en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

潘伶,女,1969年出生,博士,教授。主要研究方向为摩擦学和机械设计。E-mail:panling@fzu.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220615001

参考文献 1
APOSTOLO R F G,TSAGKAROPOULOU G,CAMP P J.Molecular adsorption,self-assembly,and friction in lubricants[J].Journal of Molecular Liquids,2019,277:606-612.
参考文献 2
RAHMAN S,PURANI D,ALI S,et al.Effects of SiO2 contaminant on thermo-mechanical/chemical properties and lubricity of PFPE lubricants[J].Lubricants,2021,9(9):90.
参考文献 3
ABDEL R A A,AKL S,ELSOUDY S.Investigation of the tribological behavior of mineral lubricant using copper oxide nano additives[J].Lubricants,2021,9(2):16.
参考文献 4
TIAN Yuanyuan,FENG Hui,LI Jia,et al.Nanoscale sliding friction behavior on Cu/Ag bilayers influenced by water film[J].Applied Surface Science,2021,545:148957.
参考文献 5
SPIKES H.Friction modifier additives[J].Tribology Letters,2015,60(1):5.
参考文献 6
PENA P L,J TAHA T J,GARZA L,et al.Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils[J].Wear,2015,332:1256-1261.
参考文献 7
MELLO V S,FARIA E A,ALVES S M,et al.Enhancing CuO nanolubricant performance using dispersing agents[J].Tribology International,2020,150:106338.
参考文献 8
ALI M K A,HOU Xianjun,MAI Liqiang,et al.Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives[J].Tribology International,2016,103:540-554.
参考文献 9
POWNRAJ C,ARASU A V.Effect of dispersing single and hybrid nanoparticles on tribological,thermo-physical,and stability characteristics of lubricants:A review[J].Journal of Thermal Analysis and Calorimetry,2021,143(2):1773-1809.
参考文献 10
王壮,张建军,梁森,等.石墨烯量子点/纳米 Al2O3 协同生长润滑转移膜机制[J].中国表面工程,2021,34(5):17-24.WANG Zhuang,ZHANG Jianjun,LIANG Sen,et al.Synergistic of graphene quantum dot/nano-Al2O3 growing lubricous tribofilm[J].China Surface Engineering,2021,34(5):17-24.(in Chinese)
参考文献 11
付甜,麻拴红,周峰,等.石墨烯的功能化改性及其作为水基润滑添加剂的应用进展[J].摩擦学学报,2022,42(2):408-425.FU Tian,MA Shuanhong,ZHOU Feng,et al.Progress of functionalized graphene nanomaterials and applications as water-based lubricating additives[J].Tribology,2022,42(2):408-425.(in Chinese)
参考文献 12
孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.KONG Shang,HU Wenjing,LI Jiusheng,et al.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)
参考文献 13
PANICKAR R,SOBHAN C B,CHAKRAVORTI S.Investigations on tribological properties of non-catalytic CVD synthesized carbon spheres in lubricant[J].Diamond and Related Materials,2020,106:107834.
参考文献 14
BASKAR S,PRABAHARAN G,ARUMUGAM S,et al.Modeling and analysis of the tribological evaluation of bearing materials under the influence of nano based marine lubricant using D-optimal design.[J] Materials Today:Proceedings,2018,5(5):11548-11555.
参考文献 15
PADGURSKAS J,RUKUIZA R,PROSYCEVAS I,et al.Tribological properties of lubricant additives of Fe,Cu and Co nanoparticles[J].Tribology International,2013,60:224-232.
参考文献 16
KALYANI,JAISWAL V,RASTOGI R B,et al.The investigation of different particle size magnesium-doped zinc oxide(Zn0.92Mg0.08O)nanoparticles on the lubrication behavior of paraffin oil[J].Applied Nanoscience,2017,7(6):275-281.
参考文献 17
RABASO P,VILLE F,DASSENOY F,et al.Boundary lubrication:Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction[J].Wear,2014,320:161-178.
参考文献 18
JU S P,LEE I J,CHEN H Y.Melting mechanism of Pt-Pd-Rh-Co high entropy alloy nanoparticle:An insight from molecular dynamics simulation[J].Journal of Alloys and Compounds,2021,858:157681.
参考文献 19
TOMALA A,VENGUDUSAMY B,RIPOLL M R,et al.Interaction between selected MoS2 nanoparticles and ZDDP tribofilms[J].Tribology Letters,2015,59(1):26.
参考文献 20
潘伶,高诚辉.纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J].机械工程学报,2015,51(5):76-82.PAN Ling,GAO Chenghui.Molecular dynamics simulation on the compressibility of pentaerythritol tetra in nanogap[J].Journal of Mechanical Engineering,2015,51(5):76-82.(in Chinese)
参考文献 21
潘伶,鲁石平,陈有宏,等.分子动力学模拟环烷烃含碳量对边界润滑的影响[J].机械工程学报,2020,56(1):110-118.PAN Ling,LU Shiping CHEN Youhong,et al.Molecular dynamics simulation boundary lubrication:the effect of cycloalkane carbon content[J].Journal of Mechanical Engineering,2020,56(1):110-118.(in Chinese)
参考文献 22
潘帅航,尹念,张执南.微动界面连续干摩擦行为的分子动力学模拟[J].机械工程学报,2018,54(3):82-87.PAN Shuaihang,YIN Nian,ZHANG Zhinan.Molecular dynamics simulation for continuous dry friction on fretting interfaces[J].Journal of Mechanical Engineering,2018,54(3):82-87.(in Chinese)
参考文献 23
PLIMPTON S.Fast parallel algorithms for short-range molecular-dynamics[J].Journal of Computational Physics,1995,117(1):1-19.
参考文献 24
MARTIN M G,SIEPMANN J I.Transferable potentials for phase equilibria.1.United-atom description of n-alkanes[J].Journal of Physical Chemistry B,1998,102(14):2569-2577.
参考文献 25
MENDELEV M I,HAN S,SROLOVITZ D J,et al.Development of new interatomic potentials appropriate for crystalline and liquid iron[J].Philosophical Magazine,2003,83(35):3977-3994.
参考文献 26
WU Lupeng,KEER L M,LU Jie,et al.Molecular dynamics simulations of the rheological properties of graphene-PAO nanofluids[J].Journal of Materials Science,2018,53(23):15969-15976.
参考文献 27
LEE J G.Computational materials science:An introduction[M].CRC Press,2011.
参考文献 28
温诗铸,黄平.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping.Principles of Tribology Fifth Edition[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)
参考文献 29
SONG Jun,SROLOVITZ D J.Atomistic simulation of multicycle asperity contact[J].Acta Materialia,2007,55(14):4759-4768.
参考文献 30
EGAMI T.Atomic level stresses[J].Progress in Materials Science,2011,56(6):637-653.
参考文献 31
DAI Wei,KHEIREDDIN Bassem,GAO Hong,et al.Roles of nanoparticles in oil lubrication[J].Tribology International,2016,102:88-98.
参考文献 32
刘明,李烁,高诚辉.利用圆锥压头微米划痕测试材料断裂韧性[J].摩擦学学报,2019,39(5):556-564.LIU Ming LI Shuo,GAO Chenghui.Fracture toughness measurement by micro-scratch tests with conical indenter[J].Tribology,2019,39(5):556-564.(in Chinese)
参考文献 33
ZHANG Dong,SUN Yuan,GAO Chenhui,et al.Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter[J].Wear,2020,444:203158.
参考文献 34
VEGA M R C,RODRIGUEZ C G A,JIMENEZ T L F,et al.Multipass scratch behavior of borided and nitrided H13 steel[J].Journal of Materials Engineering and Performance,2018,27(8):3886-3899.
目录contents

    摘要

    在润滑油中添加纳米颗粒可以有效减少摩擦磨损,大多数研究只集中在纳米颗粒的性质对摩擦性能的影响,很少考虑到颗粒粒径与表面粗糙度对摩擦性能的耦合作用。采用分子动力学(MD)模拟和试验的方法研究纳米铜颗粒添加剂粒径对润滑油摩擦性能的影响。建立具有凸峰和凹槽的粗糙壁面边界润滑 MD 模型,模拟 300 MPa 下两固体壁面相对剪切速度为 5 m / s 时,5 种粒径的纳米 Cu 颗粒分别在不同粗糙度壁面下的力学性能。定量计算出摩擦表面的应力、磨损量、摩擦力、正压力和摩擦热。同时,采用微纳米划痕仪测量含纳米 Cu 颗粒润滑油的摩擦因数。结果表明,颗粒的粒径和壁面粗糙度对润滑油的摩擦性能具有耦合作用;在剪切过程中纳米颗粒会填充壁面凹坑、形成保护膜、减少摩擦磨损、提高承载能力和降低壁面摩擦热。当壁面粗糙度较小、处于边界润滑状态时,Cu 颗粒添加剂会增大体系的摩擦力;当壁面粗糙度较大、处于混合润滑状态时,Cu 颗粒添加剂会减小体系的摩擦力;当颗粒粒径与壁面凹槽深度的比值 D / h 在 1.05~1.12 范围内,即颗粒直径略大于凹槽深度时,润滑油的摩擦性能最优,摩擦力和磨损量较小、油膜承载能力最大。分子动力学模拟和试验相结合,建立微纳观结构和宏观特性之间的联系,探究壁面粗糙度与颗粒粒径对润滑油摩擦性能的影响机理,为预测和开发高性能新型润滑剂提供理论基础。

    Abstract

    An effective method of reducing friction and wear is through the addition of nanoparticles to lubricating oil. However, although many researchers have linked the tribological properties of nanoparticles to their intrinsic properties, very few have related the tribological properties to the coupling effect of the nanoparticle size and surface roughness. Thus, the effect of the particle size of Cu nanoparticle additives on its tribological properties was investigated in this study using simulations and experiments. A boundary lubrication system model with peaks and grooves was established, and molecular dynamics(MD) simulations were used to simulate the mechanical properties of five types of nanoparticles with different sizes under a stress and relative shear velocity between the two solid walls of 300 MPa and 5 m / s, respectively. The stress, wear, friction force, positive pressure, and friction heat on the friction surface was quantitatively calculated, and the friction coefficient of the lubricating oil containing the Cu nanoparticles was measured using a micro-scratch tester. The results showed that the Cu nanoparticles increased the friction coefficient when the asperity was small and during boundary lubrication, and reduced the friction coefficient when the asperity was large and during mixed lubrication. Particularly, when the ratio of the particle diameter to the groove depth D / h was in the range of 1.05-1.12, namely, when the nanoparticle diameter was slightly larger than the groove depth, the tribological performance of the lubricating oil was excellent, the friction and wear was low, and the oil film bearing capacity was optimal. The Von Mises stress nephogram of the metal revealed that when the ratio of the particle diameter to the groove depth D / h was 1.12, the maximum stress on the solid surface was 2.45×104 MPa, which appears in the direct contact area between the upper and lower contact surface, compared to the maximum stress on the solid surface of 31.2 GPa in the lubrication system without Cu nanoparticles. Additionally, the maximum stress on the solid surface was reduced by 21.40% using Cu nanoparticles, which means that the bearing capacity of the lubrication system can be improved using the Cu nanoparticles additive. A comparison of the wear quantity of different nanoparticle sizes showed that the wear of the lubrication system containing Cu nanoparticles was smaller than that of the lubrication system without Cu nanoparticles, which indicates that Cu nanoparticles can reduce the wear of the lubrication system. When the depth of the groove h was 2.14 nm, an increase in the Cu nanoparticle size caused a reduction in the wear quantity, and when the Cu nanoparticle diameter D was 2.45 nm, the wear of the lubrication system was reduced by 20.70% compared to that in the system without Cu nanoparticles. The temperature distribution of the lubrication system showed that the highest temperature appears on the Z-axis coordinate from 3.5~4.5 nm, which is where the upper and lower solid surfaces are closest; and in the lubrication system without Cu nanoparticles, the maximum temperature of the system was 336 K. Moreover, Cu nanoparticles can reduce the temperature of the contact zone, and an increase in the nanoparticle size results in a further decrease in the maximum temperature. When D / h > 1, the maximum temperature of the lubrication system during the shearing process was reduced to approximately 300 K. In the micro-scratch test, the friction coefficient of the lubricating oil containing Cu nanoparticles of different sizes was smaller than that of the pure base oil. When Ra = 50 nm, the friction coefficient of lubricants with a D = 50 nm was smaller than that with a D = 100 nm, and under a D = 50 nm, the friction coefficient of lubricants with Ra = 50 nm was smaller than that with Ra = 100 nm. This indicates that the particle size D and surface roughness Ra have a coupling effect on the lubrication performance. Finally, simulations and experiments were simultaneously employed to study the effect of the size of Cu nanoparticles additive on the tribological properties. Additionally, an MD simulation was used to compensate for the deficiencies of the test, and the test was used to verify the MD simulation to a certain extent. The results of the simulations and experiments mutually confirm that the surface roughness and nanoparticle size have a coupling effect on the tribological properties of lubricating oil, which provides a theoretical basis for the application of nanoparticles additives.

  • 0 前言

  • 添加剂作为润滑油的重要成分之一,能提高润滑油的摩擦性能[1-2]。近年来,纳米技术已成功应用于许多领域,其中纳米颗粒作为固体添加剂[3-4],常被加入到润滑油中以提高摩擦和热物理性能[5-7]。有研究指出,含纳米颗粒润滑剂比基础润滑剂可以提升高达 80%的摩擦性能,若使用纳米润滑剂每年可以节省 1 亿桶石油[8-9]

  • 针对纳米颗粒添加剂的减摩抗磨机理已有大量的研究,表明纳米颗粒在接触面之间充当轴承球将滑动转变成滚动;填补壁面的凹坑使得壁面变得光滑;在接触面之间形成保护薄膜避免直接接触[10-12]。 PANICKAR 等[13]通过四球摩擦磨损试验机研究了含碳纳米颗粒合成润滑油的摩擦性能,表明加入 0.3%的碳颗粒能够降低润滑油的摩擦因数,减小磨斑直径。BASKAR 等[14]研究了含纳米氧化铜润滑油的润滑性能,发现其表现出更好的抗磨减摩性能。 PADGURSKAS 等[15]比较分析了加入铁、铜和钴纳米颗粒润滑油的摩擦性能,含铜的纳米润滑油更加明显地减少了摩擦和磨损,但没有对不同粒径的颗粒进一步比较分析。此外,KALYANI 等[16]通过试验研究纳米润滑油,发现颗粒粒径会对摩擦性能产生影响,在 392 N 的载荷条件下,含不同粒径 Zn0.92Mg0.08O 的石蜡油之间摩擦因数相差 36%, RABASO 等[17]也在试验中发现粒径影响润滑效果的现象,仍只是对颗粒的不同粒径进行研究。大多数研究只集中在纳米颗粒自身性质对润滑油摩擦性能的影响,很少有考虑到颗粒粒径与表面粗糙度对润滑油摩擦性能的耦合作用[18-19]

  • 随着纳米技术和微纳机电系统的发展,摩擦副表面的粗糙度和润滑膜厚度达到纳米尺度。当润滑薄膜进入纳米量级时,宏观经典的流体力学和摩擦学理论已经不完全适用,并且很难通过实物试验在线观察和测量摩擦表面的受力、温度和磨损状况。而分子动力学(Molecular dynamics,MD)方法能够通过原子运动演变过程来动态适时地展示摩擦副中的润滑状态,定量计算摩擦面的应力、温升、磨损量、油膜厚度、润滑油密度和流速等参数及其分布规律。同时 MD 可以准确地单独考察某一因素的影响规律,又可以考察多因素的耦合作用。MD 还可以方便地模拟极端苛刻工况,以及尚未开发的新产品。MD 模拟中的力场参数是由大量的试验数据和精确的量子计算结果拟合得到,因此模拟具有较高的可靠度。

  • 纳米薄膜润滑不仅存在于微纳机械系统中,也存在于宏观机械系统中。例如:在齿轮传动的弹流润滑中;流体润滑机器在启动和停止的瞬时可能出现纳米薄膜润滑;在摩擦面的粗糙峰之间,润滑膜也可能处于纳米量级。因此,纳米薄膜润滑是各种尺度机械中的普遍现象。由于宏观流体力学规律不再完全适用,且相关的理论和实物试验还不完善, MD 方法是研究微纳尺度下润滑行为的一种有效手段[20-22]

  • 本文采用分子动力学模拟和实物试验结合的方法,以铜(Cu)纳米颗粒作为添加剂,正十六烷 (C16H34)作为基础油,通过设置不同的壁面粗糙度和添加不同粒径的纳米颗粒,考察比较在不同条件下润滑体系的力学性能,定量计算出摩擦表面的应力、磨损量、摩擦力、正压力和摩擦热,探究薄膜润滑中纳米颗粒的粒径与壁面粗糙度对摩擦性能的耦合作用机理。

  • 1 分子动力学模拟

  • 1.1 模型的建立

  • 本文的模拟过程通过大规模原子分子并行模拟器(Large-scale atomic / molecular massively parallel simulator,LAMMPS)编程实现[23]。图1 是含纳米颗粒的边界润滑模型,包括有凸峰的上壁面、基础油、纳米颗粒和有凹槽的下壁面。模拟体系在 xy 向的总体尺寸为 9.46 nm×5.16 nm,设置为周期性边界条件;z 向设置为非周期性边界条件。上、下壁面均为体心立方 bcc 晶体铁;基础油选用正十六烷(黄色、白色);添加剂选用 Cu 颗粒(绿色),颗粒直径 D 分别取 5 种粒径(1.05、1.40、1.75、2.10 和 2.45 nm);上壁面简化为一个纳米粗糙峰;下壁面设置一个深度为 h、宽度为 d 的凹槽,h 分别取 5种凹槽深度(0.00、0.42、1.00、1.56 和 2.14 nm),即分别对应 5 种表面粗糙度 Ra(0.00、0.27、0.65、 1.02、1.39 nm)。通过 D / h 的比值表示颗粒与壁面粗糙度之间的关系。当凹槽宽度 d 过小时,在加压阶段颗粒可能无法完全进入凹槽,不能达到研究目的;当 d 过大时,需要更多的润滑油分子保证油膜厚度,增加了计算量。经过调试,选取凹槽宽度 d 为 3.30 nm,由于 d 为定值,表面粗糙度 Ra 与凹槽的深度 h 呈正相关,h 能更直观地表现壁面粗糙程度,用 h 作为壁面粗糙度的变量。上下固体壁面均分为 3 层,反映力学响应的自由变形层 1 和自由变形层 2(紫色)、控制体系温度的恒温层 1 和恒温层 2(棕色)、施加边界条件的刚性层 1 和刚性层 2(蓝色)。图1 模型中紫色、棕色和蓝色原子都是 Fe 原子,使用不同颜色是为了更直观地划分壁面。基础油分子的个数为 100 个,不同粗糙度的固体壁面对应的 Fe 原子总数分别为 28 144、 27 630、27 316、26 902 和 26 488 个。纳米颗粒个数为 1,不同粒径颗粒对应 Cu 原子总数分别为 57、134、186、444 和 720 个,Cu 纳米添加剂的体积浓度约为 1.0 vol%。

  • 图1 边界润滑模型(Cu:绿色;C:黄色; H:白色;Fe:紫色、棕色、蓝色)

  • Fig.1 All-atom model of configuration of MD simulations (Cu-green, C-yellow, H-white, and Fe-purple, brown, blue)

  • 1.2 势函数

  • 由于 MD 模拟体系较大,正十六烷分子之间采用联合原子力场(TraPPE-UA)[24]。该力场将 C-H 结构视为联合原子(United-atom,UA),其他原子对 H 原子和 C 原子的作用力直接作用在联合原子上,在保证足够计算精度的前提下,达到减小计算量的目的。铁原子之间、铜原子之间的相互作用采用 Finnis-Sinclair(FS)EAM 势函数[25],铜原子与铁原子、铁原子与润滑油原子、铜原子与润滑油原子之间的非键作用采用 Lennard-Jones(L-J)势[26]。部分相关力场参数见表1,其中 ε 为 LJ 能量常数,σ 为 LJ 全局距离截止值。

  • 表1 L-J 势参数[27]

  • Table1 Parameters of L-J potential [27]

  • 1.3 模拟过程

  • MD 的模拟过程包括弛豫、加压和剪切 3 个阶段。首先在弛豫阶段,固定模型上下壁面的刚性层,采用共轭梯度法,通过迭代调整原子的位置以减小模拟体系的能量,其中能量偏差取 4.3 × 10−9 eV·nm−1,力偏差取 4.3×10−11 eV·nm−1,得到能量最小化的初始构型。随后进行 0.5 ns 的动态加压阶段,固定刚性层 2,并施加载荷于刚性层 1。为了传导体系由于压缩而产生的热量,运用 Nose-Hoover 恒温方法控制恒温层的温度,设置温度为 298 K,阻尼系数取时间步长的 100 倍。最后在剪切阶段,保持压力不变,沿 x 方向给上壁面的刚性层施加 5 m / s 的速度。为了保证纳米颗粒与壁面之间充分作用,剪切时间取 3.6 ns。整个模拟过程的时间步长取 1 fs。

  • 2 结果与讨论

  • 图2 为凹槽深度 h=1.00 nm 时,体系高度 Lz 在加压阶段随时间变化曲线。加压初始阶段,为了防止纳米颗粒过早发生变形,向刚性层 1 施加小载荷 Pz=10 MPa。在 t=0.28 ns 时 Lz 下降速度变缓并趋于稳定,在 t=0.30 ns 继续施加 Pz=300 MPa 的压力,直到 Lz 稳定。可以发现添加纳米颗粒体系的 Lz 均大于不含纳米颗粒的体系,并且随着颗粒粒径的增大,稳定后的 Lz也随之增大。

  • 图2 体系高度 Lz 在加压阶段变化曲线

  • Fig.2 Variation curve of lubrication system Lz in the pressure stage

  • 2.1 剪切运动分析

  • 加压稳定后,沿 x 向给刚性层 1 施加 5 m / s 的剪切速度。为了更好地了解颗粒粒径与壁面初始粗糙度对润滑油摩擦性能的耦合作用,剪切过程中壁面移动的距离为模拟框长度的 2 倍,表示润滑体系经历两次完整的剪切过程,剪切时间取 3.60 ns。

  • 在润滑油中添加纳米 Cu 颗粒能够有效减少摩擦磨损,除了 Cu 颗粒自身的性质外,颗粒粒径大小和摩擦副表面粗糙度会影响摩擦磨损。图3 是凹槽深度 h=2.14 nm,纳米 Cu 颗粒粒径 D=2.45 nm 时,未添加和添加纳米颗粒的两种润滑体系在剪切过程中不同时刻的状态。图3a 为不含纳米颗粒润滑体系的剪切过程,在剪切的初始阶段,润滑油吸附在壁面上,上下壁面被油膜完全隔开。随着剪切运动的进行,在 t=1.30 ns 时,润滑油膜破裂,上下壁面直接接触,壁面原子发生塑性变形和粘着磨损,并且随着剪切运动的进行,上下壁面接触面积进一步扩大。当 t=2.50 ns 时,体系结束第一次剪切过程,可以看出上下壁面由于直接接触从而发生了严重的磨损。图3b 为含 Cu 颗粒的剪切过程,由图可见,Cu 颗粒能够有效的避免上下壁面直接发生接触,这是由于在剪切过程中,一方面 Cu 颗粒的挤压强度较低,受外力挤压破碎后可填充在两固体壁面凸峰之间,避免两固体壁面直接接触,减小固体壁面的压力,提高了油膜的承载能力;另一方面 Cu 颗粒的存在增大了体系 Lz,避免了无 Cu 颗粒处固体壁面的凸峰直接接触。

  • 图3 Pz=300 MPa,h=2.14 nm 时,不含和含 D=2.45 nm Cu 颗粒的润滑体系的剪切过程(图中红色原子用于标示位置)

  • Fig.3 Shearing of system without and with Cu particles of D = 2.45 nm when Pz = 300 MPa, h=2.14 nm (the red atom in the figure is used to indicate the position)

  • 图4 是剪切过程中不同润滑体系的高度Lz随时间变化曲线。在第一次剪切运动过程中,润滑体系的高度主要经历了降低、升高、降低三个阶段。不含 Cu 颗粒的润滑体系在 t=0.70 ns 之前,Lz 从 7.26 nm 逐渐减低到 7.22 nm,这是由于基底存在凹槽,润滑油沿着剪切方向流动,部分润滑油聚集到凹槽中,油膜厚度减小,Lz 降低;之后由于润滑油膜的剪切时间效应,Lz 逐渐升高[28];在 t=0.84~1.86 ns,随着剪切运动的进行,润滑油膜破裂,上下壁面直接接触,发生塑性变形和粘着现象,Lz 的高度从 7.26 nm 下降至 7.10 nm,降低了 0.16 nm,相对高度降低了 2.20%;在 t=1.87 ns 处,Lz 急剧下降,并在 7.05 nm 附近小幅振荡,这是由于上下壁面在剪切运动中不断的发生接触,从而导致壁面磨损加剧,接触面积进一步增大。不含 Cu 颗粒的润滑体系从 t=0.84~2.50 ns 为第一次剪切过程,上下壁面始终存在着直接接触;并且在 t=2.10~2.50 ns 这段时间内,Lz 存在较大的振荡,这是由于两壁面接触面积较大,发生严重的塑性变形和粘着现象。

  • 图4 Pz=300 MPa,h=2.14 nm 时,含不同粒径纳米颗粒的体系高度在剪切过程中的变化

  • Fig.4 Curve of height with different size nanoparticles during shearing under h=2.14 nm, Pz=300 MPa

  • 含颗粒的润滑体系(粒径 D=2.45 nm)在t=0.69 ns 之前,Lz 从 7.41 nm 下降至 7.35 nm,一个原因是更多的润滑油随着剪切聚集到下壁面凹槽,另一原因是颗粒受到剪切发生变形;在 t=0.69~0.82 ns,Lz 的高度逐渐升高至 7.53 nm,这主要是由于颗粒的一部分进入上下壁面接触区域内,充当“润滑介质”,这也是添加了小粒径颗粒的润滑体系在第二次剪切过程中 Lz 突然上升的原因;之后的剪切过程,Lz 始终保持在较高值,Cu 颗粒的存在避免了两固体壁面的直接接触。通过分析剪切过程中的体系高度 Lz,发现当颗粒粒径 D / h<1 时,Lz 小幅增加,上下壁面仍然会发生直接接触,但随着颗粒粒径 D / h>1 时,Lz 明显增加,说明纳米颗粒添加剂阻止了上下壁面的直接接触,从而达到降低摩擦磨损的作用。

  • 图5 为凹槽深度 h=2.14 nm 时,不含和含 Cu 颗粒的润滑体系两次剪切后的下壁面原子 z 向坐标云图。t=2.50 ns 为第一次剪切后,t=4.30 ns 为第二次剪切后。不含 Cu 颗粒的下壁面在第一次剪切过后,由于下壁面与上壁面之间发生直接接触,下壁面发生塑性破坏,壁面原子因为外力的作用发生堆积和转移。接着,不含 Cu 颗粒的下壁面在第二次剪切过后,可以明显发现下壁面的磨损进一步加剧,这是由于在第一次剪切后壁面粗糙度增大,接触面积随之增加,从而导致体系磨损加大。含 D=2.45 nm 的 Cu 颗粒润滑体系的下壁面剪切过程中,可以发现第一次剪切和第二次剪切后,只有部分壁面原子由于与 Cu 颗粒碰撞发生晶格畸变,壁面几乎没有发生磨损,说明 Cu 颗粒的存在降低了润滑体系壁面的磨损情况。

  • 图5 不含和含 Cu 颗粒的润滑体系两次剪切后的下壁面原子 z 向坐标云图(图中黑圈框住的部分表示下壁面原子附着在上壁面)

  • Fig.5 z-coordinate of atoms on the lower wall of the system without and with Cu particles after twice shearing (the part enclosed by the black circle in the figure indicates that atom on the lower wall adheres to the upper wall)

  • 通过统计基底至少移动一个晶格距离的铁原子数量表示润滑体系的磨损情况。图6 是 Pz=300 MPa, h=2.14 nm 时,含不同粒径颗粒的润滑体系分别在第一次剪切和第二次剪切运动过后,下壁面的磨损量。由图可见,含 Cu 颗粒的润滑体系在两次剪切结束后,磨损量均比不含 Cu 颗粒的润滑体系小,说明 Cu 颗粒能够降低润滑体系的磨损。不含 Cu 颗粒的润滑体系在第二次剪切后,磨损量为 21.33%,而含 Cu 颗粒的润滑体系在第二次剪切后磨损量最多可以降低到 0.65%,极大的提升了润滑油的抗磨性能。同时,可以发现随着 Cu 颗粒粒径的增大,润滑体系的磨损量会随之降低;但只有当 Cu 颗粒粒径 D / h>1 时,磨损量才会降低到较低水平,并且经过两次剪切过程后的磨损量也不会有明显的上升。

  • 图6 Pz=300 MPa,h=2.14 nm 时,含不同粒径 Cu 颗粒的润滑体系两次剪切过程后的磨损量

  • Fig.6 Wear of system with different nanoparticles after two shearing under Pz=300 MPa, h=2.14 nm

  • 2.2 力学响应

  • 不含Cu 颗粒润滑体系的摩擦力FL与正压力FN 均由两部分组成,一部分是润滑油膜对自由变形层 1 的作用力,另一部分是上下壁面接触时,变形层 2 对变形层 1 的作用力;相比于不含 Cu 颗粒的润滑体系,含 Cu 颗粒的润滑体系还存在 Cu 颗粒对变形层 1 的作用力;其中作用在变形层 1 的 x 向合力为 FLz 向合力为 FN

  • 图7a 和 7b 分别为凹槽深度 h=2.14 nm 时,含不同粒径 Cu 颗粒的润滑体系的 FLFN 随时间的变化关系。由于图中曲线重叠较多,为了便于分辨各曲线,每隔 20 个数据,标记出 1 个数据点。含 Cu 颗粒的润滑体系,在剪切过程中最大摩擦力和正压力都较小,说明 Cu 颗粒提高了体系的承载能力。在 t=0.60~0.84 ns(图7a 中箭头指向的方框部分),含 Cu 颗粒体系的 FL振荡的幅度大于不含 Cu 颗粒的润滑体系,并且随着颗粒粒径的增大,FL增大。这是由于在剪切过程的初始阶段,油膜还未破裂,上下壁面仍被油膜分隔;此时若 Cu 颗粒较大,颗粒会直接和上下壁面接触,颗粒对壁面的作用力较大,导致 FL增大。

  • 图7 h=1.56 nm,Pz=300 MPa 时,正压力与摩擦力随时间的变化曲线(每隔 20 个数据标出 1 个数据点)

  • Fig.7 Change curve of FN and FL with time when h=1.56 nm, Pz=300 MPa (1 point marked at intervals of 20 points)

  • 图7a 中,不含 Cu 颗粒的润滑体系在 t=0.88~1.85 ns 内,油膜破裂,上下壁面直接接触,摩擦力 FL振荡上升至 8.96 eV·nm−1FL发生振荡是由于上下壁面接触的过程中,接触表面附近的原子出现严重的晶格畸变,阻碍壁面的运动,引起 FL增大。当晶格畸变超过极限时,变形晶格将会释放应力,形成新的晶格,进而减少 FL。在不考虑润滑的单个粗糙峰接触的研究中也观察到这种现象[29]。在 t=1.86~2.97 ns 内,FL振荡下降,此时上壁面粗糙峰重新进入下壁面凹槽,接触面积减小。在 t=3.65 ns 时,FL达到两次剪切运动中的最大值 14.60 eV·nm−1,这是由于上下壁面原子发生迁移,加大了壁面的粗糙度,使得上下壁面接触面积增大。对于含 Cu 颗粒的润滑体系,当 Cu 颗粒的粒径 D / h<1 时,上下壁面仍然会发生直接接触,但是体系 FL的峰值会小于未加 Cu 颗粒的体系,并且可以发现,对于粒径 D=1.40 nm 的 Cu 颗粒,虽然在第一次剪切过程中润滑体系的 FL并没有明显的减小,但是在进入第二次剪切过程后,FL 迅速降低到 3.08 eV·nm-1 附近振荡,说明此时颗粒进入上下壁面之间,形成保护膜,减少了上下壁面的接触面积,降低了 FL。当颗粒粒径D / h>1 时,可以看出此时体系的润滑条件明显改善,这是由于 Cu 颗粒在接触表面形成保护膜,并且增大了接触区域,避免了壁面发生直接接触。

  • 图7b 中,不含 Cu 颗粒的润滑体系在 t=0.87 ns 之前,正压力在 0.94 eV·nm−1 附近振荡,这是由于油膜还未发生破裂,载荷由油膜承受。之后,润滑膜发生破裂,上下壁面直接接触,下壁面的原子对上壁面粗糙峰的原子产生排斥力,导致正压力值逐渐振荡增加,在 t=1.85 ns 时,正压力达到最大值 24.98 eV·nm−1。含 Cu 颗粒的润滑体系,特别是对于粒径 D≥1.75 nm 的 Cu 颗粒,正压力在整个剪切过程保持稳定,这是由于 Cu 颗粒的挤压强度较低,受外力挤压破碎后可填充在两固体壁面凸峰之间,避免两固体壁面直接接触,壁面间的相互作用力减弱,载荷由含 Cu 油膜承受。

  • 图8 是在 Pz=300 MPa 和不同壁面粗糙度条件下,含 Cu 颗粒与不含 Cu 颗粒的润滑体系的摩擦力 FLFL取两次剪切过程中的均值。从图中可以明显看出,在凹槽深度较小时(h≤1.00 nm),Cu 颗粒添加剂增大了润滑体系的 FL;而在凹槽深度较大时(h=1.56、2.14 nm),Cu 颗粒添加剂减小了润滑体系的 FL。在小凹槽深度 h=0.42 nm 的情况下,不含 Cu 颗粒润滑体系的润滑油膜不会发生破裂,而加入不同粒径的 Cu 颗粒后,体系 FL随着颗粒粒径的增大而增大。相反,在大凹槽深度 h=1.56 nm 的情况下,不含 Cu 颗粒的润滑体系润滑油膜发生破裂,而加入的 Cu 颗粒的油膜没有破裂,说明 Cu 颗粒提高油膜承载能力,能够在润滑体系中起到抗磨减摩的效果。进而可以得到,当 D / h<1 时,颗粒沉积在凹槽内,无法进入摩擦界面起到减摩的效果;当 D / h>1 时,颗粒能够隔绝上下壁面的直接接触从而减少磨损,改善润滑条件。但是若 D / h 进一步增大,含颗粒的体系的润滑效果反而会减弱。在凹槽深度 h=1.56 nm 的条件下,D / h 在 1.05~1.12 区间时,即颗粒直径略大于凹槽深度时,FL的值始终在 0.21 eV·nm−1 附近振荡,润滑效果最优。

  • 图8 Pz=300 MPa 时,含 Cu 颗粒与不含 Cu 颗粒的润滑体系的摩擦力

  • Fig.8 Friction of the lubrication system with and without nanoparticles when Pz=300 MPa

  • 图9 是当凹槽深度 h=1.56 nm 时,两种润滑体系中金属壁面 Von Mises 应力云图[30]。此时在不含 Cu 颗粒的润滑体系中,固体壁面的最大应力为 31.2 GPa,出现在上下壁面直接接触区域。而含 Cu 颗粒(D=1.75 nm)的润滑体系,固体壁面最大应力仅为 24.5 GPa,即含 Cu 颗粒能够减小 21.40%壁面最大应力。表明添加了纳米颗粒能够提高润滑体系的承载能力。

  • 图9 在 PZ=300 MPa、h=1.56 nm、D=1.75 nm 时两种润滑体系的应力分布

  • Fig.9 Stress distribution of two lubrication systems when PZ=300 MPa,h=1.56 nm,D=1.75 nm

  • 2.3 剪切温度

  • 在摩擦过程中,由于压缩剪切作用,固体壁面间会发生塑性变形和粘着现象,伴随产生摩擦热,从变形层一直传递到壁面内部,局部的高温会降低摩擦表面上边界膜的强度和金属材料的性能。颗粒对润滑体系摩擦热的影响是其能够改善润滑油性能的一个重要原因,但目前润滑体系摩擦区域的温度分布情况很难通过实物试验进行测量[31]。而 MD 模拟可以通过计算原子的动能,进而得到运动过程中产生的摩擦热。

  • 为了更直观地观察剪切过程中摩擦热的分布情况,将壁面沿着 z 向分层并统计每层平均温度。图10 是凹槽深度 h=1.56 nm 的润滑体系在剪切过程中的温度分布,可以看出对于不含 Cu 颗粒的润滑体系,越靠近摩擦面的原子层温度越高。最高温度发生在 z 轴坐标 3.0~4.0 nm 处即上下摩擦副接触界面,此时温度为 336 K。而含 Cu 颗粒的润滑体系,体系的最高温度较低。对于 D / h<1 的颗粒 (D=1.05 nm 和 D=1.40 nm),体系的最高温度分别为 319 K 和 316 K,分别降低了 5.13%和 5.91%;而对于 D / h>1 的颗粒,体系的最高温度维持在 303 K 附近,降低了 10.02%。此外,不含 Cu 颗粒的润滑体系,因摩擦热导致各分层温度略有上升,而含 Cu 颗粒的润滑体系各分层受摩擦热的影响较低。当 D / h>1 时,只有 z 轴坐标为 3.5~4.5 nm 会观察到温度略有上升。图11 是在不同 h 下,含不同粒径 Cu 颗粒的润滑体系产生的最高温度。由图可见,只有当 D / h>1 时,润滑体系在剪切过程中的最高温度才会明显降低;随着颗粒粒径的增大,最高温度进一步降低。

  • 图10 h=1.56 nm 时润滑体系在剪切过程中的温度分布

  • Fig.10 Temperature distribution of lubrication system during shearing under h=1.56 nm

  • 图11 在不同凹槽深度 h 中润滑体系在剪切过程中的最高温度 Tmax

  • Fig.11 Maximum temperature of lubrication system with nanoparticles under different surface roughness

  • 3 试验

  • 虽然 MD 模拟能够弥补实物试验无法实时观察和测量的不足,但仍可以通过试验在一定程度上对 MD 的模拟结果进行验证。为保证模拟和试验的可比性,试验中 Cu 颗粒直径 D 与表面粗糙度 Ra 的比值与 MD 模拟相近。

  • 采用奥地利 Anton Paar 公司生产的微纳米划痕仪(MST2),对样品进行划痕试验,可以实现微纳米尺度下的压痕、划痕与摩擦磨损测试,进而得到摩擦因素、磨损率、应力-应变曲线等微观力学数据[32-34],图12 为微纳米划痕仪实物图。划痕仪压头材料为 100Cr6(直径 1 mm),基底材料为纯铁(直径 12 mm,厚度 10 mm,硬度 21.7 HRC,表面粗糙度 Ra=50 nm 和 100 nm)。添加剂选用纳米 Cu 颗粒 (粒径 D= 50nm 和 100 nm),基础油选用正十六烷 (纯度为 99%)。为保证试验和 MD 模拟的一致性,配制的 Cu 纳米添加剂体积浓度为 1.0 vol.%。对含不同粒径纳米颗粒的润滑油摩擦性能进行微纳米划痕试验研究,表2 为划痕试验的主要参数。

  • 图12 微纳米划痕仪实物图

  • Fig.12 Solid figure of micro-nano scratch tester

  • 表2 微纳米划痕试验主要参数

  • Table2 Main parameters of micro-scratch tester

  • 将清洗过的基底固定在划痕仪(MST2)的工作台上,随后利用移液管将含纳米颗粒的润滑油均匀铺满试样表面。为了确保压头的行程不会超过基底表面范围,划痕仪会对基底进行预扫描,载荷为 5 mN。在设定好载荷条件后,开始进行划痕试验,最后利用划痕仪自带的显微镜头对试样表面划痕进行观察。

  • 图13 为含不同粒径纳米 Cu 颗粒润滑油与纯基础油在不同基底表面粗糙度条件下的摩擦因数对比。由图可见,含不同粒径的纳米 Cu 颗粒润滑油的摩擦因数均小于纯基础油的摩擦因数,这是由于 Cu 颗粒在摩擦过程中易在摩擦副之间形成润滑薄膜,从而起到降低摩擦因数的效果。含不同粒径颗粒润滑油的摩擦因数不同,在 Ra=50 nm 的条件下,含 D=50 nm 颗粒润滑油的摩擦因数反而小于含 D=100 nm 颗粒润滑油,说明颗粒粒径会影响润滑油的润滑性能;相同粒径下,不同的表面粗糙度也会使润滑油的摩擦因数发生变化。这说明颗粒粒径 D 和壁面粗糙度 Ra 对润滑性能具有耦合作用。

  • 图13 含不同 Cu 颗粒添加剂在粗糙度表面的摩擦因数

  • Fig.13 Friction factors of nanoparticles with different sizes under different surface roughness conditions

  • 图14 为基底表面粗糙度 Ra=100 nm,纳米 Cu 颗粒润滑油中划痕形貌光学显微镜照片(划痕方向从左到右)。从图中可以发现,纳米 Cu 颗粒填补到划痕内,这是由于 Cu 颗粒的硬度较低,在挤压过程中易发生形变,在摩擦副之间形成低剪切强度的薄膜,从而起到减小磨损的作用。

  • 图14 不含和含有铜纳米颗粒的润滑油中划痕形貌

  • Fig.14 Optical micrograph of the scratch morphology with and without nanoparticles

  • 4 结论

  • 结合分子动力学模拟和试验两种研究方法,建立微纳观结构和宏观特性之间的联系,探究壁面粗糙度与颗粒粒径对润滑油摩擦性能的影响机理,为纳米颗粒添加剂的应用提供理论基础。得出以下结论:

  • (1)模拟和试验都表明壁面粗糙度与颗粒粒径对润滑油的摩擦性能具有耦合作用。颗粒粒径 D 与壁面凹槽深度 h 的比值 D / h = 1.05~1.12 时,即纳米铜颗粒直径略大于凹槽深度时,含 Cu 颗粒润滑油的摩擦性能最优、油膜承载能力最大。

  • (2)当壁面粗糙度较小时(h≤1.00 nm),体系仍处于边界润滑状态,Cu 颗粒添加剂增大了润滑体系的摩擦力;而在壁面粗糙度大时(h=1.56、 2.14 nm),油膜破裂,体系处于混合润滑状态,Cu 颗粒添加剂减小了润滑体系的摩擦力。

  • (3)通过 MD 模拟定量计算出宏观试验无法实时观察和测量的摩擦表面应力、磨损量和摩擦热。结果表明含 Cu 颗粒能够将金属壁面的最大应力降低 21.40%,磨损量降低 20.70%,最高温度降低 10.02%。

  • 参考文献

    • [1] APOSTOLO R F G,TSAGKAROPOULOU G,CAMP P J.Molecular adsorption,self-assembly,and friction in lubricants[J].Journal of Molecular Liquids,2019,277:606-612.

    • [2] RAHMAN S,PURANI D,ALI S,et al.Effects of SiO2 contaminant on thermo-mechanical/chemical properties and lubricity of PFPE lubricants[J].Lubricants,2021,9(9):90.

    • [3] ABDEL R A A,AKL S,ELSOUDY S.Investigation of the tribological behavior of mineral lubricant using copper oxide nano additives[J].Lubricants,2021,9(2):16.

    • [4] TIAN Yuanyuan,FENG Hui,LI Jia,et al.Nanoscale sliding friction behavior on Cu/Ag bilayers influenced by water film[J].Applied Surface Science,2021,545:148957.

    • [5] SPIKES H.Friction modifier additives[J].Tribology Letters,2015,60(1):5.

    • [6] PENA P L,J TAHA T J,GARZA L,et al.Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils[J].Wear,2015,332:1256-1261.

    • [7] MELLO V S,FARIA E A,ALVES S M,et al.Enhancing CuO nanolubricant performance using dispersing agents[J].Tribology International,2020,150:106338.

    • [8] ALI M K A,HOU Xianjun,MAI Liqiang,et al.Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives[J].Tribology International,2016,103:540-554.

    • [9] POWNRAJ C,ARASU A V.Effect of dispersing single and hybrid nanoparticles on tribological,thermo-physical,and stability characteristics of lubricants:A review[J].Journal of Thermal Analysis and Calorimetry,2021,143(2):1773-1809.

    • [10] 王壮,张建军,梁森,等.石墨烯量子点/纳米 Al2O3 协同生长润滑转移膜机制[J].中国表面工程,2021,34(5):17-24.WANG Zhuang,ZHANG Jianjun,LIANG Sen,et al.Synergistic of graphene quantum dot/nano-Al2O3 growing lubricous tribofilm[J].China Surface Engineering,2021,34(5):17-24.(in Chinese)

    • [11] 付甜,麻拴红,周峰,等.石墨烯的功能化改性及其作为水基润滑添加剂的应用进展[J].摩擦学学报,2022,42(2):408-425.FU Tian,MA Shuanhong,ZHOU Feng,et al.Progress of functionalized graphene nanomaterials and applications as water-based lubricating additives[J].Tribology,2022,42(2):408-425.(in Chinese)

    • [12] 孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.KONG Shang,HU Wenjing,LI Jiusheng,et al.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)

    • [13] PANICKAR R,SOBHAN C B,CHAKRAVORTI S.Investigations on tribological properties of non-catalytic CVD synthesized carbon spheres in lubricant[J].Diamond and Related Materials,2020,106:107834.

    • [14] BASKAR S,PRABAHARAN G,ARUMUGAM S,et al.Modeling and analysis of the tribological evaluation of bearing materials under the influence of nano based marine lubricant using D-optimal design.[J] Materials Today:Proceedings,2018,5(5):11548-11555.

    • [15] PADGURSKAS J,RUKUIZA R,PROSYCEVAS I,et al.Tribological properties of lubricant additives of Fe,Cu and Co nanoparticles[J].Tribology International,2013,60:224-232.

    • [16] KALYANI,JAISWAL V,RASTOGI R B,et al.The investigation of different particle size magnesium-doped zinc oxide(Zn0.92Mg0.08O)nanoparticles on the lubrication behavior of paraffin oil[J].Applied Nanoscience,2017,7(6):275-281.

    • [17] RABASO P,VILLE F,DASSENOY F,et al.Boundary lubrication:Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction[J].Wear,2014,320:161-178.

    • [18] JU S P,LEE I J,CHEN H Y.Melting mechanism of Pt-Pd-Rh-Co high entropy alloy nanoparticle:An insight from molecular dynamics simulation[J].Journal of Alloys and Compounds,2021,858:157681.

    • [19] TOMALA A,VENGUDUSAMY B,RIPOLL M R,et al.Interaction between selected MoS2 nanoparticles and ZDDP tribofilms[J].Tribology Letters,2015,59(1):26.

    • [20] 潘伶,高诚辉.纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J].机械工程学报,2015,51(5):76-82.PAN Ling,GAO Chenghui.Molecular dynamics simulation on the compressibility of pentaerythritol tetra in nanogap[J].Journal of Mechanical Engineering,2015,51(5):76-82.(in Chinese)

    • [21] 潘伶,鲁石平,陈有宏,等.分子动力学模拟环烷烃含碳量对边界润滑的影响[J].机械工程学报,2020,56(1):110-118.PAN Ling,LU Shiping CHEN Youhong,et al.Molecular dynamics simulation boundary lubrication:the effect of cycloalkane carbon content[J].Journal of Mechanical Engineering,2020,56(1):110-118.(in Chinese)

    • [22] 潘帅航,尹念,张执南.微动界面连续干摩擦行为的分子动力学模拟[J].机械工程学报,2018,54(3):82-87.PAN Shuaihang,YIN Nian,ZHANG Zhinan.Molecular dynamics simulation for continuous dry friction on fretting interfaces[J].Journal of Mechanical Engineering,2018,54(3):82-87.(in Chinese)

    • [23] PLIMPTON S.Fast parallel algorithms for short-range molecular-dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

    • [24] MARTIN M G,SIEPMANN J I.Transferable potentials for phase equilibria.1.United-atom description of n-alkanes[J].Journal of Physical Chemistry B,1998,102(14):2569-2577.

    • [25] MENDELEV M I,HAN S,SROLOVITZ D J,et al.Development of new interatomic potentials appropriate for crystalline and liquid iron[J].Philosophical Magazine,2003,83(35):3977-3994.

    • [26] WU Lupeng,KEER L M,LU Jie,et al.Molecular dynamics simulations of the rheological properties of graphene-PAO nanofluids[J].Journal of Materials Science,2018,53(23):15969-15976.

    • [27] LEE J G.Computational materials science:An introduction[M].CRC Press,2011.

    • [28] 温诗铸,黄平.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping.Principles of Tribology Fifth Edition[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)

    • [29] SONG Jun,SROLOVITZ D J.Atomistic simulation of multicycle asperity contact[J].Acta Materialia,2007,55(14):4759-4768.

    • [30] EGAMI T.Atomic level stresses[J].Progress in Materials Science,2011,56(6):637-653.

    • [31] DAI Wei,KHEIREDDIN Bassem,GAO Hong,et al.Roles of nanoparticles in oil lubrication[J].Tribology International,2016,102:88-98.

    • [32] 刘明,李烁,高诚辉.利用圆锥压头微米划痕测试材料断裂韧性[J].摩擦学学报,2019,39(5):556-564.LIU Ming LI Shuo,GAO Chenghui.Fracture toughness measurement by micro-scratch tests with conical indenter[J].Tribology,2019,39(5):556-564.(in Chinese)

    • [33] ZHANG Dong,SUN Yuan,GAO Chenhui,et al.Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter[J].Wear,2020,444:203158.

    • [34] VEGA M R C,RODRIGUEZ C G A,JIMENEZ T L F,et al.Multipass scratch behavior of borided and nitrided H13 steel[J].Journal of Materials Engineering and Performance,2018,27(8):3886-3899.

  • 参考文献

    • [1] APOSTOLO R F G,TSAGKAROPOULOU G,CAMP P J.Molecular adsorption,self-assembly,and friction in lubricants[J].Journal of Molecular Liquids,2019,277:606-612.

    • [2] RAHMAN S,PURANI D,ALI S,et al.Effects of SiO2 contaminant on thermo-mechanical/chemical properties and lubricity of PFPE lubricants[J].Lubricants,2021,9(9):90.

    • [3] ABDEL R A A,AKL S,ELSOUDY S.Investigation of the tribological behavior of mineral lubricant using copper oxide nano additives[J].Lubricants,2021,9(2):16.

    • [4] TIAN Yuanyuan,FENG Hui,LI Jia,et al.Nanoscale sliding friction behavior on Cu/Ag bilayers influenced by water film[J].Applied Surface Science,2021,545:148957.

    • [5] SPIKES H.Friction modifier additives[J].Tribology Letters,2015,60(1):5.

    • [6] PENA P L,J TAHA T J,GARZA L,et al.Effect of CuO and Al2O3 nanoparticle additives on the tribological behavior of fully formulated oils[J].Wear,2015,332:1256-1261.

    • [7] MELLO V S,FARIA E A,ALVES S M,et al.Enhancing CuO nanolubricant performance using dispersing agents[J].Tribology International,2020,150:106338.

    • [8] ALI M K A,HOU Xianjun,MAI Liqiang,et al.Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives[J].Tribology International,2016,103:540-554.

    • [9] POWNRAJ C,ARASU A V.Effect of dispersing single and hybrid nanoparticles on tribological,thermo-physical,and stability characteristics of lubricants:A review[J].Journal of Thermal Analysis and Calorimetry,2021,143(2):1773-1809.

    • [10] 王壮,张建军,梁森,等.石墨烯量子点/纳米 Al2O3 协同生长润滑转移膜机制[J].中国表面工程,2021,34(5):17-24.WANG Zhuang,ZHANG Jianjun,LIANG Sen,et al.Synergistic of graphene quantum dot/nano-Al2O3 growing lubricous tribofilm[J].China Surface Engineering,2021,34(5):17-24.(in Chinese)

    • [11] 付甜,麻拴红,周峰,等.石墨烯的功能化改性及其作为水基润滑添加剂的应用进展[J].摩擦学学报,2022,42(2):408-425.FU Tian,MA Shuanhong,ZHOU Feng,et al.Progress of functionalized graphene nanomaterials and applications as water-based lubricating additives[J].Tribology,2022,42(2):408-425.(in Chinese)

    • [12] 孔尚,胡文敬,李久盛.石墨烯在PAO基础油中的摩擦学性能[J].中国表面工程,2019,32(3):162-169.KONG Shang,HU Wenjing,LI Jiusheng,et al.Tribological properties of graphene in PAO base oil[J].China Surface Engineering,2019,32(3):162-169.(in Chinese)

    • [13] PANICKAR R,SOBHAN C B,CHAKRAVORTI S.Investigations on tribological properties of non-catalytic CVD synthesized carbon spheres in lubricant[J].Diamond and Related Materials,2020,106:107834.

    • [14] BASKAR S,PRABAHARAN G,ARUMUGAM S,et al.Modeling and analysis of the tribological evaluation of bearing materials under the influence of nano based marine lubricant using D-optimal design.[J] Materials Today:Proceedings,2018,5(5):11548-11555.

    • [15] PADGURSKAS J,RUKUIZA R,PROSYCEVAS I,et al.Tribological properties of lubricant additives of Fe,Cu and Co nanoparticles[J].Tribology International,2013,60:224-232.

    • [16] KALYANI,JAISWAL V,RASTOGI R B,et al.The investigation of different particle size magnesium-doped zinc oxide(Zn0.92Mg0.08O)nanoparticles on the lubrication behavior of paraffin oil[J].Applied Nanoscience,2017,7(6):275-281.

    • [17] RABASO P,VILLE F,DASSENOY F,et al.Boundary lubrication:Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction[J].Wear,2014,320:161-178.

    • [18] JU S P,LEE I J,CHEN H Y.Melting mechanism of Pt-Pd-Rh-Co high entropy alloy nanoparticle:An insight from molecular dynamics simulation[J].Journal of Alloys and Compounds,2021,858:157681.

    • [19] TOMALA A,VENGUDUSAMY B,RIPOLL M R,et al.Interaction between selected MoS2 nanoparticles and ZDDP tribofilms[J].Tribology Letters,2015,59(1):26.

    • [20] 潘伶,高诚辉.纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J].机械工程学报,2015,51(5):76-82.PAN Ling,GAO Chenghui.Molecular dynamics simulation on the compressibility of pentaerythritol tetra in nanogap[J].Journal of Mechanical Engineering,2015,51(5):76-82.(in Chinese)

    • [21] 潘伶,鲁石平,陈有宏,等.分子动力学模拟环烷烃含碳量对边界润滑的影响[J].机械工程学报,2020,56(1):110-118.PAN Ling,LU Shiping CHEN Youhong,et al.Molecular dynamics simulation boundary lubrication:the effect of cycloalkane carbon content[J].Journal of Mechanical Engineering,2020,56(1):110-118.(in Chinese)

    • [22] 潘帅航,尹念,张执南.微动界面连续干摩擦行为的分子动力学模拟[J].机械工程学报,2018,54(3):82-87.PAN Shuaihang,YIN Nian,ZHANG Zhinan.Molecular dynamics simulation for continuous dry friction on fretting interfaces[J].Journal of Mechanical Engineering,2018,54(3):82-87.(in Chinese)

    • [23] PLIMPTON S.Fast parallel algorithms for short-range molecular-dynamics[J].Journal of Computational Physics,1995,117(1):1-19.

    • [24] MARTIN M G,SIEPMANN J I.Transferable potentials for phase equilibria.1.United-atom description of n-alkanes[J].Journal of Physical Chemistry B,1998,102(14):2569-2577.

    • [25] MENDELEV M I,HAN S,SROLOVITZ D J,et al.Development of new interatomic potentials appropriate for crystalline and liquid iron[J].Philosophical Magazine,2003,83(35):3977-3994.

    • [26] WU Lupeng,KEER L M,LU Jie,et al.Molecular dynamics simulations of the rheological properties of graphene-PAO nanofluids[J].Journal of Materials Science,2018,53(23):15969-15976.

    • [27] LEE J G.Computational materials science:An introduction[M].CRC Press,2011.

    • [28] 温诗铸,黄平.摩擦学原理[M].5 版.北京:清华大学出版社,2018.WEN Shizhu,HUANG Ping.Principles of Tribology Fifth Edition[M].5th ed.Beijing:Tsinghua University Press,2018.(in Chinese)

    • [29] SONG Jun,SROLOVITZ D J.Atomistic simulation of multicycle asperity contact[J].Acta Materialia,2007,55(14):4759-4768.

    • [30] EGAMI T.Atomic level stresses[J].Progress in Materials Science,2011,56(6):637-653.

    • [31] DAI Wei,KHEIREDDIN Bassem,GAO Hong,et al.Roles of nanoparticles in oil lubrication[J].Tribology International,2016,102:88-98.

    • [32] 刘明,李烁,高诚辉.利用圆锥压头微米划痕测试材料断裂韧性[J].摩擦学学报,2019,39(5):556-564.LIU Ming LI Shuo,GAO Chenghui.Fracture toughness measurement by micro-scratch tests with conical indenter[J].Tribology,2019,39(5):556-564.(in Chinese)

    • [33] ZHANG Dong,SUN Yuan,GAO Chenhui,et al.Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter[J].Wear,2020,444:203158.

    • [34] VEGA M R C,RODRIGUEZ C G A,JIMENEZ T L F,et al.Multipass scratch behavior of borided and nitrided H13 steel[J].Journal of Materials Engineering and Performance,2018,27(8):3886-3899.

  • 手机扫一扫看