en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘肖,女,1989年出生,硕士,副研究员。主要研究方向为反应堆结构材料工艺与性能。E-mail:18280008908@126.com

中图分类号:TL341

DOI:10.11933/j.issn.1007−9289.20220719001

参考文献 1
ZU X T,WANG Z G,FENG X D,et al.Surface characterization of a Ti-2Al-2.5Zr alloy by nitrogen ion implantation[J].Journal of Alloys and Compounds,2003,351:114-118
参考文献 2
CHEN Gang,CHU Tianshu,CUI Yun,et al.Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5Zr alloy tube[J].International Journal of Fatigue,2022,158:106735
参考文献 3
MENG Jinkui,LIU Li,JIANG Jiantang,et al.Fracture behaviors of commercially pure titanium under biaxial tension:Experiment and modeling[J].Journal of Materials Science & Technology,2023,140:176-186.
参考文献 4
HE Xiao,WU Jihong,SHEN Liru.Characterization of micro-arc ceramic coatings on Ti-2Al-2.5Zr alloy substrates[J].Rare Metals,2007,26(5):414.
参考文献 5
LIU Meng,WANG Quanyi,CAI Yifan,et al.Dependence on manufacturing directions of tensile behavior and microstructure evolution of selective laser melting manufactured inconel 625[J].Journal of Materials Engineering and Performance,2022:1-13.
参考文献 6
JIA Haolin,SUN Hua,WANG Hongze,et al.Scanning strategy in selective laser melting(SLM):A review[J].The International Journal of Advanced Manufacturing Technology,2021,113(9-10):2413-2435.
参考文献 7
WANG Xiaoqing,CHOU Kevin.Electron backscatter diffraction analysis of inconel 718 parts fabricated by selective laser melting additive manufacturing[J].The Journal of The Minerals,2017,69(2):402-408.
参考文献 8
SAMES William J,UNOCIC Kinga A,DEHOFF Ryan R,et al.Thermal effects on microstructural heterogeneity of inconel 718 materials fabricated by electron beam melting[J].Journal of Materials Research,2014,29(17):1920-1930.
参考文献 9
WANG Shengkun,JIN Gang,WU Yuntao,et al.Study on deformation mechanism of Ti-2Al-2.5Zr alloy tube in the flattening test[J].Journal of Materials Science & Technology,2021,90:108-120.
参考文献 10
WANG Shengkun,LI Peng,WU Yuntao,et al.Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling[J].International Journal of Fatigue,2022,161:106890.
参考文献 11
XIONG Wei,HAO Liang,LI Yan,et al.Effect of selective laser melting parameters on morphology,microstructure,densification and mechanical properties of supersaturated silver alloy[J].Materials and Design,2019,170:107697.
参考文献 12
SAMALA M K,SANYAL G,CHAKRAVARTTY J K.Estimation of fracture behavior of thin walled nuclear reactor fuel pins using Pin-Loading-Tension(PLT)test[J].Nuclear Engineering and Design,2010,240:4043–4050.
参考文献 13
刘肖,王理,包陈,等.含轴向对称裂纹锆合金包壳管断裂行为[J].机械工程学报,2019,55(16):85-90.LIU Xiao,WANG Li,BAO Chen,et al.Fracture behavior of zirconium alloy cladding tubes containing axial symmetric cracks[J].Journal of Mechanical Engineering,2019,55(16):85-90.(in Chinese)
参考文献 14
ASTM E1820-15.Standard test methods for measurement of fracture toughness[S].Annual Book of ASTM Standards:Vol.3.01.Philadelphia,PA:American Society for Testing and Materials,2015.
参考文献 15
GB/T 21143—2014 金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2015.GB/T 21143—2014,Metallic material-Unified method of test for determination of quasistatic fracture toughness[S].Beijing:Standards Press of China,2015.(in Chinese)
参考文献 16
刘肖,王理,包陈,等.TA16 传热管的断裂韧度测试方法研究[J].原子能工程技术,2018,52(3):427-433.LIU Xiao,WANG Li,Bao CHEN,et al.Study on test method for fracture toughness of TA16 heat transfer tube[J].Atomic Energy Science and Technology,2015,51(14):54-65.(in Chinese)
参考文献 17
CHEN Hui,CAI Lixun.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J].Acta Materialia,2016,121:181-189.
参考文献 18
CHEN Hui,CAI Lixun.Unified elastoplastic model based on strain energy equivalence principle[J].Applied Mathematical Modelling,2017,52:664-671.
参考文献 19
CHEN Hui,CAI Lixun.Theoretical conversions of different hardness and tensile strength for ductile materials based on stress–strain curves[J].Metallurgical and Materials Transactions A,2018,49(4):1090-1101.
参考文献 20
BAO Chen,CAI Lixun,HE Guangwei,et al.A method to evaluate ductile fracture toughness based on load separation principle[J].Fatigue and Fracture of Engineering Materials and Structures,2018:178-186.
参考文献 21
CHEN Hui,CAI Lixun.Unified ring-compression model for determining tensile properties of tubular materials[J].Materials Today Communications,2017,13:210-220.
目录contents

    摘要

    采用 TA16 传热管制备的直流蒸汽发生器是新一代核动力装置的核心部件。为提高管材的内壁质量,目前采用内绞、喷砂等数道表面加工程序,生产成本大幅升高。为简化工艺流程,降低生产成本,开展针对 TA16 管材的内壁强化技术研究。同时为了确定内壁强化对管材断裂韧性的影响,提出一种含双边轴向裂纹管(DEAT)试样,通过弹塑性有限元分析建立 DEAT 试样的应力强度因子 KJ 积分的计算表达式,通过建立的试验方法完成内壁强化前后 TA16 传热管的 J-R 曲线测试,获得内壁强化前后 TA16 传热管的断裂韧性参数。试验后采用 SEM、EBSD、TEM 及纳米压痕分析内壁强化对管材微观组织和性能的影响。研究结果表明:强化后 TA16 管内壁从表面沿径向形成 100~200 μm 的纳米超细晶区和孪晶变形区,显著提高了管材的内壁质量,但由于表层的硬度升高,导致传热管的断裂韧度整体水平有所下降。研究结果可为 TA16 管材的质量提升、安全性评价及性能退化评估奠定技术基础。

    Abstract

    Titanium alloys have been widely used in the new generation of micro nuclear power reactors because of their high specific strength, excellent corrosion resistance, and nonmagnetic properties. In particular, steam generator heat transfer tubes are prepared with TA16 titanium alloy. To improve space utilization and heat transfer efficiency, the heat transfer tubes are specifically designed as thick-walled tubes with small diameter. However, in the existing rolling process, the inner wall of the tubes is prone to produce serrated defects and micro-cracks, greatly reducing the yield of the tubes. To further improve the inner wall quality of the heat transfer tubes, several surface processing procedures, such as internal rolling and sand blasting, have been adopted, which have greatly increased the production cost. In order to simplify the technical process and reduce the production cost, a contact reinforcement treatment was completed in the heat transfer tubes, which is a new technology developed from hole extrusion strengthening. An elastic-plastic deformation area was formed on the inner wall by high-strength ordered small bulges extrusion mandrel. The increased dislocation density with the changing microstructure formed a residual compressive stress distribution area that is beneficial to the surface property of the tubes and effectively improves the quality of the inner wall of the alloy tubes. Furthermore, as the pressure boundary to prevent radioactive substances from leaking out, the fracture toughness of TA16 heat transfer tube is a key indicator to evaluate the structural integrity and ensure the safe operation of the reactor. For obtaining the fracture toughness of TA16 titanium alloy tubes after the inner wall strengthening process, a kind of double-edged axial-notched tube(DEAT) specimen was proposed for the fracture toughness test of the heat transfer tubes in this work. Expressions for stress intensity factor K and J integral of DEAT specimen were established via elastic-plastic finite element analysis. The J-R curves for the strengthened and blank DEAT specimens were realized by the established method, and the parameters of fracture toughness were obtained. The effect of inner wall strengthening on the microstructure and properties of TA16 titanium alloy tubes was analyzed via scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and nano-indentation test. The results show that, the inner wall of the strengthened TA16 alloy tube results in a thickness of 100-200 μm of a nanocrystalline region and twin deformation zone from the inner surface along the radial direction, which significantly improves the inner wall quality. Additionally, the hardness of the surface layer increases, leading to a decrease in the fracture toughness. In the process of surface strengthening, the influence of rolling reduction and feeding speed on the inner wall strengthening of the heat transfer tubes require further investigation. It is also necessary to consider the plasticity and toughness while improving the surface quality. This research method can promote the continuous improvement of the inner wall strengthening of TA16 tubes and other small-diameter tubes, which will lay a technical foundation for the quality improvement, safety evaluation, and performance degradation evaluation of TA16 heat transfer tubes.

  • 0 前言

  • 钛合金以其比强度高、耐蚀性能优异及无磁性等特点,在新一代微小型核动力反应堆装置中得到了广泛应用。其中,直流蒸汽发生器传热管采用了 TA16 钛合金进行制备,为提高空间利用率和传热效率,特将传热管设计为小直径的厚壁管,但在现有轧制工艺成型过程中,小直径厚壁管的径向流变困难,导致管材内壁极易产生锯齿、微裂纹等缺陷,显著降低了管材的成品率。为解决这个问题,增加了数道内绞、喷砂等表面加工程序,虽提高了管材表面质量,但成本大幅升高。因此,研究人员一直致力于寻找一种新的方法,以简化工艺流程,降低生产成本。

  • 近年来,有序赫兹接触强化技术得到了研究人员广泛关注,它是基于孔挤压强化发展起来的新技术,通过高强度有序小球挤压芯棒在管壁上产生塑性变形,形成一个弹塑性变形区域,在改变金属组织结构的同时,提高位错密度,形成对管材表面性能有利的残余压应力分布,有效改善金属管材内壁质量[1-8]。采用有序赫兹接触强化技术对 TA16 传热管进行复合强化加工,对于提升管材批生产质量、降低制造成本具有潜在的应用价值。研究显示,有序赫兹接触处理可显著降低管材表面粗糙度,提高管材的力学性能、疲劳寿命与耐蚀性能,但强化后材料的塑韧性会下降[9-11]。TA16 传热管作为防止放射性物质外泄的压力边界,其断裂韧度是评价结构完整性、保证反应堆安全运行的关键指标,对 TA16 钛合金管材进行内壁强化加工后是否会对管材的断裂韧性造成影响,在此前并没有相关的报道。

  • 为了获得复合强化前后TA16管材的断裂韧度,本文在 SAMALA 等[12-13]设计的管材试样和夹具的基础上,进行了适应性改进,提出一种含双边轴向裂纹管(Double edged axial-notched tube,DEAT) 试样,通过弹塑性有限元分析建立了 DEAT 试样的应力强度因子KJ积分的计算表达式,结合ASTM E1820—15[14]和 GB / T21143—2014[15]推荐的规则化法,获得了强化前后 TA16 管材的断裂韧度。

  • 1 试验过程

  • 1.1 试验材料

  • 1.1.1 原管材

  • 试验材料为 TA16 钛合金成品管材,材料的最终热处理为再结晶退火(650~850℃ / 1.5 h.AC),其化学成分(质量分数)如表1 所示[16]

  • 表1 TA16 钛合金管材的化学成分(质量分数)

  • Table1 Chemical composition of TA16 titanium tubes (wt.%)

  • 1.1.2 强化后管材

  • 利用高强度有序小球挤压芯棒对 TA16 钛合金管进行内壁强化处理,获得强化后管材。芯棒的激光球化输出功率 100 W,激光脉宽 1.4 ms,下压量为 0.4 mm。通过对芯棒进行轴向进给,使套筒径向膨胀,挤压管材的内壁面,球形凸起与内壁面的相互接触使管材产生一定量的塑性变形,即在内壁产生沿周向分布的残余压应力以达到挤压强化的效果,工作原理如图1 所示。

  • 图1 内壁强化示意图

  • Fig.1 Schematic of inner wall strengthening of heat transfer tubes

  • 1.2 拉伸性能试验

  • 按照标准GB / T228.1对强化前后的TA16管材试样进行室温下的单轴拉伸试验,试验采用位移控制,位移速率为 0.02 mm / s,用应变引伸计测量试样标距段的应变,引伸计的标距均 12 mm。试样为长度 100 mm 的原始管材和强化后管材。试验后采用扫描电子显微镜(SEM)观察断口形貌。

  • 1.3 断裂韧性试验

  • 1.3.1 试样与加载装置

  • 为了考察内壁强化前后管材试样的断裂韧性,采用图2 所示的含双边轴向裂纹管 DEAT 试样。试样总长 10 mm,直径和壁厚均与原管材保持一致。 DEAT 试样左侧开两条宽为 1 mm、长度为 2mm 的凹槽,便于试样受拉时韧带尾部的相对自由变形。 DEAT 试样右侧加工两条对称的轴向裂纹,裂纹宽度应尽量小,试样宽度 W 定义为试样总长度与左端宽缝长度之差,本文所用 DEAT 试样的宽度 W=8 mm,裂纹长度 a 根据实际需要确定。

  • 图2 DEAT 试样示意图

  • Fig.2 Schematic of DEAT specimen

  • 为了配合上述 DEAT 试样的断裂加载,设计了如图3 所示的销钉式断裂加载装置。完整的加载装置由图3a 所示的两个完全相同的加载块构成,然后将管试样套在两个加载夹具上,配合标准 CT 试样的 U 型夹具实现 DEAT 试样的断裂加载。载荷加载线位于销钉式拉伸加载装置的销钉孔连线上。图3b 给出了 DEAT 试样拉伸加载效果图。

  • 1.3.2 测试方法

  • 应用 MTS 790.50 标准断裂力学试验软件,采用等 ΔK 控制方法在 MTS 试验机上对试样预制疲劳裂纹,以获得足够尖锐的裂纹前沿。试验预制裂纹长度增量在 1 mm 以内,预制裂纹的时间为 60~90 min。采用等 ΔK 控制预制疲劳裂纹,保证裂纹扩展驱动力均匀,裂纹尖端不出现大范围屈服。

  • 由于 DEAT 试样尺寸较小,用传统的单试样柔度法难以获得精确的实时裂纹长度测量结果。因此,本文采用基于载荷分离原理的单试样法开展 DEAT 试样的延性断裂性能试验,即采用速率为 0.02 mm / s 的恒位移控制方式对预制裂纹后的 DEAT 试样进行单调加载,当试样的载荷出现明显下降且裂纹产生显著扩展时停止加载。对已加载过的试样进行热着色,以勾勒出裂纹扩展前沿,进而拉断试样以便断口观察。

  • 图3 DEAT 试样断裂加载装置示意图

  • Fig.3 Schematic of fracture toughness test device for DEAT specimens

  • 断裂韧性试验在 MTS809 25 kN / 200 N·m 电液伺服材料试验系统上完成,采用 MTS632.03F-30 引伸计测量试样的张开位移。

  • 1.3.3 数据处理方法

  • (1)DEAT 试样 K 因子公式参数的确定

  • 根据能量等效原理[17-20],得到试样的半解析应力强度 K 因子公式为:

  • K=PB2W×tk0×1 (1-a/W) t+12

  • 式中,P 为外荷载,固定试样总长度为 10 mm,设定不同裂纹长度,a / W=0.3~0.8,试样厚度 B 定义为 2 倍管壁厚。上式中的待定参数仅有 k0t,可由线弹性有限元计算确定。

  • 采用 ANSYS14.5 模拟 DEAT 试样的加载过程,考虑到试样几何形状、裂纹和加载结构的对称性,建立四分之一的试样有限元模型,如图4 所示。加载销与试样之间采用刚柔接触模型。

  • 图4 DEAT 试样有限元模型

  • Fig.4 Finite element model of DEAT specimen

  • 通过有限元拟合,得到 DEAT 试样在线弹性条件下的载荷 P 与塑性位移 hP-h 关系:

  • 1/C=dPdhe=k0EBbWt

  • 式中,C 为柔度,参数 k0t 可由 1 / Cb / W 的关系确定,对式(2)进行曲线拟合即可得到 k0=0.001, t=0.605。

  • (2)Ja 阻力曲线处理方法

  • DEAT 试样的 J 积分采用下列公式计算:

  • J=Je+Jp

  • 弹性部分 Je为:

  • Je=1-v2EK2

  • 式中,ν 为泊松比,E 为等效弹性模量,K 为应力强度因子,由式(1)计算。塑性部分 Jp 按增量式计算:

  • Jp (i) =Jp (i-1) +ηb (i-1) ΔUp (i) B1-γa (i) -a (i-1) b (i-1)

  • 式中,WBab 分别为试样宽度、试样净厚度、裂纹长度和剩余韧带长度,其中实时裂纹长度据 GB / T21143—2014 附录 J 的载荷分离法获得,增量塑性功 ΔUp 为:

  • ΔUp (i) =P (i) +P (i-1) hp (i) -hp (i-1) 2

  • ηγ 为与试样几何构形相关的塑性因子。已有研究表明,根据载荷分离原理获得的几何函数表达式中的幂指数 m=0.72,近似等于塑性因子 η,而 γ 因子可由下式求得:

  • γ=η-1-bWη'η

  • 式中,b 为剩余韧带长度[21]。对于本研究项目所用 DEAT 试样,取塑性因子 η 为几何函数中的幂指数 m,由于 m 为常数值,则 γ 因子为 m−1。

  • 在测得试验材料 DEAT 试样的 Ja 阻力曲线后,从中得到由特定扩展量钝化线偏置线与 Ja 阻力曲线交点确定的条件启裂韧度 J0.2BL

  • 1.4 硬度试验

  • 采用 Agilent Nano Indenter G200 表征强化前后管材样品的硬度变化,按管内壁向外壁的径向,每隔 15 μm 测试一个点。

  • 1.5 微观形貌表征

  • 采用配备了背散射电子衍射(EBSD)系统的 SU-70 型场发射扫描电子显微镜(SEM)表征微观组织。样品先进行机械研磨,然后采用高氯酸∶酒精=1∶9,借助斯特尔 Lectropol-5 电解抛光仪处理获得无应变层的表面。

  • 采用 Talos F200X 场发射透射电子显微镜表征微观组织。未强化的样品先用机械研磨至低于 100 μm;然后采用 1700-3A 型高精密 TEM 圆片冲样器制备直径 3 mm 的圆片;接着采用 TenuPol-5 型电解双喷仪制备 TEM 样品。强化的样品采用 FIB 制备强化区域的试样。

  • 2 结果与讨论

  • 2.1 微观形貌特点

  • 图5 为强化前后的管材 EBSD 结果,数据表明管材基体为均匀的等轴晶粒,强化后表面的条状变组织为{101¯2}孪晶。试样表面光滑平整并产生了一定的塑性变形,从表面到芯部大体可分为纳米 / 超细晶区、孪晶变形区与基体 3 个区域:晶粒尺寸逐渐增大,使管件表层出现 100~200 μm 的微纳米结构。强化区域(厚度约 100 μm)KAM 明显高于未强化区域。

  • 图6 的 TEM 结果表明:TA16 钛合金管强化前已经存在较多的位错,经过强化后管内壁发生位错缠结,位错密度更高,晶粒内部产生大量孪晶。

  • 图5 TA16 钛合金管内壁强化前后的低倍 EBSD 数据

  • Fig.5 EBSD results of strengthening and blank TA16 Titanium alloy tubes

  • 图6 TA16 钛合金管内壁强化前后的 TEM 图

  • Fig.6 TEM microstructure of strengthening and original TA16 Titanium alloy tubes

  • 2.2 显微硬度

  • 表2 和图7 的纳米压痕结果表明:TA16 钛合金管内壁强化区域的平均硬度(4.16±0.19 GPa)高于未强化区域(3.47±0.19 GPa)。

  • 表2 TA16 钛合管内壁强化前后不同区域的硬度

  • Table2 Hardness results of strengthening and blank TA16 Titanium alloy tubes at different position

  • 图7 强化前后 TA16 钛合金管从内壁向外不同位置的硬度

  • Fig.7 Hardness of strengthening and blank TA16 Titanium alloy tubes at different position

  • 2.3 拉伸性能

  • 通过管材的单轴拉伸力学试验,得到了试验材料拉伸力学数据,如表3 所示。强化后管材试样的屈服极限与抗拉极限有所提高,断后延伸率下降。由图8 可以观察得断口形貌,在强化后管材内壁附近(约 100 μm)区域韧窝较小且浅,边缘呈现出河流状花样。

  • 表3 强化前后 TA16 钛合金管材单轴拉伸性能对比

  • Table3 Mechanical properties of strengthening and blank TA16 Titanium alloy tubes

  • 图8 拉伸试样断口形貌

  • Fig.8 Surface morphology of the tensile specimens for fracture mechanism analysis

  • 2.4 强化前后 TA16 钛合金管 DEAT 试样断裂韧度

  • 表4 给出 TA16 钛合金管 DEAT 试样强化前后的条件启裂韧度结果。DEAT 试样的初始裂纹长度 a0 / W 介于 0.5~0.8,属于典型的深裂纹,从结果中可以看出条件启裂韧度存在一定分散性,Ja 阻力曲线受到试样裂纹长度不同程度的影响,图9 给出了强化前后管材试样的断裂韧度对比结果,强化后管材的断裂韧度整体水平有所下降。

  • 表4 强化前后合金管断裂韧性结果

  • Table4 Fracture toughness results of strengthening and blank TA16 titanium alloy tubes

  • 图9 TA16 钛合金管材内壁强化前后断裂韧度对比结果

  • Fig.9 Comparison of the fracture toughness of strengthening and blank TA16 Titanium alloy tubes

  • 图10 给出强化前后 DEAT 试样的断口照片。可以看到,经热着色处理后的试样断口预制疲劳裂纹区与扩展区分界较为清晰,两面的裂纹扩展区域较均匀。

  • 图10 断裂韧性测试试样断口照片

  • Fig.10 Metallographic photos of the fracture toughness specimens

  • 2.5 讨论

  • 从强化后管材的微观形貌中可以看出,表面约 100 μm 厚度区域形成了致密的孪晶组织,该区域 KAM 明显高于未强化区域,意味着强化后管材内表面有高密度的位错形成。TEM 形貌表明,TA16 管强化前已经存在较多的位错,多为平面位错列,强化后表面位错结构发生了显著改变,在孪晶界内呈现出相互交叉缠结的波状位错的特征,这种高密度的位错会产生位错强化,而这种局部硬化可能是导致强化后管材试样的断后延伸率和断裂韧性下降的原因,金属晶体的塑性变形和损伤从微观物理机制上讲是以位错为主的晶体缺陷增值和运动的结果,材料表面过量的冷作硬化加剧了孪生变形,使更多的位错运动得以激活,从而引起表面的应力集中,促使裂纹萌生。经内壁强化后,起裂机制可能由表面起裂转变为亚表面起裂,裂纹萌生区范围更大。在后续进行表面强化的过程中,可以通过调节下压量和给进速度来调节表面强化区域宽度,在提升表面质量的同时兼顾塑韧性,推进 TA16 管材内壁强化技术的持续改进。

  • 3 结论

  • (1)针对 TA16 管材内壁,开展一种有序赫兹接触强化处理技术研究,完成下压量为 0.4mm 的内壁强化处理。同时,针对 TA16 钛合金传热管的尺寸和构型提出一种 DEAT 试样断裂韧度测试方法,通过弹塑性有限元分析建立 DEAT 试样的应力强度因子 KJ 积分的计算表达式,采用建立的试验方法获得内壁强化前后 TA16 钛合金传热管的 J 曲线和相应的断裂韧度值。

  • (2)经有序赫兹接触强化处理后,TA16 钛合金管内壁表面光滑平整并产生一定的塑性变形,从内表沿径向形成纳米 / 超细晶区和孪晶变形区,强化区域的平均硬度高于未强化区域,表面质量显著提高,但表层的强化导致 TA16 钛合金传热管的断裂韧度整体水平有所下降。

  • (3)在进行表面强化的过程中,下压量和给进速度对管材内壁强化的影响规律还有待进一步研究,以期在提升表面质量的同时兼顾塑韧性,通过本文研究方法可推进 TA16 管材及其他小直径管材内壁强化技术的持续改进。

  • 参考文献

    • [1] ZU X T,WANG Z G,FENG X D,et al.Surface characterization of a Ti-2Al-2.5Zr alloy by nitrogen ion implantation[J].Journal of Alloys and Compounds,2003,351:114-118

    • [2] CHEN Gang,CHU Tianshu,CUI Yun,et al.Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5Zr alloy tube[J].International Journal of Fatigue,2022,158:106735

    • [3] MENG Jinkui,LIU Li,JIANG Jiantang,et al.Fracture behaviors of commercially pure titanium under biaxial tension:Experiment and modeling[J].Journal of Materials Science & Technology,2023,140:176-186.

    • [4] HE Xiao,WU Jihong,SHEN Liru.Characterization of micro-arc ceramic coatings on Ti-2Al-2.5Zr alloy substrates[J].Rare Metals,2007,26(5):414.

    • [5] LIU Meng,WANG Quanyi,CAI Yifan,et al.Dependence on manufacturing directions of tensile behavior and microstructure evolution of selective laser melting manufactured inconel 625[J].Journal of Materials Engineering and Performance,2022:1-13.

    • [6] JIA Haolin,SUN Hua,WANG Hongze,et al.Scanning strategy in selective laser melting(SLM):A review[J].The International Journal of Advanced Manufacturing Technology,2021,113(9-10):2413-2435.

    • [7] WANG Xiaoqing,CHOU Kevin.Electron backscatter diffraction analysis of inconel 718 parts fabricated by selective laser melting additive manufacturing[J].The Journal of The Minerals,2017,69(2):402-408.

    • [8] SAMES William J,UNOCIC Kinga A,DEHOFF Ryan R,et al.Thermal effects on microstructural heterogeneity of inconel 718 materials fabricated by electron beam melting[J].Journal of Materials Research,2014,29(17):1920-1930.

    • [9] WANG Shengkun,JIN Gang,WU Yuntao,et al.Study on deformation mechanism of Ti-2Al-2.5Zr alloy tube in the flattening test[J].Journal of Materials Science & Technology,2021,90:108-120.

    • [10] WANG Shengkun,LI Peng,WU Yuntao,et al.Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling[J].International Journal of Fatigue,2022,161:106890.

    • [11] XIONG Wei,HAO Liang,LI Yan,et al.Effect of selective laser melting parameters on morphology,microstructure,densification and mechanical properties of supersaturated silver alloy[J].Materials and Design,2019,170:107697.

    • [12] SAMALA M K,SANYAL G,CHAKRAVARTTY J K.Estimation of fracture behavior of thin walled nuclear reactor fuel pins using Pin-Loading-Tension(PLT)test[J].Nuclear Engineering and Design,2010,240:4043–4050.

    • [13] 刘肖,王理,包陈,等.含轴向对称裂纹锆合金包壳管断裂行为[J].机械工程学报,2019,55(16):85-90.LIU Xiao,WANG Li,BAO Chen,et al.Fracture behavior of zirconium alloy cladding tubes containing axial symmetric cracks[J].Journal of Mechanical Engineering,2019,55(16):85-90.(in Chinese)

    • [14] ASTM E1820-15.Standard test methods for measurement of fracture toughness[S].Annual Book of ASTM Standards:Vol.3.01.Philadelphia,PA:American Society for Testing and Materials,2015.

    • [15] GB/T 21143—2014 金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2015.GB/T 21143—2014,Metallic material-Unified method of test for determination of quasistatic fracture toughness[S].Beijing:Standards Press of China,2015.(in Chinese)

    • [16] 刘肖,王理,包陈,等.TA16 传热管的断裂韧度测试方法研究[J].原子能工程技术,2018,52(3):427-433.LIU Xiao,WANG Li,Bao CHEN,et al.Study on test method for fracture toughness of TA16 heat transfer tube[J].Atomic Energy Science and Technology,2015,51(14):54-65.(in Chinese)

    • [17] CHEN Hui,CAI Lixun.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J].Acta Materialia,2016,121:181-189.

    • [18] CHEN Hui,CAI Lixun.Unified elastoplastic model based on strain energy equivalence principle[J].Applied Mathematical Modelling,2017,52:664-671.

    • [19] CHEN Hui,CAI Lixun.Theoretical conversions of different hardness and tensile strength for ductile materials based on stress–strain curves[J].Metallurgical and Materials Transactions A,2018,49(4):1090-1101.

    • [20] BAO Chen,CAI Lixun,HE Guangwei,et al.A method to evaluate ductile fracture toughness based on load separation principle[J].Fatigue and Fracture of Engineering Materials and Structures,2018:178-186.

    • [21] CHEN Hui,CAI Lixun.Unified ring-compression model for determining tensile properties of tubular materials[J].Materials Today Communications,2017,13:210-220.

  • 参考文献

    • [1] ZU X T,WANG Z G,FENG X D,et al.Surface characterization of a Ti-2Al-2.5Zr alloy by nitrogen ion implantation[J].Journal of Alloys and Compounds,2003,351:114-118

    • [2] CHEN Gang,CHU Tianshu,CUI Yun,et al.Effect of surface nanocrystallization on high-cycle fatigue behavior of Ti-2Al-2.5Zr alloy tube[J].International Journal of Fatigue,2022,158:106735

    • [3] MENG Jinkui,LIU Li,JIANG Jiantang,et al.Fracture behaviors of commercially pure titanium under biaxial tension:Experiment and modeling[J].Journal of Materials Science & Technology,2023,140:176-186.

    • [4] HE Xiao,WU Jihong,SHEN Liru.Characterization of micro-arc ceramic coatings on Ti-2Al-2.5Zr alloy substrates[J].Rare Metals,2007,26(5):414.

    • [5] LIU Meng,WANG Quanyi,CAI Yifan,et al.Dependence on manufacturing directions of tensile behavior and microstructure evolution of selective laser melting manufactured inconel 625[J].Journal of Materials Engineering and Performance,2022:1-13.

    • [6] JIA Haolin,SUN Hua,WANG Hongze,et al.Scanning strategy in selective laser melting(SLM):A review[J].The International Journal of Advanced Manufacturing Technology,2021,113(9-10):2413-2435.

    • [7] WANG Xiaoqing,CHOU Kevin.Electron backscatter diffraction analysis of inconel 718 parts fabricated by selective laser melting additive manufacturing[J].The Journal of The Minerals,2017,69(2):402-408.

    • [8] SAMES William J,UNOCIC Kinga A,DEHOFF Ryan R,et al.Thermal effects on microstructural heterogeneity of inconel 718 materials fabricated by electron beam melting[J].Journal of Materials Research,2014,29(17):1920-1930.

    • [9] WANG Shengkun,JIN Gang,WU Yuntao,et al.Study on deformation mechanism of Ti-2Al-2.5Zr alloy tube in the flattening test[J].Journal of Materials Science & Technology,2021,90:108-120.

    • [10] WANG Shengkun,LI Peng,WU Yuntao,et al.Micromechanical behavior of Ti-2Al-2.5Zr alloy under cyclic loading using crystal plasticity modeling[J].International Journal of Fatigue,2022,161:106890.

    • [11] XIONG Wei,HAO Liang,LI Yan,et al.Effect of selective laser melting parameters on morphology,microstructure,densification and mechanical properties of supersaturated silver alloy[J].Materials and Design,2019,170:107697.

    • [12] SAMALA M K,SANYAL G,CHAKRAVARTTY J K.Estimation of fracture behavior of thin walled nuclear reactor fuel pins using Pin-Loading-Tension(PLT)test[J].Nuclear Engineering and Design,2010,240:4043–4050.

    • [13] 刘肖,王理,包陈,等.含轴向对称裂纹锆合金包壳管断裂行为[J].机械工程学报,2019,55(16):85-90.LIU Xiao,WANG Li,BAO Chen,et al.Fracture behavior of zirconium alloy cladding tubes containing axial symmetric cracks[J].Journal of Mechanical Engineering,2019,55(16):85-90.(in Chinese)

    • [14] ASTM E1820-15.Standard test methods for measurement of fracture toughness[S].Annual Book of ASTM Standards:Vol.3.01.Philadelphia,PA:American Society for Testing and Materials,2015.

    • [15] GB/T 21143—2014 金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2015.GB/T 21143—2014,Metallic material-Unified method of test for determination of quasistatic fracture toughness[S].Beijing:Standards Press of China,2015.(in Chinese)

    • [16] 刘肖,王理,包陈,等.TA16 传热管的断裂韧度测试方法研究[J].原子能工程技术,2018,52(3):427-433.LIU Xiao,WANG Li,Bao CHEN,et al.Study on test method for fracture toughness of TA16 heat transfer tube[J].Atomic Energy Science and Technology,2015,51(14):54-65.(in Chinese)

    • [17] CHEN Hui,CAI Lixun.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle[J].Acta Materialia,2016,121:181-189.

    • [18] CHEN Hui,CAI Lixun.Unified elastoplastic model based on strain energy equivalence principle[J].Applied Mathematical Modelling,2017,52:664-671.

    • [19] CHEN Hui,CAI Lixun.Theoretical conversions of different hardness and tensile strength for ductile materials based on stress–strain curves[J].Metallurgical and Materials Transactions A,2018,49(4):1090-1101.

    • [20] BAO Chen,CAI Lixun,HE Guangwei,et al.A method to evaluate ductile fracture toughness based on load separation principle[J].Fatigue and Fracture of Engineering Materials and Structures,2018:178-186.

    • [21] CHEN Hui,CAI Lixun.Unified ring-compression model for determining tensile properties of tubular materials[J].Materials Today Communications,2017,13:210-220.

  • 手机扫一扫看