en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙伟,男,1997年出生,硕士。主要研究方向为表面工程。E-mail:2019315010104@mail.ncut.edu.cn

通讯作者:

张淑婷,女,1978年出生,博士,教授,硕士研究生导师。主要研究方向为表面工程。E-mail:zhangst@ncut.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20221018001

参考文献 1
赵磊杰,马立峰,韩廷状,等.变形镁合金轧制成形研究进展[J].材料导报,2020,34(21):21135-21145.ZHAO Leijie,MA Lifeng,HAN Tingzhuang,et al.Research progress of wrought magnesium alloy rolling forming[J].Materials Reports,2020,34(21):21135-21145.(in Chinese)
参考文献 2
刘雪峰,白于良,李晶琨,等.冷轧成形钛/钢层状复合板界面结合强度的影响因素[J].材料工程,2020,48(7):119-126.LIU Xuefeng,BAI Yuliang,LI Jingkun,et al.Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates[J].Journal of Materials Engineering,2020,48(7):119-126.(in Chinese)
参考文献 3
CHALAPATHI D,SIVAPRASAD P V,KANJARLA A K.Role of deformation twinning and second phase on the texture evolution in a duplex stainless steel during cold rolling:experimental and modelling study[J].Materials Science and Engineering A,2020,780:139155.
参考文献 4
KAIBYSHEV R,BEELYAKOV A,KUSAKIN P,et al.Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling[J].Materials Science and Engineering A,2014,617:52-60.
参考文献 5
LANZUTTI A,NOVAK J S,BONA F D,et al.Failure analysis of cemented carbide roller for cold rolling:material characterisation,numerical analysis,and material modelling[J].Engineering Failure Analysis,2020,116:104755.
参考文献 6
黄凌峰,刘建明,王帅,等.复合电镀技术及应用的发展趋势[J].热喷涂技术,2019,11(3):1-6.HUANG Lingfeng,LIU Jianming,WANG Shuai,et al.Composite electroplating technology and application[J].Thermal Spray Technology,2019,11(3):1-6.(in Chinese)
参考文献 7
刘委明,陈国贵,王从敏,等.纳米复合电镀的研究现状[J].材料导报,2016,30(11):7-14.LIU Weiming,CHEN Guogui,WANG Congmin,et al.Current status of nanocomposite plating[J].Materials Reports,2016,30(11):7-14.(in Chinese)
参考文献 8
冯秋元,李廷举,金俊泽.复合电镀机理研究及最新进展[J].稀有金属材料与工程,2007,36(3):559-564.FENG Qiuyuan,LI Tingju,JIN Junze.Research on the mechanism of composite electroplating and its latest progress[J].Rare Metal Materials and Engineering,2007,36(3):559-564.(in Chinese)
参考文献 9
LI W H,ZHOU X Y,XU Z,et al.Microstructure of Ni–polytetrafluoroethylene composite coating prepared by brush electroplating[J].Surface and Coatings Technology,2006,201(3-4):1276-1281.
参考文献 10
AFSHAR A,GHORBANI M,MAZAHERI M.Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics[J].Surface and Coatings Technology,2004,187(2):293-299.
参考文献 11
李文生,崔帅,何玲,等.电化学沉积镍基 MoS2复合镀层及其宽温域摩擦性能[J].中国表面工程,2017,30(3):97-103.LI Wensheng,CUI Shuai,HE Ling,et al.Electrochemical deposited Ni-MoS2 composite coatings and its tribological behaviour in wide temperature ranges[J].China Surface Engineering,2017,30(3):97-103.(in Chinese)
参考文献 12
LEE H K,LEE H Y,JEON J M.Codeposition of microand nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J].Surface and Coatings Technology,2006,201(8):4711-4717.
参考文献 13
刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU Jing,ZHANG Tao,ZHANG Yuetao,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)
参考文献 14
王红星,谈淑咏,柳秉毅,等.纳米SiC浓度对 Ni/纳米 MoS2基复合镀层结构和耐磨性能的影响[J].材料工程,2015,43(10):60-65.WANG Hongxing,TAN Shuyong,LIU Bingyi,et al.Effect of nano-SiC content on microstructure and wear resistance of Ni/nano-MoS2 based composite coating[J].Journal of Materials Engineering,2015,43(10):60-65.(in Chinese)
参考文献 15
华小社.Ni-SiC 纳米复合电镀工艺的研究[D].西安:西安理工大学,2006.HUA Xiaoshe.Study of Ni-SiC nano-composite plating process[D].Xi’ an:Xi’ an University of Technology,2006.(in Chinese)
参考文献 16
SRIVASTAVA M,WILLIAM GRIPS V K,JAIN A,et al.Influence of SiC particle size on the structure and tribological properties of Ni-Co composites[J].Surface and Coatings Technology,2007,202(2):310-318.
参考文献 17
孙伟,张淑婷,杜开平,等.SiC 颗粒对汽油机活塞顶面镀层应力影响的有限元分析[J].表面技术,2022,51(10):209-217.SUN Wei,ZHANG Shuting,DU Kaiping,et al.Finite element analysis of effect of SiC particles on stress of composite electroplating coating on gasoline engine piston top surface[J].Surface Technology,2022,51(10):209-217.(in Chinese)
参考文献 18
ORLOV G A,ORLOV A G.Simulation of roller-type cold rolling of tubes[J].Metallurgist,2019,62(9-10):857-863.
参考文献 19
SUN W,OUYANG P,LIU T,et al.Numerical predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating[J].Journal of Thermal Spray Technology,2022,31(3):485-497.
参考文献 20
方博石,杨文明,陈皓生.流-固-热多工况耦合作用下梯度复合涂层应力分布仿真分析[J].中国表面工程,2022,35(3):146-153.FANG Boshi,YANG Wenming,CHEN Haosheng.Simulation analysis of stress distribution of gradient composite coatings under the application of fluid-solid-thermal coupling[J].China Surface Engineering,2022,35(3):146-153.(in Chinese)
参考文献 21
YANG J,OUYANG P,LIU T,et al.First-principles study of the effect of aluminum content on the elastic properties of Cu-Al alloys[J].Materials Today Communications,2022,31:103399.
参考文献 22
黄啸,翟傲霜,张凤娇,等.基于晶体微观有限元方法的多相复合涂层高温摩擦应力场模拟[J].中国表面工程,2022,35(3):96-103.HUANG Xiao,ZHAI Aoshuang,ZHANG Fengjiao,et al.Simulation of high temperature friction stress field of multiphase composite coating based on crystal microscopic finite element method[J].China Surface Engineering,2022,35(3):96-103.(in Chinese)
参考文献 23
刘光,张啸寒,贾利,等.等离子喷涂 Mo/8YSZ 功能梯度热障涂层结构优化与热力耦合模拟计算[J].表面技术,2020,49(3):213-223.LIU Guang,ZHANG Xiaohan,JIA Li,et al.Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J].Surface Technology,2020,9(3):213-223.(in Chinese)
参考文献 24
SKALKA P,SLÁMEČKA K,POKLUDA J,et al.Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with a crack at the TGO/bond-coat interface[J].Surface and Coatings Technology,2018,337:321-334.
参考文献 25
蒋煜.粉末冶金过程的计算机仿真[D].兰州:兰州理工大学,2019.JIANG Yu.Computer simulation of powder metallurgy process[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)
参考文献 26
信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)
参考文献 27
生培瑶.聚合物矿物复合材料的结构建模及性能模拟 [D].济南:山东大学,2019.SHENG Peiyao.Structural modeling and performance simulation of polymer-mineral composite[D].Jinan:Shandong University,2019.(in Chinese)
参考文献 28
程健.Ni-Al2O3功能梯度材料电火花加工仿真及实验研究[D].哈尔滨:哈尔滨工业大学,2013.CHENG Jian.Simulation and experimental study on electrical discharge machining of Ni-Al2O3 functionally graded material[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)
参考文献 29
闫俊杰.TC4 钛合金基体SiC涂层抗磨损性能分析[D].长春:吉林大学,2019.YAN Junjie.Wear resistance analysis of TC4 titanium alloy matrix SiC coating[D].Changchun:Jilin University,2019.(in Chinese)
参考文献 30
李响.TiNi 增强铜基复合材料结构与性能及有限元模拟研究[D].哈尔滨:哈尔滨工业大学,2020.LI Xiang.Structure and properties of copper matrix composites reinforced by TiNi and finite element simulation study[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)
参考文献 31
CHAWLA N,CHAWLA K K.Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites[J].Journal of Materials Science,2006,41(3):913-925.
参考文献 32
SHANMUGAVEL B P,KARUNAMOORTHY L.Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite[J].Journal of Materials Processing Technology,2007,207(1):53-62.
参考文献 33
黄嘉乐,王启伟,阳颍飞,等.替代电镀铬的碳化硅类复合电镀技术研究进展[J].表面技术,2021,50(1):130-137.HUANG Jiale,WANG Qiwei,YANG Yingfei,et al.Advances in silicon carbide composite electroplating technology to replace chromium electroplating[J].Surface Technology,2021,50(1):130-137.(in Chinese)
参考文献 34
ACKER K V,VANHOYWEGHEN D,PERSOONS R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J].Wear,2005,258(1-4):194-202.
参考文献 35
ESTEVES P J,SERIACOPI V,SOUZA R M,et al.Combined effect of abrasive particle size distribution and ball material on the wear coefficient in micro-scale abrasive wear tests[J].Wear,2021,2:203639.
目录contents

    摘要

    目前针对多颗粒复合镀层有限元模型的建立尚不准确。以轧辊的服役工况为背景,利用 Python 语言和 ABAQUS 软件建立试块底面带有 SiC 颗粒增强 Ni 基复合镀层的环-块滑动摩擦有限元模型,系统研究 SiC 颗粒含量和尺寸对涂层表面及涂层-基体界面峰值等效应力的影响规律。结果表明:当 SiC 颗粒含量为 3 vol.%~9 vol.%时,涂层表面和涂层-基体界面峰值应力随颗粒含量的增大而增大,分别增大了 78.01%和 32.06%;当 SiC 颗粒含量为 9 vol.%~15 vol.%时,随着颗粒含量的增大,涂层表面峰值应力呈下降趋势,降低了 13.02%,而涂层-基体界面峰值应力基本保持不变;当 SiC 颗粒直径为 0.8~1 μm 时,涂层表面及涂层-基体界面峰值应力随颗粒尺寸的减小而增大,分别增大了 51.5%和 32.6%;当 SiC 颗粒直径为 0.3~0.8 μm 时,涂层表面及涂层-基体界面峰值应力基本保持不变。综合考虑轧辊表面镀层的性能需求以及实际复合电镀工艺,依据界面应力与镀层结合状态之间的关系,SiC 颗粒含量以 9 vol.%左右为宜,SiC 颗粒直径以 0.8 μm 左右为宜。所建立的多颗粒随机分布涂层基体的有限元模型更接近于实际复合镀层结构,研究结果可为复合镀层的设计与制备提供参考。

    Abstract

    SiC particle-reinforced Ni-based composite electroplating coatings can significantly improve the surface hardness and wear resistance of rolls. The content and size of the SiC particles are critical parameters that influence the coating performance. Stress can predict the hardness and service life of coatings, providing a theoretical basis for coating design and preparation. With the continuous development of computer technology, the finite element method has become an indispensable method that can significantly shorten the design cycle. However, current finite element models for multiparticle composite electroplating coatings are inaccurate, and most are represented by a single model. Based on the service conditions of the roll, a ring-block sliding friction model was established as a reference to more accurately and quickly establish a finite element model of many randomly distributed particles on the coating matrix. The ABAQUS simulation software was developed using the Python language to establish a simulation model of the ring-block sliding friction with SiC particle-reinforced Ni-based composite electroplating coatings at the bottom of the test block. The contact analysis of the sliding friction and wear process showed strong nonlinearity; therefore, the simulation process was calculated based on the nonlinear effect. The test ring and block were subjected to dry friction at room temperature. The upper surface of the test block was subjected to a normal load of 300 N. Simultaneously, the angular speed during the simulation process was 0.6 rad / s. During the sliding friction process, the displacement of both ends of the test block along the X-axis was maintained at zero, and all degrees of freedom of the test ring, except for rotation around the X-axis, were constrained. After the friction experiment, the effects of the SiC particle content and size on the coating surface and coating-substrate interface stress were investigated. The results showed that the equivalent stress at the contact position of the test ring-test block was the largest owing to the relative sliding friction and wear between the coating and the test block. The peak equivalent stress at the coating surface and coating-substrate interface were generated in the friction and wear area of the contact center, and the von Mises equivalent stress gradually decreased from the bottom to the top in the thickness direction of the test block. The peak stress in the normal direction was distributed near the normal vertical axis, which corresponded to the contact point of the test ring-test block interface. The peak equivalent stress of the coating surface first increased and subsequently decreased with an increase in the SiC particle content at 3 vol.%-15 vol.%. The peak equivalent stress of the coating-substrate interface first increased and remained unchanged with increasing particle content. The peak stresses of the coating surface and coating-substrate interface were the largest when the particle content was 9 vol.%, which were 272.54 and 159.58 MPa, respectively. The peak equivalent stresses of the coating surface and coating-substrate interface significantly increased with decreasing diameter of the SiC particles at 0.8-1 μm, which increased by 51.5 % and 32.6 %, respectively. The peak stresses of the coating surface and coating-substrate interface remained unchanged when the diameter of the SiC particles ranged from 0.3 to 0.8 μm. Considering the performance requirements of the coating on the roll surface and the actual composite electroplating process based on the relationship between the interface stress and coating bond state, the content and diameter of SiC particles should be approximately 9 vol.% and 0.8 μm, respectively. The established finite element model of a multiparticle random distribution coating matrix is closer to the actual composite coating structure. This study provides a reference for designing and preparing composite electroplating coatings.

  • 0 前言

  • 冷轧作为典型的金属加工工艺之一,已在工业生产中得到了广泛应用[1-3]。冷轧辊是在冷轧工艺下将金属加工成型的工作部件,冷轧辊工作时要承受高的轧制压力、冲击载荷、疲劳和磨损,因此,冷轧辊需要有足够高的强度、高的表面硬度以及好的疲劳性能等[4-5]。为了进一步提高轧辊的表面性能,采用表面改性技术[6-8]在轧辊表面制备涂层是最直接有效的方法之一。复合电镀技术[9-10]基于共沉积原理,通过在化学镀液中加入非水溶性的第二相固体粒子,进而与基质金属共同在部件表面形成一层特殊镀层,复合镀层的获得使基体表面性能显著提高[11-13]。随着复合电镀技术的发展,其在轧辊等特异构件的应用已表现出了广阔的应用前景。

  • 针对轧制过程的摩擦磨损工况,在轧辊表面施加耐磨复合镀层是提高其使役性能的有效手段。将硬质颗粒加入到 Ni、Co、Cr、Ni-P 等镀层中,可进一步提高金属或合金镀层的耐磨性能[14],学者们针对耐磨镀层的研究开展了大量工作。华小社[15]以铜为基体制备了 Ni-SiC 纳米复合电镀层,结果表明与纯 Ni 层相比,复合镀层的硬度和耐磨性能均提高了 3 倍以上。SRIVASTAVA 等 [16]研究了微米级和纳米级SiC 颗粒对Ni-Co 镀层耐磨性能的影响,结果表明,含微米级 SiC 颗粒复合镀层的磨损率较低,而含纳米级 SiC 颗粒复合镀层的硬度和耐蚀性能较好。综上所述,在复合镀层工艺、与纯金属镀层的性能对比等方面已开展了大量的定性实验研究,相关结果表明复合镀层中添加增强相可显著提高镀层耐磨性能,为复合电镀的发展提供了数据参考。

  • 应力是影响涂层服役性能及使用寿命的重要因素,研究应力分布和大小可有效预测涂层的性能变化,但目前关于增强相颗粒特性如含量、尺寸对镀层应力影响的系统研究鲜有报道。随着计算机技术的不断发展,有限元分析在生产制造领域得到了越来越广泛的应用[17-19],可极大缩短产品设计周期,在理论指导和工程设计上起到了重要作用[20-22]。学者们基于有限元法对各类涂层表面、涂层-基体界面的应力分布状态开展了大量研究,尤其涉及热障涂层领域。刘光等[23]利用 ANSYS 有限元软件研究了不同结构参数对 Mo / 8YSZ 热障涂层系统残余应力的影响规律。 SKALKA 等[24]仿真研究了热氧化物层(TGO) / 粘结层界面裂纹对热喷涂热障涂层应力状态的影响,结果表明,分层裂纹在 YSZ 层中引起了相当大的应力。

  • 目前,针对零部件表面复合镀层建模存在与实际涂层结构不匹配的问题,这主要是由于复合镀层中的增强相颗粒数量极大,且弥散分布于金属基体中,对其在有限元内进行建模时效率低、难度大。因此,为了提高建模及计算效率,本文以冶金轧辊的实际使用工况为背景,参照试环-试块滑动磨损试验,利用 ABAQUS 软件和 Python 语言建立具有不同颗粒特性的复合电镀 Ni-SiC 涂层 / 试块有限元模型。采用 Python 语言二次开发可实现多颗粒弥散分布基体模型的快速建立,进而系统研究 SiC 颗粒含量和尺寸对涂层表面及涂层-基体界面峰值应力的影响规律,期望为轧辊表面复合镀层的结构设计与制备提供参考。

  • 1 数值模拟分析

  • 1.1 有限元模型

  • 1.1.1 环-块模型

  • 基于 ABAQUS / CAE 平台,根据国家标准 GB / T12444—2006《金属材料磨损试验方法试环试块滑动磨损试验》建立环-块滑动摩擦磨损二维有限元模型,几何尺寸如图1 所示。其中,试环直径 Φ49.0 mm,选取参考点 RP 并定义其为解析刚体; 试块的几何尺寸为 20 mm×4 mm,涂层(底层+面层)位于试块下表面,其中底层厚度为 10 μm,面层厚度 40 μm。

  • 图1 环-块滑动摩擦有限元模型

  • Fig.1 Finite element model of ring-block sliding friction

  • 1.1.2 颗粒模型

  • SiC 颗粒弥散分布于面层基体 Ni 中,其建模参数包括颗粒形状、颗粒尺寸、颗粒分布状态(均匀、随机、梯度分布等)以及颗粒含量等。本文重点关注 SiC 颗粒的尺寸与含量,故假设颗粒形状为圆形,颗粒随机分布。由于 SiC 颗粒粒径较小,在整体涂层几何范围内生成颗粒数目庞大,因此将环-块接触的局部区域 0.4 mm×40 μm 作为颗粒生成位置。另外,假设圆形颗粒面积占接触局部区域面积的百分比为颗粒的体积含量,所需颗粒数目为 611~6 790 个。

  • 基于 Python 语言对 ABAQUS 软件进行二次开发[25-27],实现多颗粒的生成。多颗粒生成脚本主要包括四部分:多颗粒部件生成、颗粒装配、随机位置坐标的获取和随机位置的平移。Ni-SiC 复合镀层与试块基体的局部示意图如图2 所示。

  • 图2 Ni-SiC 涂层与试块基体局部示意图

  • Fig.2 Local schematic diagram of Ni-SiC coating and test block substrate

  • 1.2 材料属性

  • 试环为解析刚体,无须赋予材料属性。试块、涂层金属基体相及颗粒增强相分别为 Q235 钢、Ni 和 SiC,本文以 1 μm 直径、3 vol.%含量的 SiC 颗粒作为参照,采用控制变量法分别选取不同的 SiC 颗粒体积含量(3 vol.%~15 vol.%)和粒径值(0.3~1 μm)。仿真所涉及到的材料参数见表1 [28-29]

  • 表1 试块及涂层的材料参数

  • Table1 Material parameters of test block and coating

  • 1.3 边界条件与网格划分

  • 由于滑动摩擦磨损过程的接触分析存在较强的非线性,因此仿真过程基于非线性效应进行计算。试环与试块在室温下进行干摩擦,依据一般环-块摩擦磨损试验机的试验力范围,假设试块上表面受到 300 N 法向载荷的作用(折算为等效压强 P=1.5 MPa)。同时,根据试环-试块滑动磨损试验的国家标准,试环的转速应接近于实际工作条件,其转速一般在 5~4 000 r / min,故仿真过程定义其角速度 ω 为 0.6 rad / s。滑动摩擦过程保持试块两端在 X 轴的位移为 0,约束试环除绕 X 轴旋转以外的所有自由度,设定试环旋转 1 s。环-块滑动摩擦工况示意图如图3 所示。

  • 图3 环-块滑动摩擦工况示意图

  • Fig.3 Working condition diagram of ring-block sliding friction

  • 在试环与试块之间建立面-面接触相互作用,并定义试环为主表面,试块涂层下表面为接触从面,切向行为定义为“罚函数”,摩擦因数为 0.3,法向行为定义为“硬接触”。其次,通过建立内嵌约束,将 SiC 颗粒嵌入到面层中实现 Ni-SiC 的复合。采用四节点四边形单元进行网格划分,并对环-块接触位置的涂层区域进行加密网格处理。

  • 2 结果与讨论

  • 2.1 SiC 颗粒含量的影响

  • 以 1 μm 的 SiC 颗粒为研究对象,不同颗粒含量镀层-试块经滑动摩擦磨损后的局部 Mises 等效应力云图如图4 所示。由于涂层与试块发生相对滑动摩擦磨损,故试环-试块(带涂层)接触位置的等效应力最大,涂层表面及涂层-基体界面处的峰值等效应力均出现在接触中心的摩擦磨损区域,且 Mises 等效应力值沿试块厚度方向由下往上逐渐降低,法向方向的峰值应力基本分布在试环-试块接触点对应的法向垂直轴附近。对比图4a、4b、4c 可以发现,云图中 Mises 应力分布发生明显变化,红色应力集中区域明显减小;对比图4c、4d、4e 发现,云图中 Mises 应力分布情况无明显变化,红色应力集中区域面积基本不变。为了研究 SiC 颗粒含量对复合电镀 Ni-SiC 涂层服役性能及使用寿命的影响,应重点关注涂层表面及涂层-基体界面的应力大小。因此,在 SiC 颗粒生成的局部区域内,沿涂层-基体界面 OA 及涂层表面 OB 分别创建两条路径,如图5 所示。

  • 图4 含不同体积比颗粒涂层-试块摩擦磨损后的局部等效应力云图

  • Fig.4 Local equivalent stress nephogram of the coating-test block (with particles of different contents) after friction and wear

  • 图5 沿涂层-基体界面和涂层表面路径的创建

  • Fig.5 Creation of paths along coating-substrate interface and coating surface

  • 提取路径上的等效应力数据进行分析,得到涂层表面及涂层-基体界面峰值等效应力与 SiC 颗粒含量的对应关系,如图6 所示。从图6 中可以看出,当颗粒含量在 3 vol.%~9 vol.%时,涂层表面峰值应力随着颗粒含量的增加而增加,且峰值应力值上升明显,从 153.10 MPa 增大到 272.54 MPa,增大了 119.44 MPa;当颗粒含量在 9 vol.%~15 vol.%时,涂层表面峰值应力随着颗粒含量的增加而降低,且峰值应力值下降相对缓慢,从 272.54 MPa 降低到 237.06 MPa,减小了 35.48 MPa,颗粒含量为 15 vol.%时涂层表面的峰值应力值仍比含量为 6 vol.%时的高。另外,当颗粒含量在 3 vol.%~9 vol.%时,涂层-基体界面峰值应力随着颗粒含量的增加而增加,从 120.84 MPa 增大到 159.58 MPa,增大了 38.74 MPa,且峰值应力值上升明显; 当颗粒含量在 6 vol.%~15 vol.%时,涂层-基体界面峰值应力基本保持不变,约为 159 MPa。

  • 图6 涂层表面及涂层-基体界面峰值等效应力与 SiC 颗粒含量的关系

  • Fig.6 Relationship between peak equivalent stress of surface and coating-substrate interface and SiC particle content

  • 实际上,涂层在滑动摩擦条件下其表面应力状态一般与涂层的硬度、耐磨性等关键力学性能有关,涂层的硬度和耐磨性越好,在发生滑动摩擦磨损时涂层表面的等效应力值越大。而涂层-基体界面等效应力一般与涂层的结合性能和使用寿命相关,涂层-基体界面等效应力越大,涂层与基体的结合性能越差,随着服役工况的不断进行,就越容易在涂层-基体界面萌生裂纹,从而发生涂层的剥落。相关研究表明[30-32],SiC 颗粒作为硬质增强相,其含量越高,对 Ni-SiC 涂层的增强效果越好,涂层的硬度、耐磨性等关键力学性能会在一定程度得到提高。但由于 SiC 颗粒以随机的状态弥散分布在 Ni 中,随着颗粒含量的持续增加,颗粒间距离变小,且颗粒间距越小越易产生拉应力集中,一旦超过 SiC 颗粒的抗拉强度,便会产生裂纹,从而导致涂层失效。

  • 因此,在颗粒增强金属基复合镀层中,并非颗粒含量越高越好,结合仿真得到的涂层表面峰值应力与 SiC 颗粒含量的对应关系,颗粒含量以 9 vol.%左右为宜。其次,从图6 涂层-基体界面峰值应力与 SiC 颗粒含量的对应关系中也可以看出,当颗粒含量大于 6 vol.%时,界面处的峰值应力无明显变化。所以,随着 SiC 颗粒含量的增加,对涂层-基体界面处的峰值应力影响不大。因此,在轧制工况中,为了提高轧辊表面涂层的服役性能,延长涂层的使用寿命,应在涂层-基体界面应力小于界面结合强度的前提下,尽可能提高涂层表面的硬度及耐磨性。综合上述涂层各面峰值等效应力随 SiC 颗粒含量的演变关系,可预测 SiC 颗粒含量为 9 vol.%时涂层耐磨性能和使用寿命达到平衡,故颗粒含量以 9 vol.%左右为宜。

  • 2.2 SiC 颗粒尺寸的影响

  • 以 3 vol.%的 SiC 颗粒为研究对象,不同颗粒尺寸镀层-试块经滑动摩擦磨损后的局部 Mises 等效应力云图如图7 所示。涂层表面及涂层-基体界面处的峰值等效应力均出现在接触中心的摩擦磨损区域,且 Mises 等效应力值沿试块厚度方向由下往上逐渐降低,应力分布情况与图4 一致。对比图7a~7d 可以发现,云图中 Mises 等效应力分布情况无明显变化,红色应力集中区域面积基本不变;对比图7d、 7e 发现,云图中 Mises 等效应力分布发生明显变化,试块由下往上的应力变化梯度放缓。

  • 图7 含不同直径颗粒涂层-试块摩擦磨损后的局部等效应力云图

  • Fig.7 Local equivalent stress nephogram of the coating-test block (with particles of different diameters) after friction and wear

  • 基于图5 所定义的路径,提取涂层表面及涂层-基体界面路径上的应力数据,得到涂层表面及涂层-基体界面峰值等效应力与 SiC 颗粒尺寸的对应关系,如图8 所示。从图8 可以发现,当颗粒粒径在 0.3~0.8 μm 时,涂层表面及涂层-基体界面峰值等效应力值变化不大,涂层表面峰值应力约为 230 MPa,涂层-基体界面峰值应力约为 160 MPa; 当颗粒粒径在 0.8~1 μm 时,随着颗粒尺寸的增大,涂层表面及涂层-基体界面的峰值等效应力显著下降,涂层表面峰值应力和涂层-基体界面峰值应力分别从 231.89、 160.28 MPa 下降到 153.11、 120.84 MPa,分别下降了 78.78、39.44 MPa。

  • 图8 涂层表面及涂层-基体界面峰值等效应力与 SiC 颗粒尺寸的关系

  • Fig.8 Relationship between peak equivalent stress of coating surface and coating substrate interface and SiC particle size

  • 模拟结果表明,SiC 颗粒粒径在 0.8~1 μm 时,颗粒尺寸对涂层表面及涂层-基体界面的应力状态有显著影响。在环-块滑动摩擦磨损的条件下,纳米级颗粒同微米级颗粒相比有更好的增强效果,有助于提高涂层的强硬度。但当 SiC 颗粒粒径 0.3~0.8 μm 时,粒径过小的 SiC 颗粒会导致其数量明显增多,并弥散分布于涂层基体中,此时很难产生明显的硬度增强效果,故继续减小颗粒尺寸对 Ni-SiC 镀层应力状态的影响不大。从耐磨损性能的角度考虑,粒径过小的颗粒在金属基体中很难起到支撑的作用,导致涂层的耐磨损能力也会有所下降[33-35]

  • 另外,结合实际复合电镀工艺,当第二相粒子尺寸过小时,它在电镀液中的分散情况将会变差,进而促使第二相粒子发生聚集,聚集后的粒子直径甚至达到微米级。因此,当 SiC 颗粒粒径在 0.3~1 μm 时,应避免使用较小粒径的颗粒。综合考虑,以提高轧辊表面镀层硬度、耐磨性等关键力学性能的角度出发,依据上述涂层各面峰值等效应力随 SiC 颗粒尺寸的演变关系,结合实际复合电镀工艺,颗粒尺寸的选取以 0.8 μm 左右为宜。

  • 3 结论

  • 以冶金冷轧辊的服役工况环境为背景,参照环块滑动摩擦磨损试验,利用 Python 语言二次开发 ABAQUS 软件,建立多颗粒随机分布涂层基体的复合镀层有限元模型,采用有限元法模拟滑动摩擦条件下颗粒含量和尺寸对涂层峰值应力的影响。所建立的物理模型更接近于实际镀层结构,仿真结果可为复合镀层的设计、制备及性能预测提供参考。但未考虑摩擦生热,并且针对颗粒分布方式、颗粒形状等对镀层应力的影响有待于进一步计算。

  • 参考文献

    • [1] 赵磊杰,马立峰,韩廷状,等.变形镁合金轧制成形研究进展[J].材料导报,2020,34(21):21135-21145.ZHAO Leijie,MA Lifeng,HAN Tingzhuang,et al.Research progress of wrought magnesium alloy rolling forming[J].Materials Reports,2020,34(21):21135-21145.(in Chinese)

    • [2] 刘雪峰,白于良,李晶琨,等.冷轧成形钛/钢层状复合板界面结合强度的影响因素[J].材料工程,2020,48(7):119-126.LIU Xuefeng,BAI Yuliang,LI Jingkun,et al.Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates[J].Journal of Materials Engineering,2020,48(7):119-126.(in Chinese)

    • [3] CHALAPATHI D,SIVAPRASAD P V,KANJARLA A K.Role of deformation twinning and second phase on the texture evolution in a duplex stainless steel during cold rolling:experimental and modelling study[J].Materials Science and Engineering A,2020,780:139155.

    • [4] KAIBYSHEV R,BEELYAKOV A,KUSAKIN P,et al.Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling[J].Materials Science and Engineering A,2014,617:52-60.

    • [5] LANZUTTI A,NOVAK J S,BONA F D,et al.Failure analysis of cemented carbide roller for cold rolling:material characterisation,numerical analysis,and material modelling[J].Engineering Failure Analysis,2020,116:104755.

    • [6] 黄凌峰,刘建明,王帅,等.复合电镀技术及应用的发展趋势[J].热喷涂技术,2019,11(3):1-6.HUANG Lingfeng,LIU Jianming,WANG Shuai,et al.Composite electroplating technology and application[J].Thermal Spray Technology,2019,11(3):1-6.(in Chinese)

    • [7] 刘委明,陈国贵,王从敏,等.纳米复合电镀的研究现状[J].材料导报,2016,30(11):7-14.LIU Weiming,CHEN Guogui,WANG Congmin,et al.Current status of nanocomposite plating[J].Materials Reports,2016,30(11):7-14.(in Chinese)

    • [8] 冯秋元,李廷举,金俊泽.复合电镀机理研究及最新进展[J].稀有金属材料与工程,2007,36(3):559-564.FENG Qiuyuan,LI Tingju,JIN Junze.Research on the mechanism of composite electroplating and its latest progress[J].Rare Metal Materials and Engineering,2007,36(3):559-564.(in Chinese)

    • [9] LI W H,ZHOU X Y,XU Z,et al.Microstructure of Ni–polytetrafluoroethylene composite coating prepared by brush electroplating[J].Surface and Coatings Technology,2006,201(3-4):1276-1281.

    • [10] AFSHAR A,GHORBANI M,MAZAHERI M.Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics[J].Surface and Coatings Technology,2004,187(2):293-299.

    • [11] 李文生,崔帅,何玲,等.电化学沉积镍基 MoS2复合镀层及其宽温域摩擦性能[J].中国表面工程,2017,30(3):97-103.LI Wensheng,CUI Shuai,HE Ling,et al.Electrochemical deposited Ni-MoS2 composite coatings and its tribological behaviour in wide temperature ranges[J].China Surface Engineering,2017,30(3):97-103.(in Chinese)

    • [12] LEE H K,LEE H Y,JEON J M.Codeposition of microand nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J].Surface and Coatings Technology,2006,201(8):4711-4717.

    • [13] 刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU Jing,ZHANG Tao,ZHANG Yuetao,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)

    • [14] 王红星,谈淑咏,柳秉毅,等.纳米SiC浓度对 Ni/纳米 MoS2基复合镀层结构和耐磨性能的影响[J].材料工程,2015,43(10):60-65.WANG Hongxing,TAN Shuyong,LIU Bingyi,et al.Effect of nano-SiC content on microstructure and wear resistance of Ni/nano-MoS2 based composite coating[J].Journal of Materials Engineering,2015,43(10):60-65.(in Chinese)

    • [15] 华小社.Ni-SiC 纳米复合电镀工艺的研究[D].西安:西安理工大学,2006.HUA Xiaoshe.Study of Ni-SiC nano-composite plating process[D].Xi’ an:Xi’ an University of Technology,2006.(in Chinese)

    • [16] SRIVASTAVA M,WILLIAM GRIPS V K,JAIN A,et al.Influence of SiC particle size on the structure and tribological properties of Ni-Co composites[J].Surface and Coatings Technology,2007,202(2):310-318.

    • [17] 孙伟,张淑婷,杜开平,等.SiC 颗粒对汽油机活塞顶面镀层应力影响的有限元分析[J].表面技术,2022,51(10):209-217.SUN Wei,ZHANG Shuting,DU Kaiping,et al.Finite element analysis of effect of SiC particles on stress of composite electroplating coating on gasoline engine piston top surface[J].Surface Technology,2022,51(10):209-217.(in Chinese)

    • [18] ORLOV G A,ORLOV A G.Simulation of roller-type cold rolling of tubes[J].Metallurgist,2019,62(9-10):857-863.

    • [19] SUN W,OUYANG P,LIU T,et al.Numerical predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating[J].Journal of Thermal Spray Technology,2022,31(3):485-497.

    • [20] 方博石,杨文明,陈皓生.流-固-热多工况耦合作用下梯度复合涂层应力分布仿真分析[J].中国表面工程,2022,35(3):146-153.FANG Boshi,YANG Wenming,CHEN Haosheng.Simulation analysis of stress distribution of gradient composite coatings under the application of fluid-solid-thermal coupling[J].China Surface Engineering,2022,35(3):146-153.(in Chinese)

    • [21] YANG J,OUYANG P,LIU T,et al.First-principles study of the effect of aluminum content on the elastic properties of Cu-Al alloys[J].Materials Today Communications,2022,31:103399.

    • [22] 黄啸,翟傲霜,张凤娇,等.基于晶体微观有限元方法的多相复合涂层高温摩擦应力场模拟[J].中国表面工程,2022,35(3):96-103.HUANG Xiao,ZHAI Aoshuang,ZHANG Fengjiao,et al.Simulation of high temperature friction stress field of multiphase composite coating based on crystal microscopic finite element method[J].China Surface Engineering,2022,35(3):96-103.(in Chinese)

    • [23] 刘光,张啸寒,贾利,等.等离子喷涂 Mo/8YSZ 功能梯度热障涂层结构优化与热力耦合模拟计算[J].表面技术,2020,49(3):213-223.LIU Guang,ZHANG Xiaohan,JIA Li,et al.Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J].Surface Technology,2020,9(3):213-223.(in Chinese)

    • [24] SKALKA P,SLÁMEČKA K,POKLUDA J,et al.Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with a crack at the TGO/bond-coat interface[J].Surface and Coatings Technology,2018,337:321-334.

    • [25] 蒋煜.粉末冶金过程的计算机仿真[D].兰州:兰州理工大学,2019.JIANG Yu.Computer simulation of powder metallurgy process[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [26] 信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)

    • [27] 生培瑶.聚合物矿物复合材料的结构建模及性能模拟 [D].济南:山东大学,2019.SHENG Peiyao.Structural modeling and performance simulation of polymer-mineral composite[D].Jinan:Shandong University,2019.(in Chinese)

    • [28] 程健.Ni-Al2O3功能梯度材料电火花加工仿真及实验研究[D].哈尔滨:哈尔滨工业大学,2013.CHENG Jian.Simulation and experimental study on electrical discharge machining of Ni-Al2O3 functionally graded material[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [29] 闫俊杰.TC4 钛合金基体SiC涂层抗磨损性能分析[D].长春:吉林大学,2019.YAN Junjie.Wear resistance analysis of TC4 titanium alloy matrix SiC coating[D].Changchun:Jilin University,2019.(in Chinese)

    • [30] 李响.TiNi 增强铜基复合材料结构与性能及有限元模拟研究[D].哈尔滨:哈尔滨工业大学,2020.LI Xiang.Structure and properties of copper matrix composites reinforced by TiNi and finite element simulation study[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [31] CHAWLA N,CHAWLA K K.Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites[J].Journal of Materials Science,2006,41(3):913-925.

    • [32] SHANMUGAVEL B P,KARUNAMOORTHY L.Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite[J].Journal of Materials Processing Technology,2007,207(1):53-62.

    • [33] 黄嘉乐,王启伟,阳颍飞,等.替代电镀铬的碳化硅类复合电镀技术研究进展[J].表面技术,2021,50(1):130-137.HUANG Jiale,WANG Qiwei,YANG Yingfei,et al.Advances in silicon carbide composite electroplating technology to replace chromium electroplating[J].Surface Technology,2021,50(1):130-137.(in Chinese)

    • [34] ACKER K V,VANHOYWEGHEN D,PERSOONS R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J].Wear,2005,258(1-4):194-202.

    • [35] ESTEVES P J,SERIACOPI V,SOUZA R M,et al.Combined effect of abrasive particle size distribution and ball material on the wear coefficient in micro-scale abrasive wear tests[J].Wear,2021,2:203639.

  • 参考文献

    • [1] 赵磊杰,马立峰,韩廷状,等.变形镁合金轧制成形研究进展[J].材料导报,2020,34(21):21135-21145.ZHAO Leijie,MA Lifeng,HAN Tingzhuang,et al.Research progress of wrought magnesium alloy rolling forming[J].Materials Reports,2020,34(21):21135-21145.(in Chinese)

    • [2] 刘雪峰,白于良,李晶琨,等.冷轧成形钛/钢层状复合板界面结合强度的影响因素[J].材料工程,2020,48(7):119-126.LIU Xuefeng,BAI Yuliang,LI Jingkun,et al.Influence factors of interfacial bonding strength of cold rolled titanium/steel laminated composite plates[J].Journal of Materials Engineering,2020,48(7):119-126.(in Chinese)

    • [3] CHALAPATHI D,SIVAPRASAD P V,KANJARLA A K.Role of deformation twinning and second phase on the texture evolution in a duplex stainless steel during cold rolling:experimental and modelling study[J].Materials Science and Engineering A,2020,780:139155.

    • [4] KAIBYSHEV R,BEELYAKOV A,KUSAKIN P,et al.Microstructure evolution and strengthening mechanisms of Fe-23Mn-0.3C-1.5Al TWIP steel during cold rolling[J].Materials Science and Engineering A,2014,617:52-60.

    • [5] LANZUTTI A,NOVAK J S,BONA F D,et al.Failure analysis of cemented carbide roller for cold rolling:material characterisation,numerical analysis,and material modelling[J].Engineering Failure Analysis,2020,116:104755.

    • [6] 黄凌峰,刘建明,王帅,等.复合电镀技术及应用的发展趋势[J].热喷涂技术,2019,11(3):1-6.HUANG Lingfeng,LIU Jianming,WANG Shuai,et al.Composite electroplating technology and application[J].Thermal Spray Technology,2019,11(3):1-6.(in Chinese)

    • [7] 刘委明,陈国贵,王从敏,等.纳米复合电镀的研究现状[J].材料导报,2016,30(11):7-14.LIU Weiming,CHEN Guogui,WANG Congmin,et al.Current status of nanocomposite plating[J].Materials Reports,2016,30(11):7-14.(in Chinese)

    • [8] 冯秋元,李廷举,金俊泽.复合电镀机理研究及最新进展[J].稀有金属材料与工程,2007,36(3):559-564.FENG Qiuyuan,LI Tingju,JIN Junze.Research on the mechanism of composite electroplating and its latest progress[J].Rare Metal Materials and Engineering,2007,36(3):559-564.(in Chinese)

    • [9] LI W H,ZHOU X Y,XU Z,et al.Microstructure of Ni–polytetrafluoroethylene composite coating prepared by brush electroplating[J].Surface and Coatings Technology,2006,201(3-4):1276-1281.

    • [10] AFSHAR A,GHORBANI M,MAZAHERI M.Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics[J].Surface and Coatings Technology,2004,187(2):293-299.

    • [11] 李文生,崔帅,何玲,等.电化学沉积镍基 MoS2复合镀层及其宽温域摩擦性能[J].中国表面工程,2017,30(3):97-103.LI Wensheng,CUI Shuai,HE Ling,et al.Electrochemical deposited Ni-MoS2 composite coatings and its tribological behaviour in wide temperature ranges[J].China Surface Engineering,2017,30(3):97-103.(in Chinese)

    • [12] LEE H K,LEE H Y,JEON J M.Codeposition of microand nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J].Surface and Coatings Technology,2006,201(8):4711-4717.

    • [13] 刘静,张涛,张曰涛,等.AZ91D 镁合金 Ni-W-P 多层化学镀层的摩擦磨损及耐腐蚀性能[J].中国表面工程,2019,32(4):53-62.LIU Jing,ZHANG Tao,ZHANG Yuetao,et al.Friction,wear and corrosion resistance of multi-layer electroless Ni-W-P coating on AZ91D magnesium alloy[J].China Surface Engineering,2019,32(4):53-62.(in Chinese)

    • [14] 王红星,谈淑咏,柳秉毅,等.纳米SiC浓度对 Ni/纳米 MoS2基复合镀层结构和耐磨性能的影响[J].材料工程,2015,43(10):60-65.WANG Hongxing,TAN Shuyong,LIU Bingyi,et al.Effect of nano-SiC content on microstructure and wear resistance of Ni/nano-MoS2 based composite coating[J].Journal of Materials Engineering,2015,43(10):60-65.(in Chinese)

    • [15] 华小社.Ni-SiC 纳米复合电镀工艺的研究[D].西安:西安理工大学,2006.HUA Xiaoshe.Study of Ni-SiC nano-composite plating process[D].Xi’ an:Xi’ an University of Technology,2006.(in Chinese)

    • [16] SRIVASTAVA M,WILLIAM GRIPS V K,JAIN A,et al.Influence of SiC particle size on the structure and tribological properties of Ni-Co composites[J].Surface and Coatings Technology,2007,202(2):310-318.

    • [17] 孙伟,张淑婷,杜开平,等.SiC 颗粒对汽油机活塞顶面镀层应力影响的有限元分析[J].表面技术,2022,51(10):209-217.SUN Wei,ZHANG Shuting,DU Kaiping,et al.Finite element analysis of effect of SiC particles on stress of composite electroplating coating on gasoline engine piston top surface[J].Surface Technology,2022,51(10):209-217.(in Chinese)

    • [18] ORLOV G A,ORLOV A G.Simulation of roller-type cold rolling of tubes[J].Metallurgist,2019,62(9-10):857-863.

    • [19] SUN W,OUYANG P,LIU T,et al.Numerical predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating[J].Journal of Thermal Spray Technology,2022,31(3):485-497.

    • [20] 方博石,杨文明,陈皓生.流-固-热多工况耦合作用下梯度复合涂层应力分布仿真分析[J].中国表面工程,2022,35(3):146-153.FANG Boshi,YANG Wenming,CHEN Haosheng.Simulation analysis of stress distribution of gradient composite coatings under the application of fluid-solid-thermal coupling[J].China Surface Engineering,2022,35(3):146-153.(in Chinese)

    • [21] YANG J,OUYANG P,LIU T,et al.First-principles study of the effect of aluminum content on the elastic properties of Cu-Al alloys[J].Materials Today Communications,2022,31:103399.

    • [22] 黄啸,翟傲霜,张凤娇,等.基于晶体微观有限元方法的多相复合涂层高温摩擦应力场模拟[J].中国表面工程,2022,35(3):96-103.HUANG Xiao,ZHAI Aoshuang,ZHANG Fengjiao,et al.Simulation of high temperature friction stress field of multiphase composite coating based on crystal microscopic finite element method[J].China Surface Engineering,2022,35(3):96-103.(in Chinese)

    • [23] 刘光,张啸寒,贾利,等.等离子喷涂 Mo/8YSZ 功能梯度热障涂层结构优化与热力耦合模拟计算[J].表面技术,2020,49(3):213-223.LIU Guang,ZHANG Xiaohan,JIA Li,et al.Structural optimization and thermo-mechanical coupling simulation of plasma sprayed Mo/8YSZ functionally graded thermal barrier coating[J].Surface Technology,2020,9(3):213-223.(in Chinese)

    • [24] SKALKA P,SLÁMEČKA K,POKLUDA J,et al.Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with a crack at the TGO/bond-coat interface[J].Surface and Coatings Technology,2018,337:321-334.

    • [25] 蒋煜.粉末冶金过程的计算机仿真[D].兰州:兰州理工大学,2019.JIANG Yu.Computer simulation of powder metallurgy process[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [26] 信振洋,王悦,苗文成,等.颗粒增强金属基复合材料参数化建模研究[J].矿业科学学报,2020,5(1):86-95.XIN Zhenyang,WANG Yue,MIAO Wencheng,et al.Parametric modeling of particle reinforced metal matrix composites[J].Journal of Mining Science and Technology,2020,5(1):86-95.(in Chinese)

    • [27] 生培瑶.聚合物矿物复合材料的结构建模及性能模拟 [D].济南:山东大学,2019.SHENG Peiyao.Structural modeling and performance simulation of polymer-mineral composite[D].Jinan:Shandong University,2019.(in Chinese)

    • [28] 程健.Ni-Al2O3功能梯度材料电火花加工仿真及实验研究[D].哈尔滨:哈尔滨工业大学,2013.CHENG Jian.Simulation and experimental study on electrical discharge machining of Ni-Al2O3 functionally graded material[D].Harbin:Harbin Institute of Technology,2013.(in Chinese)

    • [29] 闫俊杰.TC4 钛合金基体SiC涂层抗磨损性能分析[D].长春:吉林大学,2019.YAN Junjie.Wear resistance analysis of TC4 titanium alloy matrix SiC coating[D].Changchun:Jilin University,2019.(in Chinese)

    • [30] 李响.TiNi 增强铜基复合材料结构与性能及有限元模拟研究[D].哈尔滨:哈尔滨工业大学,2020.LI Xiang.Structure and properties of copper matrix composites reinforced by TiNi and finite element simulation study[D].Harbin:Harbin Institute of Technology,2020.(in Chinese)

    • [31] CHAWLA N,CHAWLA K K.Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites[J].Journal of Materials Science,2006,41(3):913-925.

    • [32] SHANMUGAVEL B P,KARUNAMOORTHY L.Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite[J].Journal of Materials Processing Technology,2007,207(1):53-62.

    • [33] 黄嘉乐,王启伟,阳颍飞,等.替代电镀铬的碳化硅类复合电镀技术研究进展[J].表面技术,2021,50(1):130-137.HUANG Jiale,WANG Qiwei,YANG Yingfei,et al.Advances in silicon carbide composite electroplating technology to replace chromium electroplating[J].Surface Technology,2021,50(1):130-137.(in Chinese)

    • [34] ACKER K V,VANHOYWEGHEN D,PERSOONS R,et al.Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings[J].Wear,2005,258(1-4):194-202.

    • [35] ESTEVES P J,SERIACOPI V,SOUZA R M,et al.Combined effect of abrasive particle size distribution and ball material on the wear coefficient in micro-scale abrasive wear tests[J].Wear,2021,2:203639.

  • 手机扫一扫看