en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋佳鑫,男,1998年出生,硕士研究生。主要研究方向为表面工程。E-mail:songjiaxin@stu.ouc.edu.cn

通讯作者:

黄艳斐,女,1986年出生,硕士,助理研究员。主要研究方向为再制造技术和表面工程。E-mail:huangyanfei123@126.com

中图分类号:TG244

DOI:10.11933/j.issn.1007−9289.20220811002

参考文献 1
胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)
参考文献 2
李云峰,石岩.WC 对激光熔覆层组织及耐磨耐冲击性的影响[J].中国表面工程,2021,34(2):104-113.LI Yunfeng,SHI Yan.Effect of WC on microstructure,wear resistance and impact resistance of laser cladding layer[J].China Surface Engineering,2021,34(2):104-113.(in Chinese)
参考文献 3
韩冰源,高祥涵,杜文博,等.铝合金基材表面耐磨性能强化研究现状[J].材料导报,2023,10:1-19.HAN Bingyuan,GAO Xianghan,DU Wenbo,et al.Technological advances in strengthening the surface wear resistance of aluminum alloys substrate[J].Materials Reports,2023,10:1-19.(in Chinese)
参考文献 4
刘卫东,米国发,李雷,等.辅助处理对激光熔覆层组织性能影响的研究进展[J].材料导报,2023,15:1-14.LIU Weidong,MI Guofa,LI Lei,et al.Research progress of effect of auxiliary treatment on microstructure and properties of laser cladding layer[J].Materials Reports,2023,15:1-14.(in Chinese)
参考文献 5
MURTY B S,KORI S A,CHAKRABORTY M.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(1):3-29.
参考文献 6
迟静,王淑峰,李敏,等.WC 与TiC复合增强镍基涂层的组织和性能[J].中国表面工程,2021,34(1):85-96.CHI Jing,WANG Shufeng,LI Min,et al.Microstructure and properties of WC and tic composite reinforcement Ni based coatings[J].China Surface Engineering,2021,34(1):85-96.(in Chinese)
参考文献 7
ALI Y H,QIU D,JIANG B,et al.Current research progress in grain refinement of cast magnesium alloys:A review article[J].J Alloy Compd,2015,619:639-651.
参考文献 8
CHOI J S,LA M,KIM D,et al.Effect of electric current on the microstructural refinement of pure aluminum[J].J Mater Res Technol,2021,12:818-830.
参考文献 9
REN H G,SU J,ZHAO Z L,et al.Effect of pulse electric discharging on the directional solidification structure of pure aluminum[J].Advanced Materials Research,2011,287:322-325.
参考文献 10
GUMAER P W.The Magnetization of heusler alloys as a function of the temperature and calculation of the intrinsic magnetic field[J].Physical Review(Series I),1911,33(4):288-305.
参考文献 11
THOMPSON S P,SEARS J E,MORDEY W M,et al.Discussion on:“The magnetic properties of iron and its alloys in intense fields”[J].Journal of the Institution of Electrical Engineers,1911,46(206):285-306.
参考文献 12
HADFIELD R A,HOPKINSON B.The magnetic properties of iron and its alloys in intense fields[J].Journal of the Institution of Electrical Engineers,1911,46(206):235-284.
参考文献 13
ITTERBEEK A,POLLENTIER R,PEELAERS W.Measurements on the magnetic susceptibilities of Ag-Mn and Cu-Mn alloys[J].Applied Scientific Research,1959,7(1):329-337.
参考文献 14
MITUI T,MIYAHARA S.Influence of magnetic field on the precipitation process of ferromagnetic phase in Cu-Co alloy[J].The Physical Society of Japan,1955,10(11):1023.
参考文献 15
HALL R C,CONARD G P,LIBSCH J F.Ordering and magnetic heat treatment of the 50 pet Fe-50 pet Co alloy[J].JOM,1955,7(9):985-989.
参考文献 16
VERHOEVEN J D,PEARSON D D.The effect of a magnetic field upon directional solidification of Sn-Cd and Sn-Pb alloys[J].Journal of Materials Science,1973,8(10):1409-1412.
参考文献 17
KNITTEL T.Thermoelectric power dependence of a gold-iron alloy wire on the magnetic field orientation[J].Elsevier,1973,13(6):370-371.
参考文献 18
SADOVSKII V D,MALINEN P A,MEL'NIKOV L A.Influence of high pressure and a pulsed magnetic field on the martensite transformation in Fe−Ni and Fe−Ni−Mn alloys[J].Metal Science and Heat Treatment,1972,14(9):775-781.
参考文献 19
YU Y,LI Y,LIN F,et al.A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J].Additive Manufacturing,2021,47:102284.
参考文献 20
MUNITZ A,GOKHALE A B,ABBASCHIAN R.The effect of supercooling on the microstructure of Al-Nb alloys[J].Journal of Materials Science,2000,35(9):2263-2271.
参考文献 21
朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings preparedby laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)
参考文献 22
WANG Y,GAO M,YANG B,et al.Microstructural evolution and mechanical property of Al–Mg–Mn alloys with various solidification cooling rates[J].Materials Characterization,2022,184:111709.
参考文献 23
CHEN Z,KANG H,FAN G,et al.Grain refinement of hypoeutectic Al-Si alloys with B[J].Acta Materialia,2016,120:168-178.
参考文献 24
KORI S A,CHANDRASHEKHARAIAH T M.Studies on the dry sliding wear behaviour of hypoeutectic and eutectic Al–Si alloys[J].Wear,2007,263(1):745-755.
参考文献 25
王立彬,张程煜,丁秉钧.W 或C添加剂对优化CuCr25合金显微组织的作用[J].稀有金属材料与工程,2003,1:41-44.WANG Libin,ZHANG Chengyu,DING Bingjun.Influence of W or C adding on the microstructure of CuCr25 alloys[J].Rare Metal Materials and Engineering,2003,1:41-44.(in Chinese)
参考文献 26
LIAO Z Y,WANG H C,HONG P,et al.Study on effect of pulse electric field on solidification process of Fe-C-S alloy melt[J].Advanced Materials Research,2011,284:1137-1142.
参考文献 27
CHERIF M,HICHER P,BENAMARA O,et al.Electric field effects during solidification of the ternary oxide eutectic Al2O3-YAG-ZrO2[J].Crystal Research and Technology,2018,53(5):1700251.
参考文献 28
WANG P,SHUAI S,HUANG C,et al.Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy[J].Journal of Materials Science & Technology,2021,88(29):226-232.
参考文献 29
HU S D,HOU L,WANG K,et al.Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J].Journal of Materials Science & Technology,2021,76:207-214.
参考文献 30
HOU Y,ZHANG Z Q,XUAN W D,et al.Grain refinement during directionally solidifying gcr18mo steel at low pulling speeds under an axial static magnetic field[J].Acta Metallurgica Sinica(English Letters),2018,31(7):681-691.
参考文献 31
XUAN W D,REN Z M,LI C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J].J Alloy Compd,2015,620:10-17.
参考文献 32
LI X,GAGNOUD A,FAUTRELLE Y,et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J].Acta Materialia,2012,60(8):3321-3332.
参考文献 33
SHEN Z,PENG M H,ZHU D S,et al.Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J].Journal of Materials Science & Technology,2019,35(4):568-577.
参考文献 34
DU D,HALEY J C,DONG A,et al.Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J].Materials & Design,2019,181(5):107923.
参考文献 35
DU D,LU Z,GAGNOUD A,et al.Effect of a transverse magnetic field on solidification structure in directionally solidified Sn–Pb hypoeutectic alloys[J].Journal of Crystal Growth,2014,402:319-324.
参考文献 36
康智强,杨雪,冯国会,等.水平稳恒磁场对 Al-10%Bi 合金中富Bi相分布的影响[J].功能材料,2016,47(7):7173-7176,7181.KANG Zhiqiang,YANG Xue,FENG Guohui,et al.Influence of horizontal magnetic field on Bi-rich phase distribution in Al-10%Bi hypermonotectic alloy[J].Journal of Functional Materials,2016,47(7):7173-7176,7181.(in Chinese)
参考文献 37
YASUDA H,OHNAKA I,KAWAKAMI O,et al.Effect of magnetic field on solidification in Cu-Pb monotectic alloys[J].ISIJ International,2003,43(6):942-949.
参考文献 38
ZHU L,HAN C,HOU L,et al.Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al-4.5wt.%Cu alloy[J].Mater Lett,2019,248:73-77.
参考文献 39
LI X,FAUTRELLE Y,GAGNOUD A,et al.Effect of a weak transverse magnetic field on solidification structure during directional solidification[J].Acta Materialia,2014,64:367-381.
参考文献 40
GUO R,SHUAI S S,ZHAO R X,et al.Enhanced degradation in grain refinement of inoculated 2024 Al alloy in steady magnetic field[J].Metall Mater Trans A,2020,51(9):4584-4591.
参考文献 41
HE S Y,LI C J,YUAN Z J,et al.Magnetic-Field-Induced liquid-solid interface transformation and its effect on microsegregation in directionally solidified Ni-Cr alloy[J].Metall Mater Trans A,2020,51(9):4592-4601.
参考文献 42
DU D,HOU L,GAGNOUD A,et al.Effect of an axial high magnetic field on Sn dendrite morphology of Pb–Sn alloys during directional solidification[J].J Alloy Compd,2014,588:190-198.
参考文献 43
ZHENG T,ZHONG Y,LEI Z,et al.Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5 wt.% Zn alloys[J].Mater Lett,2015,140:68-70.
参考文献 44
GUO R,LI C,HE S,et al.Effect of steady magnetic field on undercooling of Al-Cu alloy melts[J].EPL(Europhysics Letters),2019,126(4):460011-460016.
参考文献 45
VAVILOVA V V,ZAITSEV A I,KOVNERISTYI Y K,et al.Effect of pulsed magnetic field on the short-range order and properties of amorphous iron-base alloys[J].Inorg Mater,1999,35(5):489-492.
参考文献 46
BALDOKHIN Y V,VAVILOVA V V,KOVNERISTYI Y K,et al.Formation of a nanocrystalline structure in an iron-base amorphous alloy under the influence of a pulsed magnetic field[J].Inorg Mater,2000,36(7):699-702.
参考文献 47
JIE J C,YUE S P,LIU J,et al.Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J].Acta Materialia,2021,208:116747.
参考文献 48
YANG Y,YANG Y,LIAO C,et al.Enhancing tribological performance of cemented carbide(WC-12Co)by pulsed magnetic field treatment and magnetofluid[J].Tribol Int,2021,161:107086.
参考文献 49
DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.
参考文献 50
冀焕明,罗天骄,杨院生.AZ80 镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J].中国有色金属学报,2017,27(3):468-476.JI Huanming,LUO Tianjiao,YANG Yuansheng.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2017,27(3):468-476.(in Chinese)
参考文献 51
ZOU J,ZHANG H,WU Z,et al.Effects of an intermittent permanent magnet stirring on the melt flow and grain refinement of Al–4.5Cu alloy[J].Journal of Materials Research and Technology,2021,14:1585-1600.
参考文献 52
YANG Y,KUILIANG Z,LI Y J,et al.Solidification structure control by the interaction of pulsed magnetic field and melt[J].Procedia Manufacturing,2019,37:621-626.
参考文献 53
CHEN H,JIE J C,FU Y,et al.Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1295-1300.
参考文献 54
GONG Y Y,LUO J,JING J X,et al.Structure refinement of pure aluminum by pulse magneto-oscillation[J].Materials Science & Engineering A,2008,497(1):147-152.
参考文献 55
刘立强,李秋书,李仁兴,等.脉冲磁场下铝液凝固组织的研究[J].中国铸造装备与技术,2004,1:27-28.LIU Liqiang,LI Qiushu,LI Renxing,et al.Effect of pulsed magnetic field on solidification structures of pure aluminum[J].China Foundry Machinery & Technology,2004,1:27-28.(in Chinese)
参考文献 56
曹胜利,张庆军,朱立光,等.脉冲磁场强度对钛处理低碳钢凝固过程的影响[J].中国冶金,2018,28(2):23-27,56.CAO Shengli,ZHANG Qingjun,ZHU Liguang,et al.Influence of pulsed magnetic field intensity on solidification of low carbon steel with titanium treatment[J].China Metallurgy,2018,28(2):23-27,56.(in Chinese)
参考文献 57
张建伟,李应举,杨院生.脉冲磁场对定向H13钢凝固组织的影响[J].材料研究学报,2017,31(10):721-727.ZHANG Jianwei,LI Yingju,YANG Yuansheng.Effect of applied pulsed magnetic field during directional solidification on solidified structure of H13 steel[J].Chinese Journal of Materials Research,2017,31(10):721-727.(in Chinese)
参考文献 58
LI Q S,SONG C J,LI H,et al.Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J].Mat Sci Eng a-Struct,2007,466:101-105.
参考文献 59
ZHANG L,ZHOU Q,LUO K,et al.Microstructural characteristics of Mg-Zn-Y alloy containing quasicrystal phase under pulsed magnetic field[J].Applied Mechanics and Materials,2013,456:482-485.
参考文献 60
LI Y J,TENG Y,YANG Y.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J].Metals and Materials International,2014,20:527-530.
参考文献 61
ZHANG L,HU P H,ZHOU Q,et al.Effects of pulsed magnetic field on microstructure,mechanical properties and bio-corrosion behavior of Mg-7Zn alloy[J].Mater Lett,2017,193:224-227.
参考文献 62
WANG B,YANG Y S,MA X P,et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(2):283-288.
参考文献 63
谢东原,刘峰,周全,等.脉冲磁场对石墨型铸造 Mg-Y-Cu-Zr-Sr 合金凝固组织和力学性能的影响[J].特种铸造及有色合金,2021,41(9):1109-1114.XIE Dongyuan,LIU Feng,ZHOU Quan,et al.Effects of pulsed magnetic field on solidification structure and mechanical properties of Mg-Y-Cu-Zr-Sr alloy by graphite mold casting[J].Special Casting & Nonferrous Alloys,2021,41(9):1109-1114.(in Chinese)
参考文献 64
徐燕祎,翟启杰.脉冲电磁场在金属熔体中的电磁效应及其应用[J].上海大学学报(自然科学版),2020,26(1):1-20.XU Yanyi,ZHAI Qijie.Electromagnetic effect of pulsed electromagnetic field in molten metals and its applications[J].Journal of Shanghai University(Natural Science Edition),2020,26(1):1-20.(in Chinese)
参考文献 65
FU J W,YANG Y S.Formation of the solidified microstructure of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].J Mater Res,2011,26(14):1688-1695.
参考文献 66
FU J,YANG Y.Microstructure and mechanical properties of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].Mater Lett,2012,67:252-255.
参考文献 67
LI L,LIANG W,BAN C,et al.Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys[J].Materials Characterization,2020,163:110274.
参考文献 68
GONG M,LIU K,HU W,et al.Microstructure of Al–Mg–Si–La alloy under pulsed magnetic field treatment during solidification[J].Materials Science and Technology,2023,39(12):1-11.
参考文献 69
WANG B,YANG Y,SUN M.Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(9):1685-1690.
参考文献 70
WANG B,YANG Y,ZHOU J,et al.Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2008,18:536-540.
参考文献 71
DUAN W,YIN S,LIU W H,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2020,9(1):166-182.
参考文献 72
ZHANG S,XU H,TAN X,et al.Effect of pulsed magnetic field treatment on the magnetic properties for nanocomposite Nd2Fe14B2±-Fe alloys[J].J Alloy Compd,2008,459:41-44.
参考文献 73
WANG D,HUIQIN L,XIULI Z,et al.The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys[J].Surface & Coatings Technology,2020,403:126406.
参考文献 74
KHELFI S,ABDELHAKEM A,NOURI A,et al.Numerical modeling and experimental analysis of benchmark experiment of Sn-10 wt%Pb alloy under forced convection by electromagnetic stirring[J].Journal of Crystal Growth,2022,584:126575.
参考文献 75
HU C,FEI Y,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.
参考文献 76
ZHOU J,XU J,HUANG S,et al.Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy[J].Surface & Coatings Technology,2017,309:212-219.
参考文献 77
SUFYAN A,ANATOLII B,ANDREAS C,et al.Improvement of the wear resistance of nickel-aluminium bronze and 2014-T6 aluminium alloy by application of alternating magnetic field treatment[J].Wear,2021:480-481.
参考文献 78
STELIAN C,DELANNOY Y,FAUTRELLE Y,et al.Bridgman growth of concentrated GaInSb alloys with improved compositional uniformity under alternating magnetic fields[J].Journal of Crystal Growth,2004,275(1):E1571-E1578.
参考文献 79
WANG T,HACHANI L,FAUTRELLE Y,et al.Numerical modeling of a benchmark experiment on equiaxed solidification of a Sn-Pb alloy with electromagnetic stirring and natural convection[J].Int J Heat Mass Tran,2020,151:119414.
参考文献 80
ZHOU Y,MAO P,WANG Z,et al.Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy[J].Journal of Materials Processing Tech,2020,282:116679.
参考文献 81
LI Y,CUI X,JIN G,et al.Influence of magnetic field on microstructure and properties of TiC/cobalt-based composite plasma cladding coating[J].Surface and Coatings Technology,2017,325:555-564.
参考文献 82
YANG B,LIU F,TAN C,et al.Influence of alternating magnetic field on microstructure and mechanical properties of laser-MIG hybrid welded HG785D steel joint[J].Journal of Materials Research and Technology,2020,9(6):13692-13705.
参考文献 83
XUAN W,DU L,HAN Y,et al.Investigation on microstructure and creep properties of nickel based single crystal superalloys PWA1483 during heat treatment under an alternating magnetic field[J].Materials Science & Engineering A,2019,762:138087.
参考文献 84
RONG Y,LI H,CHENG D,et al.Study on microstructure and properties of Mg/steel laser welding-brazing joint assisted by alternating magnetic field with Ni interlayer[J].International Journal of Lightweight Materials and Manufacture,2021,48(22):416-422.
参考文献 85
YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.
参考文献 86
ZHONG Y B,QIANG L I,FANG Y-P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660:118-126.
参考文献 87
DUAN W,SU W,BAO J,et al.Numerical study on transient melt oscillation and solidification characteristic during magnesium alloy direct chill casting under out-of-phase pulsed magnetic field[J].Mater Today Commun,2022,31:103441.
参考文献 88
LIU F,WANG H,MENG X,et al.Effect of magnetic field orientation on suppressing porosity in steady-magnetic-field-assisted aluminum alloy deep-penetration laser welding[J].J Mater Process Tech,2022,304:117569.
参考文献 89
HU C,YAN F,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.
参考文献 90
PENG M,ZHONG Y,ZHENG T,et al.6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field[J].Journal of Materials Science & Technology,2018,34(12):2492-2497.
参考文献 91
XU M,SHEN L,JIANG W,et al.Fabrication of Ni-SiC superhydrophilic surface by magnetic field-assisted scanning electrodeposition[J].J Alloy Compd,2019,799:224-230.
参考文献 92
LI G,WANG Z,YAO L,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface and Coatings Technology,2022,445:128732.
参考文献 93
ZHANG N,LIU W,DENG D,et al.Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J].Optics & Laser Technology,2018,108:247-254.
参考文献 94
CAO L,ZHOU Q,LIU H,et al.Mechanism investigation of the influence of the magnetic field on the molten pool behavior during laser welding of aluminum alloy[J].Int J Heat Mass Tran,2020,162:120390.
参考文献 95
HUANG Y,WU X,NIE L,et al.Mechanism of lithium electrodeposition in a magnetic field[J].Solid State Ionics,2020,345:115171.
参考文献 96
GUO S,CUI J,LE Q,et al.The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets[J].Mater Lett,2005,59(14):1841-1844.
参考文献 97
ZHANG B,CUI J,LU G.Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys[J].Mater Lett,2003,57(11):1707-1711.
参考文献 98
ZHAO Z,CUI J,DONG J,et al.Effect of low-frequency magnetic field on microstructures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy[J].J Mater Process Tech,2007,182(1):185-190.
参考文献 99
JIA Y,WANG H,LE Q.Transient coupling simulation of multi-physical field during pulse electromagnetic direct-chill casting of AZ80 magnesium alloy[J].Int J Heat Mass Tran,2019,143:118524.
参考文献 100
SUN Y,HUANG R,ZHAO H,et al.Enhancement of resistance element welding of AA6061 to DP600 steel by using external magnetic field[J].J Manuf Process,2022,80:347-358.
参考文献 101
LIU F,XU B,SONG K,et al.Improvement of penetration ability of heat source for 316 stainless steel welds produced by alternating magnetic field assisted laser-MIG hybrid welding[J].J Mater Process Tech,2022,299:117329.
参考文献 102
LI F,LIU Y,KE W,et al.A novel pathway to weld forming control and microstructure improvement of duplex stainless steel via alternating magnetic field[J].J Manuf Process,2022,80:581-590.
参考文献 103
HU C,YAN F,XU Y,et al.Effect of alternating magnetic field on microstructure and performance for dissimilar welding-brazing of galvanized steel to 6061 aluminum alloy in an overlapping configuration[J].Optics & Laser Technology,2022,155:108423.
参考文献 104
AGRAWAL M K,SINGH R P.Effect of external magnetic field on impact strength and hardness of weld of shielded metal arc welding process[J].Materials Today:Proceedings,2021,45:3638-3641.
参考文献 105
SINGH R P,RAGHUVANSHI D,PAL A.Effect of external magnetic field on weld width and reinforcement height of shielded metal arc welded joints[J].Materials Today:Proceedings,2021,38:112-115.
参考文献 106
KRAUSE A,UHLEMANN M,GEBERT A,et al.The effect of magnetic fields on the electrodeposition of cobalt[J].Electrochimica Acta,2004,49(24):4127-4134.
参考文献 107
MATSUSHIMA H,NOHIRA T,MOGI I,et al.Effects of magnetic fields on iron electrodeposition[J].Surface and Coatings Technology,2004,179(2):245-251.
参考文献 108
JI R,HAN K,JIN H,et al.Preparation of Ni-SiC nano-composite coating by rotating magnetic field-assisted electrodeposition[J].J Manuf Process,2020,57:787-797.
参考文献 109
XIA F,LI Q,MA C,et al.Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique[J].Ceram Int,2020,46(2):2500-2509.
参考文献 110
JIANG W,SHEN L,XU M,et al.Mechanical properties and corrosion resistance of Ni-Co-SiC composite coatings by magnetic field-induced jet electrodeposition[J].J Alloy Compd,2019,791:847-855.
参考文献 111
AABOUBI O,MSELLAK K.Magnetic field effects on the electrodeposition of CoNiMo alloys[J].Appl Surf Sci,2017,396:375-383.
参考文献 112
ZHANG Y,YUAN B,LI L,et al.Edge electrodeposition effect of cobalt under an external magnetic field[J].Journal of Electroanalytical Chemistry,2020,865:114143.
参考文献 113
ZUO Z,TAHERI M,RAZAVI M,et al.Effect of magnetic field on tribological properties of IN718 superalloy coating produced by laser cladding on GTD-111 superalloy[J].Vacuum,2022,203:111311.
参考文献 114
QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics & Laser Technology,2021,141:107129.
参考文献 115
QI K,YANG Y,LIANG W,et al.Effect of magnetic field on the microstructure and wear properties of TiB2/metal composite layers synthesized in situ by laser cladding on Ti–6Al–4V alloy[J].Ceram Int,2021,47(20):29463-29474.
参考文献 116
QI K,YANG Y,SUN R,et al.Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo[J].Mater Lett,2021,282:128893.
目录contents

    摘要

    利用磁场辅助制备的合金综合性能优异,广泛应用在工业生产、交通运输、航空航天等领域。不同磁场参数环境下合金硬度、耐磨性等服役性能有所差异,作用机理复杂多变。对新工艺驱动下不同磁场对金属凝固过程的作用规律进行总结,弥补目前磁场辅助金属表面加工方法的研究短板,对金属表面工程发展有重大意义。归纳科研人员在不同磁场环境对金属表面加工的研究探索,分析对比金属材料在不同类型磁场环境下的晶核形核和生长过程差异,总结金属凝固过程在不同磁场下的变化规律,如晶界形貌改善、形核率提高、晶粒细化等。从晶粒微观形貌和合金宏观性能表现两方面出发,分析磁场作用下熔体内部传热传质变化,揭示稳恒磁场、脉冲磁场和交变磁场对金属凝固影响的作用机理,讨论不同参数的磁场对熔体作用效果差异,如磁场对熔池内部流动扰动、熔体内带电粒子受到的洛伦兹力等。综上,晶粒细化、合金性能提高是磁场作用下熔池传热传质变化和磁场作用力的综合体现。综合研究对比稳恒磁场、脉冲磁场和交变磁场对金属凝固的作用特点和作用机理,综述金属凝固领域当前热点问题,有助于统一磁场环境下金属凝固机理的争论,填补磁场环境下金属表面加工工艺的空白,对推进高性能金属表面制备研究有借鉴意义。

    Abstract

    Alloys prepared in a magnetic field environment have excellent comprehensive properties and are widely used in industrial production, transportation, aerospace, and other fields. The hardness, wear resistance, and other service properties of the alloy vary with the magnetic field parameters. Therefore, summarizing the mechanisms of different magnetic fields in the metal solidification process is of great significance for developing auxiliary metal technology. This paper summarizes the studies and exploration of metal surface processing by many researchers in different magnetic field environments. In addition, this study explores the rules of nucleation and growth of metal materials under the assistance of magnetic fields. According to the aspects of the microscopic morphology of the grains and the macroscopic properties of the alloy, the changes in heat and mass transmission, crystal boundary shape variation, increase in nucleation rate, and grain size refinement are analyzed, and the effects of the steady, pulsed, and alternating magnetic fields on metal solidification are revealed. The various influences of different magnetic fields are discussed in this paper, such as magnetic induction, intensity produced by the magnetic field, and charged particles within the melt by the Lorentz force. In the process of metal solidification assisted by a steady magnetic field, both the thermoelectric force generated by the thermoelectric current and magnetic field and the electromagnetic brake force generated by the natural flow of the melt jointly affects the dendrite growth and internal flow of the melt, which is essentially the Lorentz force under the action of a magnetic field. Furthermore, the magnetic induction intensity is the most crucial factor affecting the electromagnetic brake and thermoelectric forces. The combined effect on the melt first increases and then decreases with increasing magnetic induction intensity. Pulsed magnetic fields are essential in improving the magnetism, corrosion resistance, and electrochemical performance of molten metals through wall ionization, electromagnetic oscillation, and the Joule thermal effect. The various effects of the magnetic field are concentrated in the internal flow enhancement and temperature gradient reduction of the molten pool. Electromagnetic stirring and forced convection promote dendrite breaking and grain refinement under an alternating magnetic field. Furthermore, the phase distribution is more uniform and inhibits compositional segregation. The application of metal solidification in a magnetic field environment focuses on emerging surface processing technologies such as deposition and cladding from traditional alloy manufacturing processes such as casting and welding. The exploration of new processes in a magnetic field environment, such as magnetic-field-assisted coating solidification, is also the future development direction of this field. The research method has changed from a simple performance enhancement effect test to a theoretical model calculation. In conclusion, grain refinement and alloy performance improvement are comprehensive embodiments of heat and mass transmission and the magnetic force in the molten pool under the action of a magnetic field. The mechanism of action of the metal solidification process under different magnetic fields gradually tends to be consistent. Refining and quantifying the various effects of different magnetic fields on the alloy solidification structure, unifying grain change processes and mechanisms, and other studies still require scholars' unremitting efforts. A comprehensive study and comparison of the steady, pulsed, and alternating magnetic fields on metal solidification characteristics and mechanisms are summarized, which helps unify the debate on the metal solidification mechanism in a magnetic field environment, fills in the gaps in metal surface processing technology in a magnetic field environment, and has reference significance for promoting research on high-performance metal surface preparation.

  • 0 前言

  • 合金材料制备的金属零件在交通运输、航空航天、化工机械等生产研究中广泛应用。金属凝固过程是合金材料制备的必由之路,因凝固过程中产生的晶粒形貌和晶粒数目不同,合金材料服役中的宏观性能表现会有所差异。其中,等轴晶因其各向同性在服役过程中展现出相较于柱状晶更加优异的性能而得到青睐[1-3]。目前,科研人员利用添加晶粒细化剂,电场辅助等方式调控金属凝固过程,促进柱状晶向等轴晶转变,提升合金制备过程性能[4]。晶粒细化剂的研究和探索在 20 世纪 30 年代逐渐开始开展[5]。例如:在铝合金的晶粒生长中添加 Ti 元素[6],会抑制柱状晶生长,促进晶粒细化。目前晶粒细化剂主要有三大类:块体型钛剂、盐类细化剂和中间合金细化剂,但具有晶粒细化剂制备工艺复杂、作用效果不明确及工业化推广难度大等缺点[7]。外加电场有助于改变晶粒形核生长过程,促进金属性能提高。熔融态纯铝[8]经外加直流电场处理后,由树枝状转变成为颗粒状,力学性能大幅提升。脉冲电流作用于纯铝凝固过程[9],有助于降低熔融态金属过冷度,获得均匀细小的等轴晶组织。但电场辅助制备合金目前存在作用机制复杂多变,细化程度不一,规律不明和危险性高等问题亟待研究。

  • 利用磁场改善合金的凝固过程,具有非接触、无污染、成本低等优势,在工业生产与试验研究中利用磁场处理磁场凝固过程,磁场发生装置多使用线圈和强磁体装置,便于磁场的产生;同时,磁场作用期间,发生装置不与熔池发生接触,减少熔池高温对发生装置的影响。磁场辅助制备的合金综合性能优异,广泛应用在金属铸造、焊接、激光熔覆、表面沉积等工艺过程中,开展不同类型磁场下对金属凝固的作用机理研究有重大意义。从 20 世纪初开始,科研人员利用磁场调控金属凝固过程,制备高性能合金[10-12];随后进行了不同磁场对金属凝固过程影响的研究探索[13-15];20 世纪末,利用磁场提升合金性能的研究成为研究热点,主要集中在揭示磁场对金属凝固过程中晶粒生长、传热、传质的作用机理[16-18]

  • 基于广大科研人员对磁场处理金属凝固过程的探索,本文综述稳恒磁场、脉冲磁场和交变磁场对金属凝固过程的影响机理,分析不同磁场下晶体形核生长过程和传热传质变化,总结不同磁场对金属凝固的作用规律,以期为今后磁场处理金属凝固过程提供借鉴。

  • 1 经典金属凝固理论

  • 金属凝固过程是大量晶粒形成的过程。如图1 所示,晶粒的形成需要依次经过晶核形核和晶核长大两个过程[19]。熔体内部会同时存在多个晶核形核长大过程,多个过程相互交错,最终完成金属的凝固过程。

  • 图1 晶粒枝晶生长示意图[19]

  • Fig.1 Diagram of the growth of crystal[19]

  • 晶核形核是金属凝固的基础,目前,材料科学粗略地将晶核形核分为均质形核和异质形核两种。对于均质形核,晶胚达到临界半径 r * 时可顺利形成晶核,其表达式为:

  • r*=2σTmLmΔT

  • 式中,Tm为晶体熔点,σ 为比表面能,Lm为熔化热, ΔT 为过冷度。且对应临界半径的形核功为:

  • ΔG*=16πσ3Tm23LmΔT2

  • 对于均质形核过程中形核率的表达如下:

  • Nexp-ΔG*kTexp-QkT

  • 式中,k 为玻尔兹曼常数,Q 为扩散激活能。在一定范围内,形核率随过冷度增大不断升高。由此,过冷度是影响晶核形核的重要因素,过冷度越大,临界半径越小,形核功在常规条件下,金属凝固形核的过冷度较难达到,均质形核极难发生,模具壁面和内部颗粒促进熔体的异质形核发生。对于金属凝固异质形核的临界半径为:

  • r*=2σaLΔGV

  • 式中, ΔGV 为单位体积表面自由能,σ αL 为界面比表面能。此时,对应异质形核的形核功为:

  • ΔG'*=ΔG*f (θ)

  • 式中,θ 为接触角,且 fθ)< 1。异质形核的临界形核功小于均质形核临界形核功,所需过冷度相对较小,故异质形核容易发生。

  • 发生异质形核时,晶核形核往往依附于固体表面进行,界面能和临界形核功减少。增大熔体过冷度、晶粒细化剂和施加外部环境场促进振动是加速异质形核、改善晶粒生长过程的有效方式。过冷度增大与熔体纯度和冷却速度等参数密切相关[20],熔体纯度越高且冷却速度越快,熔体的过冷度越大。伴随过冷度增加,熔体凝固过程中晶粒更细小,溶质微观偏析程度增强,有利于金属性能提升[421-22]。形核剂多作用于晶核的形核阶段,推进异质形核进程。在进行铝合金晶粒细化研究过程中,硼元素[23] 作用于铝硅合金凝固过程,在铝层和二硼化铝层间形成六硼化硅添加层,减少晶体失配。也可在铝合金凝固过程中添加铝-钛-硼晶粒细化剂和锶改进剂[24],促使微观结构从较粗的柱状枝晶向细等轴枝晶和板状共晶硅细颗粒发生转变。钨和碳作为铬相异质形核细化剂[25]作用于铜铬合金的凝固过程,易与铬粉发生反应生成化合物,促进晶粒在形核生长过程中球化,抑制枝晶生长,减小晶粒尺寸。目前,工业材料凝固过程多添加电场或磁场作为外部辅助为熔池添加扰动,如图2 所示,影响异质形核进程。电场辅助可有效减少区域性偏析,引起内部元素迁移和再分布[26],促进涂层性能均匀分布。同时,电场引起的振动引起形核速率提升,伴随焦耳热效应导致的过冷度降低,综合作用产生晶粒细化效果[27]

  • 图2 添加电极后的熔炉装置图[27]

  • Fig.2 Principle of the mirror furnace with electrodes [27]

  • 综上来看,增大熔体过冷度、晶粒细化剂与外部电场的添加在一定程度上优化晶粒的形核生长过程,改善熔体内部的晶粒形貌和晶粒分布,是提高制备合金强度与性能的有效途径,但利用磁场辅助金属制备仍是目前研究较多的热点问题,其处理金属具备有效性、安全性、全面性以及磁场在金属凝固过程中的作用机理得到广大科研人员的研究和关注。

  • 2 稳恒磁场

  • 稳恒磁场对熔体凝固作用的机理有两大类,一类为热电电流和磁场共同作用产生的热电磁力,另一类为自然对流引起的电磁制动力。热电磁力和电磁制动力两者同时存在于金属凝固过程中,同时作用于熔体,磁感应强度大小是影响两者作用效果的重要因素。

  • 2.1 热电磁流体效应

  • 金属合金在定向凝固过程中,熔体内非等温界面的存在引发热电效应,产生热电电流。同时,熔体外部施加稳恒磁场,在热电电流与外加磁场共同作用下,熔体内粒子会受到热电磁力。在稳恒磁场作用下,熔体受到的磁场作用力为:

  • F=J×B=1μ (B) B-B22μ

  • 式中,B 为磁感应强度,μ 为磁导率,∇ 为哈密顿算子。熔体固液相之间产生热电磁力与热电磁对流,热电磁力破坏胞晶枝晶的形成并驱动等轴晶旋转,促进熔体流动,细化晶粒,此为热电磁流体效应,图3 展示了熔体中热电电流流动和热电磁对流效果[28]。熔体定向凝固过程中的温度梯度的增大和生长速率的减小,会增强稳恒磁场作用下的热电磁流体效应[29]

  • 图3 热电电流流动和热电磁对流效果图[28]

  • Fig.3 Effect diagram of thermoelectric current flow and thermoelectric magnetic convection[28]

  • 2.1.1 轴向稳恒磁场

  • 不同强度轴向稳恒磁场对金属凝固过程作用效果存在差异,弱磁场的研究多集中在 0T~0.6T,强磁场研究多在 2T 及以上。

  • 强稳恒磁场和因温度梯度引起的热电电流共同产生作用于轴晶尖端的热电磁力,表达式如下[30]

  • FL=σ1σsf1σ1f1+σsfsSs-S1GB

  • 式中,σ 为熔体电导率,f 为固液相分数,S 为电磁热功率。在高温镍基合金的定向凝固过程中[31],伴随强磁场出现的热电磁力作用于枝晶臂生长尖端产生电磁转矩,产生转矩,导致初生枝晶臂间距减小,枝晶生长空间受到压缩,枝晶形态从柱状晶向等轴晶转变[32],如图4 所示。

  • 弱磁场添加后,熔体内部在热电电流和洛伦兹力的双重作用下会产生热电磁对流,凝固组织的改变是由热电磁效应驱动的热传递、溶质迁移和热电磁对流驱动的枝晶碎片运动引起的。锡铋合金[33]和铝硅合金[34]在弱稳恒磁场下凝固,伴随磁感应强度升高,得益于热电磁对流增强,熔池内部出现明显的定向流动效果,驱动熔体内胞状枝晶碎片移动,引起胞枝晶间距减小。DU 等[35]通过观察锡铅共晶合金定向凝固过程中锡晶相的宏观偏析和熔体中热电磁力的变化,证明凝固组织的改变源于枝晶间的热电对流和热传递,凝固过程中糊状区长度和初生枝晶间距随热电磁流体效应的增强而减小,导致熔体中倾斜界面形成和枝晶细化。

  • 图4 稳恒磁场作用下热电磁力示意图和柱状晶向等轴晶晶粒转化图[32]

  • Fig.4 Thermoelectric magnetic force and transformation of columnar crystal to equiaxed crystal grain under the action of steady magnetic field[32]

  • 2.1.2 横向稳恒磁场

  • 横向稳恒磁场的添加增加熔体内部液滴受到的作用力,促进熔体内部有规律流动。

  • F=FL+FM+FS

  • 如图5 所示,液滴受到热电磁力 FL、热对流力 FM(温度梯度力)和斯托克斯粘滞力 FS 的共同作用,液滴之间发生相互碰撞,减弱了因重力引起的相沉积[36-37]

  • 在铝合金凝固过程中,铋相在合金凝固上部含量较未添加磁场时增加。液滴在横向稳恒磁场作用下的运动避免铋相因重力作用在熔体底部沉积,以此改变晶相分布。磁场改变熔体内部流动效果,同时也会引起凝固过程中固液界面形状变形和糊状区宏观偏析[31]。ZHU 等[38]在铝铜合金研究发现,因磁场添加引起的热电磁对流导致糊状区铜的富集,改变熔体内部的相分布。同时,磁场的添加导致凝固过程中液固界面发生倾斜,晶胞枝晶间距随着界面斜率变化逐渐减小。LI 等[39]研究了 6 种不同合金在横向磁场下熔体定向凝固过程和凝固组织细化机理,证明热电磁流体效应驱动熔体内部传热传质变化,枝晶碎片和等轴晶粒大致沿垂直于磁场的方向移动,导致固液界面形貌变形和糊状区的宏观偏析。

  • 图5 水平稳恒磁场作用下液滴受力图[36-37]

  • Fig.5 Force diagram of droplets under horizontal and steady magnetic field[36-37]

  • 综上,在轴向稳恒磁场和温度梯度引起的热电流共同作用下形成的热电磁流体效应在枝晶上产生磁转矩,促进枝晶破碎和转动,引起熔体内部的晶粒细化和对流增强,改善合金性能。目前横向稳恒磁场的研究多集中于磁场添加后熔体内部成分分布和固液界面的变化,横向稳恒磁场改善熔体内部的流动,引起固液界面形状的变形和糊状区宏观偏析。

  • 2.2 电磁制动效应

  • 电磁制动效应是指金属粒子在磁场中运动受到洛伦兹力,抑制熔体内对流,减少凝固带来的温度和溶质扰动的影响。洛伦兹力作用公式为:

  • fe=B×v

  • 式中,fe 表示单电荷下粒子受到的洛伦兹力,为运动于磁场的带电粒子所受的力,B 为磁场方向,v 表示颗粒运动方向。

  • 电磁制动效应调控金属凝固过程,一定范围内有助于改变晶粒的生长速度与方向,影响晶界形状和形貌。磁场对熔体对流的抑制作用有助于凝固组织出现定向排列现象。施加外部磁场,熔体在磁场下凝固产生的电磁制动效应减弱液相中粒子迁移速率[40],增加晶粒由液相向固相转变时需要克服的势垒,在垂直于磁场方向的对流被抑制,水平方向不发生变化,晶核依次形核、长大,最终出现定向排列现象[41]。外部稳恒磁场抑制铅锡合金层状共晶[3542]在重力场中垂直方向运动,促进晶体的水平长大,层状共晶组织方向性明显,层片在 X-Y 方向生长,沿 Z 轴的分布的差距减小,晶界明显减薄,片状组织细化。

  • 电磁制动效应调控金属凝固过程,会改善合金的宏观性能。ZHENG 等[43]在研究铋锌合金在稳恒磁场作用后的磁化性能时发现,因电磁制动效应抑制熔体内部常规的流动,流体内部发生磁化,0T 和 6T 下熔体表现出磁各向同性行为,2T 和 4T 熔体出现磁各向同性行为。在进行稳恒磁场环境下制备铝铜合金过冷度的研究发现[44],铝液凝固的过冷度在一定范围内随磁感应强度增强而升高,磁感应强度提升至 12T 时,过冷度提升效果在 116%左右。选取不同组分铝合金进行测试时发现,磁感应强度与金属合金组成成分两种因素均可引起过冷度的改变,如表1 所示。因此,稳恒磁场作用下的电磁制动效应对金属凝固过程过冷度有明显调控作用。电磁制动效应的存在增加液固界面的自由能和晶体成核势垒,限制金属粒子凝固过程中的移动,影响熔体的晶粒生长过程和宏观性能表现。因此,磁感应强度和合金内部原子种类和分布都是影响磁场制备合金宏观性能的重要因素。

  • 表1 稳恒磁场下不同合金过冷度统计表文献[44]

  • Table1 Change in undercooling of various metals and alloys in steady magnetic field[44]

  • 稳恒磁场通过热电磁流体效应和电磁制动效应作用于熔体,其本质是磁场作用下的洛伦兹力。目前稳恒磁场的研究有横向磁场和轴向磁场之分,横向磁场作用减小枝晶间距,促进柱状晶向等轴晶转变;轴向磁场作用于枝晶产生晶矩,导致枝晶破碎,促进晶粒细化。同时,熔体的变化受磁场磁感应强度影响,熔体内晶粒细化效果随磁场的增大先增大后减小。稳恒磁场作用下电磁制动效应与热电磁流体效应同时存在,两者作用效果由促进熔体流动逐渐向抑制熔体流动转变。当磁感应强度小于临界磁感应强度时,热电磁流体效应起主要作用,磁场促进熔体流动;当磁感应强度逐渐增强,电磁制动效应增强抑制熔体流动。

  • 3 脉冲磁场

  • 利用脉冲磁场辅助制备合金是目前金属凝固加工常用手段之一。20 世纪 90 年代已经出现利用脉冲磁场处理铁合金凝固过程的研究,结果表明,铁合金强度提高,熔体内部出现无定向结构偏序[45-46]。脉冲磁场作用于合金凝固的成核时期,或在熔体内部产生周期的脉冲力作用,与电磁力结合形成电磁振荡,加速初生晶相碎裂并与模具分离;或促使熔体内部感应电流产生焦耳热,由固液相电阻率和导热率的差异引起枝晶重熔和晶粒细化。基于此,如图6 所示,脉冲磁场通过型壁游离,电磁振荡,焦耳热效应等多种效果影响金属凝固过程,改善金属的凝固组织,提高金属的综合性能[47-51]

  • 3.1 型壁游离

  • 常规熔融态金属凝固,靠近模具壁面的液态金属率先形核生长,在脉冲磁场环境下,由于脉冲磁场本身的时频性,熔体核心受到周期脉冲力作用,如图7 和图8 所示,靠近壁面的晶粒受脉冲力后从壁面脱落,后随熔体流动进入熔体中心,形成多个形核核心,多个晶核紧密排列生长形成等轴晶[52-53]

  • 熔体表面振荡产生的冲击力是影响型壁游离效果的重要因素。在纯铝组织凝固过程中添加脉冲磁场[54],由于趋肤效应的存在,电磁力驱动晶核从模具壁面脱落进入熔体内部,在重力作用下晶核向底部运动,熔体内晶核增多,多个晶核密集排列生长,晶粒间相互挤压,减小单个晶核体积。合理利用脉冲磁场和颗粒在熔体中运动的相互作用可调控熔体凝固过程[52],其中,脉冲磁感应强度是影响型壁游离强度的重要因素。铝液[55]凝固过程中的型壁游离效果在 0~0.2T 范围内逐渐增强,脱离壁面的晶粒数量逐渐上涨,进入熔池内部,晶粒的细化效果愈加显著;磁感应强度超过 0.25T 时,熔体振动过强,液滴与壁面分离,易飞溅出模具,影响熔体成型质量。同时,脉冲磁场在低碳钢凝固过程[56]中产生脉冲动压力,导致液态金属剧烈运动,枝晶形状随磁感应强度发生改变,出现柱状晶到等轴晶再到柱状晶的转变。

  • 图6 脉冲磁场对熔池综合作用效果图[47-51]

  • Fig.6 Comprehensive effect of pulsed magnetic field on molten pool[47-51]

  • 图7 脉冲磁场作用下熔体内受到的电磁力周期变化图[52]

  • Fig.7 Periodic change diagram of electromagnetic force in the melt under the action of pulsed magnetic field[52]

  • 图8 脉冲磁场作用下合金凝固型壁游离机理示意图[53]

  • Fig.8 Schematic sketch illustration of refinement mechanism under pulsed magnetic field[53]

  • 3.2 电磁振荡

  • 在熔体凝固过程中,磁场驱动熔体内自由电子定向运动产生电流,感应电流和脉冲磁场作用产生周期反复的电磁振荡效果,生长过程中枝晶在电磁振荡作用下受到非稳定流动的剪切应力:

  • τxx=2μvxx-13divvτyy=2μvyy-13divv

  • 式中,μ 为熔体动力黏度系数,v 为某时刻枝晶周围熔体的流动速度。枝晶受到此剪切力作用,断裂破碎,进入熔体内部,增加熔体的形质核心。同时,反复振荡加快液态熔质流动,熔体在靠近壁面处不断震荡,产生涡流,提高熔体冷却速率,有利于熔体形核,细化晶粒。

  • 电磁振荡效果改变熔体内部温度梯度分布 (图9),影响熔体过冷度和冷却时间[57],改善晶粒尺寸和晶粒形貌(图10)[58]。ZHANG 等[59]在研究镁锌钇合金时,发现熔体内部在脉冲磁场作用下强制对流显著,熔体磁过冷和温度梯度降低限制初生枝晶生长,初生晶相由不均匀的粗大连续形态转化为细小均匀形态。但通过比对添加磁场前后一定熔池内的晶粒数目可发现,电磁振荡引起的剪切力是提升合金凝固质量的重要因素,进行铝锰铁合金[60] 和熔融态镁合金[61]研究发现脉冲磁场的添加使枝晶破碎进入熔体内部,促进晶核增殖,提高组织的形核率。磁场强度足够强时,电磁振荡效果增强,增加受剪切力影响枝晶碎片的数量,同时促进熔体流动,提升碎片重新形核的概率[62]

  • 图9 施加脉冲磁场前后熔体流动对温度梯度影响示意图[57]

  • Fig.9 Schematic diagram of the influence of melt flow on temperature gradient before and after pulsed magnetic field[57]

  • 图10 脉冲磁场作用效果曲线图[58]

  • Fig.10 Influence curve of pulsed magnetic field [58]

  • 脉冲磁场作用下引起的电磁振荡效果促进熔体内部的强制流动,改变温度梯度的分布,推动晶粒向均匀细小等轴晶转变,因此,充分利用脉冲磁场电磁振荡效果辅助金属凝固过程是强化合金服役性能的常用手段之一。谢东原等[63]测试脉冲磁场对于合金基础性能提升效果,在对比常规合金的基础上,增设多组不同周期不同脉冲能量的试验组,有效说明了磁场添加对合金抗拉和屈服性能的提升。因磁场对熔池流动速度提升改善熔融态金属凝固时间,可减少工业生产成本,故开始在工业生产中得到推广[64]

  • 3.3 焦耳热效应

  • 熔体作为电流的良导体带有电阻,故脉冲磁场引起熔体内部电子定向流动形成电流,电流加热电阻产生焦耳热。焦耳热在固液相之间传递存在差异,固相凸起的部分聚集热量多,温度较高结晶组织重熔,枝晶尖端球化,如图11 所示。有以下公式[65]

  • vp2=8π2DLΓmLC0k0-1

  • 式中,枝晶尖端半径 p 的平方与枝晶生长速率 v 呈反比关系,枝晶半径影响晶粒生长过程中的熔质扩散,枝晶曲率半径增加,生长收到限制,成熟晶粒形貌曲率平滑,体积减小。

  • 图11 枝晶尖端球化示意图[65]

  • Fig.11 Schematic diagram of dendrite tip spheroidization[65]

  • 研究镁铝锌合金在低压脉冲磁场下的凝固过程[66]试验发现,经过脉冲磁场处理后的合金屈服强度提高,抗拉强度降低,性能的提升来源于脉冲磁场产生的焦耳热抑制枝晶生长引起的枝晶细化。对于焦耳热尖端富集现象引起的枝晶细化表现在晶体形貌和晶粒大小等多个方面[67]。脉冲磁场焦耳热作用下的镁合金晶粒球化模型,枝晶尖端球化,形状由粗大、发达的枝晶变为紧致、细小的颗粒[6668]。此外,随着磁感应强度的增大,锌相出现粗枝晶向细球状晶粒的转变,如图12,晶粒细化效果伴随脉冲磁场的增强逐渐显著,在 6 kV 高压脉冲磁场的作用下,晶粒大小减小为常规凝固过程晶粒的 1 / 4[67]

  • 综合考虑脉冲磁场下 AZ31、AZ91D、AZ80[69-71] 等多种合金的凝固过程可以看出,熔体晶粒细化是脉冲磁场作用下型壁游离、电磁振荡和焦耳热效应多种效果叠加的结果。电磁振动加剧熔体内部强制对流效果,减小熔体界面前的温度梯度,液相和固相的吉布斯自由能相等。有以下公式:

  • dT=TΔVΔHBμdB

  • 在添加磁场且磁场增大时,合金的熔点上升,故内部对流导致额外过冷,有利于形核发生。同时,熔体因外加磁场产生的焦耳热效应促进枝晶臂的重熔,导致枝晶生长简单球化,限制其生长速率和体积,晶粒细化发生。

  • 图12 不同强度电流激发下脉冲磁场对晶粒形貌和大小影响图[67]

  • Fig.12 Influence of pulsed magnetic field on grain shape and size under different intensity current excitation[67]

  • 脉冲磁场处理为提高材料的耐腐蚀性、磁力性能和电化学性能提供了一种新的思路。磁处理一定程度上提高了剩磁、矫顽力和磁滞回线的垂直度, ZHANG 等[72]发现复合铁合金材料经脉冲磁场处理后,剩磁和最大能量积明显提高,材料的磁性能显著上升。脉冲磁场处理镁锌合金[59]引起镁锌相由不连续的网状变为岛状和颗粒状,合金的宏观力学性能表现和耐腐蚀性得到提高。利用脉冲电流产生脉冲磁场作用于 NiCoS 合金的制备[73],磁感应强度的增加有利于凝固晶粒的规则排列,合金经磁场处理后出现从电解质到电极大量微通道,展现出高表面积的形貌特点。如图13 所示,合金所表现出的磁力性能,耐腐蚀性能和电化学性能等相比于未添加磁场状态下有较高的提升。

  • 研究表明:脉冲磁场通过型壁游离、电磁振荡和焦耳热效应等效果综合作用于熔融态金属,在改善材料磁性、提高合金耐腐蚀性和强化金属电化学性能等方面发挥着重要作用。目前,各位学者和专家试验结果和模拟现状证明脉冲磁场在处理合金凝固方面的可行性和有效性,脉冲磁场通过以上 3 种作用效果综合作用于熔体凝固过程,凝固后合金性能与脉冲磁场磁感应强度息息相关,伴随磁场产生周期性脉冲力即电磁振荡效果在调控熔池凝固过程中的温度和流动速度起主导作用。脉冲磁场对金属凝固影响的研究正向高磁感应强度和严谨的理论模型计算发展,探究一定磁感应强度下脉冲磁场对凝固性能的影响是今后研究的热点和重点,目前尚未完成磁场大小和性能提升的对应参数关系的建立。

  • 图13 脉冲磁场对合金电化学性能影响图[5973]

  • Fig.13 Effect of pulsed magnetic field on electrochemical properties of alloy[59, 73]

  • 4 交变磁场

  • 利用交变磁场处理金属凝固过程是目前科研人员研究的热点。交变磁场通过电磁搅拌和强制对流等方式作用于熔体,影响晶体的形核和生长过程,改变熔体内部流动速率、晶粒直径等参数,改善合金的显微结构,增强合金的力学性能。

  • 4.1 电磁搅拌

  • 交变磁场产生的电磁力控制熔体内部流动大小和方向,对液相有搅拌作用,如图14 所示,电磁搅拌使熔体内部的流动加快,熔体枝晶破裂,加快晶体成核和细化晶粒的速率和效率[74]

  • 图14 电磁搅拌示意图[74]

  • Fig.14 Schematic diagram of electromagnetic stirring[74]

  • 交变磁场施加产生的电磁搅拌有助于改善微观形貌,促进晶粒细化。HU 等[75]分析交变磁场下铜和不锈钢焊接接头处的显微组织和元素分布,发现交变磁场改善了焊接熔合区的显微组织,样本的最大晶粒截面积和平均晶粒截面积都出现一定程度的减小,微观结构发生由块状向粒状的转变。交变磁场辅助制备 AZ91D 镁合金横截面出现树枝状和蜂窝状微观结构,对应样品宏观性能硬度、耐磨性和耐腐蚀性提高,如图15,样品磨痕宽度和磨痕深度出现一定程度降低[76]

  • 图15 不同条件下磨痕宽度和深度对比图[76]

  • Fig.15 Comparison of wear scar width and depth under different conditions[76]

  • 同时电磁搅拌也有助于抑制成分偏析,有助于提高金属的综合力学性能。成分偏析是凝固裂纹产生的主要原因之一。电磁搅拌对熔体的不断作用,加速熔体内部流动,促进了凝固过程成分的迁移和扩散,抑制成分偏析,是解释交变磁场作用下金属性能提升的有力依据。利用交变磁场处理铝合金凝固过程以提高其摩擦学性能,试验[77]表明经磁场处理后,在相同载荷的摩擦学测试下,磨痕的深度和宽度明显减少,磁场处理后试样性能优异,摩擦因数稳定,常规凝固的试样摩擦因数随测试时间延长出现明显上升趋势。在制备镓铟锑合金时,通过在凝固过程中添加交变磁场,加速熔体流动,固液界面的多种组分可充分混合,抑制偏析和界面曲率的过度增加[78]

  • 交变磁场添加引起的电磁搅拌效果会影响枝晶的形核和生长过程,有助于晶粒细化,提高合金的力学性能;同时,电磁搅拌加速凝固过程溶质的迁移和扩散,抑制成分偏析,提高内部晶粒质量。

  • 4.2 强制对流

  • 在合金凝固时添加交变磁场,根据法拉第电磁感应定律,通过某一截面的磁通量发生变化,驱动带电粒子定向运动,带电粒子在磁场中受到向心的洛伦兹力做圆周运动,因此熔体内部会产生一定速度的圆周强制流动,熔体内产生感应电流[79]。对流增强效果如图16 所示。

  • 图16 交变磁场下内部流动示意图[79]

  • Fig.16 Schematic diagram of internal flow under alternating magnetic field[79]

  • 对流增强可以打碎初生枝晶,枝晶碎片进入熔体内部,重新形核,有助于形成等轴晶,细化晶粒。利用低压交变磁场处理熔融态镁合金进行试验,交变磁场的添加引起了熔融态金属的强制对流,强制对流增加了自由晶粒的数量,提高了镁合金的热撕裂敏感度[80]。磁场对激光熔覆钴基复合涂层凝固过程[81]研究中提到,交变磁场添加后,涂层微观形貌发生变化,熔高出现一定程度减小,枝晶发生熔蚀和折断,增加了形核率。

  • 熔体内的强制流动促进传热,使熔体的温度梯度减小,保证枝晶生长均匀性,避免因初生枝晶粗大导致的裂纹等缺陷。在进行交变磁场辅助镁钢焊接的研究中,伴随磁场的添加,平均晶粒尺寸下降,粗大枝晶明显减少,焊缝形状和焊接质量都有提升,且横向对比多人试验发现如图17 所示结果[82-83],在一定磁感应强度范围内,焊缝的深度和宽度随场强升高而逐渐增大,且添加磁场后试样的蠕变强度提高。

  • 磁感应强度是影响熔体内对流和性能提升的重要因素。试验发现,交变磁场促进熔池内部流动,改善熔池金属堆积问题,磁场处理后的焊缝性能得到增强[84],其峰值在 15%左右。交变磁场过强会引起的熔体内对流强度增大,熔体内温度分布不均匀,导致热应力增大,裂纹增多,堆积问题会重新出现。控制磁感应强度大小对改变熔体内对流,改善合金凝固过程有重要作用。

  • 图17 交变磁场对焊接作用效果图[82-83]

  • Fig.17 Effect of alternating magnetic field on welding[82-83]

  • 利用交变磁场辅助制备合金是目前工程和试验中进行综合改善合金力学性能的重要手段之一,特别对于焊缝的处理,展现出不俗的效果和应用性能。交变磁场的添加对熔体的电磁搅拌效果有助于枝晶破碎,细化晶粒;同时强烈的流动和搅拌效果使熔体内各相的分布更加均匀,抑制成分偏析,减小温度梯度,避免粗大枝晶的出现。

  • 5 磁场在各金属凝固领域中的应用

  • 稳恒、脉冲、交变三种类型磁场通过不同的作用机理影响金属的固液态转变,在各种合金制造工艺中得到应用[85-95],总结见表2。

  • 表2 不同磁场类型各制造工艺应用表

  • Table2 Application table of manufacturing process of different magnetic field

  • 磁场有关金属凝固的研究以铸造工艺为典型代表,学者们针对磁场环境下的金属合金铸造展开了深入研究,并取得了许多突出的研究成果。其中,镁合金铸造研究占据凝固研究中的大多数,在脉冲磁场、稳恒磁场、交变磁场、旋转磁场等多种磁场类型作用下进行了诸多研究,GUO 等[96-98]使用低频交变磁场实现镁合金或铝合金半连续铸造中高速铸造,获得热裂倾向较小的合金铸件,铜、铁及合金鲜少涉及[85-86]。科研人员的工作重点逐渐从铸造工件的拉压性能转为试样凝固过程数值计算探究与微观结构观测。JIA 等[8799]通过建立数值计算模型评估铸造中熔池受洛伦兹力、流场、温度场对熔体凝固的影响,其中磁场强度与频率作为重要参数对凝固组织影响最大,占空比、相位差等参数需要更进一步的研究。

  • 磁场应用于焊接过程,有非接触及作用效果长久等特点,磁场通过影响焊件连接处熔池流动和传热实现金属堆积和内应力减少,有效提升焊接质量,增强焊件间结合强度。据此,目前,磁场处理焊接过程是众多科研团队普遍研究的热点问题,磁场逐渐成为调控焊接熔池凝固的高效手段之一。由于焊接多涉及铁碳化合物等钢件连接,故钢间熔池凝固是进行磁场探究的技术基础,这与铸造侧重镁合金的材料选择有一定差异[89100-101]。LI 等[102]在交变磁场环境下,使用电弧振荡焊接方法处理薄壁不锈钢,随着磁场激励频率增加,焊缝热影响区变窄,焊缝强度和塑性协同增强。HU 等[103]完成交变磁场下钢件和铝合金的激光焊接工艺探索,磁场断裂枝晶,增加焊区裂纹敏感性,增加了焊接接头拉应力和伸长率。由此可见,焊缝宽度和焊接处裂纹是使用焊接外表评估焊接质量的常用标准,焊缝处硬度和冲击强度是测试焊接性能的常用测试[104-105]。目前,磁场对焊接研究探索重点由磁场环境下焊接接头性能测试逐渐转为焊缝熔池机理探究[88]

  • 随着试验设备的不断改进与涂层广泛应用,目前磁场对金属凝固的工艺研究与探索主要集中在外磁场辅助熔覆与电沉积涂层制备。磁场辅助电沉积在 20 世纪末到 21 世纪初逐渐出现[106-107],探索初期,以镍和钴元素沉积为主,研究主要以探究不同磁场参数对沉积影响为切入点[108],探索不同磁场下试件性能变化[109]。JIANG 等[110] 和 AABOUBI 团队[111]采用磁场诱导沉积方式制备 Ni-Co 合金涂层,磁场环境下,熔池内颗粒生长均匀,没有明显突起,耐腐蚀力得到提升,磁流体的诱导对流作用在熔池表面形成光滑致密的锥形薄膜。随着研究的逐渐进行,目前电沉积研究主要集中在探究磁场对电沉积的影响机理,对熔池内熔体的传热传质进行数值计算,对熔体凝固和晶粒生长过程模拟仿真。ZHANG 等[112]使用数字全息术对磁梯度力和洛伦兹力作用下 CoCl2 熔池凝固界面处浓度和扩散层动态变化。外磁场辅助熔覆起步较晚,研究主要集中在近 10 年。ZUO 等[113]针对磁场环境下样品进行一系列性能测试发现磁场添加增强涂层耐磨性,改善试件服役表现。QI 等[114-116]是研究磁场环境激光熔覆工艺的重要团队之一,发现磁场环境下的磁致伸缩效应降低钴基合金凝固过程中的热膨胀力和热应力,进而影响凝固后的裂纹敏感性,综合影响熔池凝固后性能。但仍有较多不足和未知区域,亟待进一步研究探索。

  • 综上,如图18 所示,磁场环境下金属凝固的应用由传统的合金制造工艺铸造、焊接等向新兴复杂工艺如沉积、熔覆等侧重;研究方式由简单的性能强化效果测试向模型理论计算转变,目前,磁场作用于各种工艺凝固过程试样传热传质变化,熔池内晶粒生长形貌是众多科研团队推演计算的重点。伴随涂层零件的广泛应用,金属零件的制备不在局限于简单传统的铸造工艺,磁场环境下新工艺的探索也是未来该领域的发展方向,例如磁场辅助喷涂涂层凝固等。

  • 图18 磁场环境下各制造工艺发展图[869294-95]

  • Fig.18 Development diagram of manufacturing process under magnetic field environment[86, 92, 94-95]

  • 6 结论与展望

  • 优化金属凝固过程是制备金属试样、开展工业生产的重要基础。利用磁场处理金属凝固过程是提高合金性能的高效方式,有效改善金属凝固中枝晶生长、传热传质和成分偏析过程。磁场处理金属凝固过程的研究目前主要集中在稳恒磁场、脉冲磁场和交变磁场 3 种类型磁场,3 种类型磁场对熔体的作用机理与作用效果各有不同,现总结如下:

  • (1)稳恒磁场作用下,熔体受电磁制动效应和热电磁流体效应两者作用,作用效果主要受磁感应强度影响。对于脉冲磁场,熔体受电磁振荡、型壁游离和焦耳热效应产生晶粒细化、成分偏析等不同现象。交变磁场作用下的内部产生电磁振荡和强制对流效果,改变熔池相分布和传热传质过程。

  • (2)磁场目前在金属模型铸造加工工艺应用中研究充分,应用广泛,适用大体积金属熔池凝固。磁场环境下沉积涂层、焊接、激光熔覆涂层制备等工艺逐渐得到关注和探索。其研究方式多采用理论模型计算和试验验证相结合的方式,旨在为解释磁场辅助金属加工工艺和磁场对金属凝固作用机理提供有力证明。

  • 磁场辅助金属加工工艺,作用于金属凝固过程得到众多科研团队的研究和认可,但多变的磁场环境和复杂的金属加工工艺过程为磁场环境下金属凝固机理解释提供了众多可能性,为开展相关领域研究探索提供不同研究思路,故展望如下:

  • (1)多种磁场复杂多变的作用机理为研究提供了众多的可能性,使用单一作用原理解释金属综合性能变化有一定难度,使用多种作用机理综合解释磁场环境下熔体变化成为主流研究趋势。目前,对于不同磁场下对金属凝固过程的作用机理逐渐趋于一致,细化、量化不同磁场对合金凝固组织的多种作用效果,统一晶粒变化过程和机理等研究仍需要各位学者不懈努力。

  • (2)未来科研人员在开展磁场对金属凝固影响的研究中,数值模拟与试验测试同步推进是进行科研探索的主要方式。建立数值模拟模型,与试验结果对比分析,总结熔体晶粒变化和传热传质的作用规律。今后的科研重心当为区分磁场环境下多种效应的作用效果,揭示更多环境下金属凝固机理的变化,例如旋转磁场、电场与磁场结合的复合磁场等,建立磁场参数与熔体变化的量化公式,总结完备的作用机理,晶粒变化,性能提升之间的作用体系,为工业生产提供坚实的理论基础。

  • (3)研究不同工艺下磁场对金属凝固的影响是机械工程和表面工程的发展趋势。未来磁场对涉及金属凝固各领域的应用将得到推广,磁场环境辅助表面激光加工、表面喷涂等工艺将逐步探索,向全面化、工业化逐渐发展以提高金属制品性能,延长金属样品的服役性能。

  • 参考文献

    • [1] 胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)

    • [2] 李云峰,石岩.WC 对激光熔覆层组织及耐磨耐冲击性的影响[J].中国表面工程,2021,34(2):104-113.LI Yunfeng,SHI Yan.Effect of WC on microstructure,wear resistance and impact resistance of laser cladding layer[J].China Surface Engineering,2021,34(2):104-113.(in Chinese)

    • [3] 韩冰源,高祥涵,杜文博,等.铝合金基材表面耐磨性能强化研究现状[J].材料导报,2023,10:1-19.HAN Bingyuan,GAO Xianghan,DU Wenbo,et al.Technological advances in strengthening the surface wear resistance of aluminum alloys substrate[J].Materials Reports,2023,10:1-19.(in Chinese)

    • [4] 刘卫东,米国发,李雷,等.辅助处理对激光熔覆层组织性能影响的研究进展[J].材料导报,2023,15:1-14.LIU Weidong,MI Guofa,LI Lei,et al.Research progress of effect of auxiliary treatment on microstructure and properties of laser cladding layer[J].Materials Reports,2023,15:1-14.(in Chinese)

    • [5] MURTY B S,KORI S A,CHAKRABORTY M.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(1):3-29.

    • [6] 迟静,王淑峰,李敏,等.WC 与TiC复合增强镍基涂层的组织和性能[J].中国表面工程,2021,34(1):85-96.CHI Jing,WANG Shufeng,LI Min,et al.Microstructure and properties of WC and tic composite reinforcement Ni based coatings[J].China Surface Engineering,2021,34(1):85-96.(in Chinese)

    • [7] ALI Y H,QIU D,JIANG B,et al.Current research progress in grain refinement of cast magnesium alloys:A review article[J].J Alloy Compd,2015,619:639-651.

    • [8] CHOI J S,LA M,KIM D,et al.Effect of electric current on the microstructural refinement of pure aluminum[J].J Mater Res Technol,2021,12:818-830.

    • [9] REN H G,SU J,ZHAO Z L,et al.Effect of pulse electric discharging on the directional solidification structure of pure aluminum[J].Advanced Materials Research,2011,287:322-325.

    • [10] GUMAER P W.The Magnetization of heusler alloys as a function of the temperature and calculation of the intrinsic magnetic field[J].Physical Review(Series I),1911,33(4):288-305.

    • [11] THOMPSON S P,SEARS J E,MORDEY W M,et al.Discussion on:“The magnetic properties of iron and its alloys in intense fields”[J].Journal of the Institution of Electrical Engineers,1911,46(206):285-306.

    • [12] HADFIELD R A,HOPKINSON B.The magnetic properties of iron and its alloys in intense fields[J].Journal of the Institution of Electrical Engineers,1911,46(206):235-284.

    • [13] ITTERBEEK A,POLLENTIER R,PEELAERS W.Measurements on the magnetic susceptibilities of Ag-Mn and Cu-Mn alloys[J].Applied Scientific Research,1959,7(1):329-337.

    • [14] MITUI T,MIYAHARA S.Influence of magnetic field on the precipitation process of ferromagnetic phase in Cu-Co alloy[J].The Physical Society of Japan,1955,10(11):1023.

    • [15] HALL R C,CONARD G P,LIBSCH J F.Ordering and magnetic heat treatment of the 50 pet Fe-50 pet Co alloy[J].JOM,1955,7(9):985-989.

    • [16] VERHOEVEN J D,PEARSON D D.The effect of a magnetic field upon directional solidification of Sn-Cd and Sn-Pb alloys[J].Journal of Materials Science,1973,8(10):1409-1412.

    • [17] KNITTEL T.Thermoelectric power dependence of a gold-iron alloy wire on the magnetic field orientation[J].Elsevier,1973,13(6):370-371.

    • [18] SADOVSKII V D,MALINEN P A,MEL'NIKOV L A.Influence of high pressure and a pulsed magnetic field on the martensite transformation in Fe−Ni and Fe−Ni−Mn alloys[J].Metal Science and Heat Treatment,1972,14(9):775-781.

    • [19] YU Y,LI Y,LIN F,et al.A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J].Additive Manufacturing,2021,47:102284.

    • [20] MUNITZ A,GOKHALE A B,ABBASCHIAN R.The effect of supercooling on the microstructure of Al-Nb alloys[J].Journal of Materials Science,2000,35(9):2263-2271.

    • [21] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings preparedby laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [22] WANG Y,GAO M,YANG B,et al.Microstructural evolution and mechanical property of Al–Mg–Mn alloys with various solidification cooling rates[J].Materials Characterization,2022,184:111709.

    • [23] CHEN Z,KANG H,FAN G,et al.Grain refinement of hypoeutectic Al-Si alloys with B[J].Acta Materialia,2016,120:168-178.

    • [24] KORI S A,CHANDRASHEKHARAIAH T M.Studies on the dry sliding wear behaviour of hypoeutectic and eutectic Al–Si alloys[J].Wear,2007,263(1):745-755.

    • [25] 王立彬,张程煜,丁秉钧.W 或C添加剂对优化CuCr25合金显微组织的作用[J].稀有金属材料与工程,2003,1:41-44.WANG Libin,ZHANG Chengyu,DING Bingjun.Influence of W or C adding on the microstructure of CuCr25 alloys[J].Rare Metal Materials and Engineering,2003,1:41-44.(in Chinese)

    • [26] LIAO Z Y,WANG H C,HONG P,et al.Study on effect of pulse electric field on solidification process of Fe-C-S alloy melt[J].Advanced Materials Research,2011,284:1137-1142.

    • [27] CHERIF M,HICHER P,BENAMARA O,et al.Electric field effects during solidification of the ternary oxide eutectic Al2O3-YAG-ZrO2[J].Crystal Research and Technology,2018,53(5):1700251.

    • [28] WANG P,SHUAI S,HUANG C,et al.Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy[J].Journal of Materials Science & Technology,2021,88(29):226-232.

    • [29] HU S D,HOU L,WANG K,et al.Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J].Journal of Materials Science & Technology,2021,76:207-214.

    • [30] HOU Y,ZHANG Z Q,XUAN W D,et al.Grain refinement during directionally solidifying gcr18mo steel at low pulling speeds under an axial static magnetic field[J].Acta Metallurgica Sinica(English Letters),2018,31(7):681-691.

    • [31] XUAN W D,REN Z M,LI C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J].J Alloy Compd,2015,620:10-17.

    • [32] LI X,GAGNOUD A,FAUTRELLE Y,et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J].Acta Materialia,2012,60(8):3321-3332.

    • [33] SHEN Z,PENG M H,ZHU D S,et al.Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J].Journal of Materials Science & Technology,2019,35(4):568-577.

    • [34] DU D,HALEY J C,DONG A,et al.Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J].Materials & Design,2019,181(5):107923.

    • [35] DU D,LU Z,GAGNOUD A,et al.Effect of a transverse magnetic field on solidification structure in directionally solidified Sn–Pb hypoeutectic alloys[J].Journal of Crystal Growth,2014,402:319-324.

    • [36] 康智强,杨雪,冯国会,等.水平稳恒磁场对 Al-10%Bi 合金中富Bi相分布的影响[J].功能材料,2016,47(7):7173-7176,7181.KANG Zhiqiang,YANG Xue,FENG Guohui,et al.Influence of horizontal magnetic field on Bi-rich phase distribution in Al-10%Bi hypermonotectic alloy[J].Journal of Functional Materials,2016,47(7):7173-7176,7181.(in Chinese)

    • [37] YASUDA H,OHNAKA I,KAWAKAMI O,et al.Effect of magnetic field on solidification in Cu-Pb monotectic alloys[J].ISIJ International,2003,43(6):942-949.

    • [38] ZHU L,HAN C,HOU L,et al.Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al-4.5wt.%Cu alloy[J].Mater Lett,2019,248:73-77.

    • [39] LI X,FAUTRELLE Y,GAGNOUD A,et al.Effect of a weak transverse magnetic field on solidification structure during directional solidification[J].Acta Materialia,2014,64:367-381.

    • [40] GUO R,SHUAI S S,ZHAO R X,et al.Enhanced degradation in grain refinement of inoculated 2024 Al alloy in steady magnetic field[J].Metall Mater Trans A,2020,51(9):4584-4591.

    • [41] HE S Y,LI C J,YUAN Z J,et al.Magnetic-Field-Induced liquid-solid interface transformation and its effect on microsegregation in directionally solidified Ni-Cr alloy[J].Metall Mater Trans A,2020,51(9):4592-4601.

    • [42] DU D,HOU L,GAGNOUD A,et al.Effect of an axial high magnetic field on Sn dendrite morphology of Pb–Sn alloys during directional solidification[J].J Alloy Compd,2014,588:190-198.

    • [43] ZHENG T,ZHONG Y,LEI Z,et al.Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5 wt.% Zn alloys[J].Mater Lett,2015,140:68-70.

    • [44] GUO R,LI C,HE S,et al.Effect of steady magnetic field on undercooling of Al-Cu alloy melts[J].EPL(Europhysics Letters),2019,126(4):460011-460016.

    • [45] VAVILOVA V V,ZAITSEV A I,KOVNERISTYI Y K,et al.Effect of pulsed magnetic field on the short-range order and properties of amorphous iron-base alloys[J].Inorg Mater,1999,35(5):489-492.

    • [46] BALDOKHIN Y V,VAVILOVA V V,KOVNERISTYI Y K,et al.Formation of a nanocrystalline structure in an iron-base amorphous alloy under the influence of a pulsed magnetic field[J].Inorg Mater,2000,36(7):699-702.

    • [47] JIE J C,YUE S P,LIU J,et al.Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J].Acta Materialia,2021,208:116747.

    • [48] YANG Y,YANG Y,LIAO C,et al.Enhancing tribological performance of cemented carbide(WC-12Co)by pulsed magnetic field treatment and magnetofluid[J].Tribol Int,2021,161:107086.

    • [49] DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.

    • [50] 冀焕明,罗天骄,杨院生.AZ80 镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J].中国有色金属学报,2017,27(3):468-476.JI Huanming,LUO Tianjiao,YANG Yuansheng.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2017,27(3):468-476.(in Chinese)

    • [51] ZOU J,ZHANG H,WU Z,et al.Effects of an intermittent permanent magnet stirring on the melt flow and grain refinement of Al–4.5Cu alloy[J].Journal of Materials Research and Technology,2021,14:1585-1600.

    • [52] YANG Y,KUILIANG Z,LI Y J,et al.Solidification structure control by the interaction of pulsed magnetic field and melt[J].Procedia Manufacturing,2019,37:621-626.

    • [53] CHEN H,JIE J C,FU Y,et al.Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1295-1300.

    • [54] GONG Y Y,LUO J,JING J X,et al.Structure refinement of pure aluminum by pulse magneto-oscillation[J].Materials Science & Engineering A,2008,497(1):147-152.

    • [55] 刘立强,李秋书,李仁兴,等.脉冲磁场下铝液凝固组织的研究[J].中国铸造装备与技术,2004,1:27-28.LIU Liqiang,LI Qiushu,LI Renxing,et al.Effect of pulsed magnetic field on solidification structures of pure aluminum[J].China Foundry Machinery & Technology,2004,1:27-28.(in Chinese)

    • [56] 曹胜利,张庆军,朱立光,等.脉冲磁场强度对钛处理低碳钢凝固过程的影响[J].中国冶金,2018,28(2):23-27,56.CAO Shengli,ZHANG Qingjun,ZHU Liguang,et al.Influence of pulsed magnetic field intensity on solidification of low carbon steel with titanium treatment[J].China Metallurgy,2018,28(2):23-27,56.(in Chinese)

    • [57] 张建伟,李应举,杨院生.脉冲磁场对定向H13钢凝固组织的影响[J].材料研究学报,2017,31(10):721-727.ZHANG Jianwei,LI Yingju,YANG Yuansheng.Effect of applied pulsed magnetic field during directional solidification on solidified structure of H13 steel[J].Chinese Journal of Materials Research,2017,31(10):721-727.(in Chinese)

    • [58] LI Q S,SONG C J,LI H,et al.Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J].Mat Sci Eng a-Struct,2007,466:101-105.

    • [59] ZHANG L,ZHOU Q,LUO K,et al.Microstructural characteristics of Mg-Zn-Y alloy containing quasicrystal phase under pulsed magnetic field[J].Applied Mechanics and Materials,2013,456:482-485.

    • [60] LI Y J,TENG Y,YANG Y.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J].Metals and Materials International,2014,20:527-530.

    • [61] ZHANG L,HU P H,ZHOU Q,et al.Effects of pulsed magnetic field on microstructure,mechanical properties and bio-corrosion behavior of Mg-7Zn alloy[J].Mater Lett,2017,193:224-227.

    • [62] WANG B,YANG Y S,MA X P,et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(2):283-288.

    • [63] 谢东原,刘峰,周全,等.脉冲磁场对石墨型铸造 Mg-Y-Cu-Zr-Sr 合金凝固组织和力学性能的影响[J].特种铸造及有色合金,2021,41(9):1109-1114.XIE Dongyuan,LIU Feng,ZHOU Quan,et al.Effects of pulsed magnetic field on solidification structure and mechanical properties of Mg-Y-Cu-Zr-Sr alloy by graphite mold casting[J].Special Casting & Nonferrous Alloys,2021,41(9):1109-1114.(in Chinese)

    • [64] 徐燕祎,翟启杰.脉冲电磁场在金属熔体中的电磁效应及其应用[J].上海大学学报(自然科学版),2020,26(1):1-20.XU Yanyi,ZHAI Qijie.Electromagnetic effect of pulsed electromagnetic field in molten metals and its applications[J].Journal of Shanghai University(Natural Science Edition),2020,26(1):1-20.(in Chinese)

    • [65] FU J W,YANG Y S.Formation of the solidified microstructure of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].J Mater Res,2011,26(14):1688-1695.

    • [66] FU J,YANG Y.Microstructure and mechanical properties of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].Mater Lett,2012,67:252-255.

    • [67] LI L,LIANG W,BAN C,et al.Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys[J].Materials Characterization,2020,163:110274.

    • [68] GONG M,LIU K,HU W,et al.Microstructure of Al–Mg–Si–La alloy under pulsed magnetic field treatment during solidification[J].Materials Science and Technology,2023,39(12):1-11.

    • [69] WANG B,YANG Y,SUN M.Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(9):1685-1690.

    • [70] WANG B,YANG Y,ZHOU J,et al.Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2008,18:536-540.

    • [71] DUAN W,YIN S,LIU W H,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2020,9(1):166-182.

    • [72] ZHANG S,XU H,TAN X,et al.Effect of pulsed magnetic field treatment on the magnetic properties for nanocomposite Nd2Fe14B2±-Fe alloys[J].J Alloy Compd,2008,459:41-44.

    • [73] WANG D,HUIQIN L,XIULI Z,et al.The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys[J].Surface & Coatings Technology,2020,403:126406.

    • [74] KHELFI S,ABDELHAKEM A,NOURI A,et al.Numerical modeling and experimental analysis of benchmark experiment of Sn-10 wt%Pb alloy under forced convection by electromagnetic stirring[J].Journal of Crystal Growth,2022,584:126575.

    • [75] HU C,FEI Y,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.

    • [76] ZHOU J,XU J,HUANG S,et al.Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy[J].Surface & Coatings Technology,2017,309:212-219.

    • [77] SUFYAN A,ANATOLII B,ANDREAS C,et al.Improvement of the wear resistance of nickel-aluminium bronze and 2014-T6 aluminium alloy by application of alternating magnetic field treatment[J].Wear,2021:480-481.

    • [78] STELIAN C,DELANNOY Y,FAUTRELLE Y,et al.Bridgman growth of concentrated GaInSb alloys with improved compositional uniformity under alternating magnetic fields[J].Journal of Crystal Growth,2004,275(1):E1571-E1578.

    • [79] WANG T,HACHANI L,FAUTRELLE Y,et al.Numerical modeling of a benchmark experiment on equiaxed solidification of a Sn-Pb alloy with electromagnetic stirring and natural convection[J].Int J Heat Mass Tran,2020,151:119414.

    • [80] ZHOU Y,MAO P,WANG Z,et al.Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy[J].Journal of Materials Processing Tech,2020,282:116679.

    • [81] LI Y,CUI X,JIN G,et al.Influence of magnetic field on microstructure and properties of TiC/cobalt-based composite plasma cladding coating[J].Surface and Coatings Technology,2017,325:555-564.

    • [82] YANG B,LIU F,TAN C,et al.Influence of alternating magnetic field on microstructure and mechanical properties of laser-MIG hybrid welded HG785D steel joint[J].Journal of Materials Research and Technology,2020,9(6):13692-13705.

    • [83] XUAN W,DU L,HAN Y,et al.Investigation on microstructure and creep properties of nickel based single crystal superalloys PWA1483 during heat treatment under an alternating magnetic field[J].Materials Science & Engineering A,2019,762:138087.

    • [84] RONG Y,LI H,CHENG D,et al.Study on microstructure and properties of Mg/steel laser welding-brazing joint assisted by alternating magnetic field with Ni interlayer[J].International Journal of Lightweight Materials and Manufacture,2021,48(22):416-422.

    • [85] YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.

    • [86] ZHONG Y B,QIANG L I,FANG Y-P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660:118-126.

    • [87] DUAN W,SU W,BAO J,et al.Numerical study on transient melt oscillation and solidification characteristic during magnesium alloy direct chill casting under out-of-phase pulsed magnetic field[J].Mater Today Commun,2022,31:103441.

    • [88] LIU F,WANG H,MENG X,et al.Effect of magnetic field orientation on suppressing porosity in steady-magnetic-field-assisted aluminum alloy deep-penetration laser welding[J].J Mater Process Tech,2022,304:117569.

    • [89] HU C,YAN F,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.

    • [90] PENG M,ZHONG Y,ZHENG T,et al.6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field[J].Journal of Materials Science & Technology,2018,34(12):2492-2497.

    • [91] XU M,SHEN L,JIANG W,et al.Fabrication of Ni-SiC superhydrophilic surface by magnetic field-assisted scanning electrodeposition[J].J Alloy Compd,2019,799:224-230.

    • [92] LI G,WANG Z,YAO L,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface and Coatings Technology,2022,445:128732.

    • [93] ZHANG N,LIU W,DENG D,et al.Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J].Optics & Laser Technology,2018,108:247-254.

    • [94] CAO L,ZHOU Q,LIU H,et al.Mechanism investigation of the influence of the magnetic field on the molten pool behavior during laser welding of aluminum alloy[J].Int J Heat Mass Tran,2020,162:120390.

    • [95] HUANG Y,WU X,NIE L,et al.Mechanism of lithium electrodeposition in a magnetic field[J].Solid State Ionics,2020,345:115171.

    • [96] GUO S,CUI J,LE Q,et al.The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets[J].Mater Lett,2005,59(14):1841-1844.

    • [97] ZHANG B,CUI J,LU G.Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys[J].Mater Lett,2003,57(11):1707-1711.

    • [98] ZHAO Z,CUI J,DONG J,et al.Effect of low-frequency magnetic field on microstructures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy[J].J Mater Process Tech,2007,182(1):185-190.

    • [99] JIA Y,WANG H,LE Q.Transient coupling simulation of multi-physical field during pulse electromagnetic direct-chill casting of AZ80 magnesium alloy[J].Int J Heat Mass Tran,2019,143:118524.

    • [100] SUN Y,HUANG R,ZHAO H,et al.Enhancement of resistance element welding of AA6061 to DP600 steel by using external magnetic field[J].J Manuf Process,2022,80:347-358.

    • [101] LIU F,XU B,SONG K,et al.Improvement of penetration ability of heat source for 316 stainless steel welds produced by alternating magnetic field assisted laser-MIG hybrid welding[J].J Mater Process Tech,2022,299:117329.

    • [102] LI F,LIU Y,KE W,et al.A novel pathway to weld forming control and microstructure improvement of duplex stainless steel via alternating magnetic field[J].J Manuf Process,2022,80:581-590.

    • [103] HU C,YAN F,XU Y,et al.Effect of alternating magnetic field on microstructure and performance for dissimilar welding-brazing of galvanized steel to 6061 aluminum alloy in an overlapping configuration[J].Optics & Laser Technology,2022,155:108423.

    • [104] AGRAWAL M K,SINGH R P.Effect of external magnetic field on impact strength and hardness of weld of shielded metal arc welding process[J].Materials Today:Proceedings,2021,45:3638-3641.

    • [105] SINGH R P,RAGHUVANSHI D,PAL A.Effect of external magnetic field on weld width and reinforcement height of shielded metal arc welded joints[J].Materials Today:Proceedings,2021,38:112-115.

    • [106] KRAUSE A,UHLEMANN M,GEBERT A,et al.The effect of magnetic fields on the electrodeposition of cobalt[J].Electrochimica Acta,2004,49(24):4127-4134.

    • [107] MATSUSHIMA H,NOHIRA T,MOGI I,et al.Effects of magnetic fields on iron electrodeposition[J].Surface and Coatings Technology,2004,179(2):245-251.

    • [108] JI R,HAN K,JIN H,et al.Preparation of Ni-SiC nano-composite coating by rotating magnetic field-assisted electrodeposition[J].J Manuf Process,2020,57:787-797.

    • [109] XIA F,LI Q,MA C,et al.Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique[J].Ceram Int,2020,46(2):2500-2509.

    • [110] JIANG W,SHEN L,XU M,et al.Mechanical properties and corrosion resistance of Ni-Co-SiC composite coatings by magnetic field-induced jet electrodeposition[J].J Alloy Compd,2019,791:847-855.

    • [111] AABOUBI O,MSELLAK K.Magnetic field effects on the electrodeposition of CoNiMo alloys[J].Appl Surf Sci,2017,396:375-383.

    • [112] ZHANG Y,YUAN B,LI L,et al.Edge electrodeposition effect of cobalt under an external magnetic field[J].Journal of Electroanalytical Chemistry,2020,865:114143.

    • [113] ZUO Z,TAHERI M,RAZAVI M,et al.Effect of magnetic field on tribological properties of IN718 superalloy coating produced by laser cladding on GTD-111 superalloy[J].Vacuum,2022,203:111311.

    • [114] QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics & Laser Technology,2021,141:107129.

    • [115] QI K,YANG Y,LIANG W,et al.Effect of magnetic field on the microstructure and wear properties of TiB2/metal composite layers synthesized in situ by laser cladding on Ti–6Al–4V alloy[J].Ceram Int,2021,47(20):29463-29474.

    • [116] QI K,YANG Y,SUN R,et al.Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo[J].Mater Lett,2021,282:128893.

  • 参考文献

    • [1] 胡建军,赵雪,郭宁,等.40Cr 钢表面包埋渗Mo涂层组织及摩擦性能[J].中国表面工程,2021,34(1):60-69.HU Jianjun,ZHAO Xue,GUO Ning,et al.Microstructure and tribological properties of Mo-coating prepared by pack-cementation on 40cr steel[J].China Surface Engineering,2021,34(1):60-69.(in Chinese)

    • [2] 李云峰,石岩.WC 对激光熔覆层组织及耐磨耐冲击性的影响[J].中国表面工程,2021,34(2):104-113.LI Yunfeng,SHI Yan.Effect of WC on microstructure,wear resistance and impact resistance of laser cladding layer[J].China Surface Engineering,2021,34(2):104-113.(in Chinese)

    • [3] 韩冰源,高祥涵,杜文博,等.铝合金基材表面耐磨性能强化研究现状[J].材料导报,2023,10:1-19.HAN Bingyuan,GAO Xianghan,DU Wenbo,et al.Technological advances in strengthening the surface wear resistance of aluminum alloys substrate[J].Materials Reports,2023,10:1-19.(in Chinese)

    • [4] 刘卫东,米国发,李雷,等.辅助处理对激光熔覆层组织性能影响的研究进展[J].材料导报,2023,15:1-14.LIU Weidong,MI Guofa,LI Lei,et al.Research progress of effect of auxiliary treatment on microstructure and properties of laser cladding layer[J].Materials Reports,2023,15:1-14.(in Chinese)

    • [5] MURTY B S,KORI S A,CHAKRABORTY M.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(1):3-29.

    • [6] 迟静,王淑峰,李敏,等.WC 与TiC复合增强镍基涂层的组织和性能[J].中国表面工程,2021,34(1):85-96.CHI Jing,WANG Shufeng,LI Min,et al.Microstructure and properties of WC and tic composite reinforcement Ni based coatings[J].China Surface Engineering,2021,34(1):85-96.(in Chinese)

    • [7] ALI Y H,QIU D,JIANG B,et al.Current research progress in grain refinement of cast magnesium alloys:A review article[J].J Alloy Compd,2015,619:639-651.

    • [8] CHOI J S,LA M,KIM D,et al.Effect of electric current on the microstructural refinement of pure aluminum[J].J Mater Res Technol,2021,12:818-830.

    • [9] REN H G,SU J,ZHAO Z L,et al.Effect of pulse electric discharging on the directional solidification structure of pure aluminum[J].Advanced Materials Research,2011,287:322-325.

    • [10] GUMAER P W.The Magnetization of heusler alloys as a function of the temperature and calculation of the intrinsic magnetic field[J].Physical Review(Series I),1911,33(4):288-305.

    • [11] THOMPSON S P,SEARS J E,MORDEY W M,et al.Discussion on:“The magnetic properties of iron and its alloys in intense fields”[J].Journal of the Institution of Electrical Engineers,1911,46(206):285-306.

    • [12] HADFIELD R A,HOPKINSON B.The magnetic properties of iron and its alloys in intense fields[J].Journal of the Institution of Electrical Engineers,1911,46(206):235-284.

    • [13] ITTERBEEK A,POLLENTIER R,PEELAERS W.Measurements on the magnetic susceptibilities of Ag-Mn and Cu-Mn alloys[J].Applied Scientific Research,1959,7(1):329-337.

    • [14] MITUI T,MIYAHARA S.Influence of magnetic field on the precipitation process of ferromagnetic phase in Cu-Co alloy[J].The Physical Society of Japan,1955,10(11):1023.

    • [15] HALL R C,CONARD G P,LIBSCH J F.Ordering and magnetic heat treatment of the 50 pet Fe-50 pet Co alloy[J].JOM,1955,7(9):985-989.

    • [16] VERHOEVEN J D,PEARSON D D.The effect of a magnetic field upon directional solidification of Sn-Cd and Sn-Pb alloys[J].Journal of Materials Science,1973,8(10):1409-1412.

    • [17] KNITTEL T.Thermoelectric power dependence of a gold-iron alloy wire on the magnetic field orientation[J].Elsevier,1973,13(6):370-371.

    • [18] SADOVSKII V D,MALINEN P A,MEL'NIKOV L A.Influence of high pressure and a pulsed magnetic field on the martensite transformation in Fe−Ni and Fe−Ni−Mn alloys[J].Metal Science and Heat Treatment,1972,14(9):775-781.

    • [19] YU Y,LI Y,LIN F,et al.A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J].Additive Manufacturing,2021,47:102284.

    • [20] MUNITZ A,GOKHALE A B,ABBASCHIAN R.The effect of supercooling on the microstructure of Al-Nb alloys[J].Journal of Materials Science,2000,35(9):2263-2271.

    • [21] 朱正兴,候早,刘秀波,等.激光制备自润滑复合涂层及摩擦学性能研究进展[J].中国表面工程,2021,34(5):117-130.ZHU Zhengxing,HOU Zao,LIU Xiubo,et al.Research progress of self-lubricating composite coatings preparedby laser and their tribological properties[J].China Surface Engineering,2021,34(5):117-130.(in Chinese)

    • [22] WANG Y,GAO M,YANG B,et al.Microstructural evolution and mechanical property of Al–Mg–Mn alloys with various solidification cooling rates[J].Materials Characterization,2022,184:111709.

    • [23] CHEN Z,KANG H,FAN G,et al.Grain refinement of hypoeutectic Al-Si alloys with B[J].Acta Materialia,2016,120:168-178.

    • [24] KORI S A,CHANDRASHEKHARAIAH T M.Studies on the dry sliding wear behaviour of hypoeutectic and eutectic Al–Si alloys[J].Wear,2007,263(1):745-755.

    • [25] 王立彬,张程煜,丁秉钧.W 或C添加剂对优化CuCr25合金显微组织的作用[J].稀有金属材料与工程,2003,1:41-44.WANG Libin,ZHANG Chengyu,DING Bingjun.Influence of W or C adding on the microstructure of CuCr25 alloys[J].Rare Metal Materials and Engineering,2003,1:41-44.(in Chinese)

    • [26] LIAO Z Y,WANG H C,HONG P,et al.Study on effect of pulse electric field on solidification process of Fe-C-S alloy melt[J].Advanced Materials Research,2011,284:1137-1142.

    • [27] CHERIF M,HICHER P,BENAMARA O,et al.Electric field effects during solidification of the ternary oxide eutectic Al2O3-YAG-ZrO2[J].Crystal Research and Technology,2018,53(5):1700251.

    • [28] WANG P,SHUAI S,HUANG C,et al.Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy[J].Journal of Materials Science & Technology,2021,88(29):226-232.

    • [29] HU S D,HOU L,WANG K,et al.Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J].Journal of Materials Science & Technology,2021,76:207-214.

    • [30] HOU Y,ZHANG Z Q,XUAN W D,et al.Grain refinement during directionally solidifying gcr18mo steel at low pulling speeds under an axial static magnetic field[J].Acta Metallurgica Sinica(English Letters),2018,31(7):681-691.

    • [31] XUAN W D,REN Z M,LI C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J].J Alloy Compd,2015,620:10-17.

    • [32] LI X,GAGNOUD A,FAUTRELLE Y,et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J].Acta Materialia,2012,60(8):3321-3332.

    • [33] SHEN Z,PENG M H,ZHU D S,et al.Evolution of the microstructure and solute distribution of Sn-10wt% Bi alloys during electromagnetic field-assisted directional solidification[J].Journal of Materials Science & Technology,2019,35(4):568-577.

    • [34] DU D,HALEY J C,DONG A,et al.Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J].Materials & Design,2019,181(5):107923.

    • [35] DU D,LU Z,GAGNOUD A,et al.Effect of a transverse magnetic field on solidification structure in directionally solidified Sn–Pb hypoeutectic alloys[J].Journal of Crystal Growth,2014,402:319-324.

    • [36] 康智强,杨雪,冯国会,等.水平稳恒磁场对 Al-10%Bi 合金中富Bi相分布的影响[J].功能材料,2016,47(7):7173-7176,7181.KANG Zhiqiang,YANG Xue,FENG Guohui,et al.Influence of horizontal magnetic field on Bi-rich phase distribution in Al-10%Bi hypermonotectic alloy[J].Journal of Functional Materials,2016,47(7):7173-7176,7181.(in Chinese)

    • [37] YASUDA H,OHNAKA I,KAWAKAMI O,et al.Effect of magnetic field on solidification in Cu-Pb monotectic alloys[J].ISIJ International,2003,43(6):942-949.

    • [38] ZHU L,HAN C,HOU L,et al.Influence of a static magnetic field on the distribution of solute Cu and interdendritic constitutional undercooling in directionally solidified Al-4.5wt.%Cu alloy[J].Mater Lett,2019,248:73-77.

    • [39] LI X,FAUTRELLE Y,GAGNOUD A,et al.Effect of a weak transverse magnetic field on solidification structure during directional solidification[J].Acta Materialia,2014,64:367-381.

    • [40] GUO R,SHUAI S S,ZHAO R X,et al.Enhanced degradation in grain refinement of inoculated 2024 Al alloy in steady magnetic field[J].Metall Mater Trans A,2020,51(9):4584-4591.

    • [41] HE S Y,LI C J,YUAN Z J,et al.Magnetic-Field-Induced liquid-solid interface transformation and its effect on microsegregation in directionally solidified Ni-Cr alloy[J].Metall Mater Trans A,2020,51(9):4592-4601.

    • [42] DU D,HOU L,GAGNOUD A,et al.Effect of an axial high magnetic field on Sn dendrite morphology of Pb–Sn alloys during directional solidification[J].J Alloy Compd,2014,588:190-198.

    • [43] ZHENG T,ZHONG Y,LEI Z,et al.Effects of high static magnetic field on crystal orientation and magnetic property of Bi-5 wt.% Zn alloys[J].Mater Lett,2015,140:68-70.

    • [44] GUO R,LI C,HE S,et al.Effect of steady magnetic field on undercooling of Al-Cu alloy melts[J].EPL(Europhysics Letters),2019,126(4):460011-460016.

    • [45] VAVILOVA V V,ZAITSEV A I,KOVNERISTYI Y K,et al.Effect of pulsed magnetic field on the short-range order and properties of amorphous iron-base alloys[J].Inorg Mater,1999,35(5):489-492.

    • [46] BALDOKHIN Y V,VAVILOVA V V,KOVNERISTYI Y K,et al.Formation of a nanocrystalline structure in an iron-base amorphous alloy under the influence of a pulsed magnetic field[J].Inorg Mater,2000,36(7):699-702.

    • [47] JIE J C,YUE S P,LIU J,et al.Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J].Acta Materialia,2021,208:116747.

    • [48] YANG Y,YANG Y,LIAO C,et al.Enhancing tribological performance of cemented carbide(WC-12Co)by pulsed magnetic field treatment and magnetofluid[J].Tribol Int,2021,161:107086.

    • [49] DUAN W,YIN S,LIU W,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2021,9(1):166-182.

    • [50] 冀焕明,罗天骄,杨院生.AZ80 镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J].中国有色金属学报,2017,27(3):468-476.JI Huanming,LUO Tianjiao,YANG Yuansheng.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2017,27(3):468-476.(in Chinese)

    • [51] ZOU J,ZHANG H,WU Z,et al.Effects of an intermittent permanent magnet stirring on the melt flow and grain refinement of Al–4.5Cu alloy[J].Journal of Materials Research and Technology,2021,14:1585-1600.

    • [52] YANG Y,KUILIANG Z,LI Y J,et al.Solidification structure control by the interaction of pulsed magnetic field and melt[J].Procedia Manufacturing,2019,37:621-626.

    • [53] CHEN H,JIE J C,FU Y,et al.Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation[J].Transactions of Nonferrous Metals Society of China,2014,24(5):1295-1300.

    • [54] GONG Y Y,LUO J,JING J X,et al.Structure refinement of pure aluminum by pulse magneto-oscillation[J].Materials Science & Engineering A,2008,497(1):147-152.

    • [55] 刘立强,李秋书,李仁兴,等.脉冲磁场下铝液凝固组织的研究[J].中国铸造装备与技术,2004,1:27-28.LIU Liqiang,LI Qiushu,LI Renxing,et al.Effect of pulsed magnetic field on solidification structures of pure aluminum[J].China Foundry Machinery & Technology,2004,1:27-28.(in Chinese)

    • [56] 曹胜利,张庆军,朱立光,等.脉冲磁场强度对钛处理低碳钢凝固过程的影响[J].中国冶金,2018,28(2):23-27,56.CAO Shengli,ZHANG Qingjun,ZHU Liguang,et al.Influence of pulsed magnetic field intensity on solidification of low carbon steel with titanium treatment[J].China Metallurgy,2018,28(2):23-27,56.(in Chinese)

    • [57] 张建伟,李应举,杨院生.脉冲磁场对定向H13钢凝固组织的影响[J].材料研究学报,2017,31(10):721-727.ZHANG Jianwei,LI Yingju,YANG Yuansheng.Effect of applied pulsed magnetic field during directional solidification on solidified structure of H13 steel[J].Chinese Journal of Materials Research,2017,31(10):721-727.(in Chinese)

    • [58] LI Q S,SONG C J,LI H,et al.Effect of pulsed magnetic field on microstructure of 1Cr18Ni9Ti austenitic stainless steel[J].Mat Sci Eng a-Struct,2007,466:101-105.

    • [59] ZHANG L,ZHOU Q,LUO K,et al.Microstructural characteristics of Mg-Zn-Y alloy containing quasicrystal phase under pulsed magnetic field[J].Applied Mechanics and Materials,2013,456:482-485.

    • [60] LI Y J,TENG Y,YANG Y.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J].Metals and Materials International,2014,20:527-530.

    • [61] ZHANG L,HU P H,ZHOU Q,et al.Effects of pulsed magnetic field on microstructure,mechanical properties and bio-corrosion behavior of Mg-7Zn alloy[J].Mater Lett,2017,193:224-227.

    • [62] WANG B,YANG Y S,MA X P,et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(2):283-288.

    • [63] 谢东原,刘峰,周全,等.脉冲磁场对石墨型铸造 Mg-Y-Cu-Zr-Sr 合金凝固组织和力学性能的影响[J].特种铸造及有色合金,2021,41(9):1109-1114.XIE Dongyuan,LIU Feng,ZHOU Quan,et al.Effects of pulsed magnetic field on solidification structure and mechanical properties of Mg-Y-Cu-Zr-Sr alloy by graphite mold casting[J].Special Casting & Nonferrous Alloys,2021,41(9):1109-1114.(in Chinese)

    • [64] 徐燕祎,翟启杰.脉冲电磁场在金属熔体中的电磁效应及其应用[J].上海大学学报(自然科学版),2020,26(1):1-20.XU Yanyi,ZHAI Qijie.Electromagnetic effect of pulsed electromagnetic field in molten metals and its applications[J].Journal of Shanghai University(Natural Science Edition),2020,26(1):1-20.(in Chinese)

    • [65] FU J W,YANG Y S.Formation of the solidified microstructure of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].J Mater Res,2011,26(14):1688-1695.

    • [66] FU J,YANG Y.Microstructure and mechanical properties of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field[J].Mater Lett,2012,67:252-255.

    • [67] LI L,LIANG W,BAN C,et al.Effects of a high-voltage pulsed magnetic field on the solidification structures of biodegradable Zn-Ag alloys[J].Materials Characterization,2020,163:110274.

    • [68] GONG M,LIU K,HU W,et al.Microstructure of Al–Mg–Si–La alloy under pulsed magnetic field treatment during solidification[J].Materials Science and Technology,2023,39(12):1-11.

    • [69] WANG B,YANG Y,SUN M.Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2010,20(9):1685-1690.

    • [70] WANG B,YANG Y,ZHOU J,et al.Microstructure refinement of AZ91D alloy solidified with pulsed magnetic field[J].Transactions of Nonferrous Metals Society of China,2008,18:536-540.

    • [71] DUAN W,YIN S,LIU W H,et al.Numerical and experimental studies on solidification of AZ80 magnesium alloy under out-of-phase pulsed magnetic field[J].Journal of Magnesium and Alloys,2020,9(1):166-182.

    • [72] ZHANG S,XU H,TAN X,et al.Effect of pulsed magnetic field treatment on the magnetic properties for nanocomposite Nd2Fe14B2±-Fe alloys[J].J Alloy Compd,2008,459:41-44.

    • [73] WANG D,HUIQIN L,XIULI Z,et al.The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys[J].Surface & Coatings Technology,2020,403:126406.

    • [74] KHELFI S,ABDELHAKEM A,NOURI A,et al.Numerical modeling and experimental analysis of benchmark experiment of Sn-10 wt%Pb alloy under forced convection by electromagnetic stirring[J].Journal of Crystal Growth,2022,584:126575.

    • [75] HU C,FEI Y,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.

    • [76] ZHOU J,XU J,HUANG S,et al.Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magnesium alloy[J].Surface & Coatings Technology,2017,309:212-219.

    • [77] SUFYAN A,ANATOLII B,ANDREAS C,et al.Improvement of the wear resistance of nickel-aluminium bronze and 2014-T6 aluminium alloy by application of alternating magnetic field treatment[J].Wear,2021:480-481.

    • [78] STELIAN C,DELANNOY Y,FAUTRELLE Y,et al.Bridgman growth of concentrated GaInSb alloys with improved compositional uniformity under alternating magnetic fields[J].Journal of Crystal Growth,2004,275(1):E1571-E1578.

    • [79] WANG T,HACHANI L,FAUTRELLE Y,et al.Numerical modeling of a benchmark experiment on equiaxed solidification of a Sn-Pb alloy with electromagnetic stirring and natural convection[J].Int J Heat Mass Tran,2020,151:119414.

    • [80] ZHOU Y,MAO P,WANG Z,et al.Effect of low frequency alternating magnetic field on hot tearing susceptibility of Mg-7Zn-1Cu-0.6Zr magnesium alloy[J].Journal of Materials Processing Tech,2020,282:116679.

    • [81] LI Y,CUI X,JIN G,et al.Influence of magnetic field on microstructure and properties of TiC/cobalt-based composite plasma cladding coating[J].Surface and Coatings Technology,2017,325:555-564.

    • [82] YANG B,LIU F,TAN C,et al.Influence of alternating magnetic field on microstructure and mechanical properties of laser-MIG hybrid welded HG785D steel joint[J].Journal of Materials Research and Technology,2020,9(6):13692-13705.

    • [83] XUAN W,DU L,HAN Y,et al.Investigation on microstructure and creep properties of nickel based single crystal superalloys PWA1483 during heat treatment under an alternating magnetic field[J].Materials Science & Engineering A,2019,762:138087.

    • [84] RONG Y,LI H,CHENG D,et al.Study on microstructure and properties of Mg/steel laser welding-brazing joint assisted by alternating magnetic field with Ni interlayer[J].International Journal of Lightweight Materials and Manufacture,2021,48(22):416-422.

    • [85] YAN Z,LIU H,LI T,et al.Effects of alternating magnetic field and casting parameters on solidification structure and mechanical properties of copper hollow billets[J].Materials & Design,2009,30(4):1245-1250.

    • [86] ZHONG Y B,QIANG L I,FANG Y-P,et al.Effect of transverse static magnetic field on microstructure and properties of GCr15 bearing steel in electroslag continuous casting process[J].Materials Science and Engineering:A,2016,660:118-126.

    • [87] DUAN W,SU W,BAO J,et al.Numerical study on transient melt oscillation and solidification characteristic during magnesium alloy direct chill casting under out-of-phase pulsed magnetic field[J].Mater Today Commun,2022,31:103441.

    • [88] LIU F,WANG H,MENG X,et al.Effect of magnetic field orientation on suppressing porosity in steady-magnetic-field-assisted aluminum alloy deep-penetration laser welding[J].J Mater Process Tech,2022,304:117569.

    • [89] HU C,YAN F,ZHU Z,et al.Effects on microstructural refinement of mechanical properties in steel-copper joints laser welded with alternating magnetic field augmentation[J].Materials Characterization,2021,175:111059.

    • [90] PENG M,ZHONG Y,ZHENG T,et al.6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field[J].Journal of Materials Science & Technology,2018,34(12):2492-2497.

    • [91] XU M,SHEN L,JIANG W,et al.Fabrication of Ni-SiC superhydrophilic surface by magnetic field-assisted scanning electrodeposition[J].J Alloy Compd,2019,799:224-230.

    • [92] LI G,WANG Z,YAO L,et al.Concentration mixing and melt pool solidification behavior during the magnetic field assisted laser cladding of Fe-Cr-based alloy on 45 steel surface[J].Surface and Coatings Technology,2022,445:128732.

    • [93] ZHANG N,LIU W,DENG D,et al.Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J].Optics & Laser Technology,2018,108:247-254.

    • [94] CAO L,ZHOU Q,LIU H,et al.Mechanism investigation of the influence of the magnetic field on the molten pool behavior during laser welding of aluminum alloy[J].Int J Heat Mass Tran,2020,162:120390.

    • [95] HUANG Y,WU X,NIE L,et al.Mechanism of lithium electrodeposition in a magnetic field[J].Solid State Ionics,2020,345:115171.

    • [96] GUO S,CUI J,LE Q,et al.The effect of alternating magnetic field on the process of semi-continuous casting for AZ91 billets[J].Mater Lett,2005,59(14):1841-1844.

    • [97] ZHANG B,CUI J,LU G.Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys[J].Mater Lett,2003,57(11):1707-1711.

    • [98] ZHAO Z,CUI J,DONG J,et al.Effect of low-frequency magnetic field on microstructures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy[J].J Mater Process Tech,2007,182(1):185-190.

    • [99] JIA Y,WANG H,LE Q.Transient coupling simulation of multi-physical field during pulse electromagnetic direct-chill casting of AZ80 magnesium alloy[J].Int J Heat Mass Tran,2019,143:118524.

    • [100] SUN Y,HUANG R,ZHAO H,et al.Enhancement of resistance element welding of AA6061 to DP600 steel by using external magnetic field[J].J Manuf Process,2022,80:347-358.

    • [101] LIU F,XU B,SONG K,et al.Improvement of penetration ability of heat source for 316 stainless steel welds produced by alternating magnetic field assisted laser-MIG hybrid welding[J].J Mater Process Tech,2022,299:117329.

    • [102] LI F,LIU Y,KE W,et al.A novel pathway to weld forming control and microstructure improvement of duplex stainless steel via alternating magnetic field[J].J Manuf Process,2022,80:581-590.

    • [103] HU C,YAN F,XU Y,et al.Effect of alternating magnetic field on microstructure and performance for dissimilar welding-brazing of galvanized steel to 6061 aluminum alloy in an overlapping configuration[J].Optics & Laser Technology,2022,155:108423.

    • [104] AGRAWAL M K,SINGH R P.Effect of external magnetic field on impact strength and hardness of weld of shielded metal arc welding process[J].Materials Today:Proceedings,2021,45:3638-3641.

    • [105] SINGH R P,RAGHUVANSHI D,PAL A.Effect of external magnetic field on weld width and reinforcement height of shielded metal arc welded joints[J].Materials Today:Proceedings,2021,38:112-115.

    • [106] KRAUSE A,UHLEMANN M,GEBERT A,et al.The effect of magnetic fields on the electrodeposition of cobalt[J].Electrochimica Acta,2004,49(24):4127-4134.

    • [107] MATSUSHIMA H,NOHIRA T,MOGI I,et al.Effects of magnetic fields on iron electrodeposition[J].Surface and Coatings Technology,2004,179(2):245-251.

    • [108] JI R,HAN K,JIN H,et al.Preparation of Ni-SiC nano-composite coating by rotating magnetic field-assisted electrodeposition[J].J Manuf Process,2020,57:787-797.

    • [109] XIA F,LI Q,MA C,et al.Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique[J].Ceram Int,2020,46(2):2500-2509.

    • [110] JIANG W,SHEN L,XU M,et al.Mechanical properties and corrosion resistance of Ni-Co-SiC composite coatings by magnetic field-induced jet electrodeposition[J].J Alloy Compd,2019,791:847-855.

    • [111] AABOUBI O,MSELLAK K.Magnetic field effects on the electrodeposition of CoNiMo alloys[J].Appl Surf Sci,2017,396:375-383.

    • [112] ZHANG Y,YUAN B,LI L,et al.Edge electrodeposition effect of cobalt under an external magnetic field[J].Journal of Electroanalytical Chemistry,2020,865:114143.

    • [113] ZUO Z,TAHERI M,RAZAVI M,et al.Effect of magnetic field on tribological properties of IN718 superalloy coating produced by laser cladding on GTD-111 superalloy[J].Vacuum,2022,203:111311.

    • [114] QI K,YANG Y,SUN R,et al.Effect of magnetic field on crack control of Co-based alloy laser cladding[J].Optics & Laser Technology,2021,141:107129.

    • [115] QI K,YANG Y,LIANG W,et al.Effect of magnetic field on the microstructure and wear properties of TiB2/metal composite layers synthesized in situ by laser cladding on Ti–6Al–4V alloy[J].Ceram Int,2021,47(20):29463-29474.

    • [116] QI K,YANG Y,SUN R,et al.Effect of magnetic field on tribological properties of Co-based alloy layer produced by laser cladding on 42CrMo[J].Mater Lett,2021,282:128893.

  • 手机扫一扫看