en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘思思,女,1986年出生,博士,教授,博士研究生导师。主要研究方向为表/界面科学与工程、精密制造与摩擦学。E-mail:liusisi@xtu.edu.cn

中图分类号:TH117;TG174

DOI:10.11933/j.issn.1007−9289.20220729001

参考文献 1
陈同舟,胡红云,刘欢,等.HVOF 制备改性 Cr3C2-25NiCr 涂层及其耐蚀性能分析[J].材料保护,2020,53(11):46-48,83.CHEN Tongzhou,HU Hongyun,LIU Huan,et al.Preparation of modified Cr3C2-25NiCr coating by HVOF and its corrosion resistance analysis[J].Materials Protection,2020,53(11):46-48,83.(in Chinese)
参考文献 2
王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程,2019,32(1):88-97.WANG Dafeng,MA Bing,CHEN Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)
参考文献 3
刘杰,刘侠,胡凯,等.煤油流量对HVOF喷涂 WC-12Co/NiCrBSi 复合涂层显微组织与性能的影响 [J].中国表面工程,2020,33(3):119-128.LIU Jie,LIU Xia,HU Kai,et al.Effects of kerosene flow rate on microstructure and properties of HVOF sprayed WC-12Co/NiCrBSi composite coatings[J].China Surface Engineering,2020,33(3):119-128.(in Chinese)
参考文献 4
ZHAO L,MAURER M,FISCHER F,et al.Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr[J].Wear,2004,257(1-2):41-46.
参考文献 5
VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:An approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.
参考文献 6
KANNO Akihiro,TAKAGI Kaito,ARAI Masyuki.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.
参考文献 7
CHENG Jie,WU Yuping,HONG Sheng,et al.Spray parameters optimization,microstructure and corrosion behavior of high-velocity oxygen-fuel sprayed non-equiatomic CuAlNiTiSi medium-entropy alloy coatings[J].Intermetallics,2022,142:107442.
参考文献 8
AZIZPOUR M.Jalali,TOLOUEI-RAD M.The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings[J].Ceramics International,2019,45(11):13934-13941.
参考文献 9
FANG W,CHO T Y,YOON J H,et al.Processing optimization,surface properties and wear behavior of HVOF spraying WC-CrC-Ni coating[J].Journal of materials processing technology,2009,209(7):3561-3567.
参考文献 10
LI Chang,GAO Xing,ZHANG Dacheng,et al.Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel[J].Journal of Thermal Spray Technology,2021,30(3):725-738.
参考文献 11
JAFARI Hamed,EMAMI Sobhan,MAHMOUDI Yasser.Numerical investigation of dual-stage high velocity oxy-fuel(HVOF)thermal spray process:A study on nozzle geometrical parameters[J].Applied Thermal Engineering,2017,111:745-758.
参考文献 12
JAFARI M,ENAYATI M H,SALEHI M,et al.Improvement in tribological properties of HVOF sprayed WC-Co coatings using electroless Ni-P coated feedstock powders[J].Surface and Coatings Technology,2013,235:310-317.
参考文献 13
RUKHANDE Sanjay W,RATHOD Walmik S,BHOSALE Digvijay G.Ni-based coating protection of 316L stainless steel at dry,elevated temperature and wet sliding condition[J].Materials Today:Proceedings,2022,62:7415-7420.
参考文献 14
SHI Xin,LI Yuanxing,BAI Yujie,et al.Effect of Ni in pure Cu/304 stainless steel induction brazing joints[J].Materials Characterization,2021,182:111562.
参考文献 15
ABBAS Musharaf,SMITH Gregory M,MUNROE Paul R.Microstructural evolution and bonding of HVOF sprayed Ni particles on both mild and stainless-steel substrates[J].Surface and Coatings Technology,2020,394:125909.
参考文献 16
ZHANG Hui,ZOU Yong,ZOU Zengda,et al.Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder[J].Optics & Laser Technology,2015,65:119-125.
参考文献 17
DAS Anil Kumar.Effect of rare earth oxide additive in coating deposited by laser cladding:A review[J].Materials Today:Proceedings,2021,52:1558-1564.
参考文献 18
LI J,LUO X,LI G J.Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J].Wear,2014,310(1-2):72-82.
参考文献 19
WANG X H,LIU S S,ZHANG M,et al.Effect of rare earth oxide on the microstructure and wear properties of in situ-synthesized ceramics-reinforced fe-based laser cladding coatings[J].Tribology Transactions,2020,63(2):345-355.
参考文献 20
HU Tianshi,SHI Zhijun,SHAO Wei,et al.Effect of CeO2 on density and wear resistance of Ni-Cr-WC coatings by theoretical calculation and experimental investigation[J].Surface and Coatings Technology,2019,377:124850.
参考文献 21
LACAZE Guilhem,OEFELEIN Joseph C.A non-premixed combustion model based on flame structure analysis at supercritical pressures[J].Combustion and Flame,2012,159(6):2087-2103.
参考文献 22
PAN Jiajing,HU Shengsun,YANG Lijun,et al.Numerical analysis of flame and particle behavior in an HVOF thermal spray process[J].Materials & Design,2016,96:370-376.
参考文献 23
LIU Shaowu,WU Hongjian,XIE Shiming,et al.Novel liquid fuel HVOF torches fueled with ethanol:relationships between in-flight particle characteristics and properties of WC-10Co-4Cr coatings[J].Surface and Coatings Technology,2021,408:126805.
参考文献 24
KAWAKITA Jin,KATANODA Hiroshi,WATANABE Makoto,et al.Warm Spraying:An improved spray process to deposit novel coatings[J].Surface and Coatings Technology,2008,202(18):4369-4373.
参考文献 25
彭思源,朱绍峰,康毅忠.WC 颗粒增强铁基耐磨复合材料的研究现状[J].机械工程师,2014(11):40-43.PENG Siyuan,ZHU Shaofeng,KANG Yizhong.Research on WC particle reinforced iron-based wear resistant composite[J].Mechanical Engineer,2014(11):40-43.(in Chinese)
参考文献 26
HE Long,TAN Yefa,WANG Xiaolong,et al.Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature[J].Surface and Coatings Technology,2014,244:123-130.
参考文献 27
杨二娟,李勇,李巍,等.燃料类型及喷涂参数对HVOF喷涂WC10Co4Cr涂层的组织及力学性能的影响[J].中国表面工程,2020,32(5):136-143.YANG Erjuan,LI Yong,LI Wei,et al.Effects of fuel type and spraying parameters on microstructure and mechanical properties of HVOF sprayed WC10Co4Cr coatings[J].China Surface Engineering,2020,32(5):136-143.(in Chinese)
目录contents

    摘要

    超音速火焰喷涂因其制备的涂层具有优异性能而被航空航天、石油化工等领域广泛使用,其工艺参数较为复杂且对涂层质量具有重要影响,但对其制备 Ni 基涂层的工艺参数选择及涂层性能研究相对较少。采用数值模拟的方法对超音速火焰喷涂 Ni 基涂层进行模拟,并对焰流与粒子特性进行分析;利用模拟指导试验,在 316L 不锈钢基体上成功制备 Ni-CeO2复合涂层;对复合涂层组织形貌及耐磨耐腐蚀性能做进一步研究。研究结果表明:当氧气煤油比等于 3,注入颗粒粒径在 20~80 μm 时,喷涂工艺最优;在添加 CeO2 后,复合涂层的耐磨性能耐腐蚀性能均得到提升,且当 CeO2 含量为 1 wt.%时,涂层硬度最大,摩擦因数最低,其摩擦因数相较于基体降低了 39.8 %,相较于 Ni 基涂层降低了 22.2 %,其耐磨性能相较于 Ni 基涂层提升了 62.5%。探究了超音速火焰喷涂工艺参数对喷涂系统状态的影响,分析了添加 CeO2在复合涂层中的作用,对超音速火焰喷涂 Ni-CeO2复合涂层具有引领与推动作用。

    Abstract

    Stainless steel materials are extensively used in aerospace, petrochemical, nuclear, medical, and health fields because of their strong corrosion resistance, high heat resistance, and excellent plasticity. However, extremely high frictional wear is a main form of failure of stainless steel materials. High-velocity oxygen-fuel(HVOF), as a common surface treatment technology, has obvious advantages in strengthening the wear resistance of metal surfaces. However, HVOF parameters are complex and have a great influence on the coating quality. Numerical simulations of HVOF Ni coatings were performed by ANSYS software to simulate the trajectory of different particle size powder particles in the spraying process and the effect of different oxygen–fuel ratio (O / F) on the flame flow and particle state in the spraying process was investigated to obtain the spraying parameters with the best particle deposition state in the spraying process. Ni-CeO2 composite coatings with different CeO2 contents were successfully prepared on a 316L stainless steel substrate using the JP8000 HVOF system with the spraying parameters obtained from the simulation. The surface and cross-sectional morphology, tissue phase, and microhardness of Ni-CeO2 composite coatings were investigated by SEM, XRD, and microhardness tester. The composite coating was further analyzed for wear resistance and corrosion resistance. The results show that powder particles of different particle sizes have different degrees of deflection during the flight. Small size particles are far away from the center axis of the flame flow and poorly heated, while oversized particles can collide with the barrel and contaminate the gun. In addition, the temperature and velocity of the powder particles are influenced by the flame flow. When O / F is 3, the temperature and velocity in the center axis of the flame flow reach the maximum. The powder particles are heated by impact under this flame flow and strike the substrate. To enable the powder to reach the substrate at a temperature higher than the nickel deposition temperature while ensuring the powder does not collide with the nozzle, the particle size should be maintained between 20 μm and 80 μm. After adding CeO2, the microhardness, wear resistance, and corrosion resistance of the composite coating improved, and the surface morphology of the composite coating became flatter and more uniform. However, this improvement reaches its limit when the CeO2 content is 1 wt.%, and the coating has the highest hardness and lowest friction coefficient at this moment. Moreover, its friction coefficient reduced by 39.8 % and 22.2 % compared with the substrate and Ni coating, respectively. At this time, the wear resistance of the composite coating is also 62.5 % higher than that of the Ni coating. When the CeO2 content exceeds this value, the coating is not homogeneous owing to the large number of intercalated phases, and the particle dispersion strengthening effect reduces. Therefore, the coating quality cannot improve. The trajectory of powder particles during HVOF and the influence of coating process parameters on flame flow and particle state were investigated. Furthermore, the effect of adding CeO2 to the composite coating was analyzed and the effect of CeO2 content on the quality of the composite coating was investigated. This study provides guidance on the selection of HVOF Ni coating process parameters and contribute to the study of the mechanism and performance of adding rare earth oxides to the coating.

  • 0 前言

  • 超音速火焰喷涂制备的涂层具有与基体结合强度高、耐磨性能较好等优点,被广泛应用在航空航天、石油化工、汽车与生物医学等领域[1-3]。在喷涂过程中,ZHAO 等[4]发现颗粒的沉积温度与速度越大,得到的涂层密度与硬度就越高。而超音速火焰喷涂工艺复杂,其工艺参数会对颗粒的温度和速度产生极大影响[5]。因此大量研究人员也关于各喷涂参数对喷涂质量的影响做出一系列研究[6-8]

  • 随着数值模拟方法的不断发展,FANG 等[9]通过 Taguchi 程序设计并优化了 HVOF 制备 WC-CrC-Ni 涂层的最佳喷涂参数,试验测试涂层硬度和孔隙率得到明显改善,涂层表现出优异的抗磨损性能。LI 等[10]模拟了 JP5000 型喷涂系统采用 HVOF 工艺喷涂 WC-12Co 涂层时不同参数对火焰流动及粒子特性的影响,对模拟指导试验条件和为工艺参数优化奠定了基础。JAFARI 等[11]研究了喷枪几何参数对气相和颗粒相的影响,并发现改变喷嘴直径与发散段长度对颗粒温度有显著影响。目前关于 JP8000 型喷涂系统下的工艺参数研究较少,因此采用该喷涂系统进行模拟,并用得到的模拟结果指导制备涂层是有必要的。

  • Ni 基材料在 HVOF 领域应用较为广泛,其沉积得到的涂层往往具有优异的耐磨损、耐腐蚀性能。 JAFARI等[12]为解决HVOF制备WC-12Co涂层脱碳情况,采用 Ni-P 改性 WC-12Co 涂层,涂层显示出更高的硬度和断裂韧性,涂层耐磨性也得到提升。 Ni 基涂层也被用于抗磨损和抗氧化[13-14]。ABBAS 等[15]使用HVOF分别在低碳钢和不锈钢基体上喷涂 Ni 基涂层,并探究 Ni 基粒子的飞溅行为,发现 Ni 基粒子对不锈钢材料存在一定的冶金结合。所以 Ni 基可以出色地作为改善不锈钢材料摩擦学性能的涂层材料。然而热喷涂制备高硬度涂层时,开裂是该涂层应用的最大障碍。

  • 稀土氧化物是一种复合涂层中用于提升材料表面性能的化合物。在涂层材料中添加少量稀土氧化物可以细化晶粒,有效减少裂纹的敏感性,进而提升涂层表面综合性能[16-18],常用的稀土氧化物有 CeO2、La2O3和 Y2O3 等。WANG 等[19]在 5CrNiMo 钢基体表面用激光熔覆法制备了(Ti,Mo)B2-(Ti,Mo)C-(Fe,Cr)7C3 复合涂层,通过添加 Y2O3,涂层的显微硬度和耐磨性得到明显增强,其中 2 wt.% Y2O3 的涂层高温耐磨性是不含 Y2O3 涂层和基体的 1.86 倍和 26.5 倍。HU 等[20]通过烧结法制备了 Ni-Cr-WC 和 Ni-Cr-WC-CeO2 涂层,并通过磨损分析验证了加入 CeO2 的涂层耐磨性得到明显改善。然而在研究中并未系统分析 CeO2提升 Ni 基涂层耐磨性的机理及 CeO2 添加量对涂层摩擦学性能的影响。

  • 本文拟采用 JP8000 喷枪喷涂系统对超音速火焰喷涂 Ni 基涂层进行数值模拟,分析喷涂工艺参数及颗粒运动特性。采用最佳喷涂工艺参数对 316L 不锈钢基体喷涂 Ni-CeO2 复合涂层,并探究了 CeO2 对复合涂层耐磨耐腐蚀性能的影响。

  • 1 数值模拟

  • 1.1 数值模型

  • HVOF 工艺参数及颗粒运动特性是基于 JP8000 型喷涂系统进行研究,其结构原理图如图1 所示,其中包括燃料氧气注入口、燃烧室、拉瓦尔喷管、喷管、空气域和基体板等。在喷枪喷涂系统内,氧气与航空煤油经燃料氧气注入口进入燃烧室,并在燃烧室内充分混合形成焰流,焰流因受到拉瓦尔喷管的结构挤压而实现从亚音速到超音速的转变。Ni 基粉末从粉末注入口垂直注入到喷枪内,在高温高速焰流影响下被快速加热至熔融状态,并高速冲向基体,在基体上得到沉积并形成涂层。

  • 图1 JP8000 型喷涂系统结构示意图

  • Fig.1 Structure schematic of JP8000 spraying system

  • 运用 ICEM 前处理软件对模型采用四边形单元网格划分,并通过对拉瓦尔喷管和焰流中心等复杂区域进行加密网格划分来保证数值模拟的精确度。将基体板和喷枪管设定为壁面,考虑喷枪壁面外的水冷却装置和基体板喷涂前的预加热处理,将喷枪管壁面和基体板壁面是设定为恒温绝热 300 K 和 500 K。燃料氧气注入口设置为质量入口边界条件,喷枪出口设置为压强出口边界条件。Ni 基粉末的物理参数如表1 所示。

  • 表1 Ni 基粉末颗粒的物理参数

  • Table1 Physical parameters of Ni-based powder particles

  • 在 Fluent 模拟中,考虑到喷枪中存在湍流,选用 Realizable k-ε 模型进行计算。同时因模拟中既存在 Ni 基粉末的固体相,又存在焰流气相,且粉末颗粒固相计算区域远小于焰流气相计算区域,所以气相可视为连续相,而固相视为离散相,可以计算气相的热量、传递规律以及离散相的轨迹。根据高温、高压环境下燃烧反应生成物会发生离解,在燃烧模型的设置上应充分考虑由高温高压离解的中间产物[21]。本次实际反应中的化学平衡方程是[22]

  • C12H23+17.286O24.603CO2+7.955H2O+7.397CO+1.613H2+1.154O+1.204H+2.66OH+3.1O2

  • 在 HVOF 喷涂过程中,颗粒飞行速度和温度以及相应的涂层性能不仅受所使用粉末特性的影响,而且受到喷涂工艺和喷涂参数的显著影响[23]。为探究氧气煤油比(O / F)对焰流影响规律与颗粒运动特性,采用表2 所示的喷涂参数进行模拟。

  • 表2 喷涂系统的喷涂参数

  • Table2 Spraying parameters of the coating system

  • 1.2 焰流影响规律

  • 因计算区域内焰流速度、温度在不同位置均不相同,选择对喷枪喷涂系统中心轴线上的焰流温度与速度进行分析。

  • 当 O / F 为 2.0、2.5、3.0、3.5、4.0 时,喷枪中心区域焰流随 O / F 数值的变化如图2 所示。图2a 为喷枪中心焰流温度的变化,燃料燃烧产生的焰流在中心轴线上的温度从燃烧室左端开始快速升高,并受拉瓦尔喷管形状的局限性而稳定;在喷枪的喷管内焰流温度略有下降,但总体温度较为稳定,这是由于焰流不断与壁面接触换热;当焰流到达喷枪出口处时,高温焰流受温度差与压力差影响,与空气进行能量交换而产生剧烈振荡;进入空气域后,温度急剧下降,并逐渐趋于稳定。此外,看出当 O / F 为 3 时,燃烧效果最好,焰流中心轴线最高温度为 3 036 K。喷枪中心区域焰流速度的变化如图2b 所示,中心轴线上焰流在燃烧室前端内变化并不明显; 当焰流到达拉瓦尔喷管处时,受空间挤压和燃烧影响,焰流发生爆炸式增速,速度远超音速;离开拉瓦尔喷管时,由于空间变大而速度呈断崖式减小,但仍远大于音速;在喷枪喷管内,速度基本平稳,受焰流前后压差影响而速度略有增大;在喷枪出口处焰流速度发生增长,并伴随着振荡,这是由于喷枪内压力远大于喷枪外压力;进入空气域后,焰流速度逐渐下降为 0。可以发现,当 O / F=3 时,焰流速度最高,最高速度为 2.347 km / s。

  • 图2 喷枪中心区域焰流随 O / F 数值的变化

  • Fig.2 Variation of flame flow in the center region of the spray gun with O / F values

  • 1.3 颗粒运动特性

  • 对 1~120 μm 的粉末颗粒进行运动特性模拟,得到不同粒径的粉末颗粒进入喷枪后的运动轨迹如图3 所示。粉末颗粒进入喷枪后呈抛物线状运动,且不同粒径颗粒在喷枪内相对于喷枪管壁的偏移角度 α 不同。其中:当颗粒粒径为 1 μm 时,粉末颗粒偏移角度极小,粉末颗粒靠近管壁飞行,并在离开喷枪时,受焰流影响而逐渐远离焰流中心;随颗粒粒径增大,粉末颗粒偏移角度越来越大;当颗粒粒径增加到 100 μm 时,粉末颗粒因偏移角度较大而在喷枪内与管壁发生碰撞并反弹,随焰流趋势而出现第二次穿越焰流中心(以焰流中心轴线为标准)的现象,图中 AB 两点分别为颗粒直径为 100 μm 和 120 μm 时,粒子二次穿越焰流中心入射点。

  • 图3 不同粒径颗粒进入喷枪后的运动轨迹

  • Fig.3 Trajectory of powder particles of different particle sizes after entering the gun

  • 粉末颗粒进入焰流后发生能量交换,在焰流的影响下改变其温度与速度[24]。不同粒径颗粒进入喷枪后的状态变化如图4 所示。图4a 表示颗粒的温度变化,发现颗粒在喷管内温度急速上升,并在离开喷管后渐渐下降,直到到达基体并沉积。由于 Ni 基粉末颗粒最低沉积温度为 1 040 K。其中当粒径为 40 μm 时沉积温度最高,为 1 431 K。在各粒径颗粒中,1 μm 的颗粒温度上升最快,但在喷枪外下降也最为剧烈,这是由于离开喷枪后处在焰流束边缘得不到中心焰流的高温加热,且自身粒径较小保温效果较差。粉末颗粒的升温速度与颗粒粒径呈负相关,且大粒径颗粒的保温效果较好。同时结合颗粒的运动轨迹,大粒径颗粒因其偏离焰流中心而使加热效果不如小颗粒。此外发现,粒径在 100 μm 以上的颗粒由于发生二次穿越焰流中心导致其沉积温度高于 80 μm 颗粒,结合焰流温度变化可知,颗粒在二次穿越时得到短暂的再加热效果和保温效果。图4b 表示颗粒的速度变化,颗粒在进入喷管后不断加速,颗粒粒径最大,加速速度越平缓;当到达喷枪出口时,颗粒受惯性继续前进,速度缓慢降低直至颗粒沉积到基体上,当颗粒粒径为 20 μm 时,颗粒达到基体的最大沉积速度为 929 m / s。

  • 图4 不同粒径颗粒进入喷枪后的状态变化

  • Fig.4 Status variation of different particle sizes after entering the gun

  • 结合不同粒径颗粒的运动轨迹、颗粒状态变化,发现在喷涂过程中粉末颗粒的粒径对喷涂效果有重要影响。其中,当颗粒粒径过大时,颗粒会在喷枪内与管壁发生碰撞,尽管对粉末颗粒的速度和温度有二次加热加速的作用,但碰撞会对喷枪管壁造成污染甚至损坏,并对粉末颗粒的沉积状态造成影响; 当颗粒粒径过小时,颗粒在喷涂中偏离焰流中心,在基板上沉积时未达到 Ni 基粉末沉积温度,严重影响涂层质量,引此当 O / F 为 3,注入的颗粒粒径应保证在 20~80 μm。根据模拟结论,对后续涂层摩擦学试验进行分析。

  • 2 试验准备与方法

  • 2.1 试验材料与制备

  • 试验采用的Ni基粉末成分如表3所示。Ni-CeO2 粉末是由 Ni 基粉末和 CeO2粉末按照一定比例通过行星球磨机混合而成的,具体粉末配比如表4 所示。由模拟结果可知,为防止粉末颗粒与喷枪管壁发生碰撞,颗粒粒径选用 20~80 μm,并且在混合时添加了 2 %无水乙醇充当保护剂。

  • 表3 Ni 基粉末的成分组成(质量分数)

  • Table3 Composition of Ni-based powder (wt.%)

  • 表4 Ni-CeO2粉末具体配比

  • Table4 Specific composition ratio of Ni-CeO2 powder

  • 不同配比的复合粉末颗粒形貌如图5 所示。Ni 基粉末(0 wt.% CeO2)颗粒具有较好的圆度,且表面较为光滑;随着 CeO2含量的增加,大量 CeO2粉末吸附到 Ni 基粉末上,且其表面逐渐粗糙。

  • 经砂纸打磨的 316L 不锈钢作为基体,并在喷涂前做脱油、喷砂和预热处理,以获得良好的粘附性。采用 JP8000 型超音速火焰喷枪进行喷涂试验,喷涂距离为 360 mm,氮气流量 0.25 g / s,O / F=3,其中将煤油流量保持在 4.4 g / s,氧气流量为 13.2 g / s,注入各组混合粉末进行喷涂。

  • 图5 不同配比复合粉末的 SEM 形貌

  • Fig.5 SEM images of composite powders with different CeO2 contents

  • 2.2 表征试验

  • 将喷涂后的样品切割为若干 20 mm×20 mm× 10 mm 的样块进行表征试验。采用 X 射线衍射仪 (XRD,D2 PHASER X-ray)以散射角为 20 °~90 °,扫描速率为 4(°)/ min 检测涂层的相结构。采用扫描电子显微镜(SEM,VEGA3MLU)观察涂层表面形貌,并观察经抛光处理后的涂层截面形貌。采用显微硬度仪(TMHV-1000),在 200 N 载荷,保持时间为 10 s 条件下,对从涂层表面开始各深度截面测量涂层显微硬度,相邻测量深度间隔 30 μm。采用摩擦磨损试验机(CET-I,American)测试涂层的摩擦磨损性能。试验条件如下:室温 25℃,以 Si3N4 球为上试件,直径为 4 mm,振幅为 5 mm,转速为 300 r / s,相对滑动速度为 0.05 m / s,试验载荷 40 N,对磨时间为 30 min,对磨结束后用无水乙醇清除涂层表面遗留碎屑,借助超景深三维显微系统 (VHX-2000C,Keyence,Japan)对磨损形貌进行分析。采用电化学试验系统测量涂层耐腐蚀性能,腐蚀溶液为 3%的 Hg2SO4,浸泡时间为 160 h,以扫描速度为 1 mV / s,电位电压为−1~1 V 测量其极化曲线,以频率为 106~0.01 Hz,振幅为 10 mV 测量其阻抗谱。

  • 3 结果与分析

  • 3.1 涂层物相分析

  • 不同CeO2含量Ni-CeO2复合涂层的XRD 图谱如图6 所示,发现在超音速火焰喷涂涂层沉积凝固过程中,涂层内发生一系列物理及化学变化,同时形成多种不同的相。涂层的组成主要包括 Ni-W 固溶体、 NiAl、Al3Ni2、WC、W2C、Cr23C6 和 CeNi5,这些化合物的存在可以改善沉积涂层的耐磨性能[25-26],其中在添加 CeO2后,图谱中新增 CeNi5的衍射峰,由 CeO2 和 Ni 原子之间发生化学反应而形成。

  • 图6 不同 CeO2含量 Ni-CeO2复合涂层的 XRD 图谱

  • Fig.6 XRD patterns of Ni-CeO2 composite coatings with different CeO2 contents

  • 从图谱中看出,Ni-W 固溶体的衍射峰强度最高,因为复合粉末中 Ni 和 W 的比例较大。当 CeO2 含量增加时,W2C、Cr23C6 和 CeNi5 的衍射峰不断增加,且在 CeO2 含量为 2 wt.%时达到最高强度。这是由于 CeO2 可以细化晶粒并改善涂层内部的流动性,使涂层内部元素充分接触并形成强化相。

  • 3.2 涂层显微组织分析

  • 不同CeO2含量 Ni-CeO2复合涂层表面在 SEM 下的微观组织形貌如图7 所示。各复合涂层表面较为粗糙,Ni 基涂层(0wt.% CeO2)表面存在大量的材料缺陷,整体上添加 CeO2 后的复合涂层相比于 Ni 基涂层更加均匀、平整。在 CeO2 含量小于 1 wt.%时,随 CeO2 含量增加,对复合涂层的净化与改性作用越好,涂层形貌越均匀平整。各复合涂层中,当 CeO2 含量为 1 wt.%时,复合涂层表面形貌最为平坦。在此基础上继续增加 CeO2 含量时,涂层改性作用并没有继续提升,可见 2 wt.% CeO2 复合涂层表面出现层状片等缺陷。这是由于当 CeO2 含量过多时,在涂层表面产生了过多硬质第二相杂质。

  • 图7 不同 CeO2含量 Ni-CeO2复合涂层表面的 SEM 图

  • Fig.7 SEM images of Ni-CeO2 composite coatings surface with different CeO2 contents

  • 进一步分析可知,Ni 基涂层表面存在大量熔融较差的细小球状颗粒,如图8a 所示,这是由于在喷涂过程中小粒径颗粒偏离焰流中心,其沉积温度低于 Ni 基合金熔融温度,存在不完全熔融现象。而当添加 1 wt.%CeO2 时,复合涂层表面形貌如图8b 所示,涂层表面基本不可见未熔融球状颗粒,颗粒在沉积后在表面呈液滴态铺开,其扁平化程度较好。这是由于 CeO2 对复合涂层具有一定的改性作用, CeO2 附着在球状 Ni 基粉末颗粒上,对 Ni 基粉末颗粒起到了保温的效果,使颗粒以更好的熔融态沉积到基体表面;其次,CeO2 在颗粒间充当粘合剂,降低了颗粒沉积时表面凹坑的出现;最后,CeO2还与周围 S 和 O 等成分发生化学反应,产生第二相杂质,生长后析出,有利于净化组织,减少孔隙。

  • 图8 Ni-CeO2复合涂层表面的 SEM 图

  • Fig.8 SEM images of Ni-CeO2 composite coatings surface

  • Ni-CeO2 复合涂层截面形貌如图9 所示。涂层截面呈现出部分孔隙缺陷,这是由于粉末颗粒沉积时,部分未熔融或半熔融颗粒扁平化程度不足,在沉积过程中留下孔隙;同时,粉末颗粒冲击基体时夹杂着热气流,而粉末颗粒的沉积速度高于这些气体的逃离速度,使得部分气体留于内部形成孔隙[27]。从各复合涂层截面形貌中发现,加入 CeO2 后涂层截面的缺陷得到改善,且随 CeO2 含量增多孔隙表现为先减少后增加。当 CeO2 含量为 1 wt.%时截面形貌孔隙最少,且存在孔隙的体积最小,因为在颗粒沉积时,CeO2可以作为形核核心,并细化组织,使其均匀化,极大地降低了孔隙产生的概率; 同时,CeO2可以减小沉积颗粒的表面张力,提高了气体的逃离可能性。但 CeO2 含量过大时,CeO2 与 S 和 O 等元素反应产生的第二相过大夹杂在涂层内,造成了组织不均匀,从而产生了更多的孔隙。

  • 图9 不同 CeO2含量 Ni-CeO2复合涂层截面的 SEM 图

  • Fig.9 SEM images of Ni-CeO2 composite coatings sections with different CeO2 contents

  • 涂层与基体之间的结合面并不平坦,主要是由喷涂前的喷砂处理所致,有效地增大了涂层与基材间的结合强度。结合面处的孔隙是由于基体材料的受热膨胀系数与涂层材料不同,在喷涂后急速冷却过程中涂层边缘材料层率先冷却,结合面处受拉应力而形成。而 CeO2 对涂层的净化作用和对涂层粉末颗粒的保温效果,使涂层与基体间产生了更多的能量交换,基体与涂层间的接触更加紧密。

  • 3.3 涂层硬度分析

  • Ni-CeO2 复合涂层的显微硬度变化如图10 所示,加入 CeO2 后,涂层硬度明显提升。随着 CeO2 含量增加,显微硬度呈先增大后降低。结合涂层的 XRD 分析可知,Ni-CeO2复合涂层显微硬度的提高主要是由于存在 CeNi5 相。当 CeO2 含量为 1 wt.% 时,涂层表面硬度值达到峰值为 1026 HV0.5。而由于 CeO2 含量过多时涂层的孔隙、裂纹等缺陷增多,复合涂层的显微硬度在 CeO2 含量大于 1 wt.%时开始下降。然而,随着 CeO2含量增加,涂层显微硬度波动越来越小,涂层沿厚度方向上的硬度稳定性逐渐增强。

  • 图10 Ni-CeO2复合涂层的显微硬度变化

  • Fig.10 Microhardness variation of Ni-CeO2 composite coating

  • 3.4 摩擦磨损分析

  • 基体及Ni-CeO2复合涂层的摩擦因数如图11所示,图11a 中发现添加 CeO2 后摩擦因数明显降低,且在摩擦磨损过程中波动均匀。计算得到各组平均摩擦因数如图11b 所示,其中 CeO2含量为 1 wt.% 时,复合涂层摩擦因数最小,平均摩擦因数为 0.56,其减摩性能相对 316L 基体升高了 39.8 %,其耐磨性能相对 Ni 基涂层提高 22.2 %。

  • 图11 基材与 Ni-CeO2复合涂层的摩擦因数曲线

  • Fig.11 Friction factor curve of substrate and Ni-CeO2 composite coatings

  • 在摩擦磨损过程中,基体产生大量的热量,并导致其表面发生一定程度的软化,使得再进一步地对磨过程中发生较为严重的变形,所以其摩擦因数在不断上升的过程中波动非常明显。而 Ni 基涂层在摩擦磨损过程中会产生硬质微小磨屑填充到涂层表面,在一定程度上可以避免涂层被进一步破坏,所以其摩擦因数有所降低。由于 Ni 基涂层存在较多未熔融硬质相,且这些硬质相之间粘结力较小,在摩擦磨损过程中已发生脱落,因此摩擦因数曲线也存在一定的波动。

  • 当加入 CeO2 后,涂层组织得到细化,且涂层表面平整,摩擦因数曲线整体平稳。加入 CeO2 后的复合涂层存在 Ni-W 固溶体、NiAl、Al3Ni2、 WC 等改善沉积涂层的耐磨性能的相,使涂层摩擦因数低于 Ni 基涂层。但加入过多 CeO2 时,涂层表面和内部产生孔隙等缺陷,所以其减摩性能有所降低。

  • 在超景深显微镜下观察不同CeO2含量Ni-CeO2 复合涂层的摩擦磨损三维形貌如图12 所示。发现在摩擦磨损过程中,加入 CeO2,涂层磨痕宽度与深度先减少后增加。统计各组复合涂层磨痕宽度与深度如表5 所示。

  • 图12 不同 CeO2含量 Ni-CeO2复合涂层的摩擦磨损 3D 图

  • Fig.12 Frictional wear 3D images of Ni-CeO2 composite coatings with different CeO2 contents

  • 表5 不同 CeO2 含量 Ni-CeO2复合涂层的磨损宽度和深度

  • Table5 Width and depth of grinding cracks of Ni-CeO2 composite coatings with different CeO2 contents

  • 添加 CeO2 后,复合涂层的磨痕宽度与磨痕深度在数值上都显著减少,涂层耐磨性能得到明显提升。当 CeO2 含量为 1 wt.%时,耐磨损性能最好,其耐磨性能相较于 Ni 基涂层提升了 62.5%。这是由于:CeO2 附着在球状 Ni 基粉末颗粒上,并对复合涂层具有一定的改性作用,且 CeO2 含量为 1 wt.% 时,其细化组织作用达到最优。当继续添加 CeO2 时,反应产生的第二相硫化物杂质增多,在摩擦磨损中划伤涂层表面,耐磨性能有所降低。此外,根据纳米尺度强化机理可知,颗粒的弥散强化作用与颗粒间距成反比,而 CeO2 含量过多时会导致颗粒间间距增大,使其弥散强化作用降低。

  • 观察不同 CeO2 含量 Ni-CeO2 复合涂层在摩擦磨损中磨痕的二维形貌如图13 所示。发现 Ni 基涂层的磨损表面存在较多剥离块,判断其磨痕中间区域以黏着磨损为主,加入适量 CeO2 时,磨损转变为以磨粒磨损为主,黏着磨损几乎不可见。这是由于 Ni 基涂层存在的未熔融硬质相,在对磨过程中极易脱落而与对磨球发生黏着磨损。添加了适量 CeO2 后,CeO2 在球状 Ni 基粉末熔融或半熔融状态沉积时,可以在涂层中充当结晶核心,极大地增大了形核率,使得晶粒生长更为均匀,从而使涂层的磨损性更好。而 CeO2 含量过大时,黏着磨损再次加剧,这是因为反应产生的硬度第二相杂质在摩擦磨损过程中也作为剥落块而脱落,造成黏着磨损的发生。同时 CeO2 过多,使涂层表面更为粗糙,涂层整体的耐磨性能下降。

  • 图13 不同 CeO2含量 Ni-CeO2复合涂层的摩擦磨损形貌

  • Fig.13 Frictional wear images of Ni-CeO2 composite coatings with different CeO2 contents.

  • 3.5 耐腐蚀性能性能

  • 电化学试验得到的动电位极化曲线测试结果如图14 所示,添加了 CeO2的复合涂层的电流密度相较基体降低了 2 到 3 个数量级,即说明复合涂层抵挡腐蚀破坏的能力远强于基体,且当纳米级 CeO2 含量为 1 wt.%时腐蚀电流密度最低,耐腐蚀性能最优。当 CeO2含量继续增加时,腐蚀电流密度增大,耐腐蚀性能没有继续提升,反而有所降低。

  • 电化学阻抗谱测试结果如图15 所示,可以发现加入 CeO2 后,复合涂层的极化电阻是 Ni 基涂层的 10 倍以上,更是基材的 1 000 倍以上,即说明复合涂层较基体具有较强的耐腐蚀性能力。随着 CeO2 含量增加,容抗弧半径先增大后减小,表明 CeO2 加入后,材料的耐腐蚀性能先增强后减小,且 CeO2 含量为 1 wt.%时能腐蚀性能最优。这是由于:当添加 CeO2 后,复合涂层表面缺陷明显减少,涂层组织结构得到细化,表面致密性得到提升,从而导致涂层的耐腐蚀能力得到加强。同时 CeO2 中的 Ce 能与 Cr 和 Ni 等元素发生反应形成金属间化合物,降低了电偶腐蚀发生的可能。而 CeO2 含量过多时,涂层缺陷增多,易腐蚀颗粒与腐蚀介质接触面积增加,所以复合涂层的耐腐蚀性降低。

  • 图14 动电位极化曲线测试

  • Fig.14 Dynamic potential polarization curve test

  • 图15 电化学阻抗谱测试

  • Fig.15 Electrochemical impedance spectral test

  • 4 结论

  • 通过数值模拟的方法研究了超音速火焰喷涂 Ni 基涂层的喷涂参数及焰流与颗粒特性,并通过模拟结果指导试验制备 Ni-CeO2 复合涂层,并探究 CeO2 对涂层组织、摩擦学性能及耐腐蚀性能的影响主要工作如下。

  • (1)模拟超音速火焰喷涂 Ni 基涂层时的焰流状态与粉末状态,并确定涂层质量达到最佳的喷涂工艺参数与粉末颗粒粒径。

  • (2)根据最佳工艺参数成功制备 Ni-CeO2 复合涂层,探究并分析涂层组织形貌与显微硬度随 CeO2 含量的变化。

  • (3)对 Ni-CeO2 复合涂层的耐磨耐腐蚀性能进行研究,得到 CeO2 含量对复合涂层耐磨耐腐蚀性能的影响。

  • 参考文献

    • [1] 陈同舟,胡红云,刘欢,等.HVOF 制备改性 Cr3C2-25NiCr 涂层及其耐蚀性能分析[J].材料保护,2020,53(11):46-48,83.CHEN Tongzhou,HU Hongyun,LIU Huan,et al.Preparation of modified Cr3C2-25NiCr coating by HVOF and its corrosion resistance analysis[J].Materials Protection,2020,53(11):46-48,83.(in Chinese)

    • [2] 王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程,2019,32(1):88-97.WANG Dafeng,MA Bing,CHEN Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)

    • [3] 刘杰,刘侠,胡凯,等.煤油流量对HVOF喷涂 WC-12Co/NiCrBSi 复合涂层显微组织与性能的影响 [J].中国表面工程,2020,33(3):119-128.LIU Jie,LIU Xia,HU Kai,et al.Effects of kerosene flow rate on microstructure and properties of HVOF sprayed WC-12Co/NiCrBSi composite coatings[J].China Surface Engineering,2020,33(3):119-128.(in Chinese)

    • [4] ZHAO L,MAURER M,FISCHER F,et al.Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr[J].Wear,2004,257(1-2):41-46.

    • [5] VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:An approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.

    • [6] KANNO Akihiro,TAKAGI Kaito,ARAI Masyuki.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [7] CHENG Jie,WU Yuping,HONG Sheng,et al.Spray parameters optimization,microstructure and corrosion behavior of high-velocity oxygen-fuel sprayed non-equiatomic CuAlNiTiSi medium-entropy alloy coatings[J].Intermetallics,2022,142:107442.

    • [8] AZIZPOUR M.Jalali,TOLOUEI-RAD M.The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings[J].Ceramics International,2019,45(11):13934-13941.

    • [9] FANG W,CHO T Y,YOON J H,et al.Processing optimization,surface properties and wear behavior of HVOF spraying WC-CrC-Ni coating[J].Journal of materials processing technology,2009,209(7):3561-3567.

    • [10] LI Chang,GAO Xing,ZHANG Dacheng,et al.Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel[J].Journal of Thermal Spray Technology,2021,30(3):725-738.

    • [11] JAFARI Hamed,EMAMI Sobhan,MAHMOUDI Yasser.Numerical investigation of dual-stage high velocity oxy-fuel(HVOF)thermal spray process:A study on nozzle geometrical parameters[J].Applied Thermal Engineering,2017,111:745-758.

    • [12] JAFARI M,ENAYATI M H,SALEHI M,et al.Improvement in tribological properties of HVOF sprayed WC-Co coatings using electroless Ni-P coated feedstock powders[J].Surface and Coatings Technology,2013,235:310-317.

    • [13] RUKHANDE Sanjay W,RATHOD Walmik S,BHOSALE Digvijay G.Ni-based coating protection of 316L stainless steel at dry,elevated temperature and wet sliding condition[J].Materials Today:Proceedings,2022,62:7415-7420.

    • [14] SHI Xin,LI Yuanxing,BAI Yujie,et al.Effect of Ni in pure Cu/304 stainless steel induction brazing joints[J].Materials Characterization,2021,182:111562.

    • [15] ABBAS Musharaf,SMITH Gregory M,MUNROE Paul R.Microstructural evolution and bonding of HVOF sprayed Ni particles on both mild and stainless-steel substrates[J].Surface and Coatings Technology,2020,394:125909.

    • [16] ZHANG Hui,ZOU Yong,ZOU Zengda,et al.Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder[J].Optics & Laser Technology,2015,65:119-125.

    • [17] DAS Anil Kumar.Effect of rare earth oxide additive in coating deposited by laser cladding:A review[J].Materials Today:Proceedings,2021,52:1558-1564.

    • [18] LI J,LUO X,LI G J.Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J].Wear,2014,310(1-2):72-82.

    • [19] WANG X H,LIU S S,ZHANG M,et al.Effect of rare earth oxide on the microstructure and wear properties of in situ-synthesized ceramics-reinforced fe-based laser cladding coatings[J].Tribology Transactions,2020,63(2):345-355.

    • [20] HU Tianshi,SHI Zhijun,SHAO Wei,et al.Effect of CeO2 on density and wear resistance of Ni-Cr-WC coatings by theoretical calculation and experimental investigation[J].Surface and Coatings Technology,2019,377:124850.

    • [21] LACAZE Guilhem,OEFELEIN Joseph C.A non-premixed combustion model based on flame structure analysis at supercritical pressures[J].Combustion and Flame,2012,159(6):2087-2103.

    • [22] PAN Jiajing,HU Shengsun,YANG Lijun,et al.Numerical analysis of flame and particle behavior in an HVOF thermal spray process[J].Materials & Design,2016,96:370-376.

    • [23] LIU Shaowu,WU Hongjian,XIE Shiming,et al.Novel liquid fuel HVOF torches fueled with ethanol:relationships between in-flight particle characteristics and properties of WC-10Co-4Cr coatings[J].Surface and Coatings Technology,2021,408:126805.

    • [24] KAWAKITA Jin,KATANODA Hiroshi,WATANABE Makoto,et al.Warm Spraying:An improved spray process to deposit novel coatings[J].Surface and Coatings Technology,2008,202(18):4369-4373.

    • [25] 彭思源,朱绍峰,康毅忠.WC 颗粒增强铁基耐磨复合材料的研究现状[J].机械工程师,2014(11):40-43.PENG Siyuan,ZHU Shaofeng,KANG Yizhong.Research on WC particle reinforced iron-based wear resistant composite[J].Mechanical Engineer,2014(11):40-43.(in Chinese)

    • [26] HE Long,TAN Yefa,WANG Xiaolong,et al.Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature[J].Surface and Coatings Technology,2014,244:123-130.

    • [27] 杨二娟,李勇,李巍,等.燃料类型及喷涂参数对HVOF喷涂WC10Co4Cr涂层的组织及力学性能的影响[J].中国表面工程,2020,32(5):136-143.YANG Erjuan,LI Yong,LI Wei,et al.Effects of fuel type and spraying parameters on microstructure and mechanical properties of HVOF sprayed WC10Co4Cr coatings[J].China Surface Engineering,2020,32(5):136-143.(in Chinese)

  • 参考文献

    • [1] 陈同舟,胡红云,刘欢,等.HVOF 制备改性 Cr3C2-25NiCr 涂层及其耐蚀性能分析[J].材料保护,2020,53(11):46-48,83.CHEN Tongzhou,HU Hongyun,LIU Huan,et al.Preparation of modified Cr3C2-25NiCr coating by HVOF and its corrosion resistance analysis[J].Materials Protection,2020,53(11):46-48,83.(in Chinese)

    • [2] 王大锋,马冰,陈东高,等.WC 晶体结构特征对HVOF喷涂纳米结构 WC-CoCr 涂层组织及性能的影响[J].中国表面工程,2019,32(1):88-97.WANG Dafeng,MA Bing,CHEN Donggao,et al.Effects of WC crystal characteristics on microstructure and mechanical property of HVOF-sprayed WC-CoCr coatings[J].China Surface Engineering,2019,32(1):88-97.(in Chinese)

    • [3] 刘杰,刘侠,胡凯,等.煤油流量对HVOF喷涂 WC-12Co/NiCrBSi 复合涂层显微组织与性能的影响 [J].中国表面工程,2020,33(3):119-128.LIU Jie,LIU Xia,HU Kai,et al.Effects of kerosene flow rate on microstructure and properties of HVOF sprayed WC-12Co/NiCrBSi composite coatings[J].China Surface Engineering,2020,33(3):119-128.(in Chinese)

    • [4] ZHAO L,MAURER M,FISCHER F,et al.Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr[J].Wear,2004,257(1-2):41-46.

    • [5] VARIS T,SUHONEN T,GHABCHI A,et al.Formation mechanisms,structure,and properties of HVOF-sprayed WC-CoCr coatings:An approach toward process maps[J].Journal of Thermal Spray Technology,2014,23(6):1009-1018.

    • [6] KANNO Akihiro,TAKAGI Kaito,ARAI Masyuki.Influence of chemical composition,grain size,and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J].Surface and Coatings Technology,2020,394:125881.

    • [7] CHENG Jie,WU Yuping,HONG Sheng,et al.Spray parameters optimization,microstructure and corrosion behavior of high-velocity oxygen-fuel sprayed non-equiatomic CuAlNiTiSi medium-entropy alloy coatings[J].Intermetallics,2022,142:107442.

    • [8] AZIZPOUR M.Jalali,TOLOUEI-RAD M.The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings[J].Ceramics International,2019,45(11):13934-13941.

    • [9] FANG W,CHO T Y,YOON J H,et al.Processing optimization,surface properties and wear behavior of HVOF spraying WC-CrC-Ni coating[J].Journal of materials processing technology,2009,209(7):3561-3567.

    • [10] LI Chang,GAO Xing,ZHANG Dacheng,et al.Numerical investigation on the flame characteristics and particle behaviors in a HVOF spray process using kerosene as fuel[J].Journal of Thermal Spray Technology,2021,30(3):725-738.

    • [11] JAFARI Hamed,EMAMI Sobhan,MAHMOUDI Yasser.Numerical investigation of dual-stage high velocity oxy-fuel(HVOF)thermal spray process:A study on nozzle geometrical parameters[J].Applied Thermal Engineering,2017,111:745-758.

    • [12] JAFARI M,ENAYATI M H,SALEHI M,et al.Improvement in tribological properties of HVOF sprayed WC-Co coatings using electroless Ni-P coated feedstock powders[J].Surface and Coatings Technology,2013,235:310-317.

    • [13] RUKHANDE Sanjay W,RATHOD Walmik S,BHOSALE Digvijay G.Ni-based coating protection of 316L stainless steel at dry,elevated temperature and wet sliding condition[J].Materials Today:Proceedings,2022,62:7415-7420.

    • [14] SHI Xin,LI Yuanxing,BAI Yujie,et al.Effect of Ni in pure Cu/304 stainless steel induction brazing joints[J].Materials Characterization,2021,182:111562.

    • [15] ABBAS Musharaf,SMITH Gregory M,MUNROE Paul R.Microstructural evolution and bonding of HVOF sprayed Ni particles on both mild and stainless-steel substrates[J].Surface and Coatings Technology,2020,394:125909.

    • [16] ZHANG Hui,ZOU Yong,ZOU Zengda,et al.Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder[J].Optics & Laser Technology,2015,65:119-125.

    • [17] DAS Anil Kumar.Effect of rare earth oxide additive in coating deposited by laser cladding:A review[J].Materials Today:Proceedings,2021,52:1558-1564.

    • [18] LI J,LUO X,LI G J.Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding[J].Wear,2014,310(1-2):72-82.

    • [19] WANG X H,LIU S S,ZHANG M,et al.Effect of rare earth oxide on the microstructure and wear properties of in situ-synthesized ceramics-reinforced fe-based laser cladding coatings[J].Tribology Transactions,2020,63(2):345-355.

    • [20] HU Tianshi,SHI Zhijun,SHAO Wei,et al.Effect of CeO2 on density and wear resistance of Ni-Cr-WC coatings by theoretical calculation and experimental investigation[J].Surface and Coatings Technology,2019,377:124850.

    • [21] LACAZE Guilhem,OEFELEIN Joseph C.A non-premixed combustion model based on flame structure analysis at supercritical pressures[J].Combustion and Flame,2012,159(6):2087-2103.

    • [22] PAN Jiajing,HU Shengsun,YANG Lijun,et al.Numerical analysis of flame and particle behavior in an HVOF thermal spray process[J].Materials & Design,2016,96:370-376.

    • [23] LIU Shaowu,WU Hongjian,XIE Shiming,et al.Novel liquid fuel HVOF torches fueled with ethanol:relationships between in-flight particle characteristics and properties of WC-10Co-4Cr coatings[J].Surface and Coatings Technology,2021,408:126805.

    • [24] KAWAKITA Jin,KATANODA Hiroshi,WATANABE Makoto,et al.Warm Spraying:An improved spray process to deposit novel coatings[J].Surface and Coatings Technology,2008,202(18):4369-4373.

    • [25] 彭思源,朱绍峰,康毅忠.WC 颗粒增强铁基耐磨复合材料的研究现状[J].机械工程师,2014(11):40-43.PENG Siyuan,ZHU Shaofeng,KANG Yizhong.Research on WC particle reinforced iron-based wear resistant composite[J].Mechanical Engineer,2014(11):40-43.(in Chinese)

    • [26] HE Long,TAN Yefa,WANG Xiaolong,et al.Tribological properties of WC and CeO2 particles reinforced in-situ synthesized NiAl matrix composite coatings at elevated temperature[J].Surface and Coatings Technology,2014,244:123-130.

    • [27] 杨二娟,李勇,李巍,等.燃料类型及喷涂参数对HVOF喷涂WC10Co4Cr涂层的组织及力学性能的影响[J].中国表面工程,2020,32(5):136-143.YANG Erjuan,LI Yong,LI Wei,et al.Effects of fuel type and spraying parameters on microstructure and mechanical properties of HVOF sprayed WC10Co4Cr coatings[J].China Surface Engineering,2020,32(5):136-143.(in Chinese)

  • 手机扫一扫看