en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘浩,男,1996年出生,硕士研究生。主要研究方向为表面工程与再制造工程。E-mail:1349539142@qq.com

通讯作者:

底月兰,女,1986年出生,博士,助理研究员。主要研究方向为表面工程与再制造工程。E-mail:dylxinjic031@163.com

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20221015001

参考文献 1
IJAOLA A O,FARAYIBI P K,ASMATULU E.Superhydrophobic coatings for steel pipeline protection in oil and gas industries:A comprehensive review[J].Journal of Natural Gas Science and Engineering,2020,83:103544.
参考文献 2
ZHANG W J,FAN S S,WANG Y H,et al.Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion[J].Chemical Engineering Journal,2021,419:129651.
参考文献 3
LI H,YU S R,HAN X X.Preparation of a biomimetic superhydrophobic ZnO coating on an X90 pipeline steel surface[J].New Journal of Chemistry,2015,39(6):4860-4868.
参考文献 4
QI H Y,LIANG A G,JIANG H Y,et al.Surface wettability and flow properties of non-metallic pipes in laminar flow[J].Chinese Journal of Chemical Engineering,2020,28(3):636-642.
参考文献 5
HANSEN R J,LITTLE R C.Early turbulence and drag reduction phenomena in larger pipes[J].Nature,1974,252(5485):690-690.
参考文献 6
MOUSAVI S M A,PITCHUMANI R.A study of corrosion on electrodeposited superhydrophobic copper surfaces[J].Corrosion Science,2021,186:109420.
参考文献 7
LV X S,QIN Y,LIANG H,et al.A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties[J].Applied Surface Science,2021,562:150192.
参考文献 8
HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings[J].Progress in Organic Coatings,2020,142:105557.
参考文献 9
YAMAMOTO M,NISHIKAWA N,MAYAMA H,et al.Theoretical explanation of the lotus effect:superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf[J].Langmuir,2015,31(26):7355-7363.
参考文献 10
WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.
参考文献 11
LEE E Y,LEE K H.Facile fabrication of superhydrophobic surfaces with hierarchical structures[J].Scientific Reports,2018,8(1):1-7.
参考文献 12
ABBASI S,NOURI M,ROUHAGHDAM A S.A novel combined method for fabrication of stable corrosion resistance superhydrophobic surface on Al alloy[J].Corrosion Science,2019,159:108144.
参考文献 13
KHAN S A,BOLTAEV G S,IQBAL M,et al.Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces[J].Applied Surface Science,2021,542:148560.
参考文献 14
VOLPE A,GAUDIUSO C,DI Venere L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.
参考文献 15
RAD S V,MOOSAVI A,NOURI-BOROUJERDI A,et al.Drag reduction in internal turbulent flow by fabricating superhydrophobic Al2O3/waterborne polyurethane coatings[J].Surface and Coatings Technology,2021,421:127406.
参考文献 16
李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能[J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)
参考文献 17
ZHANG H F,TUO Y J,WANG Q C,et al.Fabrication and drag reduction of superhydrophobic surface on steel substrates[J].Surface Engineering,2018,34(8):596-602.
参考文献 18
LI H,YU S R,HAN X X,et al.A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning,anticorrosion,and anti-scaling properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,503:43-52.
参考文献 19
NGUYEN-TRI P,TRAN H N,PLAMONDON C O,et al.Recent progress in the preparation,properties and applications of superhydrophobic nano-based coatings and surfaces:A review[J].Progress in Organic Coatings,2019,132:235-256.
参考文献 20
刘韬,刘莹,底月兰,等.3Cr13 不锈钢微纳表面制备及疏水机理分析[J].表面技术,2020,49(7):112-119.LIU Tao,LIU Ying,DI Yuelan,et al.Preparation and hydrophobic mechanism analysis of 3Cr13 stainless steel surface with micro-nano structure[J].Surface Technology,2020,49(7):112-119.(in Chinese)
参考文献 21
PARK S,HUO J T,SHIN J H,et al.Production of an EP/PDMS/SA/AlZnO coated superhydrophobic surface through an aerosol-assisted chemical vapor deposition process[J].Langmuir,2022,38(25):7825-7832.
参考文献 22
YANG J F,WANG R Y,LONG F,et al.New perspectives on structural parameters and hydrophobic model inspired by a superhydrophobic Cu cone-flower coating[J].Materials & Design,2021,206:109827.
参考文献 23
孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)
参考文献 24
XIANG T F,DING S B,LI C,et al.Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel[J].Materials & Design,2017,114:65-72.
参考文献 25
WANG T,ZHU H,ZHANG Z Y,et al.Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J].Surfaces and Interfaces,2021,24:101112.
参考文献 26
王冬,张振宇,张朝阳,等.皮秒激光参数对仿生跨尺度乳突织构表面润湿性的影响[J].中国表面工程,2021,34(3):110-119.WANG Dong,ZHANG Zhenyu,ZHANG Zhaoyang,et al.Effects of picosecond laser parameters on surface wettability of cross-scale bionic mastoid-like texture[J].China Surface Engineering,2021,34(3):110-119.(in Chinese)
参考文献 27
BAI C Y,HU C B,ZHANG X,et al.A rapid two-step method for fabrication of superhydrophobicsuperoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,651:129635.
参考文献 28
LAN L,WANG H D,ZHU L,et al.Preparation and wetting mechanism of laser-etched composite self-assembled 1H,1H,2H,2H-Perfluorodecyltriethoxysilane superhydrophobic surface coating[J].Physica Status Solidi(A),2022,219(3):2100568.
参考文献 29
ZHANG J X,TIAN H P,YAO Z H,et al.Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J].Experiments in Fluids,2015,56(9):1-13.
参考文献 30
MAALI A,BHUSHAN B.Measurement of slip length on superhydrophobic surfaces[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2012,370(1967):2304-2320.
参考文献 31
LI J,ZHOU M,CAI L,et al.On the measurement of slip length for liquid flow over super-hydrophobic surface[J].Chinese Science Bulletin,2009,54(24):4560-4565.
参考文献 32
LEE C,CHOI C H.Structured surfaces for a giant liquid slip[J].Physical Review Letters,2008,101(6):064501.
参考文献 33
CHOI C H,KIM C J.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Physical Review Letters,2006,96(6):066001.
目录contents

    摘要

    在远程管道运输过程中,固液间摩擦阻力是一个不容忽视的问题,类鲨鱼结构减阻效率低且制备困难。基于荷叶表面仿生思想,构筑微结构制备超疏水表面,减小摩擦阻力。采用飞秒激光刻蚀与电沉积复合工艺,在不锈钢表面构筑框-锥多级结构,经自组装氟硅烷制备超疏水表面,讨论复合工艺参数对微结构形貌及润湿性能的影响,探究框-锥多级结构超疏水表面减阻。结果表明,利用飞秒激光可获得周期性分布的框结构,随着激光功率的增加,微米框结构内部形成不规则沟壑金属堆积物,且关光延时的增长会产生单侧分布微孔结构,损伤基体整体强度;通过电沉积工艺制备亚微米尖锥结构镍镀层,随着电流密度的增加,镀层微结构形态发生变化,形成亚微米尖锥石结构,表面由疏水转变为超疏水。与激光刻蚀 10 次自组装氟硅烷涂层试样相比,激光刻蚀与电沉积复合工艺自组装氟硅烷涂层的试样表面接触角由 138.6°提高到 156.7°,对水和 30 wt.%甘油的减阻率分别由 8.17%、14.38%提高到 27.74%、23.69%。将激光刻蚀与电沉积相结合,构筑微纳结构经自组装制备超疏水表面,可为降低管道输运中固液间摩擦阻力提供新的技术途径。

    Abstract

    In long-distance pipeline transportation, the relative motion of the solid and liquid phases generates a large frictional drag between them, which is a problem that cannot be ignored. The shark-like ribbed groove microstructure, commonly used to reduce resistance, has poor drag-reduction stability, low efficiency, and is difficult to prepare. Therefore, based on the bionic concept, microstructures were constructed and modified through self-assembly to produce superhydrophobic surfaces that reduce the frictional drag between the solid and liquid phases. A superhydrophobic surface was constructed on the surface of 3Cr13 stainless steel using a composite process of femtosecond laser etching and electrodeposition, and the surface was modified using a self-assembled fluorosilane coating. The effects of the laser etching and electrodeposition parameters on the morphology and surface wettability of the frame-cone multilevel microstructures were analyzed. Additionally, the drag reduction performance of the superhydrophobic surface of the frame-cone multilevel structure was investigated underwater. The results showed that periodically distributed micron frame structures can be obtained using a femtosecond laser, with an irregularly grooved metal build-up forming inside the micron frame structure as the laser power increases. An increase in the off-light delay produces a unilateral regular distribution of microporous structures, which damages the overall strength of the substrate. At 35% laser power and 180 μs off delay, the micron frame structure was constructed with an intact surface. Moreover, the depth of the micron frame structure increased linearly with the number of femtosecond laser etchings. When the laser etching was conducted 10 times, the frame structure depth and the static contact angle of the surface were 4.23 μm and 138.6°, respectively. The nano/submicron cone structure of the nickel coating was prepared using electrodeposition, and both the current density and deposition time affected the microstructure morphology of the nickel coating. With an increase in the current density and deposition time, the surface microstructure of the nickel coatings changed from small to large cones and finally to a broad leaf-like structure. The surface of the microstructure was transformed from hydrophobic to superhydrophobic using a self-assembled fluorosilane coating. The optimum electrodeposition process parameters were a current density of 3 A/dm2 and a deposition time of 10 min, where the percentage of 800–1200 nm cones was 72.5%, and the static contact angle of the surface was 158.73° Compared with the conventional micro-nano needle cone structure, the superhydrophobic surface of the micro-nano frame-cone multilevel structure prepared using the laser etching and electrodeposition composite process enhanced the boundary slip effect and improved the underwater drag-reduction performance. Compared with the 10-times laser-etched self-assembled fluorosilane-coated samples, the contact angle of the self-assembled fluorosilane-coated samples prepared using combined laser etching and electrodeposition increased from 138.6° to 156.7°, and the drag reduction rates for water and 30 wt.% glycerol increased from 8.17% and 14.38% to 27.74% and 23.69%, respectively. The superhydrophobic surface was prepared using combined laser etching and electrodeposition to construct micro-and nanostructures using self-assembly, providing a new technical method of reducing the frictional resistance between solid and liquid phases in pipeline transportation; however, its preparation technology is more demanding.

  • 0 前言

  • 油气管道在潮湿、酸碱盐等工作环境下的腐蚀现象较为严重,极大影响了其使用寿命[1-3]。此外,在远程管道运输过程中,对液体阻力较大,泵站的功率几乎全部用来克服阻力,损失较大[4-5]。镍镀层具有优异的耐磨、防腐性能,广泛应用于不锈钢管道表面[6]。然而镀层由于沉积工艺特点[7],镀层表面粗糙度较高,对液体阻力降低效果十分有限。

  • 自 BARTHLOTT 和 NEINHUIS 报道荷叶效应以来[8],超疏水的疏水机理、微结构设计与制造便受到了广泛关注[9-11],研究表明,超疏水表面不仅可以起到金属防腐蚀[12]的作用,在自清洁[13]、仿结冰[14]、减小阻力[15]、油水分离[16]等领域同样具有较大的优势,如利用化学刻蚀和水热法复合技术[17],在钢基体上制备了接触角为 164.9°、滚动角小于 3°的超疏水表面。在低流速下,与未经处理的表面相比,超疏水表面试样减阻率达 40%~50%,提高了航行体的运行速度,减小了固液界面间的粘性阻力。超疏水表面在腐蚀防护领域更是一个较新的研究发展方向,将其应用在管道防腐上将具有重要的社会经济价值[18]

  • 超疏水表面的获得主要通过两种途径[19]:一种是利用低表面能物质修饰,另一种则是在低表面能材料表面构筑微纳米复合结构。制备技术包括化学刻蚀法[20]、化学沉积法[21]、电沉积法[22]和激光刻蚀法[23] 等。XIANG 等[24]采用电沉积法在低碳钢表面制备微结构超疏水表面,增强表面润湿性能。然而要想获得润湿效果良好的电沉积镀层表面,一方面要控制微米结构尺度实现 Cassie 润湿,另一方面还要兼顾纳米晶粒的生长实现定向生长等,单纯依靠电沉积难以协调控制两方面因素,此外,纳米晶粒比较脆弱,耐磨性较差。因此,如何既兼顾微-纳双重结构,又提升纳米晶粒的“寿命”是需要解决的关键问题。激光加工是一种高精度、非接触的加工方法,能在金属基体表面制备稳定的微米结构。WANG 等[25]采用皮秒激光刻蚀铜板表面,构筑凸起结构制备超疏水表面,并探究凸起高度对疏水性能的影响,表明一定高度的凸起高度可有效改善表面的润湿性能。

  • 本文结合飞秒激光刻蚀与电沉积两种工艺,创新提出“框-锥”微纳多级结构的设计思想,即利用微米的“方框”来保护“锥形”的纳米晶粒,兼顾尺度与方向两方面,经自组装氟硅烷涂层,获得减阻性能优异的超疏水镀层。本文首先研究复合工艺参数对框结构形貌、镀层镍尖锥形态、生长机制的影响,其次对自组装氟硅烷试样表面润湿性能转变机理进行讨论。比较飞秒激光刻蚀与复合工艺导致的试样润湿性能、减阻率差异,进一步揭示复合工艺构筑的框-锥多级结构超疏水表面减阻的作用机理。

  • 1 试验

  • 1.1 材料与预处理

  • 以 3Cr13 马氏体不锈钢为试验基体(SUB)材料,其组成成分如表1 所示,购买自博盾硬质合金有限公司,采用线切割加工试样为 40 mm×20 mm ×2 mm。电沉积工艺阳极材料为纯镍板,尺寸为 40 mm×20 mm×2 mm。化学试剂包括丙酮、无水乙醇、甲醇,氢氧化钠、碳酸钠、硅酸钠、磷酸三钠(上海迈瑞尔化学技术有限公司),10 vol.%盐酸、硼酸(上海迈瑞尔化学技术有限公司),六水合氯化镍、十二烷基磺酸钠、1H,1H,2H,2H-全氟癸基三乙氧基硅烷、甘油、去离子水(上海阿拉丁试剂有限公司)。

  • 表1 试验基体材料

  • Table1 Test substrate materials

  • 激光刻蚀前对基体进行打磨,依次采用 800#、 1000#、1500#和 2000#水磨砂纸打磨表面,打磨完后分别用丙酮、无水乙醇进行超声清洗 20 min;电沉积前将激光刻蚀试样采用除油液(30g / L NaOH、 20g / L Na2CO3、20g / L Na3PO4、10g / L Na2SiO3) 恒温 80℃除油 20 min;最后,使用无水乙醇、去离子水清洗,吹干待用。

  • 1.2 试样制备

  • 采用飞秒激光技术刻蚀点阵微米框结构表面,然后利用电沉积工艺制备亚微米镍尖锥结构,其飞秒激光-电沉积组合加工系统如图1 所示。飞秒激光加工系统(Edge wave FX600-4)采用中心波长为 1 030 nm、脉宽为 900 fs 的激光器,聚焦镜范围 40 mm×40 mm、最大单脉冲能量 240 μJ、重复频率 1 MHz。飞秒激光最大平均功率为 20 W,通过百分比来调节。激光束呈高斯分布,通过扫描振镜系统沿 x 轴和 y 轴传输,投射在处于焦点的试样上。通过计算机控制扫描振镜偏振方向确定激光在平面内的运行轨迹,在焦距为 218 mm 的透镜获得光斑直径约为 25 μm。激光刻蚀工艺参数为重复频率 300 kHz、扫描间距 30 μm、扫描速度 1 m / s、激光功率 7~13 W、激光关光延时 250~180 μs 和激光刻蚀次数 4~20 次。

  • 图1 飞秒激光-电沉积组合加工装置示意图

  • Fig.1 Combined process with a femtosecond laser, electrodeposition, and sample preparation

  • 激光刻蚀后,将试样在丙酮、无水乙醇中分别超声清洗 20 min,室温下放入 10 wt.%盐酸中活化 30 s,立即用去离子水中洗涤、吹干待用。采用恒压直流电源进行电沉积,激光刻蚀试样为阴极置于电沉积液中,纯镍板为阳极。电解液以 237.69 g / L NiCl2·6H2O 作为镍离子源、61.81 g / L H3BO3 作为pH 缓冲剂和 0.15 g / L 十二烷基磺酸钠析氢、去针孔剂。除了电解液提供 Ni2+外,阳极镍板在沉积过程不断溶解保持 Ni2+离子浓度。在电沉积时,保持电解液温度为 60℃和 pH = 4.0,阴、阳极板相对距离为 5 cm。为了控制微结构的生长,电流密度和沉积时间分别设置为 1、3、5、7 A / dm2 和 5、10、 15 min。电沉积结束后,放入去离子水中洗净、吹干。

  • 以甲醇溶液为溶剂制备 5 mmol / L 1H,1H,2H, 2H-全氟癸基三乙氧基硅烷溶液(PFDS),将飞秒激光与电沉积复合工艺制备的试样浸入该溶液中,并密封静止 12 h。取出试样放入 150 °C 恒温鼓风干燥箱中固化 60 min,自然冷却后待用。

  • 1.3 测量与表征

  • 采用 Zeiss 高分辨场发射扫描电镜(ZEISS Oberkochen,Germany)观察试样表面形貌,确定飞秒激光功率、关光延时和刻蚀次数对凹坑结构表面形貌的影响。利用三维白光干涉剖面仪(NeXView,Zygo,USA)观测凹坑结构表面三维形貌,确定飞秒激光刻蚀次数与凹坑深度关系。同时采用激光共聚焦显微镜观测电沉积镍尖锥结构高度,以及统计尖锥高度分布。为了分析自组装 PFSD 涂层试样表面化学成分及状态,使用 X 射线光电子能谱仪 XPS (PHI Quantera II,Japan)进行测试。采用光学接触角测量仪(Harke,SPCA-X3,China)测量样品表面的静态接触角(水滴体积 5 μL),测试结果是试样表面 3 个不同位置测量的平均值。为了量化飞秒激光与电沉积复合工艺制备的超疏水表面减阻效果,利用锥板流变仪(Anton Paar,Physica MCR 302,Austria)在不同剪切率下,测量去离子水、30 wt.% 甘油在样品表面扭矩。

  • 2 结果与讨论

  • 2.1 飞秒激光制备“方型框”表面

  • 图2a 是飞秒激光功率对刻蚀微米框结构表面形貌的影响。由图可知,当激光功率为 7 W 时,表面形貌呈周期性框结构,长和宽约为 200 μm,凹坑内部材料去除平整(图2a)。随着激光功率增大到 11 W,框结构内部出现不相连的沟壑结构(图2c)。由于单脉冲能量密度随功率增大,材料吸收的能量增多,而激光束呈高斯分布,导致材料熔渣往两侧堆积形成沟壑[26]。当功率增大到 13 W 时,熔渣堆积更为明显,凹坑深度加大,如图2d 所示。

  • 图2 飞秒激光功率对框结构的影响

  • Fig.2 Effect of femtosecond laser power on frame structure

  • 激光关光延时对表面结构的影响如图3 所示。当激光关光延时较长(240 μs),激光束在材料表面局部区域停留,导致框结构底部一侧出现周期性的微孔,微孔直径约 25 μm,且两侧堆积物较多。微孔的出现影响了零件表面的整体强度,尤其是薄壁类零件。随着关光延时缩短为 220 μs,微孔直径和两侧堆积物减小,如图3b 所示。当关光延时减小到 200 μs 时,框结构底部一侧微孔逐渐消失,存在的微孔直径约为 13 μm。直至减小到 180 μs 时(图3d),框结构底部无微孔出现、表面较为平整。

  • 图4 显示了激光刻蚀次数对表面凹坑(框)形貌的影响。通过光镜图4a 可以看出,凹坑微结构内部与表面基本平整,呈周期分布,凹坑长、宽约为 200 μm。采用白光干涉测量凹坑深度,如图4b 所示,激光刻蚀 10 次(L10)时,凹坑深度约为 4.23 μm。将激光刻蚀次数与凹坑深度绘制曲线,如图4c 所示。可以看到两者基本呈线性关系。拟合曲线结果表明,两者相关系数为 0.97,且多个被测深度值点均在 95%的置信区间。结果显示,飞秒激光刻蚀具有良好重复性,凹坑表面平整且深度可控。因此,选用飞秒激光刻蚀框结构最优参数为激光功率 35%、关光延时 180 μs、刻蚀次数 10 次。

  • 图3 飞秒激光关光延时对框结构的影响

  • Fig.3 Effect of femtosecond laser light-off delay on frame structure

  • 图4 激光刻蚀次数对框结构深度的影响

  • Fig.4 Effect of the times of laser etching on the depth of the frame structure

  • 2.2 电沉积加工制备“框-锥”多级结构表面

  • 采用 L10 试样进行电沉积,制备框-锥多级结构超疏水表面,电流密度对镀层表面形貌影响如图5 所示。电流密度为 1 A / dm2 时,凹坑内部及表面被底部宽度约为 400 nm 的小镍尖锥石覆盖(图5a),小尖锥石之间较为致密。当电流密度为 3 A / dm2 (L10ED),如图5b 所示,尖锥石底部宽度平均尺寸为700~900 nm,尖锥石横向生长不明显,尖锥体之间存在较大的空隙。进一步增大电流密度至 5 A / dm2,尖锥体减少,出现较多类“菜花”团状结构,侧向分枝较多,相互之间密集,如图5c 所示。当电流密度增至 7 A / dm2 时,宽叶状结构覆盖凹坑及表面,叶宽和叶长分别为800 nm、 3 μm,且分叶脉沿主叶脉某一方向无序生长,叶状结构之间错落排布(图5d)。

  • 图5 电流密度对 L10 镀层表面的影响

  • Fig.5 Effect of current density on the surface of L10 coating

  • 通过控制电流密度 3 A / dm2,改变沉积时间获得镀层微结构(图6)。沉积时间为 5 min 时,凹坑及表面均被底部宽度约为 350 nm 的小镍尖锥石覆盖(图6a),小尖锥石之间致密。当沉积时间为 10 min (L10ED),如图6b 所示,尖锥石底部宽度平均尺寸为 700~900 nm,镍尖锥石横向生长不明显,尖锥体之间存在较大的空隙。随着沉积时间延长至 15 min 时,如图6c 所示,“片状块石”结构大面积出现,镀层表面尖锥结构消失,且镀层宏观出现局部翘起或脱落现象。因此,为实现框-锥多级结构超疏水表面的制备,电沉积工艺构筑尖锥结构最优参数为 3 A / dm2、10 min。

  • 图6 沉积时间对 L10 镀层表面的影响

  • Fig.6 Effect of deposition time on the surface of L10 coating

  • 为进一步定量分析电沉积最优工艺参数构筑的镍尖锥结构(L10ED),通过利用激光共聚焦显微镜测量尖锥体高度,并统计高度分布,如图7 所示。尖锥高度集中约为 900 nm,尖锥体之间存在明显间隙,且几乎无横向结构出现,如图7a 所示。图7b 为尖锥高度统计分布图,可以看到高度 800~1 200 nm 占整个区域的 72.5%,而小于 800 nm 或大于 1 200 nm 的尖锥体仅分别占 19.2%和 8.3%。

  • 图7 电沉积最优工艺参数试样表面尖锥高度分布

  • Fig.7 Electrodeposition optimal process parameters sample surface cone height distribution

  • 2.3 “框-锥”复合结构表面润湿性能

  • 图8 显示了飞秒激光刻蚀次数对激光刻蚀经自组装 PFDS 涂层试样表面接触角的影响。激光刻蚀 4 次自组装试样(L4PF)表面静态接触角为 119.1°±2.3°。当刻蚀次数为 16 次(L16PF)时,试样表面由疏水转变为超疏水,静态接触角为 151.3°±1.9°。进一步增加刻蚀次数,则静态接触角提高很少,L20PF 试样静态接触角趋于稳定至 156.5°±1.8°。

  • 图8 接触角随激光刻蚀次数变化

  • Fig.8 Variation of contact angle with the times of laser etching

  • 激光刻蚀次数即刻蚀深度,对液滴微观接触状态的影响可由图9 解释。液滴宏观呈椭圆坐落在试样表面。L4PF 试样凹坑较浅,仅为 1.8 μm,液滴与凹坑内部发生接触,但凹坑角落仍有部分空隙被空气填充,处于不完全的 Wenzel 状态(图9a)。随着凹坑深度增大,液滴与凹坑底部的局部接触面积减小,凹坑内部空隙增多(图9b),此时接触角增大较为明显。当刻蚀次数为 20(L20PF)时,凹坑深度增大到液滴与底部完全脱离且有一定的距离,此时达到稳定超疏水表面,即 Cassie 状态(图9c)。深度的进一步增加不再显著改变接触状态,因此接触角也趋于稳定。

  • 图9 刻蚀次数对液滴接触状态的影响

  • Fig.9 Effect of the times of etching on the contact state of droplets

  • 在飞秒激光刻蚀与电沉积复合工艺制备的试样表面进行自组装 PFDS 涂层,并测量静态接触角如图10 所示。由双 Y 图可知,控制沉积时间为 10 min,当电流密度从 1 A / dm2 增加到 3 A / dm2 时,试样表面静态接触角总体呈现稳步增加,最大静态接触角为 156.73°(L10EDPF)。电流密度继续增大,试样表面静态接触角迅速降低,当电流密度大于 5 A / dm2 时,表面静态接触角趋于稳定,约为 131°,不再降低。由图可知,当电流密度为 3 A / dm2,沉积时间从 5 min 延长至 10 min 时,试样表面静态接触角增至最大 156.73° (L10EDPF)。沉积时间延长至 15 min,试样表面静态接触角急剧下降。

  • 图10 接触角随电流密度和沉积时间变化

  • Fig.10 Variation of contact angle with current density and deposition time

  • 电沉积工艺参数引起自组装 PFDS 试样表面润湿性能变化,主要是由于镀层微结构形貌发生变化。而电沉积工艺参数,即电流密度和沉积时间,对镀层微结构的影响可由图11 解释。在低电流密度下 (图11a),少数游离的镍离子附着在激光刻蚀后的阴极板表面,凹坑及凸起表面均被镍沉积形成的小尖锥石覆盖,但凸起处形成的尖锥更多且比坑内较为致密。提高电流密度,大量游离的镍离子在刻蚀后的阴极板(微结构试样)附近,尖锥体纵向高度增加,凹坑内部也出现相互独立的尖锥体,如图11b 所示。当电流密度继续增大,阴极板富集镍离子,凹坑表面及内部出现块状沉积物,凹坑被逐渐填满,如图11c 所示。同时,随着沉积时间的延长,镍尖锥在阴极激光刻蚀试样表面形核、长大,为 800~1 200 nm 尖锥结构。直至最后尖锥结构消失,块状结构出现,微织构无规则横向生长。因此,通过控制合适的电流密度和沉积时间可以获得不同的镀层微结构表面。

  • 图11 电流密度和沉积时间对微结构生长的影响

  • Fig.11 Effect of current density and deposition time on microstructure growth

  • 图12 为 L10EDPF 试样表面化学成分 XPS 光全谱和拟合峰图。由全谱图12a 可知,L10EDPF 试样表面出现新的元素峰 F1s,表明 PFDS 分子已经枝接在试样表面。进一步分析 PFDS 涂层与复合工艺制备的多级结构表面相互作用机制,利用高分辨率 XPS 扫描 L10EDPF 试样表面的 O1s、C1s 和 F1s 峰(图12b、12c、12d)。结果表明,L10EDPF 试样表面的 O1s 主要有两个信号峰组成:530.88 eV 的氧化物和 529 eV 的 NiO(OH),由 Ni 的氧化物组成[27]。Ni(OH)2 分子的引入使表面呈羟基,这有助于 PFDS 分子与表面发生交联反应[28]。 L10EDPF 试样表面 C1s 光谱主要由 6 个碳信号峰组成:283.88、284.63、286、287.5、290 和 292.38 eV 为 6 个拟合峰的中心,分别属于-C-Si、-C-C、-C-O、-CF2-CF2、-CF2 和-CF3,如图12c 所示。位于 687.13 eV 的光谱峰为 F1s (图12d),这与 CF2 和 CF3 一致,进一步证实了 PFDS 分子已自组装试样表面。

  • 图12 试样表面 XPS 谱图

  • Fig.12 Surface XPS samples of L10EDPF

  • PFDS 涂层诱导框-锥多级结构润湿性能转变,可由图13 解释其改性机理。PFDS 分子中的硅-氧乙基(Si-OC2H5)在甲醇溶液中发生第一次水解反应,氧与乙基之间碳氧键断开,形成了羟基,生成硅醇分子(Si-OH)。而基体经飞秒激光复合电沉积后,试样表面的氢氧化镍分子与硅醇分子中的羟基发生第二次水解反应,化学冷凝后形成 Si-O-Ni 键,使得 PFDS 分子枝接在试样表面。同时,PFDS 分子中的 Si-OH 自身之间也会发生一定程度的缩聚反应,脱去水分子形成 Si-O-Si 基团,形成更加致密的氟硅烷聚合物网状结构。使得 PFDS 分子成功自组装在试样表面,形成 PFDS 超疏水涂层。随后,在恒温箱中 150℃固化 60 min,去除氟硅烷分子界面上的残余水分子,从而使氟硅烷分子枝接在试样表面更稳定。

  • 图13 试样表面自组装 PFDS 涂层疏水改性机理

  • Fig.13 Mechanism of hydrophobic modification of self-assembled PFDS coating on the surface of the sample

  • 2.4 减阻性能

  • 超疏水表面在水下可以束缚气膜层,使得固液界面转变为气液界面,并在气液界面上产生速度滑移以减小流动阻力[29]。采用旋转流变仪测量水、 30 wt.%甘油在试样表面的扭矩,图14 显示了相同体积液体在试样表面的测试结果。可以看到,随着剪切率的快速增加,水在 L10EDPF 试样表面扭矩量增长率较为缓慢,具有较好的减阻效果,而 SUB、 L10PF 试样几乎同步快速增长,直至增长到各自最大值点,如图14a 所示。当剪切率到达 800 s−1 左右, L10EDPF 试样首先达液膜破裂点,扭矩量约为 0.12 mN·m。随后两板间被空气填充,扭矩量降至 0。随着剪切率增加到 1 000 s−1 左右,L10PF 试样表面上液膜破裂,扭矩量接近 0.02 mN·m。直至剪切率增加到 1 100 s−1 时,SUB 试样表面液膜才发生第一次液膜破裂,即部分测试液体被甩出两板之间,导致扭矩量产生大幅度下降,说明 SUB 试样表面对水的扭矩远大于 0.023 mN·m。对于 30 wt.%甘油也具有相类似的减阻效果,但扭矩量普遍较大、减阻效果减小,且相对于水来说,达到最大扭矩量时剪切率较小(图14c)。

  • 图14 不同液体在试样表面扭矩量

  • Fig.14 Amount of torque of different liquids on the surface of the sample

  • 超疏水表面的减阻效果由液体在固体表面的滑移长度 beff 来定量表征[30]。利用旋转流变仪测量了不同液体在试样表面的扭矩量,其滑移长度 beff 与扭矩 M 关系式如下[31-32]

  • M=2πμΩR33θ01-3beff2Rθ0+3beff2R2θ02-3beff3R3θ03lnRθ0+beffbeff
    (1)
  • 式中,μ为测试液体黏度,R 为锥板半径,锥角速度和 θ0锥角。由数学表达式可知,扭矩量与滑移长度呈负相关[33]。将上述 3 种试样剪切-扭矩图进行局部放大,可以看到不同剪切率下,激光复合电沉积制备的框-锥多级结构超疏水表面减阻率,如图14b、14d 所示。由 14b 图可知,随着剪切率的增大, 3 条曲线先分离至最值点远、后靠近,表明在某一剪切率范围内,滑移长度达最大值,具有最佳减阻效果。图中竖线为 L10EDPF 试样最大减阻率点,剪切率为 711 s−1,其减阻率为 27.74%,而 L10PF 减阻率仅为 8.17%。而对于 30 wt.%甘油,放大图14d 在剪切率为 764 s−1 时,试样减阻率达最大值, L10PF 和 L10EDPF 试样减阻率分别为 23.69%、 14.38%,说明在更加宽的剪切率下具有良好的减阻效果。

  • 基体表面与液体直接接触时,边界面上的速度不变,边界滑移长度 δ1=0(图15a)。而 L10PF 试样框结构表面宽深比大,部分液体浸润到了激光刻蚀的框结构底部,形成弯月面,使得液体在微织构表面呈现不完全 Cassie 状态。微结构捕获少量空气,促使表面发生局部性滑移现象,使得在框结构表面附近出现速度梯度减小的趋势,其速度梯度变化产生一个较短的滑移长度 δ2,如图15b 所示,具有一定的减阻效果。

  • 与 L10PF 试样不同,超疏水 L10EDPF 试样表面为框-锥多级结构,丰富的纳米 / 亚微米镍尖锥结构能够捕获大量的空气,形成连续的空气层。当液体流经该表面时,由于空气层的存在促使大的滑移流动现象产生,边界面上的速度梯度骤然减小,减小了边界面上的剪切力,产生了一个较大的滑移长度 δ3,如图15c 所示。同时速度梯度的减小,推迟了层流附着面流态的转变,使得附着面的层流流态更加稳定,提高了减阻效果。

  • 图15 液体在微结构超疏水表面减阻机理

  • Fig.15 Drag reduction mechanism of liquid on microstructure superhydrophobic surface

  • 试样减阻率的变化与表面粘附力紧密相关,利用表面张力仪测得液滴在试样表面粘附力。图16 显示了激光刻蚀工艺与复合工艺制备的试样表面减阻率及粘附力对比。可以明显看到,L10PF 试样表面粘附力为 164.7 μN,是 L10EDPF 试样粘附力的 7.2 倍。试样表面粘附力与减阻率呈明显负相关, L10PF 试样表面粘附力最大,对水、30 wt.%甘油减阻率分别仅为 8.17%、14.38%。随着粘附力的减小, L10EDPF 试样表面对水、30wt.%甘油减阻率均快速增长,分别为 27.74%、23.69%。

  • 图16 不同制备工艺表面减阻率及粘附力关系

  • Fig.16 Relationship between surface drag reduction rate and adhesion of different preparation processes

  • 3 结论

  • (1)利用飞秒激光与电沉积复合工艺在不锈钢表面构筑了微纳米框-锥多级结构,经自组装 PFDS 涂层获得超疏水性。通过控制飞秒激光参数和电沉积参数成功构筑了微米框、纳米尖锥结构,从而实现对表面润湿的调控。

  • (2)相较传统微纳针锥结构,采用复合工艺制备的框-锥多级结构超疏水表面增强了边界滑移效应,提高了水下减阻性能。与 L10PF 试样相比, L10EDPF 试样对水和 30 wt.%甘油的减阻率分别由 8.17%、14.38%提高到 27.74%、23.69%。

  • (3)复合工艺制备的框-锥多级结构超疏水表面,凹坑底部及凸起表面形成丰富的亚微米尖锥体,捕获更多空气形成连续的空气层,使液体在固体表面边界产生大的滑移效应,提高了水下减阻性能,但其制备技术要求较高。

  • 参考文献

    • [1] IJAOLA A O,FARAYIBI P K,ASMATULU E.Superhydrophobic coatings for steel pipeline protection in oil and gas industries:A comprehensive review[J].Journal of Natural Gas Science and Engineering,2020,83:103544.

    • [2] ZHANG W J,FAN S S,WANG Y H,et al.Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion[J].Chemical Engineering Journal,2021,419:129651.

    • [3] LI H,YU S R,HAN X X.Preparation of a biomimetic superhydrophobic ZnO coating on an X90 pipeline steel surface[J].New Journal of Chemistry,2015,39(6):4860-4868.

    • [4] QI H Y,LIANG A G,JIANG H Y,et al.Surface wettability and flow properties of non-metallic pipes in laminar flow[J].Chinese Journal of Chemical Engineering,2020,28(3):636-642.

    • [5] HANSEN R J,LITTLE R C.Early turbulence and drag reduction phenomena in larger pipes[J].Nature,1974,252(5485):690-690.

    • [6] MOUSAVI S M A,PITCHUMANI R.A study of corrosion on electrodeposited superhydrophobic copper surfaces[J].Corrosion Science,2021,186:109420.

    • [7] LV X S,QIN Y,LIANG H,et al.A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties[J].Applied Surface Science,2021,562:150192.

    • [8] HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings[J].Progress in Organic Coatings,2020,142:105557.

    • [9] YAMAMOTO M,NISHIKAWA N,MAYAMA H,et al.Theoretical explanation of the lotus effect:superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf[J].Langmuir,2015,31(26):7355-7363.

    • [10] WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.

    • [11] LEE E Y,LEE K H.Facile fabrication of superhydrophobic surfaces with hierarchical structures[J].Scientific Reports,2018,8(1):1-7.

    • [12] ABBASI S,NOURI M,ROUHAGHDAM A S.A novel combined method for fabrication of stable corrosion resistance superhydrophobic surface on Al alloy[J].Corrosion Science,2019,159:108144.

    • [13] KHAN S A,BOLTAEV G S,IQBAL M,et al.Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces[J].Applied Surface Science,2021,542:148560.

    • [14] VOLPE A,GAUDIUSO C,DI Venere L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.

    • [15] RAD S V,MOOSAVI A,NOURI-BOROUJERDI A,et al.Drag reduction in internal turbulent flow by fabricating superhydrophobic Al2O3/waterborne polyurethane coatings[J].Surface and Coatings Technology,2021,421:127406.

    • [16] 李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能[J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)

    • [17] ZHANG H F,TUO Y J,WANG Q C,et al.Fabrication and drag reduction of superhydrophobic surface on steel substrates[J].Surface Engineering,2018,34(8):596-602.

    • [18] LI H,YU S R,HAN X X,et al.A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning,anticorrosion,and anti-scaling properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,503:43-52.

    • [19] NGUYEN-TRI P,TRAN H N,PLAMONDON C O,et al.Recent progress in the preparation,properties and applications of superhydrophobic nano-based coatings and surfaces:A review[J].Progress in Organic Coatings,2019,132:235-256.

    • [20] 刘韬,刘莹,底月兰,等.3Cr13 不锈钢微纳表面制备及疏水机理分析[J].表面技术,2020,49(7):112-119.LIU Tao,LIU Ying,DI Yuelan,et al.Preparation and hydrophobic mechanism analysis of 3Cr13 stainless steel surface with micro-nano structure[J].Surface Technology,2020,49(7):112-119.(in Chinese)

    • [21] PARK S,HUO J T,SHIN J H,et al.Production of an EP/PDMS/SA/AlZnO coated superhydrophobic surface through an aerosol-assisted chemical vapor deposition process[J].Langmuir,2022,38(25):7825-7832.

    • [22] YANG J F,WANG R Y,LONG F,et al.New perspectives on structural parameters and hydrophobic model inspired by a superhydrophobic Cu cone-flower coating[J].Materials & Design,2021,206:109827.

    • [23] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [24] XIANG T F,DING S B,LI C,et al.Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel[J].Materials & Design,2017,114:65-72.

    • [25] WANG T,ZHU H,ZHANG Z Y,et al.Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J].Surfaces and Interfaces,2021,24:101112.

    • [26] 王冬,张振宇,张朝阳,等.皮秒激光参数对仿生跨尺度乳突织构表面润湿性的影响[J].中国表面工程,2021,34(3):110-119.WANG Dong,ZHANG Zhenyu,ZHANG Zhaoyang,et al.Effects of picosecond laser parameters on surface wettability of cross-scale bionic mastoid-like texture[J].China Surface Engineering,2021,34(3):110-119.(in Chinese)

    • [27] BAI C Y,HU C B,ZHANG X,et al.A rapid two-step method for fabrication of superhydrophobicsuperoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,651:129635.

    • [28] LAN L,WANG H D,ZHU L,et al.Preparation and wetting mechanism of laser-etched composite self-assembled 1H,1H,2H,2H-Perfluorodecyltriethoxysilane superhydrophobic surface coating[J].Physica Status Solidi(A),2022,219(3):2100568.

    • [29] ZHANG J X,TIAN H P,YAO Z H,et al.Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J].Experiments in Fluids,2015,56(9):1-13.

    • [30] MAALI A,BHUSHAN B.Measurement of slip length on superhydrophobic surfaces[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2012,370(1967):2304-2320.

    • [31] LI J,ZHOU M,CAI L,et al.On the measurement of slip length for liquid flow over super-hydrophobic surface[J].Chinese Science Bulletin,2009,54(24):4560-4565.

    • [32] LEE C,CHOI C H.Structured surfaces for a giant liquid slip[J].Physical Review Letters,2008,101(6):064501.

    • [33] CHOI C H,KIM C J.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Physical Review Letters,2006,96(6):066001.

  • 参考文献

    • [1] IJAOLA A O,FARAYIBI P K,ASMATULU E.Superhydrophobic coatings for steel pipeline protection in oil and gas industries:A comprehensive review[J].Journal of Natural Gas Science and Engineering,2020,83:103544.

    • [2] ZHANG W J,FAN S S,WANG Y H,et al.Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion[J].Chemical Engineering Journal,2021,419:129651.

    • [3] LI H,YU S R,HAN X X.Preparation of a biomimetic superhydrophobic ZnO coating on an X90 pipeline steel surface[J].New Journal of Chemistry,2015,39(6):4860-4868.

    • [4] QI H Y,LIANG A G,JIANG H Y,et al.Surface wettability and flow properties of non-metallic pipes in laminar flow[J].Chinese Journal of Chemical Engineering,2020,28(3):636-642.

    • [5] HANSEN R J,LITTLE R C.Early turbulence and drag reduction phenomena in larger pipes[J].Nature,1974,252(5485):690-690.

    • [6] MOUSAVI S M A,PITCHUMANI R.A study of corrosion on electrodeposited superhydrophobic copper surfaces[J].Corrosion Science,2021,186:109420.

    • [7] LV X S,QIN Y,LIANG H,et al.A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties[J].Applied Surface Science,2021,562:150192.

    • [8] HOODA A,GOYAT M S,PANDEY J K,et al.A review on fundamentals,constraints and fabrication techniques of superhydrophobic coatings[J].Progress in Organic Coatings,2020,142:105557.

    • [9] YAMAMOTO M,NISHIKAWA N,MAYAMA H,et al.Theoretical explanation of the lotus effect:superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf[J].Langmuir,2015,31(26):7355-7363.

    • [10] WANG D H,SUN Q Q,HOKKANEN M J,et al.Design of robust superhydrophobic surfaces[J].Nature,2020,582(7810):55-59.

    • [11] LEE E Y,LEE K H.Facile fabrication of superhydrophobic surfaces with hierarchical structures[J].Scientific Reports,2018,8(1):1-7.

    • [12] ABBASI S,NOURI M,ROUHAGHDAM A S.A novel combined method for fabrication of stable corrosion resistance superhydrophobic surface on Al alloy[J].Corrosion Science,2019,159:108144.

    • [13] KHAN S A,BOLTAEV G S,IQBAL M,et al.Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces[J].Applied Surface Science,2021,542:148560.

    • [14] VOLPE A,GAUDIUSO C,DI Venere L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.

    • [15] RAD S V,MOOSAVI A,NOURI-BOROUJERDI A,et al.Drag reduction in internal turbulent flow by fabricating superhydrophobic Al2O3/waterborne polyurethane coatings[J].Surface and Coatings Technology,2021,421:127406.

    • [16] 李志文,齐博浩,刘长松,等.不锈钢网表面润湿性的调控及其油水分离性能[J].中国表面工程,2020,33(5):10-17.LI Zhiwen,QI Bohao,LIU Changsong,et al.Manipulation of surface wettability on stainless steel mesh and its oil-water separation performance[J].China Surface Engineering,2020,33(5):10-17.(in Chinese)

    • [17] ZHANG H F,TUO Y J,WANG Q C,et al.Fabrication and drag reduction of superhydrophobic surface on steel substrates[J].Surface Engineering,2018,34(8):596-602.

    • [18] LI H,YU S R,HAN X X,et al.A stable hierarchical superhydrophobic coating on pipeline steel surface with self-cleaning,anticorrosion,and anti-scaling properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,503:43-52.

    • [19] NGUYEN-TRI P,TRAN H N,PLAMONDON C O,et al.Recent progress in the preparation,properties and applications of superhydrophobic nano-based coatings and surfaces:A review[J].Progress in Organic Coatings,2019,132:235-256.

    • [20] 刘韬,刘莹,底月兰,等.3Cr13 不锈钢微纳表面制备及疏水机理分析[J].表面技术,2020,49(7):112-119.LIU Tao,LIU Ying,DI Yuelan,et al.Preparation and hydrophobic mechanism analysis of 3Cr13 stainless steel surface with micro-nano structure[J].Surface Technology,2020,49(7):112-119.(in Chinese)

    • [21] PARK S,HUO J T,SHIN J H,et al.Production of an EP/PDMS/SA/AlZnO coated superhydrophobic surface through an aerosol-assisted chemical vapor deposition process[J].Langmuir,2022,38(25):7825-7832.

    • [22] YANG J F,WANG R Y,LONG F,et al.New perspectives on structural parameters and hydrophobic model inspired by a superhydrophobic Cu cone-flower coating[J].Materials & Design,2021,206:109827.

    • [23] 孙晓雨,孙树峰,王津,等.超疏水表面激光加工技术研究进展[J].中国表面工程,2022,35(1):53-71.SUN Xiaoyu,SUN Shufeng,WANG Jin,et al.Research progress of laser processing technology for superhydrophobic surface[J].China Surface Engineering,2022,35(1):53-71.(in Chinese)

    • [24] XIANG T F,DING S B,LI C,et al.Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel[J].Materials & Design,2017,114:65-72.

    • [25] WANG T,ZHU H,ZHANG Z Y,et al.Preparing of superamphiphobic surface by fabricating hierarchical nano re-entrant pyramids on micro-cones using a combined laser-electrochemistry method[J].Surfaces and Interfaces,2021,24:101112.

    • [26] 王冬,张振宇,张朝阳,等.皮秒激光参数对仿生跨尺度乳突织构表面润湿性的影响[J].中国表面工程,2021,34(3):110-119.WANG Dong,ZHANG Zhenyu,ZHANG Zhaoyang,et al.Effects of picosecond laser parameters on surface wettability of cross-scale bionic mastoid-like texture[J].China Surface Engineering,2021,34(3):110-119.(in Chinese)

    • [27] BAI C Y,HU C B,ZHANG X,et al.A rapid two-step method for fabrication of superhydrophobicsuperoleophobic nickel/copper alloy coating with self-cleaning and anticorrosion properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,651:129635.

    • [28] LAN L,WANG H D,ZHU L,et al.Preparation and wetting mechanism of laser-etched composite self-assembled 1H,1H,2H,2H-Perfluorodecyltriethoxysilane superhydrophobic surface coating[J].Physica Status Solidi(A),2022,219(3):2100568.

    • [29] ZHANG J X,TIAN H P,YAO Z H,et al.Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J].Experiments in Fluids,2015,56(9):1-13.

    • [30] MAALI A,BHUSHAN B.Measurement of slip length on superhydrophobic surfaces[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2012,370(1967):2304-2320.

    • [31] LI J,ZHOU M,CAI L,et al.On the measurement of slip length for liquid flow over super-hydrophobic surface[J].Chinese Science Bulletin,2009,54(24):4560-4565.

    • [32] LEE C,CHOI C H.Structured surfaces for a giant liquid slip[J].Physical Review Letters,2008,101(6):064501.

    • [33] CHOI C H,KIM C J.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Physical Review Letters,2006,96(6):066001.

  • 手机扫一扫看