en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

马燕,女,1996年出生,硕士。主要研究方向为碲化铋界面与器件。E-mail:my123ddfx@163.com

通讯作者:

樊希安,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为能量转换材料。E-mail:groupfxa@163.com

中图分类号:TB34;TB64

DOI:10.11933/j.issn.1007−9289.20220813002

参考文献 1
WOOD C.Materials for thermoelectric energy conversion[J].Reports on Progress in Physics,1988,51(4):459.
参考文献 2
马柳莺,谢佑卿.镍的线热膨胀分析和磁性电子的键合作用[J].中南矿冶学院学报,1986(1):23-32.MA Liuying,XIE Youqing.Linear thermal expansion analysis of nickel and bonding of magnetic electrons[J].Journal of Central South Institute of Mining and Metallurgy,1986(1):23-32.(in Chinese)
参考文献 3
CHEN S W,CHIU C N.Unusual cruciform pattern interfacial reactions in Sn/Te couples[J].Scripta Materialia,2007,56(2):97-99.
参考文献 4
LIN W C,LI Y S,WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p-type and n-type thermoelectric modules[J].Journal of Electronic Materials,2018,47(1):148-154.
参考文献 5
LIU W S,WANG H,WANG L,et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J].Journal of Materials Chemistry A,2013,1(42):13093-13100.
参考文献 6
TAKAHASHI M,KATOU Y,NAGATA K,et al.The composition and conductivity of electrodeposited Bi-Te alloy films[J].Thin Solid Films,1994,240(1-2):70-72.
参考文献 7
YOON J,BAE S H,SOHN H S,et al.Fabrication of a Bi2Te3-based thermoelectric module using tin electroplating and thermocompression bonding[J].Journal of Nanoscience and Nanotechnol,2019,19(3):1738-1742.
参考文献 8
DICK B,BRETT M J,SMY T,et al.Periodic submicrometer structures by sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2001,19(5):1813-1819.
参考文献 9
BOTTNER H,NURNUS J,GAVRIKOV A,et al.New thermoelectric components using microsystem technologies[J].Journal of Microelectromechanical Systems,2004,13(3):414-420.
参考文献 10
LIU W,LAN Y,REN Z.Contact for Bi2Te3-based Thermoelectric Leg[J].Advanced Thermoelectrics,2017:605-624.
参考文献 11
张吉阜,杨焜,邓春明,等.一种在半导体材料表面制备厚镍涂层的方法:CN104357784A [P].2015-02-18.ZHANG Jifu,YANG Kun,DENG Chunming,et al.Method for preparing thick nickel coating on the surface of semiconductor material:CN104357784A[P].2015-02-18.(in Chinese)
参考文献 12
宋斌,陈铭,陈利修.喷砂预处理工艺对涂层结合强度的影响[J].机械设计与研究,2013,29(3):70-72,84.SONG Bin,CHEN Ming,CHEN Lixiu.Effect of sandblasting pretreatment process on coating bonding strength[J].Mechanical Design and Research,2013,29(3):70-72,84.(in Chinese)
参考文献 13
CURRY N,TANG Z,MARKOCSAN N,et al.Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings and lifetime performance[J].Surface and Coatings Technology,2015,268:15-23.
参考文献 14
杨震晓,刘敏,邓春明,等.热喷涂基体表面前处理技术的研究进展[J].中国表面工程,2012,25(2):8-14.YANG Zhenxiao,LIU Min,DENG Chunming,et al.Research progress on surface pretreatment technology of thermal spraying substrate[J].China Surface Engineering,2012,25(2):8-14.(in Chinese)
参考文献 15
蔡新志,朱刘,李德全.碲铋基晶片的表面处理方法:CN107723767B [P].2018-02-23.CAI Xinzhi,ZHU Liu,LI Dequan.Surface treatment method of tellurium bismuth based wafer:CN107723767B [P].2018-02-23.(in Chinese)
参考文献 16
杨宏波,王源升,李银华,等.等离子喷涂Ni基合金涂层热腐蚀行为研究[J].海军工程大学学报,2022,34(1):82-89.YANG Hongbo,WANG Yuansheng,LI Yinhua,et al.Study on thermal corrosion behavior of plasma spraying Ni-based alloy coating[J].Journal of Naval University of Engineering,2022,34(1):82-89.(in Chinese)
参考文献 17
杨秀从,李国禄,王海斗,等.热喷涂Ni基复合涂层重熔处理的研究现状[J].表面技术,2016,45(3):64-71,140.YANG Xiucong,LI Guolu,WANG Haidou,et al.Research status of remelting treatment of thermal spraying Ni-based composite coating[J].Surface Technology,2016,45(3):64-71,140.(in Chinese)
参考文献 18
李文亚,张正茂,徐雅欣,等.冷喷涂Ni及镍基复合涂层研究进展[J].金属学报,2022,58(1):1-16.LI Wenya,ZHANG Zhengmao,XU Yaxin,et al.Research progress on cold spraying Ni and Nickel-based composite coatings[J].Acta Metallurgica Sinica,2022,58(1):1-16.(in Chinese)
参考文献 19
SHALEL-LEVANON S,MARMUR A.Validity and accuracy in evaluating surface tension of solids by additive approaches[J].Journal of Colloid and Interface Science,2003,262(2):489-499.
参考文献 20
KACSICH T,KOLAWA E,FLEURIAL J P,et al.Films of Ni-7 at% V,Pd,Pt and Ta-Si-N as diffusion barriers for copper on[J].Journal of Physics D:Applied Physics,1988,31(19):2406.
参考文献 21
高殷,张永清,王艳,等.蓝宝石镀 Ti/Ni 复合膜及高温预扩散的研究[J].真空科学与技术学报,2014,34(2):167-170.GAO Yin,ZHANG Yongqing,WANG Yan,et al.Study on Ti/Ni composite film and high temperature prediffusion of sapphire[J].Journal of Vacuum Science and Technology,2014,34(2):167-170.(in Chinese)
参考文献 22
CHEN L,MEI D,WANG Y,et al.Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties[J].Journal of Alloys and Compounds,2019,796:314-320.
参考文献 23
CHIU C N,WANG C H,CHEN S W.Interfacial reactions in the Sn-Bi/Te couples[J].Journal of Electronic Materials,2008,37(1):40-44.
参考文献 24
王善禹,谢文杰,唐新峰.制备工艺对n型 Bi2Te3基材料热电性能和抗压强度的影响[J].无机材料学报,2010,25(6):609-614.WANG Shanyu,XIE Wenjie,TANG Xinfeng.Effect of preparation process on thermoelectric properties and compressive strength of n-type Bi2Te3-based materials[J].Journal of Inorganic Materials,2010,25(6):609-614.(in Chinese)
参考文献 25
何龙庆,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报(自然科学版),2006,12(4):38-39.HE Longqing,LIN Jicheng,SHI Bing.Fick’ s Law and the theory of diffusion in thermodynamics[J].Journal of Anqing Normal University(Natural Science Edition),2006,12(4):38-39.(in Chinese)
参考文献 26
于晓华,王远,詹肇麟,等.晶格畸变能的尺寸效应[J].北京工业大学学报,2014,40(6):928-931.YU Xiaohua,WANG Yuan,ZHAN Zhaolin,et al.Dimensional effect of lattice distortion energy[J].Journal of Beijing University of Technology,2014,40(6):928-931.(in Chinese)
参考文献 27
HEREMANS J P,JOVOVIC V,TOBERER E S,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science,2008,321(5888):554-557.
参考文献 28
段正祥,余际星,吴昶,等.利用菲克扩散定律计算脱碳层厚度[J].锻压装备与制造技术,2008,43(4):73-75.DUAN Zhengxiang,YU Jixing,WU Chang,et al.Calculation of decarburization layer thickness using Fick's Diffusion Law[J].Forging Equipment and Manufacturing Technology,2008,43(4):73-75.(in Chinese)
参考文献 29
程谨轩.镀层对热电模块界面结构和输出功率的影响 [D].南昌:南昌大学,2021.CHENG Jinxuan.Effect of coating on interface structure and output power of thermoelectric module[D].Nanchang:Nanchang University,2021.(in Chinese)
参考文献 30
江程鹏,樊希安,张帆.一种无基板的碲化铋基半导体热电器件及其制备方法:CN111129277A [P].2020-05-08.JIANG Chengpeng,FAN Xi’an,ZHANG Fan.A Bismuth telluride based semiconductor thermoelectric device without substrate and preparation method thereof:CN111129277A [P].2020-05-08.(in Chinese)
目录contents

    摘要

    在碲化铋热电制冷器件的服役过程中,焊料与热电材料间的元素扩散将严重制约器件的正常使用,目前最常用在两者间加 Ni 阻挡层的方法来改善这种问题,以往采用电镀、等离子烧结等制备 Ni 镀层的方法会产生界面镀层厚度不易控制、镀层易氧化的问题,而热喷涂由于其镀速快、镀层厚度易控制和镀后表面较平整、耐氧化、结合强度高等优点,可作为制备 Ni 阻挡层的更好选择。采用热喷涂技术制备不同厚度的 Ni 阻挡层,并对其分别进行 200 ℃下 24、72 和 144 h 的退火试验。首先探究不同 Ni 层厚度的 p 型(Bi0.4Sb1.6Te3)和 n 型(Bi2Te2.7Se0.3)碲化铋材料退火前后对镀层硬度和防扩散效果的影响,并将不同 Ni 层厚度的 p、n 型碲化铋材料制备成热电器件进行服役性能测试。结果表明:退火对 p 型材料镀 Ni 层硬度影响较小,其值变化在 10%以内,但对 n 型材料镀 Ni 层的硬度影响较大,其最大硬度值下降 56.36%;Ni 是 p 型碲化铋材料较好的扩散阻挡层,能显著减少 Bi0.4Sb1.6Te3中所有元素的扩散,但其对于 n 型材料的阻挡效果不明显,仅能较弱地阻挡 Bi2Te2.7Se0.3 中除 Te 之外的元素扩散;正常工作时,镀 Ni 器件在热循环 2.5 万次后,内阻变化小于 5%,相较于无镀 Ni 器件,其服役寿命得到显著提高。

    Abstract

    In recent years, some studies have found that thermoelectric materials exhibit ideal characteristics to realize energy efficiency. Among thermoelectric materials, Bi2Te3 compounds, discovered in the 1950s, exhibit the highest thermoelectric conversion performance at room temperature, and their alloys have been widely applied in many fields, such as radioisotope thermoelectric generators and polymerase chain reaction amplifiers. The compounds have become the most widely used commercial materials. The connection between the electrode and thermoelectric material is typically achieved by welding in a thermoelectric cooling device. If the thermoelectric element is in direct contact with a solder, they readily diffuse into each other. With a vigorous diffusion reaction at the interface, many dislocations are generated, decreasing the shear stress and interface adhesion strength; and eventually leading to the failure of the thermoelectric device. The addition of a Ni-based alloy barrier layer between the two materials is the most widely used method for solving this problem. However, the preparation of Ni-based alloys has the problem of incompatible properties during the previous preparation process, which may produce defects and uneven coatings. Using a single element as a barrier layer can reduce or even prevent these phenomena. The thermal spraying process has received increasing attention owing to the advantages of simple operation, uniform coating, and large-area spraying, in large-scale projects, the thermal spraying process can significantly facilitate construction progress. However, few studies on applying thermal sprays to synthesizes Ni plating as a barrier layer have been conducted. Other, traditional methods of adding a Ni barrier layer, such as electroplating and plasma sintering, may cause difficulty in controlling the interface coating thickness, and frequent oxidization of the coatings. The effect of Ni-spray coatings of different thicknesses on the interface of bismuth telluride was evaluated by accelerating the aging methods, and some problems arising from thermoelectric devices in the operating process were investigated based on the degree of diffusion of the material interface through annealing and thermal cycling experiments. Ni layers with various thicknesses were prepared by thermal spraying, and annealing experiments were performed for 24, 72, and 144 h at 200 ℃. First, the effects of p-type and n-type bismuth telluride materials with various Ni layer thicknesses on the coating hardness and anti-diffusion effect were investigated, and p-type and n-type samples were prepared in thermoelectric devices for operating performance tests. The results show that the annealing process minimally influences the Ni coating hardness of p-type materials, with the hardness fluctuating within 10%. In contrast, the process can significantly decrease the Ni coating hardness of n-type materials by 56.36%, indicating that Ni is a superior choice as a diffusion barrier in p-type bismuth telluride materials of almost all the elements in Bi0.4Sb1.6Te3. However the blocking effect of the n-type material is not evident, and the Ni barrier can only weakly block the diffusion of elements except Te in Bi2Te2.7Se0.3. The electrical resistance in the internal resistance of Ni-plated devices can change by less than 5% after 25000 thermal cycles, significantly increasing the service life compared to non-Ni-plated devices.

    关键词

    碲化铋防扩散层镀 Ni热喷涂

  • 0 前言

  • 继 20 世纪 90 年代人们意识到氟利昂对环境的污染以来,热电材料得到了迅猛的发展。碲化铋热电材料作为室温下性能较佳的热电转换材料,已广泛应用于余热回收和半导体制冷等领域[1],如车载小冰箱等可移动制冷设备。热电冷却器件的电极与热电材料的连接常采用焊接的工艺,若热电元件与焊料直接接触,两者则易相互扩散。因此一般考虑在热电材料和电极材料间加入阻挡层,阻挡层的加入,可以改善不同材料间元素互扩散的问题,同时优化了热电元件的焊接性能,使界面结合更牢固。 Ni 由于具有价格低廉、性能稳定、热膨胀系数[2]与碲化铋材料相近等优点,常被用做碲化铋热电模块的阻挡层。

  • 碲化铋(Bi2Te3)热电材料和焊料接头处的 Sn / Ni / Bi2Te3 界面反应[3-4]是影响热电器件可靠性的重要因素,且 Ni 层和碲化铋材料之间的界面是器件机械上最薄弱的部分[5]。对于 Ni 层的制备,传统方式有电镀[6]、电化学沉积[7]、磁控溅射[8-9]等,其中化学沉积法制备的 Ni / Bi2Te3 界面的结合强度约为 10 MPa[10],磁控溅射和电镀工艺制备的 Ni / Bi2Te3 界面结合强度也只有 8~10 MPa,而采用热喷涂工艺 Ni / Bi2Te3 界面的结合强度可达到 10 MPa 以上[11],且热喷涂技术由于操作简单、效率高,喷涂材料选择范围广,涂层表面平整、光滑等优点,被广泛应用在各种行业。喷涂工艺的特点决定了其结合方式主要为机械结合,故表面状态对其界面结合强度的影响较大[12-13],为了提高结合强度,常对喷涂前样品进行喷砂[14]或者腐蚀处理[15],以增强基体表面的粗糙度,使 Ni 层与基体更好结合。

  • 热喷涂工艺具有喷涂效率高、镀层表面平整、结合强度高等优势,被越来越多地应用在实际生产中。在以往的热喷涂工艺研究中,大部分集中在喷涂 Ni 基合金,Ni-Al 合金、Ni-Ti 合金[16]、Zn-Ni 合金、Ni-WC[17]等是最常见的防扩散涂层,但喷涂合金存在性质不兼容的问题,可能会产生缺陷和涂层不均匀的现象,而喷涂单种元素可减少甚至避免这些现象的发生。李文亚等[18]采用冷喷涂制备了 Ni 防扩散层,获得了致密度较高的 Ni 涂层,但由于冷喷涂主要是借助气流冲击来进行,喷涂的颗粒仍处于固体状态,且只有当颗粒速度大于某临界速度时,颗粒间碰撞才能在基体表面沉积;而热喷涂时颗粒被加热到了熔融状态,相比冷喷涂的固体颗粒,其与碲化铋基体结合的更牢固[11]

  • 本文采用热喷涂工艺制备 Bi2Te3基热电器件的高机械强度 Ni 阻挡层,探究不同厚度的 Ni 阻挡层对防扩散阻挡效果的影响;采用加速老化的方式,用通过退火和热循环实验等加速老化的方式探究不同厚度的 Ni 喷涂层对碲化铋界面的影响。

  • 1 材料与方法

  • 本文试验所用的 p 型和 n 型碲化铋晶片由湖北赛格瑞新能源科技有限公司提供。喷涂前对碲化铋表面进行粗化处理以增加其比表面积,提高结合强度[19],降低接触电阻率。随后采用电弧喷涂技术分别在 p 型和 n 型碲化铋晶片表面制备厚度为 20、30、45 μm 的 Ni 层,再电镀 3 μm 的 Sn 层以增加焊接性能,喷涂参数如表1 所示。将镀有阻挡层的 Bi2Te3晶片划切成截面为 1.4 mm×1.4 mm 的元件,最后采用钎焊技术将镀 Ni 的碲化铋元件焊接到覆铜陶瓷板上,从而封装成碲化铋基热电制冷器件。将试验中喷涂 Ni 之后的碲化铋材料分三份依次真空封装在石英管中,然后放在马弗炉中 200℃恒温退火,分别经历 24、72、144 h 后取出,试样随炉自然冷却至室温。

  • 表1 电弧喷涂参数

  • Table1 Arc spray parameters

  • 采用扫描电镜对喷涂 Ni 之后的界面层进行分析,涂层厚度及元素扩散程度通过线扫能谱来定量,机械强度主要通过维氏硬度仪来判定,退火实验在马弗炉中进行。对封装成的器件通过交变致冷致热试验系统来进行服役性能测试,并对循环之后的器件内阻变化进行记录,分析碲化铋热电制冷器件的稳定性。

  • 2 结果与讨论

  • 2.1 退火前 Sn / Ni / Bi2Te2.7Se0.3 界面性能

  • 图1 是 n 型碲化铋材料喷涂不同厚度的 Ni 层后,退火前的 Ni / Bi2Te2.7Se0.3 微观形貌图。从图中可以看到,防扩散层 Ni 和热电材料间均发生了明显反应。这主要是因为 n 型碲化铋由区熔法制备,其晶粒尺寸较大,晶界少,元素向外扩散的通道比较单一,容易运动。反应形成的化合物层厚度随 Ni 镀层厚度的增加略微变化,由 3 μm 到 5 μm 再到 4 μm,远低于 Ni 阻挡层本身的厚度,说明 Ni 层与 Bi2Te2.7Se0.3扩散程度低,且两者间结合较紧密,无裂纹或其他缺陷产生。

  • 对喷涂Ni层的n型碲化铋表面进行微观分析发现,镀层表面较为致密,Ni 晶粒均匀,并对镀层的结合强度进行了测试,其值均在 10 MPa 左右。

  • 图1 退火之前不同 Ni 喷涂厚度的 Ni / Bi2Te2.7Se0.3界面形貌

  • Fig.1 Ni / Bi2Te2.7Se0.3 interface morphology for different Ni spray thicknesses before annealing

  • 为了探究Bi2Te2.7Se0.3和Ni层之间反应的具体物质,对不同喷涂 Ni 厚度的材料进行能谱点扫分析,结果如表2,扩散层中主要元素为 Ni 和 Te,同时含有相对较少的 Bi 和极少的 Se 元素,Sn 的含量比 Se 更少,因此判断 Sn 基本没有通过 Ni 层向碲化铋基体扩散。图2 为 20 μm 的 Ni 镀层的线扫能谱图, Ni 向 Bi2Te2.7Se0.3扩散 Ni 的含量在扩散层中随扩散深度的增加变化较小。结合表2 和图2,靠近 Ni 层的主要成分是 NiTe 二元化合物[520],这是由于 Te 与 Ni 化合需要的结合能较低,优先形成。根据元素含量分析,该扩散层的成分为 53.94at.%Ni-15.22at.%Bi-28.88at.%Te-1.93at.%Se,结合图1 可知,随镀 Ni 层厚度的增加,扩散层厚度先增后减,这与表2 中 Ni 元素含量是对应的,但形成的扩散层成分并没有发生变化,主要相都是 Ni(Bi,Te),且没有产生新相。

  • 表2 Ni / Bi2Te2.7Se0.3界面扩散层成分各原子含量

  • Table2 Ni / Bi2Te2.7Se0.3 Interfacial diffusion layer composition by atomic content

  • 图2 20 μmNi 未退火时 Ni / Bi2Te2.7Se0.3界面线扫能谱分析

  • Fig.2 Ni / Bi2Te2.7Se0.3 interface line scanning energy spectrum analysis of spraying 20 μm Ni without annealing

  • 表3 为不同 Ni 镀层下 Sn / Ni / Bi2Te2.7Se0.3接头硬度值,其硬度随 Ni 厚度的增加而降低。这与前文随镀层厚度增加,扩散层厚度变化的规律是相符的, Bi2Te2.7Se0.3形成的扩散层主要为 NiTe,该化合物脆性较大,越厚,Sn / Ni / Bi2Te2.7Se0.3接头的硬度就越小。

  • 表3 Sn / Ni / Bi2Te2.7Se0.3接头退火前硬度

  • Table3 Sn / Ni / Bi2Te2.7Se0.3 joint hardness before annealing

  • 2.2 退火前 Sn / Ni / Bi0.4Sb1.6Te3接头界面性能

  • 图3 是 p 型碲化铋材料喷涂不同厚度的 Ni 层后,未退火时的 Ni / Bi0.4Sb1.6Te3微观形貌,该图表明防扩散层 Ni 和热电材料间发生了扩散反应,且扩散层厚度随镀 Ni 镀层厚度的增加逐渐增大[21]。扩散层厚度由 1.3 μm 到 1.8 μm,再到 2.3 μm,相较于 n 型材料的扩散层厚度有所减小,主要是因为 p 型碲化铋材料 SPS 工艺制备,晶粒较细,晶界较多,畸变和缺陷就多,位错密度较大,发生再运动的概率就小,故基体元素不易向外扩散。对其进行能谱点扫,分析结果如表4,扩散层的主要成份为 Ni 和 Te 元素,同时含有相对较少的 Bi 和 Sb 元素,且扩散层中 Ni 含量也逐渐增加。表5 为不同厚度 Ni 镀层下 Sn / Ni / Bi0.4Sb1.6Te3接头硬度值,从表中可知镀层硬度随 N i 层厚度的增加而增加,这是因为 Bi0.4Sb1.6Te3 材料,形成的化合物层主要为 Ni2SbTe,而 Ni2SbTe 化合物的硬度高于 Bi0.4Sb1.6Te3 基体[10],故 Ni2SbTe 化合物层越厚,Sn / Ni / Bi0.4Sb1.6Te3 接头硬度也就越大。

  • 图3 退火之前不同 Ni 喷涂厚度的 Ni / Bi0.4Sb1.6Te3界面形貌

  • Fig.3 Ni / Bi2Te2.7Se0.3 interface morphology for different Ni spray thicknesses before annealing

  • 表4 Ni / Bi0.4Sb1.6Te3界面扩散层成分各原子含量

  • Table4 Ni / Bi0.4Sb1.6Te3 interfacial diffusion layer composition by atomic content

  • 表5 Sn / Ni / Bi0.4Sb1.6Te3接头退火前硬度图

  • Table5 Hardness diagram of Sn / Ni / Bi0.4Sb1.6Te3 joint before annealing

  • 对喷涂Ni层的p型碲化铋表面进行微观分析发现,镀层表面较为致密,Ni 晶粒均匀,并对镀层的结合强度进行了测试,其值均在 12 MPa 左右。

  • 2.3 退火后 Sn / Ni / Bi2Te2.7Se0.3 接头界面性能

  • 为了研究制成的碲化铋热电器件在中低温下长时间服役的可行性,对封装成器件的 p、n 型元件进行 200℃的退火老化试验。图4 为 n 型碲化铋分别经 72 h 和 144 h 退火后的界面图。当退火 72 h 时,由扫描电子显微镜看到有 Ni 扩散进 Bi2Te2.7Se0.3,界面出现微小裂纹,当退火时间增加到 144 h 时,每个样品的扩散程度相比退火 72 h 的均有所减少,界面结合均良好,无明显的裂纹。

  • 图4 不同 Ni 层在退火时间下 Ni / Bi2Te2.7Se0.3界面形貌

  • Fig.4 Ni / Bi2Te2.7Se0.3 interface morphology for different Ni layers at annealing time

  • 由图5 的 EDS 线扫能谱可知,在镀 Sn 层中发现了 Te 峰和 Ni 峰,说明 Bi2Te2.7Se0.3中的 Te 元素穿过 Ni 阻挡层扩散进到镀锡层,Ni 阻挡层不能很好地阻挡 Te 的扩散,同时 Ni 也扩散进 Sn,而 Sn 并没有向 Ni 层和热电材料扩散,说明 Sn 被 Ni 层阻挡住扩散,这说明元素间发生的并不是互扩散,而是单向扩散 [22]。同样地,在靠近 Ni 层侧的 Bi2Te2.7Se0.3 中,有大量 Ni 的峰,其扩散深度约 3.5 μm,直到富 Bi 层的出现,Ni 向基体的扩散才消失。元素间发生的扩散反应消耗了过多的 Te,导致碲化铋基体侧 Te 空位浓度高,由于 SnTe 金属间化合物层具有很强的硬脆性[323],显著削弱了 Ni 层与材料基体的机械粘接强度,故它的增加会降低界面的稳定性。

  • 图5 45 μm 的 Ni 镀层退火 144 h 后的 Ni / Bi2Te2.7Se0.3界面 EDS 线扫能谱

  • Fig.5 EDS line sweep energy spectrum of the Ni / Bi2Te2.7Se0.3 interface after annealing a 45 μm Ni layer for 144 h

  • 综上,从元素间发生扩散和反应的情况来看, Ni 层阻挡了 n 型碲化铋中除 Te 之外的所有元素,但与每个样品均发生了较深程度的扩散反应,因此 Ni 并不是 n 型碲化铋的一种很好的扩散阻挡层材料。

  • 图6 为退火后 Sn / Ni / Bi2Te2.7Se0.3接头界面硬度值,该图表明随退火时间的增加,硬度呈现先降低后平稳的趋势,这说明材料在加热过程中,由较高变形的高能状态向低自由能转变,位错密度降低,晶格畸变程度大大降低,材料发生软化。由于 n 型碲化铋晶粒较粗,取向性较强,Te(1)-Te(1)间较弱的范德华力使晶体沿原子面发生解理,故力学性能较差[24],由霍尔佩奇公式也能说明。在一定范围内,随着退火时间增加,材料软化的程度增大,当硬度降低到一定程度后,再继续退火,硬度值基本不变,且在 200℃下退火时,界面的硬度值下降较明显,退火 24 h 后其硬度值就减少了一半,说明 Sn / Ni / Bi2Te2.7Se0.3接头界面受退火时间的影响较大。

  • 图6 不同时间下退火后 Sn / Ni / Bi2Te2.7Se0.3接头硬度图

  • Fig.6 Hardness diagram of Sn / Ni / Bi2Te2.7Se0.3 joints after annealing at different times

  • 2.4 退火后 Sn / Ni / Bi0.4Sb1.6Te3接头界面性能

  • 图7 为 p 型碲化铋分别经 72 h 和 144 h 退火后的界面结构,对比图3a 可知,未退火时 Ni 层大概有 10 μm,退火 24 h 后变为 8 μm,72 h 后变为 6 μm,退火 144 h 后,Ni 层被消耗的只剩 2 μm 左右,由于 Ni 元素的消耗,最终只有很薄的镍镀层留在界面。扩散层厚度随 Ni 镀层厚度的增加而增加,且 Ni 层厚度随退火时间的增加逐渐被消耗。

  • 图7 不同 Ni 层在退火时间下 Ni / Bi0.4Sb1.6Te3 界面形貌图

  • Fig.7 Ni / Bi0.4Sb1.6Te3 interface morphology for different Ni layers at annealing time

  • 退火 72 h 时,扫描电镜分析发现样品界面无明显的裂纹或孔洞存在,有元素扩散进碲化铋热电材料和镀 Sn 层。图8 对退火 144 h 后 20 μm 的 Ni 镀层进行 EDS 面扫,由图可知,有 Ni 扩散进 Bi0.4Sb1.6Te3和镀 Sn 层,Ni 向基体扩散,其含量呈梯度分布,逐渐降低,直到有富 Bi 层,阻挡住了 Ni 继续向碲化铋的扩散。基体中少量的 Te 和 Sb 元素穿过 Ni 层扩散到镀 Sn 层,但没有在Ni 层中停留,而 Sn 元素本身并没有扩散到 Bi0.4Sb1.6Te3中。测定在 Bi0.4Sb1.6Te3 和 Ni 层间的扩散层成分为 Ni(Sb,Te)三元化合物,说明此时的 Ni 阻挡层不能有效阻止 p 型基体元素向焊料 Sn 的扩散。

  • 图8 退火 144h 后 20 μm 镀层的 p 型基体 EDS 图

  • Fig.8 EDS plot of p-type substrate for 20 μm plating after 144 h annealing

  • 对于 n、p 型碲化铋扩散的不同,可以通过菲克定律[25]来解释:p 型和 n 型碲化铋材料的活化能冲突,元素的掺杂改变了晶体中的化学键,导致晶格中出现不同的局部畸变[26-27]。当 Ni 原子在碲化铋中迁移时,晶格局部畸变影响了活化能 E[28],并诱导了不同的扩散系数 D,进而导致不同材料扩散程度不同。随退火时间增加,碲化铋晶粒逐渐长大,晶格间距变大,Ni 能更好地融进基体。

  • 综上,从元素间发生扩散和反应的情况来看, Bi0.4Sb1.6Te3不论在退火前还是退火后,其扩散程度均较小,且 Ni 能阻挡 Bi0.4Sb1.6Te3 中所有元素,这与程谨轩[29]探究的结论是一致的。相对来说,Ni 阻挡层作为 Bi0.4Sb1.6Te3材料的扩散阻挡层,能减小元素间扩散的同时,又使金属间化合物层较薄。一般来说,扩散层越小,其界面结合强度越高,界面间稳定性越好,因此 Ni 是 p 型碲化铋有效的扩散势垒层。

  • 图9 为退火后 Sn / Ni / Bi0.4Sb1.6Te3接头界面硬度值,此时的 p 型碲化铋接头硬度值高于 n 型,这主要与晶粒尺寸有关,烧结工艺制备的 p 型材料晶粒较细,起到细晶强化作用,晶界较多,大量位错存在,同时产生弥散强化。由图可知,随退火时间的增加,硬度总体呈现逐渐增加的趋势,这主要是由于前文所述的过渡层化合物硬度较高。在退火 144 h 时,硬度值均高于退火前,说明合理的退火处理可以提高热喷涂 Ni 涂层的硬度。

  • 图9 不同时间下退火后 Sn / Ni / Bi0.4Sb1.6Te3硬度图

  • Fig.9 Hardness diagram of Sn / Ni / Bi0.4Sb1.6Te3 joints after annealing at different times

  • 2.5 热电器件服役性能

  • 器件内阻是评价器件性能的主要参数之一,当内阻增加超过测试标准规定的 5%时,即判定器件失效。通过交变致冷致热试验系统,对镀 Ni 器件进行冷热冲击循环,冷端固定在 10℃,热端在 30~90℃循环,每 1 万次(约 5 d)测试内阻一次,至器件失效为止。由图10 可知,当循环至 2.5 万次,约 18 720 min 时,器件发生失效,分析原因是温度变化加速了 Ni 的消耗,Ni 的减少导致电极与材料间润湿性较差,使碲化铋模块结合强度降低,最终导致器件失效。

  • 图10 镀 Ni 器件循环次数与电阻变化率关系图

  • Fig.10 Plated nickel device cycle number versus rate of change in resistance

  • 然而,无镀 Ni 器件一般在 1 000 个循环周期,约 10 000 min 即失效[30],因此镀 Ni 能明显延长器件的服役寿命。

  • 2.6 服役后 Sn / Ni / Bi0.4Sb1.6Te3接头界面性能

  • 图11 为失效后的 p 型元件整体扫描图,可以看到 Ni 层和碲化铋基体边缘无明显的裂纹,此时防扩散阻挡层 Ni 被全部消耗,而焊料扩散进碲化铋基体。

  • 图11 服役后 p 型粒子 Sn / Ni / Bi0.4Sb1.6Te3整体扫描图

  • Fig.11 Overall scan of p-type particles Sn / Ni / Bi0.4Sb1.6Te3 after service

  • 图12为Sn / Ni / Bi0.4Sb1.6Te3界面的扩散层能谱点扫成分图,可以看到 Ni 与 Sn 间发生了较大的扩散,而 Ni 与 Bi0.4Sb1.6Te3 间的反应较弱,且扩散层主要为 Sn 和 Ni 元素。焊料与阻挡层反应,导致 Ni 只剩近 2 μm,镍作为阻挡层的同时也是一层缓冲层,镍层可很好地释放掉焊料层与 p、n 元件的热应力,故镍层厚度降低,也是导致器件失效的主要原因之一。

  • 图12 Sn / Ni / Bi0.4Sb1.6Te3界面扩散层成分图

  • Fig.12 Composition of the Sn / Ni / Bi0.4Sb1.6Te3 interfacial diffusion layer

  • 3 结论

  • (1)Ni 阻挡层能够减少 p 型碲化铋材料中所有元素及 n 型碲化铋中除 Te 之外元素的扩散;退火前后的 p 型碲化铋界面较为稳定,而 n 型则发生了较严重的元素间扩散;Ni 作为防扩散阻挡层材料,在 n 型碲化铋中要比在 p 型中消耗的快。

  • (2)200℃退火对 p 型碲化铋材料硬度影响较小,其变化在 10%内,而 n 型碲化铋材料在退火后的硬度显著降低,最大降幅达到 56.36%。

  • (3)交变致冷致热循环测试后,镀 Ni 器件在循环 2.5 万次时发生失效,相较于无镀 Ni 器件,其寿命显著提高。

  • 参考文献

    • [1] WOOD C.Materials for thermoelectric energy conversion[J].Reports on Progress in Physics,1988,51(4):459.

    • [2] 马柳莺,谢佑卿.镍的线热膨胀分析和磁性电子的键合作用[J].中南矿冶学院学报,1986(1):23-32.MA Liuying,XIE Youqing.Linear thermal expansion analysis of nickel and bonding of magnetic electrons[J].Journal of Central South Institute of Mining and Metallurgy,1986(1):23-32.(in Chinese)

    • [3] CHEN S W,CHIU C N.Unusual cruciform pattern interfacial reactions in Sn/Te couples[J].Scripta Materialia,2007,56(2):97-99.

    • [4] LIN W C,LI Y S,WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p-type and n-type thermoelectric modules[J].Journal of Electronic Materials,2018,47(1):148-154.

    • [5] LIU W S,WANG H,WANG L,et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J].Journal of Materials Chemistry A,2013,1(42):13093-13100.

    • [6] TAKAHASHI M,KATOU Y,NAGATA K,et al.The composition and conductivity of electrodeposited Bi-Te alloy films[J].Thin Solid Films,1994,240(1-2):70-72.

    • [7] YOON J,BAE S H,SOHN H S,et al.Fabrication of a Bi2Te3-based thermoelectric module using tin electroplating and thermocompression bonding[J].Journal of Nanoscience and Nanotechnol,2019,19(3):1738-1742.

    • [8] DICK B,BRETT M J,SMY T,et al.Periodic submicrometer structures by sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2001,19(5):1813-1819.

    • [9] BOTTNER H,NURNUS J,GAVRIKOV A,et al.New thermoelectric components using microsystem technologies[J].Journal of Microelectromechanical Systems,2004,13(3):414-420.

    • [10] LIU W,LAN Y,REN Z.Contact for Bi2Te3-based Thermoelectric Leg[J].Advanced Thermoelectrics,2017:605-624.

    • [11] 张吉阜,杨焜,邓春明,等.一种在半导体材料表面制备厚镍涂层的方法:CN104357784A [P].2015-02-18.ZHANG Jifu,YANG Kun,DENG Chunming,et al.Method for preparing thick nickel coating on the surface of semiconductor material:CN104357784A[P].2015-02-18.(in Chinese)

    • [12] 宋斌,陈铭,陈利修.喷砂预处理工艺对涂层结合强度的影响[J].机械设计与研究,2013,29(3):70-72,84.SONG Bin,CHEN Ming,CHEN Lixiu.Effect of sandblasting pretreatment process on coating bonding strength[J].Mechanical Design and Research,2013,29(3):70-72,84.(in Chinese)

    • [13] CURRY N,TANG Z,MARKOCSAN N,et al.Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings and lifetime performance[J].Surface and Coatings Technology,2015,268:15-23.

    • [14] 杨震晓,刘敏,邓春明,等.热喷涂基体表面前处理技术的研究进展[J].中国表面工程,2012,25(2):8-14.YANG Zhenxiao,LIU Min,DENG Chunming,et al.Research progress on surface pretreatment technology of thermal spraying substrate[J].China Surface Engineering,2012,25(2):8-14.(in Chinese)

    • [15] 蔡新志,朱刘,李德全.碲铋基晶片的表面处理方法:CN107723767B [P].2018-02-23.CAI Xinzhi,ZHU Liu,LI Dequan.Surface treatment method of tellurium bismuth based wafer:CN107723767B [P].2018-02-23.(in Chinese)

    • [16] 杨宏波,王源升,李银华,等.等离子喷涂Ni基合金涂层热腐蚀行为研究[J].海军工程大学学报,2022,34(1):82-89.YANG Hongbo,WANG Yuansheng,LI Yinhua,et al.Study on thermal corrosion behavior of plasma spraying Ni-based alloy coating[J].Journal of Naval University of Engineering,2022,34(1):82-89.(in Chinese)

    • [17] 杨秀从,李国禄,王海斗,等.热喷涂Ni基复合涂层重熔处理的研究现状[J].表面技术,2016,45(3):64-71,140.YANG Xiucong,LI Guolu,WANG Haidou,et al.Research status of remelting treatment of thermal spraying Ni-based composite coating[J].Surface Technology,2016,45(3):64-71,140.(in Chinese)

    • [18] 李文亚,张正茂,徐雅欣,等.冷喷涂Ni及镍基复合涂层研究进展[J].金属学报,2022,58(1):1-16.LI Wenya,ZHANG Zhengmao,XU Yaxin,et al.Research progress on cold spraying Ni and Nickel-based composite coatings[J].Acta Metallurgica Sinica,2022,58(1):1-16.(in Chinese)

    • [19] SHALEL-LEVANON S,MARMUR A.Validity and accuracy in evaluating surface tension of solids by additive approaches[J].Journal of Colloid and Interface Science,2003,262(2):489-499.

    • [20] KACSICH T,KOLAWA E,FLEURIAL J P,et al.Films of Ni-7 at% V,Pd,Pt and Ta-Si-N as diffusion barriers for copper on[J].Journal of Physics D:Applied Physics,1988,31(19):2406.

    • [21] 高殷,张永清,王艳,等.蓝宝石镀 Ti/Ni 复合膜及高温预扩散的研究[J].真空科学与技术学报,2014,34(2):167-170.GAO Yin,ZHANG Yongqing,WANG Yan,et al.Study on Ti/Ni composite film and high temperature prediffusion of sapphire[J].Journal of Vacuum Science and Technology,2014,34(2):167-170.(in Chinese)

    • [22] CHEN L,MEI D,WANG Y,et al.Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties[J].Journal of Alloys and Compounds,2019,796:314-320.

    • [23] CHIU C N,WANG C H,CHEN S W.Interfacial reactions in the Sn-Bi/Te couples[J].Journal of Electronic Materials,2008,37(1):40-44.

    • [24] 王善禹,谢文杰,唐新峰.制备工艺对n型 Bi2Te3基材料热电性能和抗压强度的影响[J].无机材料学报,2010,25(6):609-614.WANG Shanyu,XIE Wenjie,TANG Xinfeng.Effect of preparation process on thermoelectric properties and compressive strength of n-type Bi2Te3-based materials[J].Journal of Inorganic Materials,2010,25(6):609-614.(in Chinese)

    • [25] 何龙庆,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报(自然科学版),2006,12(4):38-39.HE Longqing,LIN Jicheng,SHI Bing.Fick’ s Law and the theory of diffusion in thermodynamics[J].Journal of Anqing Normal University(Natural Science Edition),2006,12(4):38-39.(in Chinese)

    • [26] 于晓华,王远,詹肇麟,等.晶格畸变能的尺寸效应[J].北京工业大学学报,2014,40(6):928-931.YU Xiaohua,WANG Yuan,ZHAN Zhaolin,et al.Dimensional effect of lattice distortion energy[J].Journal of Beijing University of Technology,2014,40(6):928-931.(in Chinese)

    • [27] HEREMANS J P,JOVOVIC V,TOBERER E S,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science,2008,321(5888):554-557.

    • [28] 段正祥,余际星,吴昶,等.利用菲克扩散定律计算脱碳层厚度[J].锻压装备与制造技术,2008,43(4):73-75.DUAN Zhengxiang,YU Jixing,WU Chang,et al.Calculation of decarburization layer thickness using Fick's Diffusion Law[J].Forging Equipment and Manufacturing Technology,2008,43(4):73-75.(in Chinese)

    • [29] 程谨轩.镀层对热电模块界面结构和输出功率的影响 [D].南昌:南昌大学,2021.CHENG Jinxuan.Effect of coating on interface structure and output power of thermoelectric module[D].Nanchang:Nanchang University,2021.(in Chinese)

    • [30] 江程鹏,樊希安,张帆.一种无基板的碲化铋基半导体热电器件及其制备方法:CN111129277A [P].2020-05-08.JIANG Chengpeng,FAN Xi’an,ZHANG Fan.A Bismuth telluride based semiconductor thermoelectric device without substrate and preparation method thereof:CN111129277A [P].2020-05-08.(in Chinese)

  • 参考文献

    • [1] WOOD C.Materials for thermoelectric energy conversion[J].Reports on Progress in Physics,1988,51(4):459.

    • [2] 马柳莺,谢佑卿.镍的线热膨胀分析和磁性电子的键合作用[J].中南矿冶学院学报,1986(1):23-32.MA Liuying,XIE Youqing.Linear thermal expansion analysis of nickel and bonding of magnetic electrons[J].Journal of Central South Institute of Mining and Metallurgy,1986(1):23-32.(in Chinese)

    • [3] CHEN S W,CHIU C N.Unusual cruciform pattern interfacial reactions in Sn/Te couples[J].Scripta Materialia,2007,56(2):97-99.

    • [4] LIN W C,LI Y S,WU A T.Study of diffusion barrier for solder/n-type Bi2Te3 and bonding strength for p-type and n-type thermoelectric modules[J].Journal of Electronic Materials,2018,47(1):148-154.

    • [5] LIU W S,WANG H,WANG L,et al.Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications[J].Journal of Materials Chemistry A,2013,1(42):13093-13100.

    • [6] TAKAHASHI M,KATOU Y,NAGATA K,et al.The composition and conductivity of electrodeposited Bi-Te alloy films[J].Thin Solid Films,1994,240(1-2):70-72.

    • [7] YOON J,BAE S H,SOHN H S,et al.Fabrication of a Bi2Te3-based thermoelectric module using tin electroplating and thermocompression bonding[J].Journal of Nanoscience and Nanotechnol,2019,19(3):1738-1742.

    • [8] DICK B,BRETT M J,SMY T,et al.Periodic submicrometer structures by sputtering[J].Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena,2001,19(5):1813-1819.

    • [9] BOTTNER H,NURNUS J,GAVRIKOV A,et al.New thermoelectric components using microsystem technologies[J].Journal of Microelectromechanical Systems,2004,13(3):414-420.

    • [10] LIU W,LAN Y,REN Z.Contact for Bi2Te3-based Thermoelectric Leg[J].Advanced Thermoelectrics,2017:605-624.

    • [11] 张吉阜,杨焜,邓春明,等.一种在半导体材料表面制备厚镍涂层的方法:CN104357784A [P].2015-02-18.ZHANG Jifu,YANG Kun,DENG Chunming,et al.Method for preparing thick nickel coating on the surface of semiconductor material:CN104357784A[P].2015-02-18.(in Chinese)

    • [12] 宋斌,陈铭,陈利修.喷砂预处理工艺对涂层结合强度的影响[J].机械设计与研究,2013,29(3):70-72,84.SONG Bin,CHEN Ming,CHEN Lixiu.Effect of sandblasting pretreatment process on coating bonding strength[J].Mechanical Design and Research,2013,29(3):70-72,84.(in Chinese)

    • [13] CURRY N,TANG Z,MARKOCSAN N,et al.Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings and lifetime performance[J].Surface and Coatings Technology,2015,268:15-23.

    • [14] 杨震晓,刘敏,邓春明,等.热喷涂基体表面前处理技术的研究进展[J].中国表面工程,2012,25(2):8-14.YANG Zhenxiao,LIU Min,DENG Chunming,et al.Research progress on surface pretreatment technology of thermal spraying substrate[J].China Surface Engineering,2012,25(2):8-14.(in Chinese)

    • [15] 蔡新志,朱刘,李德全.碲铋基晶片的表面处理方法:CN107723767B [P].2018-02-23.CAI Xinzhi,ZHU Liu,LI Dequan.Surface treatment method of tellurium bismuth based wafer:CN107723767B [P].2018-02-23.(in Chinese)

    • [16] 杨宏波,王源升,李银华,等.等离子喷涂Ni基合金涂层热腐蚀行为研究[J].海军工程大学学报,2022,34(1):82-89.YANG Hongbo,WANG Yuansheng,LI Yinhua,et al.Study on thermal corrosion behavior of plasma spraying Ni-based alloy coating[J].Journal of Naval University of Engineering,2022,34(1):82-89.(in Chinese)

    • [17] 杨秀从,李国禄,王海斗,等.热喷涂Ni基复合涂层重熔处理的研究现状[J].表面技术,2016,45(3):64-71,140.YANG Xiucong,LI Guolu,WANG Haidou,et al.Research status of remelting treatment of thermal spraying Ni-based composite coating[J].Surface Technology,2016,45(3):64-71,140.(in Chinese)

    • [18] 李文亚,张正茂,徐雅欣,等.冷喷涂Ni及镍基复合涂层研究进展[J].金属学报,2022,58(1):1-16.LI Wenya,ZHANG Zhengmao,XU Yaxin,et al.Research progress on cold spraying Ni and Nickel-based composite coatings[J].Acta Metallurgica Sinica,2022,58(1):1-16.(in Chinese)

    • [19] SHALEL-LEVANON S,MARMUR A.Validity and accuracy in evaluating surface tension of solids by additive approaches[J].Journal of Colloid and Interface Science,2003,262(2):489-499.

    • [20] KACSICH T,KOLAWA E,FLEURIAL J P,et al.Films of Ni-7 at% V,Pd,Pt and Ta-Si-N as diffusion barriers for copper on[J].Journal of Physics D:Applied Physics,1988,31(19):2406.

    • [21] 高殷,张永清,王艳,等.蓝宝石镀 Ti/Ni 复合膜及高温预扩散的研究[J].真空科学与技术学报,2014,34(2):167-170.GAO Yin,ZHANG Yongqing,WANG Yan,et al.Study on Ti/Ni composite film and high temperature prediffusion of sapphire[J].Journal of Vacuum Science and Technology,2014,34(2):167-170.(in Chinese)

    • [22] CHEN L,MEI D,WANG Y,et al.Ni barrier in Bi2Te3-based thermoelectric modules for reduced contact resistance and enhanced power generation properties[J].Journal of Alloys and Compounds,2019,796:314-320.

    • [23] CHIU C N,WANG C H,CHEN S W.Interfacial reactions in the Sn-Bi/Te couples[J].Journal of Electronic Materials,2008,37(1):40-44.

    • [24] 王善禹,谢文杰,唐新峰.制备工艺对n型 Bi2Te3基材料热电性能和抗压强度的影响[J].无机材料学报,2010,25(6):609-614.WANG Shanyu,XIE Wenjie,TANG Xinfeng.Effect of preparation process on thermoelectric properties and compressive strength of n-type Bi2Te3-based materials[J].Journal of Inorganic Materials,2010,25(6):609-614.(in Chinese)

    • [25] 何龙庆,林继成,石冰.菲克定律与扩散的热力学理论[J].安庆师范学院学报(自然科学版),2006,12(4):38-39.HE Longqing,LIN Jicheng,SHI Bing.Fick’ s Law and the theory of diffusion in thermodynamics[J].Journal of Anqing Normal University(Natural Science Edition),2006,12(4):38-39.(in Chinese)

    • [26] 于晓华,王远,詹肇麟,等.晶格畸变能的尺寸效应[J].北京工业大学学报,2014,40(6):928-931.YU Xiaohua,WANG Yuan,ZHAN Zhaolin,et al.Dimensional effect of lattice distortion energy[J].Journal of Beijing University of Technology,2014,40(6):928-931.(in Chinese)

    • [27] HEREMANS J P,JOVOVIC V,TOBERER E S,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science,2008,321(5888):554-557.

    • [28] 段正祥,余际星,吴昶,等.利用菲克扩散定律计算脱碳层厚度[J].锻压装备与制造技术,2008,43(4):73-75.DUAN Zhengxiang,YU Jixing,WU Chang,et al.Calculation of decarburization layer thickness using Fick's Diffusion Law[J].Forging Equipment and Manufacturing Technology,2008,43(4):73-75.(in Chinese)

    • [29] 程谨轩.镀层对热电模块界面结构和输出功率的影响 [D].南昌:南昌大学,2021.CHENG Jinxuan.Effect of coating on interface structure and output power of thermoelectric module[D].Nanchang:Nanchang University,2021.(in Chinese)

    • [30] 江程鹏,樊希安,张帆.一种无基板的碲化铋基半导体热电器件及其制备方法:CN111129277A [P].2020-05-08.JIANG Chengpeng,FAN Xi’an,ZHANG Fan.A Bismuth telluride based semiconductor thermoelectric device without substrate and preparation method thereof:CN111129277A [P].2020-05-08.(in Chinese)

  • 手机扫一扫看