo,KE Peiling,LI Xiaowei,et al.Influence of different interlayers on mechanical and tribological properties of dlc films[J].China Surface Engineering,2015,28(6):39-47.(in Chinese)
参考文献 8
XU Z,SUN H,LENG Y X,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.
参考文献 9
BEMPORAD E,SEBASTIANI M,DE FELICIS D,et al.Production and characterization of duplex coatings(HVOF and PVD)on Ti-6Al-4V substrate[J].Thin Solid Films,2006,515:186-194.
参考文献 10
BOLELLI G,LUSVARGHI L,MONTECCHI M,et al.HVOF-sprayed WC-Co as hard interlayer for DLC films[J].Surface & Coatings Technology,2008,203(5):699-703.
参考文献 11
HOLMBERG K,RONKAINEN H,LAUKKANEN A,et al.Friction and wear of coated surfaces—scales,modelling and simulation of tribomechanisms[J].Surface & Coatings Technology,2007,202(4):1034-1049.
参考文献 12
WANG K,ZHOU H,ZHANG K,et al.Effects of Ti interlayer on adhesion property of DLC films:A first principle study[J].Diamond & Related Material,2021,111:108188.
参考文献 13
YAO J G,PAN R K,YIN D F,et al.Microstructures and characteristics of Ti/Al interface with segregated Si element[J].Chinese Journal of Physics,2019,62:296-303.
参考文献 14
WANG P,WANG X,XU T,et al.Comparing internal stress in diamond-like carbon films with different structure[J].Thin Solid Films.2007,515:6899-6903.
参考文献 15
MARUNO H,NISHIMOTO A.Adhesion and durability of multi-interlayered diamond-like carbon films deposited on aluminum alloy[J].Surface & Coatings Technology,2018,354:134-144.
参考文献 16
CAO H,QI F,OUYANG X,et al.Effect of ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys[J].Materials,2018,11(9):1742.
参考文献 17
左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48(9):53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48(9):53-63.(in Chinese)
参考文献 18
艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Yueming,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)
参考文献 19
BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23:18-22.
参考文献 20
EHIASARIAN A P,VETUSHKA A,GONZALVO Y A,et al.Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films[J].Journal of Applied Physics,2011,109(10):104314.
参考文献 21
TIRON V,VELICU I L,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018:352:690-698.
参考文献 22
DELLASEGA D,MIRANI F,VAVASSORI D,et al.Role of energetic ions in the growth of fcc and ω crystalline phases in Ti films deposited by HiPIMS[J].Applied Surface Science,2021,556:149678.
参考文献 23
MOSKOVKIN P,MASZL C,SCHIERHOLZ R,et al.Link between plasma properties with morphological,structural and mechanical properties of thin Ti films deposited by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2021,418:127235.
参考文献 24
WANG L,BARABASH RI,YANG Y,et al.Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α-Ti[J].Metallurgical and Materials Transactions A,2010,42:626-635.
参考文献 25
MORI T,FUKUDA S,TAKEMURA Y.Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering[J].Surface & Coatings Technology,2001,140(2):122-127.
参考文献 26
CHAKRABORTY J,KUMAR K,RANJAN R,et al.Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films[J].Acta Materialia,2011,59(7):2615-2623.
参考文献 27
HOSHI Y,SUZUKI E,SHIMIZU H.Control of crystal orientation of Ti thin films by sputtering[J].Electrochimica Acta,1999,44(21-22):3945-3952.
参考文献 28
ZU Q,GUO Y F,YAO X.Surface and orientation effects on stress-induced hcp-fcc phase transformation in Ti nanopillars[J].Applied Surface Science,2020,509:145234.
参考文献 29
CHEN A Y,BU Y,TANG Y T,et al.Deposition-rate dependence of orientation growth and crystallization of Ti thin films prepared by magnetron sputtering[J].Thin Solid Films,2015,574:71-77.
参考文献 30
ENSINGER W.On the mechanism of crystal growth orientation of ion beam assisted deposited thin films[J].Nuclear Instruments & Methods in Physics Research,1995,106(1-4):142-146.
参考文献 31
ARENAL R,LIU A C Y.Clustering of aromatic rings in near-frictionless hydrogenated amorphous carbon films probed using multiwavelength Raman spectroscopy[J].Applied Physics Letters,2007,91(21):211903.
参考文献 32
FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Phys Rev B,2000,61(20):14095-14107.
参考文献 33
FERRARI A C.Raman spectroscopy of graphene and graphite:Disorder,electron–phonon coupling,doping and nonadiabatic effects[J].Solid State Commun,2007,143(1-2):47-57.
参考文献 34
SOUČEK P,HNILICA J,KLEIN P,et al.Microstructure of titanium coatings controlled by pulse sequence in multipulse HiPIMS[J].Surface & Coatings Technology,2021,423:127624.
参考文献 35
KABIR MS,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.
参考文献 36
GUI B,ZHOU H,ZHENG J,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47:8175-8183.
参考文献 37
于杰.划痕法对硬质薄膜结合强度测量的量值溯源研究[D].太原:太原理工大学,2019.YU Jie,Study on the traceability of the measurement of the bond strength of the hard film by the scratch method[D].Taiyuan:Taiyuan University of Technology,2019.(in Chinese)
参考文献 38
BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39:99-114.
参考文献 39
周佳.铝合金/类金刚石薄膜的强结合界面设计与性能研究[D].上海:上海大学,2020.ZHOU Jia.The strong interface design and properties of diamond-like carbon films deposited on aluminum alloy [D].Shanghai:Shanghai University,2020.(in Chinese)
参考文献 40
BERNOULLI D,HÄFLIGER K,THORWARTH K,et al.Cohesive and adhesive failure of hard and brittle films on ductile metallic substrates:A film thickness size effect analysis of the model system hydrogenated diamond-like carbon(a-C:H)on Ti substrates[J].Acta materialia,2015,83:29-36.
参考文献 41
SHI J,GUO Z X,SUI M L.Slip system determination of dislocations in α-Ti during in situ TEM tensile deformation[J].Acta Metallurgica Sinica,2016,52(1):71-77.
参考文献 42
SALEM A A,KALIDINDI S R,SEMIATIN S L.Strain hardening due to deformation twinning in α-titanium:Constitutive relations and crystal-plasticity modeling[J].Acta Materialia,2005,53:3495-3502.
参考文献 43
GONG J,WILKINSON A J.Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams[J].Acta Materialia,2009,57:5693-5705.
参考文献 44
REN Ping,ZHANG Kan,HE Xin,et al.Toughness enhancement and tribochemistry of the Nb-Ag-N films actuated by solute Ag[J].Acta Materialia,2017,137:1-11.
参考文献 45
ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DlC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.
目录contents

    摘要

    类金刚石涂层(DLC)兼具高硬度、耐摩擦磨损和高化学惰性等优点,是理想的 Al 合金零部件耐磨防护材料之一。然而受限于 Al 合金与 DLC 间力学性能差异大,摩擦工况下承受复杂的耦合载荷作用,易导致涂层剥落失效。通过改变高功率脉冲磁控溅射技术(HiPIMS)的电源占空比(2%~10%),设计具有不同结构的 Ti 过渡层,系统研究 Al 合金基体上不同过渡层界面结构对 DLC 力学及摩擦性能的影响。结果表明,随 HiPIMS 占空比增加,所有 Ti 过渡层取向从(100)向(002) 转变。相比直流磁控溅射 Ti 过渡层,HiPiMS 技术可以降低晶粒尺寸以及提高 Ti 层致密性,令 Ti 过渡层具备更强的承载能力,涂层摩擦寿命提升了约 4.5 倍。沉积具有低(100)择优取向和致密结构的 Ti 过渡层是实现 Al 合金表面高性能 Ti / DLC 涂层的关键,对解决 Al 合金零部件表面硬质涂层易剥落失效等问题提供了新思路。

    Abstract

    Aluminum alloys are lightweight materials with a range of excellent properties and extensive applications. Due to their high specific strength, exceptional low-temperature toughness, corrosion resistance, and ease of processing, aluminum alloys have promising potential in fields such as aerospace and transportation. However, the low hardness and poor wear resistance of aluminum alloys can significantly impact the longevity and safe operation of some high-performance equipment. Diamond-like carbon (DLC) coatings exhibit high hardness, wear resistance, and chemical inertness, making them ideal wear-resistant protective coatings for aluminum alloy components. Nevertheless, the differences in mechanical properties between aluminum alloys and DLC coatings can cause the Al / DLC alloy system to face changing loads under frictional operating conditions, which can lead to DLC failure. In this study, 1-μm thick DLC coatings were prepared using a linear ion beam. Titanium transition layers with varying structures were deposited by adjusting the duty ratio (2%–10%) of high-power pulsed magnetron sputtering technology (HiPIMS). The effects of different interface structures of transition layers on the mechanical and friction properties of the Al / DLC system were systematically investigated. A coating prepared using the DC magnetron sputtering technique served as a control group. SEM and TEM were used to observe the surface and cross-sectional morphology of the coatings. Raman spectroscopy was employed to characterize the bonding structure of DLC. The changes in coating surface roughness were determined using AFM. Nano-indentation tests provided the hardness and elastic modulus of the coatings. The tribological properties of the coatings were assessed using ball-disk friction equipment. Results showed that the bonding structure of DLC was not affected by the titanium transition layer structure. All titanium layers exhibited a distinct columnar structure. As the duty ratio increased, the decrease in peak power led to a reduction in titanium ion energy, and all titanium layers were oriented from (100) to (002) due to surface energy minimization. The roughness of the top layer DLC changed as a result of the titanium layer structure (Ra = 10.6–14.5 nm). Scratch tests revealed that samples prepared via HiPIMS (8.4–8.6 N) demonstrated higher adhesion strength than those prepared by DC (7.0 N). Furthermore, the change in duty ratio had no significant effect on the adhesion of HiPIMS samples. Friction experiments showed that the average friction coefficient of the DC sample was 0.15, while that of the HiPIMS sample was 0.07. Different amounts of amorphous carbon transfer films were observed adhering to the Al2O3 ball. Compared with the sample prepared via DC, HiPiMS can simultaneously reduce the grain size and increase the proportion of (002) plane, providing the coating with a stronger bearing capacity and significantly improving its mechanical and tribological properties (samples with a duty ratio of 8% exhibited a hardness of approximately 29.9 GPa, a modulus of 220.6 GPa, H / E and H3 / E2 values of 0.136 and 0.550 GPa, respectively, and the lowest friction coefficient and wear rate of 0.07 and 4.5×10−7 mm3 / (N·m), respectively). The failure modes of all coatings during friction testing were similar, consisting of tensile cracks and flake spalling due to frictional shear stress. Trenches parallel to the loading direction were observed in the friction traces. Thus, depositing a titanium transition layer with a low (100) preferred orientation and dense structure is key to preparing high-performance Ti / DLC coatings on aluminum alloys. This approach offers a novel solution to address the issue of easy peeling of wear-resistant coatings on aluminum alloy components.

  • 0 前言

  • Al 合金因具有高比强度、良好低温韧性、耐腐蚀及易加工等优点,在航空航天、交通运输等诸多领域具有广阔的应用前景[1-3],已成为国防、军工等新一代战略高端装备中不可或缺的重要结构和功能材料。但是,Al 合金普遍存在硬度低、耐磨损性能差等问题,在严苛服役工况下容易发生破坏和失效,严重影响高性能装备的长寿命可靠运行。类金刚石碳基涂层(Diamond-like carbon,DLC)作为一种兼具高硬度、耐摩擦磨损性能优异、化学惰性好等优点的涂层材料,是提高 Al 合金力学以及摩擦学性能的一种理想材料[4-7]。然而,C 和 Al 的化学亲和力差,导致硬质 DLC 涂层与软质 Al 合金基体之间的界面结合力弱。此外,DLC 具有较高残余应力[8],其硬度、模量与 Al 合金差异大,在承受负载时,很容易因“蛋壳效应”而过早断裂[9-11]。因此,选择合适的过渡层体系及制备工艺是实现 DLC 与 Al 合金界面匹配,解决上述问题的关键。

  • Ti 与 Al、C 具有良好的化学亲和力[12-13],其热膨胀系数(8.6×10−6 / K)介于 DLC(2.3×10−6 / K) 和 Al 合金(23.2×10−6 / K)之间。Ti 过渡层不仅可提高 Al 和 DLC 之间的界面结合性能,而且还可以降低 DLC 和 Al 合金之间的界面热膨胀不匹配性,减少沉积过程中形成的热应力,同时,Ti 过渡层可以有效降低 DLC 本征生长应力。例如,WANG 等[14] 和 MARUNO 等[15]发现,通过引入 Ti 过渡层,DLC 的内应力可以释放约 30%。CAO 等[16]在 Al 合金上沉积了 Ti / Ti-DLC 多层涂层。结果表明,Ti 过渡层可以改善涂层和基材之间的界面过渡,这有利于获得良好的结合力(从 12.8 N 增大至 42 N)。

  • 在传统的直流磁控溅射(DC)技术中,由于等离子体密度(1015 m−3)和离化率较低(<10%)[17],溅射粒子主要以原子形式存在,不利于高性能涂层的制备。高功率脉冲磁控溅射(HiPIMS)技术作为一种新型磁控溅射技术,在某种程度上,集中了直流磁控溅射和电弧沉积的优势,在产生高的粒子离化率时不会产生金属大颗粒[18]。其通过在一个短周期(100~500 μs)内施加瞬时高功率脉冲电流,获得远大于 DC 的等离子体密度(1019 m−3)和离化率 (高达 90%)[19]。随后经过较长的关闭时间,降低靶材温度提高稳定性。特别是,HiPIMS 放电过程中,等离子体密度增加,金属粒子间碰撞时平均自由程减少,促进金属原子离化,有利于提高涂层硬度、耐磨性、致密性、膜-基结合力等[20-22]。考虑到 Ti过渡层在 Al 合金 / DLC 体系中的关键作用,使用 HiPIMS 技术有望制备出高性能 Ti 过渡层,如更小的晶粒(52±12 nm),更高的硬度(7 GPa)和致密性以及更低的表面粗糙度(Ra=1.4 nm)[23],以提高 Al 合金表面 Ti / DLC 涂层体系的使用寿命。而在各种 HiPIMS 参数中,占空比(即脉冲宽度)是影响其峰值功率和离化率的主要因素之一,而且易于调控,有利于获得稳定可控的涂层工艺。然而截至目前,占空比对 HiPIMS 制备 Ti 层取向和微观结构的影响,以及 Ti 过渡层对 Al 合金表面改性 Ti / DLC 涂层力学和摩擦学性能的作用机理尚不清晰。

  • 本文采用 HiPIMS 复合线性离子束制备技术,在 Al 合金基体表面制备 Ti / DLC 涂层,通过改变 HiPIMS 占空比调整 Ti 过渡层结构,探究 Ti 过渡层结构变化对 Ti / DLC 涂层的力学以及摩擦学性能的影响。同时,在其他参数不变的情况下,通过 DC 磁控溅射方法制备对照组样品。顶层 DLC 涂层采用已优化的工艺制备,所有样品的 DLC 涂层工艺参数一致。相关研究结果揭示了 HiPIMS 技术制备的 Al 合金-表面改性 Ti / DLC 涂层体系的优势以及损伤机制,为获得具有优良抗损伤性能的 Al 合金 / DLC 体系提供了理论指导。

  • 1 试验准备

  • 1.1 样品制备

  • 图1 是复合 PVD 设备结构示意图,其中 Ti 靶 (纯度 99.99 %)尺寸为 380 mm×100 mm×7 mm。基体选用厚度为 500 μm 硅片及 6061-T6 Al 合金 (15 mm×20 mm×3 mm)。硅片对涂层截面形貌及厚度基本无影响,因此使用硅片进行涂层厚度的测量以及截面形貌观察。将所有基体放入丙酮和无水乙醇中分别超声清洗 10 min,使用干燥氮气吹干放置在旋转机架上。首先,将清洗后基体放入腔体中,待腔室真空度达到 4.0 mPa,通入氩气。使用离子束在室温下进行 40 min 的 Ar 离子刻蚀清洗,以去除基体表面氧化物及空气中吸附的杂质。其中,离子束工作电流为 0.2 A,工作电压为 1 600 ±30 V,Ar 气流量为 36~38 mL / min,腔室工作气压为 0.3 Pa,基体施加负脉冲偏压 200 V(频率为 350 kHz,占空比为 38.5%)。其次,HiPIMS 电源参数设置为平均功率 1.1 kW,频率 500 Hz。通过改变占空比制备了 5 种不同样品,占空比分别设置为 2%、4%、6%、8%、10%。DC 电源同样设置功率为 1.1 kW,工作电流 3.0 A。所有 Ti 层沉积时基体施加负脉冲偏压 150 V(频率为 350 kHz,占空比为 38.5%)。随后,使用离子束沉积顶层 DLC 涂层,乙炔作为碳源气体,离子束工作电流为 0.2 A,工作电压为 1 200±30 V。乙炔气流量为 36~38 mL / min,腔室工作气压为 0.3 Pa,基体施加负脉冲偏压 100 V(频率为 350 kHz,占空比为 38.5%)。通过调整沉积时间控制 Ti 过渡层及 DLC 厚度保持一致。

  • 图1 磁控溅射复合线性离子束设备示意图

  • Fig.1 Diagram of magnetron sputtering compound linear ion beam equipment

  • 1.2 结构表征及力学性能测试

  • 使用场发射扫描电子显微镜(Verios G4 UC) 观察涂层表面以及截面形貌。采用透射电子显微镜 (Talos F200X)观察涂层的截面微观结构,其中透射样品使用聚焦离子束 FIB(Carl Zeiss)制备,制样前在涂层表面沉积 Pt 保护层。采用扫描探针显微镜(Dimension ICON)测量涂层表面粗糙度。采用 X 射线衍射仪(Bruker D8 ADVANCE DAVINCI)分析 Ti 过渡层晶体结构,测量范围为 5°~90°。使用激光共焦显微拉曼光谱仪(Renishaw-inVia Reflection) 检测 DLC 涂层物相组成。测试采用 532 nm 激发波长,使用双高斯函数拟合拉曼数据,获得 G 峰位置, G 峰半峰全宽和峰强度比(ID / IG)。使用纳米压痕设备(MTS NANO200)测量涂层的硬度和弹性模量值。测试采用连续刚度法,使用金刚石压头,压入深度为 500 nm,测试 9 个点以保证数据准确性,为降低基体的影响,选取曲线平台区 120~170 nm (1 / 10 涂层厚度)的数值。采用瑞士 Revetest 划痕仪对涂层结合力进行测试,测试采用金刚石针头,变载荷模式,最大载荷为 12 N。采用瑞士安东帕公司生产的摩擦试验机(Trb3)进行摩擦试验,测试涂层耐摩擦磨损性能。摩擦滑动方式为往复式,相关参数如下:摩擦副为直径 6 mm 的 Al2O3 球,摩擦速度7.85 mm / s,载荷 10 N。摩擦测试后,采用光学显微镜(Axio Imager 2)观察 Al2O3球表面形貌。

  • 2 结果与讨论

  • 2.1 涂层截面和表面形貌

  • 从图2 可以看出,所有涂层为双层结构,总厚度为 1.7±0.04 μm。总体上,涂层截面形貌表现为柱状结构,且 HiPIMS 技术制备 Ti 过渡层具有比 DC 更加致密的结构及更小的柱状结构宽度。随占空比增加,样品中柱状结构宽度呈增加趋势。图3 为 6 种样品的表面形貌,顶层 DLC 涂层具有非晶结构,因此在沉积过程中会保留部分 Ti 过渡层表面形貌。所有涂层表面形貌类似,无明显裂纹以及孔洞结构。如图3 所示,DC 样品的表面微凸体尺寸均大于 HiPIMS 样品,且占空比 2%和 8%的样品表面微凸体更加细小。使用扫描探针显微镜测量所有样品表面粗糙度(Ra)。所有 HiPIMS 样品均具有比 DC 样品(16.6 nm)更低的表面粗糙度。随占空比从 2%增加到 6%,涂层 Ra 值从 10.6 nm 增加至 14.9 nm。当占空比增大至 8%时,又降低至 11.3 nm,在占空比进一步增加至 10%时,Ra 增加到 14.5 nm。

  • 图2 Ti / DLC 涂层的 SEM 截面图(a)DC(b)~(f)占空比分别为 2%、4%、6%、8%、10%的 HIPIMS 样品

  • Fig.2 SEM cross-sectional morphology of Ti / DLC coatings: (a) DC; (b) - (f) HiPIMS samples with duty ratio of 2%, 4%, 6%, 8%, 10%

  • 图3 Ti / DLC 的 SEM 表面图(a)DC(b)~(f)占空比分别为 2%、4%、6%、8%、10%的 HiPIMS 样品

  • Fig.3 SEM morphology of Ti / DLC coatings: (a) DC; (b) - (f) HiPIMS samples with duty ratio of 2%, 4%, 6%, 8%, 10%

  • 2.2 涂层的微结构特征

  • 图4a 为 DC 技术和不同占空比 HiPIMS 技术制备 Ti 过渡层的 XRD 谱图。总体上看,所有样品具有 α-Ti(HCP)结构,且主要存在 3 种晶面取向,分别为(100)、(002)及(101)。图4b 为 6 种样品的织构系数。其中,DC 样品以(002)取向为主, HiPIMS 样品则随占空比增加 Ti 层取向从(100)向 (002)转变。占空比 2%的样品(100)择优生长趋势最为明显。这可能是在物理气相沉积过程中,涂层生长取向取决于表面和应变能的竞争,以达到总能量最小化。对于直流磁控溅射,等离子体低电离导致低原子能量,应变能对 Ti 层的晶体取向影响很小。因此,表面能减少是保持涂层稳定性的主要动力。涂层表现出具有最低表面能取向[24-25],即 α-Ti (002)面(表面能~2.2 J / m2[26-28]。此外 DC 具有更高沉积速率,导致较小的成核距离,Ti 原子可以更容易移动并到达最低表面能面(002)[29]。而对于 HiPIMS 技术,在恒定平均功率下高峰值功率放电,对应于(002)峰值表现出低衍射强度。这是因为在沉积期间高能粒子轰击可以抑制晶粒向紧密堆积方向生长。密堆积面比其他晶面产生更多碰撞损伤,导致异常晶体取向优先发展[30]。因此,占空比 2%的样品表现出(100)择优取向。同时随占空比增加,粒子能量降低,Ti 层逐渐发展为表面能主导,即(002)取向。

  • 图4 不同占空比的 HiPIMS 样品的 XRD 及织构系数图

  • Fig.4 XRD and texture coefficient of HiPIMS samples with different duty ratio

  • 结合涂层表界面形貌与 XRD 结果,DC 与 HiPIMS 技术由不同粒子能量及沉积速率导致不同 Ti 层结构与涂层形貌。DC 较低的粒子能量及高沉积速率,使得 Ti 层以(002)取向为主。由于(002) 面与基体表面平行或接近平行,因此(002)面的快速生长导致 Ti 层形成根部窄,顶部宽的柱状结构,降低了 Ti 层致密性。同时,表面微凸体大小及粗糙度较 HiPIMS 样品更大。而在 HiPIMS 样品中,受高能粒子轰击会导致 Ti 层异常生长,占空比 2%的样品以(100)面为主,作为 HCP 结构的柱面,其生长方向垂直或与表面法线夹角较小。因此 Ti 层表现为细长柱状组织,DLC 顶层微凸体尺寸最小。而随占空比增加(2%~6%),Ti 层锥面(101)以及基面(002)的生长,导致涂层表面粗糙度增加,微凸体尺寸增加。随占空比达到 8%,涂层粗糙度下降,这可能是由于(100)以及(101)面增加导致 Ti 层柱状晶横向生长受到限制。对于占空比 10%的样品,占空比增加,导致在恒定平均功率条件下峰值功率下降,令 Ti 粒子能量降低,Ti 层生长模式开始逐渐向 DC 模式靠拢[31],因此表现为更大的粗糙度和柱状结构。

  • 图5a 所示为 HiPIMS 样品的拉曼图谱。整体上,所有样品具有类似的拉曼峰,均在 1 350 cm−1 及 1 560 cm−1 附近出现非晶碳特征峰。图5b 为对应拉曼光谱的拟合结果,利用双高斯拟合确定 G 峰半峰全宽(GFWHM)、G 峰位置及峰面积比(ID / IG[32]ID / IG和G峰位置变化表明sp 2 团簇平均大小和数量发生变化。此外,GFWHM 是对 sp 2 团簇中键长和键角扭曲程度及无序度的测量[33-34]。图5b 显示 HiPIMS 样品的 GFWHMID / IG和 G 峰位置几乎分别稳定在 192 cm−1、0.75 和 1 541 cm−1 左右。DC 样品数值分别为 186.6 cm−1、0.91 和 1 540 cm−1,表明 DLC 中 sp 2 团簇尺寸、数量、结构无序度类似,说明所有样品中 DLC 层结构相似。

  • 图5 不同占空比的 HiPIMS 样品顶层 DLC 的拉曼图谱

  • Fig.5 Raman spectra of DLC of HiPIMS samples with different duty ratio

  • 2.3 涂层的力学性能

  • 图6a 显示了涂层的硬度以及弹性模量。图6b 显示了对应的 H / EH3 / E2。从图6a 中得知,DC 样品硬度及弹性模量为 24.6±1.1 GPa 和 235.4± 14.0 GPa。所有 HiPIMS 技术制备的样品硬度均保持在 29 GPa 左右,弹性模量随占空比增加,逐渐从 235.6±3.1 GPa 降低至 220.9±4.3 GPa。从图6b 中得出,HiPIMS 样品均具有比 DC 样品(H / E 以及 H3 / E2 数值为 0.104 和 0.270 GPa)更高的 H / EH3 / E2 数值。一般来说,H / EH3 / E2 越高,材料断裂韧性及抗塑性变形能力越强[35],说明采用 HiPIMS 技术可以获得更高质量的涂层。同时随占空比增加,HiPIMS 样品 H / EH3 / E2 先增大后减小。H / E 值从 0.125 增加至 0.136,随后占空比达到 10%时降低到 0.128。而 H3 / E2 从 0.465 GPa 增加到 0.550 GPa,随后降低至 0.463 GPa。这同样可能与高能粒子碰撞限制了 Ti 层内部晶粒沿平面的横向长大及形核率增加有关[36]。因此具有更小的晶粒及更高的致密性,提高了复合涂层整体力学性能,然而,高能离子轰击常会带来应力过大等问题,或许会影响其力学性能。

  • 图6 不同占空比的 HiPIMS 涂层的纳米压痕图

  • Fig.6 Nanoindentation of HiPIMS coatings with different duty ratio

  • 图7 显示了所有样品的划痕形貌,涂层采用划痕过程中涂层完全剥离(LC3)时的载荷表征涂层结合力[37]。如图7 所示,所有样品划痕形貌类似,在划痕内部均为共形弯曲裂纹,裂纹在划痕轨迹内,随着压头使涂层和基底变形,半圆形裂纹逐渐形成,从而导致涂层失效和基底暴露。这是由涂层被压入时,涂层内产生拉伸弯曲作用导致的[38-39]。在划痕载荷达到 LC3 前,划痕边缘无明显剥落。随载荷超过 LC3时,划痕边缘出现少量涂层剥落。LC3值表明,所有 HiPIMS 样品具有比 DC 样品高的结合力。占空比变化对 HiPIMS 样品结合力无明显影响。或许是由于 Al 合金基体较软,随划痕载荷增加,基体显著变形导致 DLC 薄膜中应力过度集中,引起涂层大面积剥落。

  • 图7 不同占空比的 HiPIMS 涂层的划痕形貌图(a)DC(b)-(f)占空比分别为 2%、4%、6%、8%、10%的 HIPIMS 样品

  • Fig.7 Scratch topography of HiPIMS coatings with different duty ratio: (a) DC; (b) - (f) HiPIMS samples with duty ratio of 2%, 4%, 6%, 8% and 10% respectively

  • 2.4 涂层的摩擦性能

  • 图8 显示了 6 种样品的摩擦因数及磨损率。如图8a 所示,所有样品表现出一段磨合期,通常发生在 0~30 m,这可能是在摩擦初始阶段,磨球表面未形成具有润滑作用的转移膜,而且涂层表面存在微凸体,导致摩擦因数在初始阶段存在较为明显的波动。随摩擦距离增加,涂层逐渐进入稳定磨合期。DC 样品平均摩擦因数为 0.15,HiPIMS 样品平均摩擦因数为 0.07。由于氧化铝球与 DLC、Al 合金基体对磨时摩擦因数相差较大,当摩擦因数突然升高时,可认为涂层已经发生失效,对应摩擦滑动距离可看作涂层寿命。 DC 样品摩擦寿命为 160 m。HiPIMS 样品具有比 DC 更高的摩擦寿命,当占空比从 2%提高到 8%时,涂层摩擦寿命从 320 m 增加至 730 m,随后占空比达到 10%时,涂层摩擦寿命降低至 530 m。为比较涂层磨损率差异 (图8b),对所有涂层进行摩擦距离为 200 m 的测试。其中,DC 样品已被磨穿。对于 HiPIMS 样品,占空比从 2%增加到 8%,涂层磨损率从 6.9× 10−7 mm 3 /(N·m)降低至 4.5×10−7 mm 3 /(N·m)。当占空比达到 10%时,涂层磨损率增加,为 4.8× 10−7 mm 3 /(N·m)。

  • 图8 不同 HiPIMS 占空比下涂层动态摩擦因数、平均摩擦因数和磨损率

  • Fig.8 Dynamic friction coefficient and average friction factor and wear rate of coating with different HiPIMS duty ratio

  • 为了系统研究涂层摩擦失效机制,选取摩擦距离为 200 m 的样品,对磨痕进行 SEM 观察。如图9a 所示,DC 样品磨痕内发生大面积失效,涂层剥落并暴露出基体。在涂层剥落边缘处出现明显的平行于摩擦方向的裂纹(图9g)。对于 HiPIMS 样品(图9b~9f),所有涂层均未产生明显剥落,多数样品磨痕内存在一定数量的裂纹。随占空比从 2%增加至 8%,磨痕内裂纹逐渐减少,直至无裂纹(占空比 8%的样品),磨痕宽度降低(从 252 μm 降低到 226 μm)。当占空比进一步增加至 10%时,裂纹再次出现,磨痕宽度增加至 249 μm,说明涂层摩擦性能下降。从磨痕内裂纹形态分析,所有裂纹形态类似,均为平行于摩擦方向的细长条状裂纹。此外,磨痕内部观察到平行于加载方向的犁沟分布于裂纹附近。

  • 选取图9b 和 9d 中的样品(占空比 2%和 6%) 对磨痕表面进行元素分析,结果如图10 所示,磨痕边缘磨屑发生一定程度氧化,这是由于空气中的氧气参与了摩擦过程。从磨痕内部元素分布可知,占空比为 2%的样品磨痕内裂纹深度达到基体,而占空比 6%的样品尽管表面存在裂纹,裂纹深度未达到基体。图11 为 HiPIMS 样品磨球表面形貌图,样品表面具有不同数量的摩擦转移膜,且摩擦转移膜呈现不连续状态。占空比 6%的样品磨球上摩擦转移膜最少,这和上文中磨损率变化相对应。使用拉曼分析可得,如图12 所示,摩擦转移膜为非晶碳薄膜。部分样品存在 ID / IG值增加和 G 峰位置向高波数移动,如占空比 4%和 6%的样品,拉曼数据中ID / IG值与薄膜中sp 2 团簇尺寸呈正相关,即数值增大,代表 sp 2 团簇尺寸增大。而 G 峰位置右移代表薄膜中 sp 2 团簇数量增加。说明该摩擦转移膜出现了石墨化。

  • 图9 不同占空比的 HiPIMS 涂层的磨痕形貌图

  • Fig.9 Wear trance morphology of HiPIMS coatings with different duty ratio: (a) DC and (b) - (f) wear trance morphology of HiPIMS coatings with different duty ratio at a friction distance of 200 m; (g) and (h) are enlarged in (a) and (b)

  • 图10 Ti / DLC 涂层的 EDS 图(占空比为 2%和 6% 的 HiPIMS 样品的磨痕元素分布)

  • Fig.10 EDS of Ti / DLC coatings (Distribution of wear trance elements in HiPIMS samples with duty ratio of 2 % and 6 %)

  • 图11 占空比为 2%、4%、6%、8%、10%的 HiPIMS 涂层摩擦距离为 200 m 的 Al2O3 球形貌

  • Fig.11 Al2O3 ball morphology with friction distance of 200 m for HiPIMS coating with duty cycle of 2%, 4%, 6%, 8%, 10%

  • 图12 HiPIMS 样品 Al2O3球的拉曼光谱

  • Fig.12 Raman spectra of Al2O3 ball

  • 选取 DC 及占空比 8%的 HiPIMS 样品进行截面 TEM 微观结构分析。如图13 所示,与硅片上 Ti / DLC 涂层的截面形貌类似。DC 制备的 Ti 层具备粗大的柱状晶组织,而占空比 8%的 HiPIMS 样品呈现细小的晶粒,且基本无明显的粗大的柱状结构,具备比 DC 样品更致密的结构。

  • 图13 Ti / DLC 涂层的 TEM 截面图

  • Fig.13 TEM cross-sectional morphology of Ti / DLC coatings

  • 综上所述,HiPIMS 制备的 Ti / DLC 复合涂层具有优异的摩擦学性能,包括低摩擦因数(0.07) 及磨损率(4.5×10−7 mm 3 /(N·m))。由于所有顶层 DLC 结构类似,因此在摩擦过程中具有相似的摩擦因数和裂纹形状。在除占空比 8%的样品外,在所有样品磨痕内部,均可观察到数量不同、形态类似的细长条状裂纹,且裂纹平行于摩擦方向。此外,在磨痕内部裂纹附近,同样发现一定数量的犁沟。这是由于 Al 合金硬度及弹性模量较低,大载荷下导致涂层产生一定变形,在摩擦往复过程中对磨副中心沿摩擦方向两侧受力不同导致界面处存在拉伸作用,因此产生类似于拉伸裂纹以及片状剥落的失效形式[40]。而且在摩擦过程中接触应力分布不均匀,在磨痕中心位置是承受最大接触应力的位置,除了中心位置出现裂纹外,磨痕中心部位侧边也会出现裂纹。这是中心部位在承受接触应力过程中出现弯曲,在弯曲边缘承受较大的弯曲载荷,在摩擦过程中更易导致表层 DLC 剥落。或许由于 Ti 过渡层与 DLC 之间界面结合较好[12],在摩擦过程中 DLC 首先以内聚失效为主,硬质 DLC 部分剥落导致磨痕内发生磨粒磨损,因此存在一定数量的犁沟。随摩擦过程延长,DLC 越来越薄,再加上表层裂纹和犁沟的影响,导致涂层突然大面积失效(图9a)。

  • 不同 Ti 层结构,包括取向、致密性以及晶粒尺寸等因素影响了涂层整体在摩擦过程中的塑性变形,进而导致寿命差异。HCP 结构的 Ti 过渡层不同晶面代表的滑移系中施密特因子[41]以及临界分切应力数值不同[42-43],在摩擦往复作用下,滑移系开动优先级及难易程度不同,导致涂层在摩擦过程中塑性变形各向异性。因此影响涂层摩擦寿命。将摩擦作用力看作垂直于涂层表面的正应力以及切应力矢量和。正应力加载方向不利于柱面和基面滑移系滑移,这是“硬取向”。锥面滑移系由于其最高临界分切应力往往难以滑动。因此,切应力成为影响滑移系开动,即影响涂层摩擦学性能的主要因素。由图13 可得,DC 样品中 Ti 层柱状结构粗大,致密性较低,这是由于 DC 沉积模式下,Ti 层具备较快的沉积速率,(002)面的快速生长,令柱状晶横向生长,导致 Ti 过渡层致密性下降。因此,塑性变形能力较差,易受到基体和外力载荷的影响导致涂层最早失效。对比而言,HiPIMS 样品具有更高的致密性,更小的晶粒尺寸(图13b),H / EH3 / E2[44-45]和高出 DC 样品近两倍的结合力也反映出其具有更长的摩擦寿命。然而柱面滑移系由于临界分切应力值最低,滑移方向同剪切力处于同一平面及晶面间距最大。而且 Ti 层作为密排六方结构,塑性变形行为同样受到 c / a 比值的影响。由于 Ti 的 c / a 比为 1.587,低于理想的轴向比 1.633,往往在室温下最容易滑移的系统为柱面滑移系。在剪切力作用产生明显的塑性变形,裂纹数量更多,深度甚至达到基体。所以具有较强(100)取向的 HiPIMS 样品摩擦寿命较低。随占空比增加,Ti 取向逐渐从(100)向(002)转变,摩擦寿命上升。基面滑移系的临界分切应力值往往大于柱面滑移系[42-43],且(002)的晶面间距小于(100)。这或许是因为 HiPiMS 技术可以同时降低晶粒尺寸以及 (100)面的占比,令 Ti 层获得更强的承载能力。当占空比达到 10%时,峰值功率大幅度降低,令 Ti 粒子能量下降,导致 Ti 层生长模式向 DC 靠拢。因此,具有优化占空比(8%)的样品具有最优异的摩擦寿命。

  • 3 结论

  • 采用线性离子束复合高功率脉冲磁控溅射技术在 Al 合金表面制备 Ti / DLC 涂层,探究 Ti 过渡层结构变化对 Ti / DLC 涂层力学及摩擦学性能的影响,得出以下结论:

  • (1)通过 HiPIMS 技术制备晶粒尺寸小,高致密性的 Ti 过渡层,可以有效提高复合涂层的力学以及摩擦学性能。

  • (2)不同晶面取向对于摩擦寿命贡献是不同的。由于临界分切应力值较低,晶面间距大,室温下最容易滑移的系统为柱面滑移系。在剪切力作用产生明显的塑性变形。具有较强(100)取向的 HiPIMS 样品摩擦寿命较低。随 HiPIMS 占空比增加,Ti 过渡层(002)和(101)取向增强,令 Ti 层获得更强的承载能力。

  • 主要研究不同取向结构的 Ti 过渡层对 Ti / DLC 复合涂层力学及摩擦学性能的影响,所得结果对解决 Al 合金零部件表面耐磨涂层容易剥落失效等问题提供了新思路。但是如何进一步提高硬质涂层在 Al 合金软基体上的摩擦寿命将是未来工作的重点。

  • 参考文献

    • [1] 曹景竹,王祝堂.Al 合金在航空航天器中的应用(1)[J].轻合金加工技术,2013,41(2):1-5.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(1)[J].Light Alloy Fabrication Technology,2013,41(2):1-5.(in Chinese)

    • [2] 曹景竹,王祝堂.Al 合金在航空航天器中的应用(2)[J].轻合金加工技术,2013,41(3):1-12.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(2)[J].Light Alloy Fabrication Technology,2013,41(3):1-12.(in Chinese)

    • [3] 杨甄鑫,廖抒华.轻质合金在汽车轻量化中的应用[J].汽车零部件,2021(1):107-113.YANG Zhenxin,LIAO Shuhua.Application of light alloy in automobile lightweight[J].Automobile Parts,2021(1):107-113.(in Chinese)

    • [4] CHEN L,CAO X,LU Z,et al.Improving the tribological properties of diamond-like carbon film applied under methane by tailoring sliding interface[J].International Journal of Refractory Metals and Hard Materials,2021,94:105380.

    • [5] KABIR M S,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.

    • [6] 曾群锋,曹倩,ERDEMIR Ali,等.类金刚石膜超低摩擦行为的研究进展[J].中国表面工程,2018,31(4):1-19.ZENG Qunfeng,CAO Qian,ERDEMIR Ali,et al.Current development situation of superlow friction behavior of dlc films[J].China Surface Engineering,2018,31(4):1-19.(in Chinese)

    • [7] 卓国海,柯培玲,李晓伟,等.不同过渡层对DLC薄膜力学性能和摩擦学性能的影响[J].中国表面工程,2015,28(6):39-47.ZHUO Haiguo,KE Peiling,LI Xiaowei,et al.Influence of different interlayers on mechanical and tribological properties of dlc films[J].China Surface Engineering,2015,28(6):39-47.(in Chinese)

    • [8] XU Z,SUN H,LENG Y X,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.

    • [9] BEMPORAD E,SEBASTIANI M,DE FELICIS D,et al.Production and characterization of duplex coatings(HVOF and PVD)on Ti-6Al-4V substrate[J].Thin Solid Films,2006,515:186-194.

    • [10] BOLELLI G,LUSVARGHI L,MONTECCHI M,et al.HVOF-sprayed WC-Co as hard interlayer for DLC films[J].Surface & Coatings Technology,2008,203(5):699-703.

    • [11] HOLMBERG K,RONKAINEN H,LAUKKANEN A,et al.Friction and wear of coated surfaces—scales,modelling and simulation of tribomechanisms[J].Surface & Coatings Technology,2007,202(4):1034-1049.

    • [12] WANG K,ZHOU H,ZHANG K,et al.Effects of Ti interlayer on adhesion property of DLC films:A first principle study[J].Diamond & Related Material,2021,111:108188.

    • [13] YAO J G,PAN R K,YIN D F,et al.Microstructures and characteristics of Ti/Al interface with segregated Si element[J].Chinese Journal of Physics,2019,62:296-303.

    • [14] WANG P,WANG X,XU T,et al.Comparing internal stress in diamond-like carbon films with different structure[J].Thin Solid Films.2007,515:6899-6903.

    • [15] MARUNO H,NISHIMOTO A.Adhesion and durability of multi-interlayered diamond-like carbon films deposited on aluminum alloy[J].Surface & Coatings Technology,2018,354:134-144.

    • [16] CAO H,QI F,OUYANG X,et al.Effect of ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys[J].Materials,2018,11(9):1742.

    • [17] 左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48(9):53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48(9):53-63.(in Chinese)

    • [18] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Yueming,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [19] BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23:18-22.

    • [20] EHIASARIAN A P,VETUSHKA A,GONZALVO Y A,et al.Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films[J].Journal of Applied Physics,2011,109(10):104314.

    • [21] TIRON V,VELICU I L,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018:352:690-698.

    • [22] DELLASEGA D,MIRANI F,VAVASSORI D,et al.Role of energetic ions in the growth of fcc and ω crystalline phases in Ti films deposited by HiPIMS[J].Applied Surface Science,2021,556:149678.

    • [23] MOSKOVKIN P,MASZL C,SCHIERHOLZ R,et al.Link between plasma properties with morphological,structural and mechanical properties of thin Ti films deposited by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2021,418:127235.

    • [24] WANG L,BARABASH RI,YANG Y,et al.Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α-Ti[J].Metallurgical and Materials Transactions A,2010,42:626-635.

    • [25] MORI T,FUKUDA S,TAKEMURA Y.Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering[J].Surface & Coatings Technology,2001,140(2):122-127.

    • [26] CHAKRABORTY J,KUMAR K,RANJAN R,et al.Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films[J].Acta Materialia,2011,59(7):2615-2623.

    • [27] HOSHI Y,SUZUKI E,SHIMIZU H.Control of crystal orientation of Ti thin films by sputtering[J].Electrochimica Acta,1999,44(21-22):3945-3952.

    • [28] ZU Q,GUO Y F,YAO X.Surface and orientation effects on stress-induced hcp-fcc phase transformation in Ti nanopillars[J].Applied Surface Science,2020,509:145234.

    • [29] CHEN A Y,BU Y,TANG Y T,et al.Deposition-rate dependence of orientation growth and crystallization of Ti thin films prepared by magnetron sputtering[J].Thin Solid Films,2015,574:71-77.

    • [30] ENSINGER W.On the mechanism of crystal growth orientation of ion beam assisted deposited thin films[J].Nuclear Instruments & Methods in Physics Research,1995,106(1-4):142-146.

    • [31] ARENAL R,LIU A C Y.Clustering of aromatic rings in near-frictionless hydrogenated amorphous carbon films probed using multiwavelength Raman spectroscopy[J].Applied Physics Letters,2007,91(21):211903.

    • [32] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Phys Rev B,2000,61(20):14095-14107.

    • [33] FERRARI A C.Raman spectroscopy of graphene and graphite:Disorder,electron–phonon coupling,doping and nonadiabatic effects[J].Solid State Commun,2007,143(1-2):47-57.

    • [34] SOUČEK P,HNILICA J,KLEIN P,et al.Microstructure of titanium coatings controlled by pulse sequence in multipulse HiPIMS[J].Surface & Coatings Technology,2021,423:127624.

    • [35] KABIR MS,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.

    • [36] GUI B,ZHOU H,ZHENG J,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47:8175-8183.

    • [37] 于杰.划痕法对硬质薄膜结合强度测量的量值溯源研究[D].太原:太原理工大学,2019.YU Jie,Study on the traceability of the measurement of the bond strength of the hard film by the scratch method[D].Taiyuan:Taiyuan University of Technology,2019.(in Chinese)

    • [38] BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39:99-114.

    • [39] 周佳.铝合金/类金刚石薄膜的强结合界面设计与性能研究[D].上海:上海大学,2020.ZHOU Jia.The strong interface design and properties of diamond-like carbon films deposited on aluminum alloy [D].Shanghai:Shanghai University,2020.(in Chinese)

    • [40] BERNOULLI D,HÄFLIGER K,THORWARTH K,et al.Cohesive and adhesive failure of hard and brittle films on ductile metallic substrates:A film thickness size effect analysis of the model system hydrogenated diamond-like carbon(a-C:H)on Ti substrates[J].Acta materialia,2015,83:29-36.

    • [41] SHI J,GUO Z X,SUI M L.Slip system determination of dislocations in α-Ti during in situ TEM tensile deformation[J].Acta Metallurgica Sinica,2016,52(1):71-77.

    • [42] SALEM A A,KALIDINDI S R,SEMIATIN S L.Strain hardening due to deformation twinning in α-titanium:Constitutive relations and crystal-plasticity modeling[J].Acta Materialia,2005,53:3495-3502.

    • [43] GONG J,WILKINSON A J.Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams[J].Acta Materialia,2009,57:5693-5705.

    • [44] REN Ping,ZHANG Kan,HE Xin,et al.Toughness enhancement and tribochemistry of the Nb-Ag-N films actuated by solute Ag[J].Acta Materialia,2017,137:1-11.

    • [45] ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DlC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.

  • 参考文献

    • [1] 曹景竹,王祝堂.Al 合金在航空航天器中的应用(1)[J].轻合金加工技术,2013,41(2):1-5.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(1)[J].Light Alloy Fabrication Technology,2013,41(2):1-5.(in Chinese)

    • [2] 曹景竹,王祝堂.Al 合金在航空航天器中的应用(2)[J].轻合金加工技术,2013,41(3):1-12.CAO Jingzhu,WANG Zhutang.Application of aluminum alloy in aeronautics and aerospace vehicle(2)[J].Light Alloy Fabrication Technology,2013,41(3):1-12.(in Chinese)

    • [3] 杨甄鑫,廖抒华.轻质合金在汽车轻量化中的应用[J].汽车零部件,2021(1):107-113.YANG Zhenxin,LIAO Shuhua.Application of light alloy in automobile lightweight[J].Automobile Parts,2021(1):107-113.(in Chinese)

    • [4] CHEN L,CAO X,LU Z,et al.Improving the tribological properties of diamond-like carbon film applied under methane by tailoring sliding interface[J].International Journal of Refractory Metals and Hard Materials,2021,94:105380.

    • [5] KABIR M S,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.

    • [6] 曾群锋,曹倩,ERDEMIR Ali,等.类金刚石膜超低摩擦行为的研究进展[J].中国表面工程,2018,31(4):1-19.ZENG Qunfeng,CAO Qian,ERDEMIR Ali,et al.Current development situation of superlow friction behavior of dlc films[J].China Surface Engineering,2018,31(4):1-19.(in Chinese)

    • [7] 卓国海,柯培玲,李晓伟,等.不同过渡层对DLC薄膜力学性能和摩擦学性能的影响[J].中国表面工程,2015,28(6):39-47.ZHUO Haiguo,KE Peiling,LI Xiaowei,et al.Influence of different interlayers on mechanical and tribological properties of dlc films[J].China Surface Engineering,2015,28(6):39-47.(in Chinese)

    • [8] XU Z,SUN H,LENG Y X,et al.Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method[J].Applied Surface Science,2015,328:319-324.

    • [9] BEMPORAD E,SEBASTIANI M,DE FELICIS D,et al.Production and characterization of duplex coatings(HVOF and PVD)on Ti-6Al-4V substrate[J].Thin Solid Films,2006,515:186-194.

    • [10] BOLELLI G,LUSVARGHI L,MONTECCHI M,et al.HVOF-sprayed WC-Co as hard interlayer for DLC films[J].Surface & Coatings Technology,2008,203(5):699-703.

    • [11] HOLMBERG K,RONKAINEN H,LAUKKANEN A,et al.Friction and wear of coated surfaces—scales,modelling and simulation of tribomechanisms[J].Surface & Coatings Technology,2007,202(4):1034-1049.

    • [12] WANG K,ZHOU H,ZHANG K,et al.Effects of Ti interlayer on adhesion property of DLC films:A first principle study[J].Diamond & Related Material,2021,111:108188.

    • [13] YAO J G,PAN R K,YIN D F,et al.Microstructures and characteristics of Ti/Al interface with segregated Si element[J].Chinese Journal of Physics,2019,62:296-303.

    • [14] WANG P,WANG X,XU T,et al.Comparing internal stress in diamond-like carbon films with different structure[J].Thin Solid Films.2007,515:6899-6903.

    • [15] MARUNO H,NISHIMOTO A.Adhesion and durability of multi-interlayered diamond-like carbon films deposited on aluminum alloy[J].Surface & Coatings Technology,2018,354:134-144.

    • [16] CAO H,QI F,OUYANG X,et al.Effect of ti transition layer thickness on the structure,mechanical and adhesion properties of Ti-DLC coatings on aluminum alloys[J].Materials,2018,11(9):1742.

    • [17] 左潇,孙丽丽,汪爱英,等.高功率脉冲磁控溅射制备非晶碳薄膜研究进展[J].表面技术,2019,48(9):53-63.ZUO Xiao,SUN Lili,WANG Aiying,et al.Research progress on preparation of amorphous carbon thin films by high power impulse magnetron sputtering[J].Surface Technology,2019,48(9):53-63.(in Chinese)

    • [18] 艾猛,李刘合,韩明月,等.高功率脉冲磁控溅射等离子体放电特性研究现状[J].表面技术,2018,47(9):176-186.AI Meng,LI Liuhe,HAN Yueming,et al.Discharge characteristics of plasma made by high power pulse magnetron sputtering[J].Surface Technology,2018,47(9):176-186.(in Chinese)

    • [19] BOHLMARK J,ALAMI J,CHRISTOU C,et al.Ionization of sputtered metals in high power pulsed magnetron sputtering[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2005,23:18-22.

    • [20] EHIASARIAN A P,VETUSHKA A,GONZALVO Y A,et al.Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films[J].Journal of Applied Physics,2011,109(10):104314.

    • [21] TIRON V,VELICU I L,CRISTEA D,et al.Influence of ion-to-neutral flux ratio on the mechanical and tribological properties of TiN coatings deposited by HiPIMS[J].Surface & Coatings Technology,2018:352:690-698.

    • [22] DELLASEGA D,MIRANI F,VAVASSORI D,et al.Role of energetic ions in the growth of fcc and ω crystalline phases in Ti films deposited by HiPIMS[J].Applied Surface Science,2021,556:149678.

    • [23] MOSKOVKIN P,MASZL C,SCHIERHOLZ R,et al.Link between plasma properties with morphological,structural and mechanical properties of thin Ti films deposited by high power impulse magnetron sputtering[J].Surface & Coatings Technology,2021,418:127235.

    • [24] WANG L,BARABASH RI,YANG Y,et al.Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline α-Ti[J].Metallurgical and Materials Transactions A,2010,42:626-635.

    • [25] MORI T,FUKUDA S,TAKEMURA Y.Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering[J].Surface & Coatings Technology,2001,140(2):122-127.

    • [26] CHAKRABORTY J,KUMAR K,RANJAN R,et al.Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films[J].Acta Materialia,2011,59(7):2615-2623.

    • [27] HOSHI Y,SUZUKI E,SHIMIZU H.Control of crystal orientation of Ti thin films by sputtering[J].Electrochimica Acta,1999,44(21-22):3945-3952.

    • [28] ZU Q,GUO Y F,YAO X.Surface and orientation effects on stress-induced hcp-fcc phase transformation in Ti nanopillars[J].Applied Surface Science,2020,509:145234.

    • [29] CHEN A Y,BU Y,TANG Y T,et al.Deposition-rate dependence of orientation growth and crystallization of Ti thin films prepared by magnetron sputtering[J].Thin Solid Films,2015,574:71-77.

    • [30] ENSINGER W.On the mechanism of crystal growth orientation of ion beam assisted deposited thin films[J].Nuclear Instruments & Methods in Physics Research,1995,106(1-4):142-146.

    • [31] ARENAL R,LIU A C Y.Clustering of aromatic rings in near-frictionless hydrogenated amorphous carbon films probed using multiwavelength Raman spectroscopy[J].Applied Physics Letters,2007,91(21):211903.

    • [32] FERRARI A C,ROBERTSON J.Interpretation of Raman spectra of disordered and amorphous carbon[J].Phys Rev B,2000,61(20):14095-14107.

    • [33] FERRARI A C.Raman spectroscopy of graphene and graphite:Disorder,electron–phonon coupling,doping and nonadiabatic effects[J].Solid State Commun,2007,143(1-2):47-57.

    • [34] SOUČEK P,HNILICA J,KLEIN P,et al.Microstructure of titanium coatings controlled by pulse sequence in multipulse HiPIMS[J].Surface & Coatings Technology,2021,423:127624.

    • [35] KABIR MS,ZHOU Z,XIE Z,et al.Designing multilayer diamond like carbon coatings for improved mechanical properties[J].Journal of Materials Science & Technology,2021,65:108-117.

    • [36] GUI B,ZHOU H,ZHENG J,et al.Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering[J].Ceramics International,2021,47:8175-8183.

    • [37] 于杰.划痕法对硬质薄膜结合强度测量的量值溯源研究[D].太原:太原理工大学,2019.YU Jie,Study on the traceability of the measurement of the bond strength of the hard film by the scratch method[D].Taiyuan:Taiyuan University of Technology,2019.(in Chinese)

    • [38] BULL S J,BERASETEGUI E G.An overview of the potential of quantitative coating adhesion measurement by scratch testing[J].Tribology International,2006,39:99-114.

    • [39] 周佳.铝合金/类金刚石薄膜的强结合界面设计与性能研究[D].上海:上海大学,2020.ZHOU Jia.The strong interface design and properties of diamond-like carbon films deposited on aluminum alloy [D].Shanghai:Shanghai University,2020.(in Chinese)

    • [40] BERNOULLI D,HÄFLIGER K,THORWARTH K,et al.Cohesive and adhesive failure of hard and brittle films on ductile metallic substrates:A film thickness size effect analysis of the model system hydrogenated diamond-like carbon(a-C:H)on Ti substrates[J].Acta materialia,2015,83:29-36.

    • [41] SHI J,GUO Z X,SUI M L.Slip system determination of dislocations in α-Ti during in situ TEM tensile deformation[J].Acta Metallurgica Sinica,2016,52(1):71-77.

    • [42] SALEM A A,KALIDINDI S R,SEMIATIN S L.Strain hardening due to deformation twinning in α-titanium:Constitutive relations and crystal-plasticity modeling[J].Acta Materialia,2005,53:3495-3502.

    • [43] GONG J,WILKINSON A J.Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams[J].Acta Materialia,2009,57:5693-5705.

    • [44] REN Ping,ZHANG Kan,HE Xin,et al.Toughness enhancement and tribochemistry of the Nb-Ag-N films actuated by solute Ag[J].Acta Materialia,2017,137:1-11.

    • [45] ZHANG S D,YAN M F,YANG Y,et al.Excellent mechanical,tribological and anti-corrosive performance of novel Ti-DlC nanocomposite thin films prepared via magnetron sputtering method[J].Carbon,2019,151:136-147.

  • 手机扫一扫看