en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈孝婷,女,1997年出生,硕士研究生。主要研究方向为热机耦合摩擦磨损。E-mail:841451106@qq.com

通讯作者:

卢纯,男,1989年出生,博士,博士后,讲师。主要研究方向为多轴疲劳可靠性、铁路摩擦学和热机耦合摩擦磨损。E-mail:clu@swjtu.edu.cn;se7en_luchun@163.com

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220805001

参考文献 1
LU C,YIN J B,MO J L,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494-495:204251.
参考文献 2
杨智勇,李志强,李卫京,等.制动盘摩擦面热损伤的形成机理分析[J].铁道机车车辆,2012,32(3):14-19.YANG Zhiyong,LI Zhiqiang,LI Jiawei,et al.Analysis of the formation mechanism of thermal damage on the friction surface of brake disc[J].Railway Rolling Stock,2012,32(3):14-19.(in Chinese)
参考文献 3
WANG Z,HAN J,LIU X,et al.Temperature evolution of the train brake disc during high-speed braking[J].Advances in Mechanical Engineering,2019,11(1):1-10.
参考文献 4
LI Z,HAN J,YANG,Z,et al.The effect of braking energy on the fatigue crack propagation in railway brake discs[J].Engineering Failure Analysis,2014,44:272-284.
参考文献 5
符蓉,宋宝韫,高飞,等.摩擦制动条件对列车制动闸片材料摩擦性能的影响[J].中国有色金属学报,2008,18(7):1223-1230.FU Rong,SONG Baoyun,GAO Fei,et al.Influence of friction braking conditions on friction properties of train brake pad materials[J].Chinese Journal of Nonferrous Metals,2008,18(7):1223-1230.
参考文献 6
RODRIGUES ACP,ÖSTERLE W,GRADT T,et al.Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply:addition of artificial third body consisting of Fe3O4,Cu and graphite[J].Tribology International,2017,110:103-112.
参考文献 7
杨淑贞,马海英,张晓旭.铜基粉末冶金刹车闸瓦材料摩擦磨损性能研究[J].铸造技术,2017,38(10):2369-2370,2373.YANG Shuzhen,MA Haiying,ZHANG Xiaoxu.Study on friction and wear properties of copper based powder metallurgy brake shoe materials[J].Casting Technology,2017,38(10):2369-2370,2373.(in Chinese)
参考文献 8
王洋,王树奇,魏敏先.45 钢磨损性能和磨损机制的研究[J].热加工工艺,2010,39(16):11-14.WANG Yang,WANG Shuqi,WEI Minxian.Study on wear properties and wear mechanism of 45 steel[J].Hot Working Process,2010,39(16):11-14.(in Chinese)
参考文献 9
XIAO X,YIN Y,BAO J,et al.Review on the friction and wear of brake materials[J].Advances in Mechanical Engineering,2016,8(5):1-10.
参考文献 10
高红霞,刘建秀,朱茹敏.铜基粉末冶金列车闸瓦材料的摩擦磨损性能研究[J].材料科学与工程学报,2005,23(6):871-874.GAO Hongxia,LIU Jianxiu,ZHU Rumin.Study on friction and wear properties of copper based powder metallurgy train brake shoe materials[J].Journal of Materials Science and Engineering,2005,23(6):871-874.(in Chinese)
参考文献 11
曹超,杜慧杰,王赫,等.某型磁浮列车制动闸片的磨损失效分析[J].润滑与密封,2021,46(8):76-82.CAO Chao,DU Huijie,WANG He,et al.Wear failure analysis of brake pads of a maglev train[J].Lubrication and Sealing,2021,46(8):76-82.(in Chinese)
参考文献 12
刘联军,李利,吴其俊,等.刹车速度对铜基粉末冶金摩擦材料性能的影响[J].粉末冶金技术,2018,36(2):83-88.LIU Lianjun,LI Li,YU Qijun,et al.Effect of braking speed on properties of copper based powder metallurgy friction materials[J].Powder Metallurgy Technology,2018,36(2):83-88.(in Chinese)
参考文献 13
朱旭光,孙乐民,陈跃,等.高速制动工况下Cu基粉末冶金闸片材料摩擦磨损性能[J].润滑与密封,2015,40(11):52-55,59.ZHU Xuguang,SUN Lemin,CHEN Yue,et al.Friction and wear properties of Cu based powder metallurgy brake pad materials under high-speed braking conditions[J].Lubrication and Sealing,2015,40(11):52-55,59.(in Chinese)
参考文献 14
PENG T,YAN Q,LIG,et al.The braking behaviors of Cu-based metallic brake pad for high-speed train under different initial braking speed[J].Tribology Letters,2017,65(4):1-13.
参考文献 15
李志强,韩建民,李卫京,等.摩擦条件对钢质摩擦材料第三体及磨损的影响[J].北京交通大学学报,2013,37(4):174-178.LI Zhiqiang,HAN Jianmin,LI Weijing,et al.Influence of friction conditions on the third body and wear of steel friction materials[J].Journal of Beijing Jiaotong University,2013,37(4):174-178.(in Chinese)
参考文献 16
惠阳,刘贵民,杜建华,等.基于第三体的制动材料摩擦磨损行为研究进展[J].材料导报,2021,35(19):19153-19160.HUI Yang,LIU Guimin,DU Jianhua,et al Research progress of friction and wear behavior of brake materials based on the third body[J].Material Guide,2021,35(19):19153-19160.(in Chinese)
参考文献 17
MA X,FAN S,SUN H,et al.Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs[J].Tribology International,2020,142:105981.
参考文献 18
LYU Y,BERGSETH E,WAHLSTROM J,et al.A pin-on-disc study on the tribology of cast iron,sinter and composite railway brake blocks at low temperatures[J].Wear,2019,424:48-52.
参考文献 19
ZHANG P,ZHANG L,WEI D B,et al.A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature[J].Wear,2020:444-445.
参考文献 20
孙洪雨,马元明,陈辉,等.高速列车制动材料高温摩擦磨损行为研究[J].机械,2018,45(10):5-10.SUN Hongyu,MA Yuanming,CHEN Hui,et al Study on friction and wear behavior of high-speed train braking materials at high temperature[J].Machinery,2018,45(10):5-10.(in Chinese)
参考文献 21
XIAO J K,XIAO S X,CHEN J,et al.Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h[J].Tribology International,2020,150:106357.
参考文献 22
TANG B,MO J L,XU J W,et al.Effect of perforated structure of friction block on the wear,thermal distribution and noise characteristics of railway braking systems[J].Wear,2019,426:1176–1186.
参考文献 23
XIANG Z Y,CHEN W,MO J L,et al.The effects of the friction block shape on the tribological and dynamical behaviours of high-speed train brakes[J].International Journal of Mechanical Sciences,2021,194:106184.
目录contents

    摘要

    铁路列车制动摩擦块的高温磨损对列车制动安全影响显著,现有对于制动摩擦块高温磨损的研究一般通过环境温度控制来模拟制动界面高温条件,而在摩擦生热条件下对制动摩擦块高温磨损机理及演变规律的研究较少。在多模式制动性能试验台上进行摩擦拖曳制动试验,利用显微特征观测仪器、界面几何特征测量设备等,对制动摩擦块的高温磨损机理和演变进行分析探讨。结果表明,在摩擦生热条件下,当制动界面温度从室温上升至 460 ℃时,摩擦块的主要磨损机制依次为磨粒磨损、氧化磨损和黏着磨损。当磨损机制以磨粒磨损为主时,摩擦块表面的缺陷数量多但尺寸小,摩擦因数与常温下接近;当氧化磨损占主导时,形成的氧化膜会提高耐磨性,摩擦块表面损伤较轻。此时,界面接触状态较好,摩擦因数较高,制动性能有所提高;当高温导致摩擦块材料发生软化和塑性流动时,摩擦块接触平台尺寸较大且极为平整,软化的材料充当润滑剂使摩擦因数下降、制动性能降低。同时,塑性流动会造成材料延展性能耗尽和表面材料撕裂,摩擦块表面严重的局部损伤导致接触界面状态较差,磨损机制以黏着磨损为主。在更接近于真实制动工况的条件下进行研究,揭示了摩擦升温过程中铁路列车制动摩擦块高温磨损机制的演变过程,可为保障制动安全提供必要的理论支撑。

    Abstract

    With the opening of complex service lines, the high-temperature wear problem of brake friction blocks is increasing. Being an essential part of the train braking system, the high-temperature wear of a railway train brake friction block significantly impacts train braking safety. It is necessary to clarify the high-temperature wear mechanism of brake friction blocks. Typically, the ambient temperature is controlled with a heating device to increase the surface temperature of the friction block to the set temperature, and the tribological behavior test equipment is used to analyze the high-temperature wear behavior of the friction block. However, in the actual service process, the surface temperature of the friction block continues to increase during frictional heat generation. Although previous studies have reference significance for revealing the high-temperature wear mechanism of friction blocks, they cannot precisely reproduce the friction heating during the braking process. Some researchers have analyzed the high-temperature wear behavior of brake friction blocks at specific temperatures using friction braking tests; however, they did not analyze the evolution law of the high-temperature wear mechanism of friction blocks during friction braking. Therefore, it is necessary to investigate the high-temperature wear mechanism and evolution law of the brake friction block under the condition of friction heat generation. In this study, the friction drag braking test was performed on a multimode braking performance test bench. During the braking process, using a microphone, accelerometer, thermal imager, torque sensor, and other devices, the synchronous acquisition and storage of the noise signal, vibration signal, thermal signal, friction torque and other data were realized. Next, the microfeature observation instrument and interface geometry measurement equipment such as the optical microscope, scanning electron microscope, white-light interferometer, and interface profiler were used to analyze the high-temperature wear mechanism of the brake friction block based on the surface topography, friction coefficient, interface profile, contact platform, and debris. The results show that under the test conditions, the wear mechanism, friction, and wear behavior of brake friction blocks changed significantly with a continuous increase in brake interface temperature. When the brake interface temperature rises to approximately 180 °C, many surface defects appear on the friction block, but the sizes of the defects are tiny. Under this temperature condition, the coefficient of friction is close to that under the room-temperature condition, and the wear mechanism is mainly abrasive. As the braking process progresses and the brake interface temperature increases to approximately 330 °C, the oxidation layer formed on the brake friction block surface improves the wear resistance of the friction block. Surface oxidation causes less surface damage on the friction block, and the wear mechanism is mainly oxidation. At this time, the interface contact state improves, the coefficient of friction increases, and the braking performance is enhanced. When the brake interface temperature increases to approximately 460 °C, the wear mechanism of the friction block is mainly adhesive. The contact platform on the friction block surface is large and flat owing to the softening and plastic flow of the friction block material caused by high temperature. In this case, the plastic flow causes the material ductility to reach the maximum, tearing and peeling the material on the friction block surface. The frictional force causes severe local damage on the friction block surface, resulting in a weak contact interface between the brake disc and the friction block. Moreover, the softened material acts as a lubricant in the contact pair, reducing the coefficient of friction and the braking performance. This study reveals the evolution process of the high-temperature wear mechanism of railway train brake friction blocks during the friction heating process, and the test conditions are close to the actual braking conditions. The research results provide fundamental theoretical support for ensuring braking safety.

  • 0 前言

  • 制动系统是保障铁路列车安全运行的重要组成部分[1]。制动过程中列车的动能通过摩擦副转化为热能,产生的一部分摩擦热直接耗散在大气中,其余部分则通过热传导使摩擦副温度升高[2-3]。当列车的行驶速度达到 200 km / h 以上时,制动过程中摩擦副的相对运动可使制动界面温度达到 600℃甚至更高[4-5]。在高温下,制动闸片摩擦块材料的强度、刚度、硬度、塑性等各项性能指标均会发生改变[6-8]。同时,摩擦副吸收的大量摩擦热会加剧摩擦块的磨损[9-11],导致摩擦块出现高温磨损失效和制动性能下降,甚至引发制动安全问题。因此,研究制动闸片摩擦块的高温磨损机理及演变规律,对保障制动系统的可靠服役是非常必要的[12-14]

  • 目前,学者们对制动摩擦块的磨损机制进行了大量相关研究[15-17]。例如,LYU 等[18]利用销盘试验机,通过温度箱控制环境温度,从摩擦因数、磨损量、损伤界面特征等角度对不同温度下三种铁路制动摩擦块材料的摩擦学特性进行了分析研究。研究发现,温度对摩擦块磨损行为的影响显著,但该研究主要分析的是摩擦块在+10℃到 −30℃范围内的低温摩擦磨损行为。ZHANG 等[19] 在温度控制室内将环境温度设置为 400、600 和 800℃,通过销盘试验研究了铁路制动摩擦块的高温磨损机理,发现摩擦块的高温磨损机理变化主要与接触界面的氧化行为和润滑行为有关。需要注意的是,虽然该研究中通过环境温度控制可以达到较高的温度,但忽略了制动过程中摩擦生热使温度不断累积的影响。孙洪雨等[20]研究了 4 个温度梯度下高速列车制动材料的摩擦磨损行为,发现温度对制动摩擦材料的磨损机制影响显著。但在该研究中,摩擦副间相对滑动线速度较低,与铁路列车制动时的实际服役工况相差较远。 XIAO 等[21]进行了高速列车全尺寸制动试验,研究了摩擦块损伤表面的显微组织、成分、摩擦性能和磨损机制等,得出了在 380 km / h 的制动初速度下,氧化、分层和剥落是摩擦块的主要磨损形式。但是此研究仅对某一高温下摩擦块的磨损机理进行了分析,没有全面分析在摩擦制动工况下不同温度等级摩擦块磨损机理的演变过程。从上述分析可以发现,虽然学者们对铁路列车制动摩擦块的高温磨损问题进行了大量研究并得到了有益的成果,但对于摩擦生热下制动摩擦块高温磨损机理演变过程的研究仍有待进一步深入。

  • 制动摩擦块的高温磨损机制并不是孤立存在的,一种机制往往伴随着另一种机制的产生。在实际制动过程中,制动摩擦块的损伤会不断累积且磨损机制将随温度的变化而不断演变。因此,研究将聚焦铁路列车制动闸片摩擦块的高温磨损问题,利用多模式制动性能试验台,充分考虑摩擦制动工况下的摩擦升温过程,研究制动摩擦块高温磨损机制的演变规律。

  • 1 试验介绍

  • 1.1 试验装置

  • 利用自行研制的多模式制动性能试验台进行制动试验,试验台原理图如图1 所示。试验台的主要部件包含变频调速电机、离合器、惯性飞轮组、制动盘、摩擦块、夹具、气缸等。其中,变频调速电机的启动和停止、离合器的工作状态以及气缸的运行等是通过控制系统来实现的。驱动系统由电机、离合器和惯性飞轮组组成。扭矩传感器安装在驱动系统与制动系统之间,用于记录摩擦力矩。在夹具上安装有加速度传感器,用于测量摩擦界面产生的摩擦振动。摩擦副的接触面积和接触压力等接触特性可以通过压力膜传感器获取。在制动过程中的噪声信号、振动信号和热信号等可通过信号采集系统采集。为了保证试验的安全性,在试验台的外部设置了防护罩。

  • 图1 试验台原理图

  • Fig.1 Test bench schematic diagram

  • 1.2 试验样品

  • 在制动试验中所使用的制动盘和摩擦块材料均与已经投入使用的某高速列车制动系统材料相同,并根据试验台尺寸加工成相应大小。制动盘材料为锻钢,半径 160 mm,材料密度为 7.8 t / m3,弹性模量为 210 GPa,泊松比为 0.3,热传导率为32 W /(m·K),热膨胀系数为 1.16×10−5 ,比热容为 473 J /(kg·K)。摩擦块材料为耐磨性和导热性均较好的铜基粉末冶金材料,半径 16.5 mm,厚度为 7 mm,材料密度为 5.18 t / m3,弹性模量为 6.5 GPa,泊松比 0.3,热传导率 0.9 W /(m·K),热膨胀系数 1.1×10−5,比热容 1.2 KJ /(kg·K)。制动盘和摩擦块的相对位置和尺寸如图2 所示,摩擦副的平均摩擦半径为 120 mm,材料组成见表1[22]

  • 图2 摩擦块与制动盘的相对位置和尺寸示意图

  • Fig.2 Schematic diagram of relative position and size of friction block and brake disc

  • 表1 制动盘和摩擦块样品化学成分

  • Table1 Chemical composition of brake disc and friction block

  • 1.3 试验过程

  • 在正式试验前须对摩擦块进行跑合,以确保制动盘和摩擦块在正式制动试验时有稳定的接触状态。在跑合阶段,为了避免制动界面温度过高,需要施加较小的恒定制动载荷。在跑合过程中,根据经验选取合适的时间间隔停机,并观察摩擦块接触面积的变化,当摩擦块磨损面积达到名义接触面积的 85%时认为跑合完成[23]。跑合完成后,将制动盘和摩擦块冷却至室温,开始正式试验。在正式试验过程中,环境温度为 20~27℃,相对湿度为 62%~70%。正式试验的具体操作如下:首先启动调速电机,当驱动系统的转速达到 1 000 r / min 后(平均摩擦半径处的线速度为 12.56 m / s),通过控制系统驱动气缸施加 1.4 kN 的制动力,使摩擦块与制动盘产生摩擦接触。在制动试验结束后,按下停止按钮,使电机停止转动并松开夹具卸载制动力。试验过程中在制动盘正前方 1 m 处利用热成像仪记录制动盘面的温度分布及变化情况。根据预试验结果,以 100 s 为时间间隔记录制动过程中的温度分布及变化情况,以保证测得的温度结果具有较为明显的区分度。由于摩擦块在试验过程中与制动盘紧密贴合,无法测得摩擦块的实时温度,且在试验结束后测得的摩擦块温度低于摩擦块在制动过程中所能达到的最高温度。因此,记录制动过程中制动盘表面的温度变化,作为制动过程中制动界面温度的评价指标。在试验结束后,采用光学显微镜、白光干涉仪、扫描电子显微镜、表面轮廓仪等仪器对制动摩擦块的损伤界面进行观测分析。为了保证试验结果的可靠性和可重复性,对同一制动工况进行 3 次平行实验。由于平行试验的结果差异不大,因此下面取不同温度下的典型结果进行摩擦块高温磨损分析。

  • 2 试验结果

  • 2.1 温度结果

  • 由于温度的升高会导致摩擦块材料的各项性能发生变化,因此温度结果对于研究摩擦块高温磨损机制及演变规律至关重要。在不同制动界面温度等级下,制动盘与摩擦块的表面温度分布结果如图3 所示。从图中的温度分布结果可知,随着制动界面温度不断升高,制动盘上高温环带的区域逐步扩大变宽,并且高温环带区域集中在平均摩擦半径附近。对于摩擦块来说,制动界面温度在 180℃左右时,摩擦块接触界面的温度分布相对较均匀,且摩擦块接触界面上相对低温处和相对高温处的温度差值不大。当制动界面温度在 330℃左右时,制动摩擦块表面的温度分布不均匀,出现了局部低温区。随着制动界面温度继续上升至 460℃时,摩擦块制动界面的温度分布最为均匀,但出现了沿着摩擦方向的局部低温区,且摩擦块表面高温区与低温区的温度差值较高。

  • 图3 不同制动界面峰值温度等级下制动盘和摩擦块的温度分布

  • Fig.3 Temperature distribution of brake disc and friction block under different braking interface peak temperature levels

  • 2.2 整体磨损表面

  • 图4 为不同制动界面温度对摩擦块整体磨损表面的影响。可以看到,在跑合结束后(正式试验开始前),摩擦块表面颜色较深,表面分布有大量磨屑。当制动界面温度达到 180℃左右时,摩擦块表面整体磨损特征变化不大,但相比于跑合结束后表面的磨屑变少,这可能是因为正式试验的转速和制动力较高,使磨屑不易留在摩擦界面上。当制动界面温度上升到 330℃左右时,摩擦块磨损界面颜色发生了较大的变化,这是由于摩擦块部分材料成分发生了氧化反应。当制动界面温度达到 460℃左右时,在摩擦块表面上可以看到严重的剥离和犁沟。

  • 图4 不同制动界面峰值温度对摩擦块整体磨损表面的影响

  • Fig.4 Influence of different braking interface peak temperature on the overall wear surface of friction block

  • 2.3 局部磨损表面

  • 图5 展示了不同制动界面温度下摩擦块典型的磨损特征显微观测结果。在图5a 中,当温度约为 180℃时,摩擦块剥落较浅且分布范围较广。光亮部位是制动过程中摩擦面的主要承力部分,称为初级接触平台。制动过程中产生的磨屑颗粒堆积在摩擦块表面并被压实形成次级接触平台。磨屑中的硬质颗粒沿着摩擦方向流动,使摩擦块表面产生沿摩擦方向的犁沟,并将接触平台切割成条状。在图5b 中,当温度约为 330℃时,摩擦块表面材料被氧化,生成金属氧化物,并在摩擦块表面形成氧化层。此时,摩擦块表面出现细小且密集的划痕,这是由于氧化层硬度高且具有良好的耐磨性。在图5c 中,当温度上升到 460℃ 左右时,摩擦块表面材料出现了撕裂。同时,可以看到摩擦块表面出现了较严重的剥落。这些现象推测是由界面温度较高导致材料发生软化和塑性流动,当材料塑性被耗尽时,材料被拉扯撕裂,并在摩擦力的作用下导致摩擦块表面出现严重的材料分离,引起严重剥落的产生。另外,由于高温下软化的摩擦块材料被碾压展平,导致此时接触平台的面积较大。

  • 为进一步研究摩擦块损伤表面的局部形貌,使用扫描电子显微镜观测不同界面温度下摩擦块损伤表面的典型特征,如图6 所示。从图6a 中可以看到,摩擦块表面散落的磨屑尺寸小、分布范围广;摩擦界面分布着第三体磨屑层;剥落损伤较轻,但几乎在接触界面上均匀分布;接触平台尺寸较小,没有连成一片。此时,摩擦块的磨损情况主要呈现磨粒磨损的特征。随着制动界面温度的升高,摩擦块表面的损伤形貌逐渐发生变化,如图6b 所示,可以看到此时摩擦块表面的接触平台和氧化层间隔分布; 摩擦表面上的磨屑尺寸略微增大,但数量减少,这是由于氧化层的存在导致耐磨性提高;表面剥落尺寸增大、边界清晰,这是由于氧化层的疲劳破碎导致材料出现断裂分离,摩擦块表面损伤以氧化磨损为主;当温度继续上升时,如图6c 所示,典型特征为接触平台具有较大的尺寸,但与此同时,表面的剥落损伤严重,这是由于高温下摩擦块材料软化导致不足以承载较高的制动力,使摩擦块材料出现了大量剥离;另外,可以在表面观察到较大尺寸的掉落材料(大块磨屑),这是由于塑性流动导致摩擦块表面材料被撕裂掉落,此时的磨损形式以黏着磨损为主。

  • 图5 不同制动界面峰值温度下摩擦块典型的磨损特征显微观测结果

  • Fig.5 Microscopic observation results of typical wear characteristics of friction block under different braking interface peak temperatures

  • 图6 不同界面峰值温度下摩擦块磨损表面扫描电子显微镜分析

  • Fig.6 Scanning electron microscope analysis of friction block wear surface under different interface peak temperatures

  • 2.4 整体界面轮廓

  • 一般来说,摩擦块切入端的磨损较为严重,因此图7 中给出不同界面温度下摩擦块切入端的整体界面轮廓和表面粗糙度对比。可以看到,总体来说不同制动界面温度下,摩擦块的表面轮廓曲线特征明显不同。在 180℃的界面温度下,摩擦块界面整体轮廓中的波动数量较多但幅度不大,表面整体轮廓的粗糙度居中(Ra=15.08);在 330℃的界面温度下,摩擦块界面整体轮廓的波动最少,仅仅在局部位置偶尔出现轮廓的微小波动,说明摩擦块表面损伤较为轻微,摩擦块表面粗糙度最低(Ra=12.17); 在 460℃的界面温度下,摩擦块表面轮廓曲线的波动分布不规律,局部轮廓出现明显的大幅度波动,表明摩擦块在局部出现了较为严重的损伤,导致摩擦块表面最为粗糙(Ra=22.80)。

  • 图7 不同界面峰值温度下摩擦块整体界面轮廓

  • Fig.7 Overall interface outline of friction block under different interface peak temperatures

  • 2.5 局部界面轮廓

  • 图8 中给出不同界面温度下摩擦块典型特征区域的局部三维轮廓、二维轮廓和相应的二维轮廓均方根值。从图中可知,在不同界面温度下的摩擦块局部轮廓特征有较大差别。当制动界面温度分别为 180、 330、460℃左右时,摩擦块典型特征区域的局部表面最大高度差依次为 84、52、99 μm,二维轮廓均方根值依次为 5.96、5.01、21.83。可以看出,当制动界面温度为 180℃左右时,摩擦块磨损区域内剥落和划痕的尺寸小但数量多,均匀分布在摩擦块表面。此时,虽然缺陷数量多,但由于缺陷尺寸较小,严重程度居中(局部表面最大高度差 84 μm),因此在该界面温度下可以代表摩擦块接触界面平整度的二维轮廓均方根值居中,为 5.96。当界面温度为 330℃时,摩擦块磨损区域的局部剥落尺寸大于 180℃的情况,但磨损区域局部表面最大高度差仅为 52 μm、剥落严重程度最低。同时,表面划痕数量虽多,但划痕深度为三个温度下最小。在此温度下,由于缺陷严重程度最低,所以表面平整度最好,二维轮廓均方根值仅为 5.01。当界面温度为 460℃时,接触平台尺寸较大且极为平整,但局部缺陷是三个温度下最严重的,因此,此时摩擦块接触区域的整体平整度最差,二维轮廓均方根值达到了 21.83。

  • 图8 不同界面峰值温度下摩擦块的局部三维轮廓

  • Fig.8 Local friction block three-dimensional contour under different interface peak temperatures

  • 2.6 摩擦因数

  • 制动系统的制动性能与摩擦因数密切相关,摩擦块与制动盘组成的摩擦副应具有较高且稳定的摩擦因数,但在实际制动过程中,摩擦因数受多种因素的影响。图9 中给出了不同界面温度下摩擦因数的变化情况。当制动界面温度为 180℃左右时,摩擦因数与室温下的摩擦因数大小接近,但略微升高。这是因为跑合后摩擦块表面存在较多磨屑,形成的摩擦膜有利于稳定摩擦因数。而当界面温度上升到 180℃时,摩擦块表面磨屑数量减少,摩擦因数略微升高。当制动界面温度为 330℃时,摩擦块接触界面材料氧化,形成一层连续的氧化层,摩擦块中的石墨等固体润滑剂在高温的作用下逐渐失效,导致摩擦因数有所提高;此时,摩擦块与制动盘之间的接触状态较好,制动性能增强。当制动界面温度为 460℃时,摩擦因数显著降低,这可能是由于高温引起摩擦块表面金属基体材料软化,软化的材料起到润滑作用。

  • 图9 温升过程中摩擦因数的变化情况

  • Fig.9 Change of friction coefficient during temperature rise

  • 3 分析与讨论

  • 图10 为考虑摩擦升温的摩擦块高温磨损机制演变示意图。在制动界面温度较低时,摩擦副之间的微凸体相互接触,在法向力和剪切力的作用下形成磨屑散落在摩擦块表面并堆积。随着制动过程的进行,堆积的磨屑逐渐被压实形成摩擦膜贴附在摩擦表面。同时,磨屑中的硬质颗粒沿摩擦方向在表面移动,造成摩擦块表面出现划痕和轻微剥落,增加了表面粗糙度,如图10 左图所示。随着摩擦制动过程中界面温度的升高,摩擦块表面材料发生氧化反应形成氧化膜现象明显,氧化膜在反复制动力的作用下发生破碎使得摩擦块表面出现剥落,但由于氧化膜的存在使摩擦块的硬度和耐磨性有所提高,此时摩擦块表面的划痕较轻,摩擦表面粗糙度较小,如图10 中图所示。在摩擦热累积作用下,制动界面温度继续升高,摩擦块金属基体材料会发生软化,并在制动力的作用下沿着摩擦方向发生塑性流动。塑性流动层的延展性耗尽之后,摩擦块材料会撕裂,并在表面造成严重的剥落,导致摩擦块粗糙度变高、平整度变差,如图10 右图所示。

  • 图10 摩擦块磨损机制在摩擦升温过程中的变化示意图

  • Fig.10 Change of friction block wear mechanism during friction heating

  • 4 结论

  • (1)在摩擦制动工况下,随着界面温度从室温升高到 460℃时,摩擦块的主要磨损机制依次为磨粒磨损、氧化磨损和黏着磨损。当主要磨损机制为氧化磨损时,摩擦块表面形成的氧化层使其耐磨性有所提高,表面损伤较轻。当主要磨损机制是黏着磨损时,摩擦块材料的软化使其不足以承受制动摩擦力,表面出现严重剥落。

  • (2)在相同试验条件下,摩擦块接触界面损伤缺陷的数量随着制动界面温度的升高逐步减少,接触平台尺寸逐渐变大且越来越平整,但由于缺陷的严重程度先急剧减少后显著增加,摩擦块表面轮廓波动和表面粗糙度先减小后增加。

  • (3)制动界面温度升高到 180℃时,散落在制动界面的磨屑数量减少,摩擦膜被破坏,导致摩擦因数略微升高;当温度上升到 330℃时,形成的氧化膜有利于改善制动界面接触状态,使摩擦因数显著升高,制动性能变好;当温度升高到 460℃时,软化的摩擦块材料起到润滑作用,摩擦因数和制动性能急剧下降。

  • 参考文献

    • [1] LU C,YIN J B,MO J L,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494-495:204251.

    • [2] 杨智勇,李志强,李卫京,等.制动盘摩擦面热损伤的形成机理分析[J].铁道机车车辆,2012,32(3):14-19.YANG Zhiyong,LI Zhiqiang,LI Jiawei,et al.Analysis of the formation mechanism of thermal damage on the friction surface of brake disc[J].Railway Rolling Stock,2012,32(3):14-19.(in Chinese)

    • [3] WANG Z,HAN J,LIU X,et al.Temperature evolution of the train brake disc during high-speed braking[J].Advances in Mechanical Engineering,2019,11(1):1-10.

    • [4] LI Z,HAN J,YANG,Z,et al.The effect of braking energy on the fatigue crack propagation in railway brake discs[J].Engineering Failure Analysis,2014,44:272-284.

    • [5] 符蓉,宋宝韫,高飞,等.摩擦制动条件对列车制动闸片材料摩擦性能的影响[J].中国有色金属学报,2008,18(7):1223-1230.FU Rong,SONG Baoyun,GAO Fei,et al.Influence of friction braking conditions on friction properties of train brake pad materials[J].Chinese Journal of Nonferrous Metals,2008,18(7):1223-1230.

    • [6] RODRIGUES ACP,ÖSTERLE W,GRADT T,et al.Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply:addition of artificial third body consisting of Fe3O4,Cu and graphite[J].Tribology International,2017,110:103-112.

    • [7] 杨淑贞,马海英,张晓旭.铜基粉末冶金刹车闸瓦材料摩擦磨损性能研究[J].铸造技术,2017,38(10):2369-2370,2373.YANG Shuzhen,MA Haiying,ZHANG Xiaoxu.Study on friction and wear properties of copper based powder metallurgy brake shoe materials[J].Casting Technology,2017,38(10):2369-2370,2373.(in Chinese)

    • [8] 王洋,王树奇,魏敏先.45 钢磨损性能和磨损机制的研究[J].热加工工艺,2010,39(16):11-14.WANG Yang,WANG Shuqi,WEI Minxian.Study on wear properties and wear mechanism of 45 steel[J].Hot Working Process,2010,39(16):11-14.(in Chinese)

    • [9] XIAO X,YIN Y,BAO J,et al.Review on the friction and wear of brake materials[J].Advances in Mechanical Engineering,2016,8(5):1-10.

    • [10] 高红霞,刘建秀,朱茹敏.铜基粉末冶金列车闸瓦材料的摩擦磨损性能研究[J].材料科学与工程学报,2005,23(6):871-874.GAO Hongxia,LIU Jianxiu,ZHU Rumin.Study on friction and wear properties of copper based powder metallurgy train brake shoe materials[J].Journal of Materials Science and Engineering,2005,23(6):871-874.(in Chinese)

    • [11] 曹超,杜慧杰,王赫,等.某型磁浮列车制动闸片的磨损失效分析[J].润滑与密封,2021,46(8):76-82.CAO Chao,DU Huijie,WANG He,et al.Wear failure analysis of brake pads of a maglev train[J].Lubrication and Sealing,2021,46(8):76-82.(in Chinese)

    • [12] 刘联军,李利,吴其俊,等.刹车速度对铜基粉末冶金摩擦材料性能的影响[J].粉末冶金技术,2018,36(2):83-88.LIU Lianjun,LI Li,YU Qijun,et al.Effect of braking speed on properties of copper based powder metallurgy friction materials[J].Powder Metallurgy Technology,2018,36(2):83-88.(in Chinese)

    • [13] 朱旭光,孙乐民,陈跃,等.高速制动工况下Cu基粉末冶金闸片材料摩擦磨损性能[J].润滑与密封,2015,40(11):52-55,59.ZHU Xuguang,SUN Lemin,CHEN Yue,et al.Friction and wear properties of Cu based powder metallurgy brake pad materials under high-speed braking conditions[J].Lubrication and Sealing,2015,40(11):52-55,59.(in Chinese)

    • [14] PENG T,YAN Q,LIG,et al.The braking behaviors of Cu-based metallic brake pad for high-speed train under different initial braking speed[J].Tribology Letters,2017,65(4):1-13.

    • [15] 李志强,韩建民,李卫京,等.摩擦条件对钢质摩擦材料第三体及磨损的影响[J].北京交通大学学报,2013,37(4):174-178.LI Zhiqiang,HAN Jianmin,LI Weijing,et al.Influence of friction conditions on the third body and wear of steel friction materials[J].Journal of Beijing Jiaotong University,2013,37(4):174-178.(in Chinese)

    • [16] 惠阳,刘贵民,杜建华,等.基于第三体的制动材料摩擦磨损行为研究进展[J].材料导报,2021,35(19):19153-19160.HUI Yang,LIU Guimin,DU Jianhua,et al Research progress of friction and wear behavior of brake materials based on the third body[J].Material Guide,2021,35(19):19153-19160.(in Chinese)

    • [17] MA X,FAN S,SUN H,et al.Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs[J].Tribology International,2020,142:105981.

    • [18] LYU Y,BERGSETH E,WAHLSTROM J,et al.A pin-on-disc study on the tribology of cast iron,sinter and composite railway brake blocks at low temperatures[J].Wear,2019,424:48-52.

    • [19] ZHANG P,ZHANG L,WEI D B,et al.A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature[J].Wear,2020:444-445.

    • [20] 孙洪雨,马元明,陈辉,等.高速列车制动材料高温摩擦磨损行为研究[J].机械,2018,45(10):5-10.SUN Hongyu,MA Yuanming,CHEN Hui,et al Study on friction and wear behavior of high-speed train braking materials at high temperature[J].Machinery,2018,45(10):5-10.(in Chinese)

    • [21] XIAO J K,XIAO S X,CHEN J,et al.Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h[J].Tribology International,2020,150:106357.

    • [22] TANG B,MO J L,XU J W,et al.Effect of perforated structure of friction block on the wear,thermal distribution and noise characteristics of railway braking systems[J].Wear,2019,426:1176–1186.

    • [23] XIANG Z Y,CHEN W,MO J L,et al.The effects of the friction block shape on the tribological and dynamical behaviours of high-speed train brakes[J].International Journal of Mechanical Sciences,2021,194:106184.

  • 参考文献

    • [1] LU C,YIN J B,MO J L,et al.Accumulated wear degradation prediction of railway friction block considering the evolution of contact status[J].Wear,2022,494-495:204251.

    • [2] 杨智勇,李志强,李卫京,等.制动盘摩擦面热损伤的形成机理分析[J].铁道机车车辆,2012,32(3):14-19.YANG Zhiyong,LI Zhiqiang,LI Jiawei,et al.Analysis of the formation mechanism of thermal damage on the friction surface of brake disc[J].Railway Rolling Stock,2012,32(3):14-19.(in Chinese)

    • [3] WANG Z,HAN J,LIU X,et al.Temperature evolution of the train brake disc during high-speed braking[J].Advances in Mechanical Engineering,2019,11(1):1-10.

    • [4] LI Z,HAN J,YANG,Z,et al.The effect of braking energy on the fatigue crack propagation in railway brake discs[J].Engineering Failure Analysis,2014,44:272-284.

    • [5] 符蓉,宋宝韫,高飞,等.摩擦制动条件对列车制动闸片材料摩擦性能的影响[J].中国有色金属学报,2008,18(7):1223-1230.FU Rong,SONG Baoyun,GAO Fei,et al.Influence of friction braking conditions on friction properties of train brake pad materials[J].Chinese Journal of Nonferrous Metals,2008,18(7):1223-1230.

    • [6] RODRIGUES ACP,ÖSTERLE W,GRADT T,et al.Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply:addition of artificial third body consisting of Fe3O4,Cu and graphite[J].Tribology International,2017,110:103-112.

    • [7] 杨淑贞,马海英,张晓旭.铜基粉末冶金刹车闸瓦材料摩擦磨损性能研究[J].铸造技术,2017,38(10):2369-2370,2373.YANG Shuzhen,MA Haiying,ZHANG Xiaoxu.Study on friction and wear properties of copper based powder metallurgy brake shoe materials[J].Casting Technology,2017,38(10):2369-2370,2373.(in Chinese)

    • [8] 王洋,王树奇,魏敏先.45 钢磨损性能和磨损机制的研究[J].热加工工艺,2010,39(16):11-14.WANG Yang,WANG Shuqi,WEI Minxian.Study on wear properties and wear mechanism of 45 steel[J].Hot Working Process,2010,39(16):11-14.(in Chinese)

    • [9] XIAO X,YIN Y,BAO J,et al.Review on the friction and wear of brake materials[J].Advances in Mechanical Engineering,2016,8(5):1-10.

    • [10] 高红霞,刘建秀,朱茹敏.铜基粉末冶金列车闸瓦材料的摩擦磨损性能研究[J].材料科学与工程学报,2005,23(6):871-874.GAO Hongxia,LIU Jianxiu,ZHU Rumin.Study on friction and wear properties of copper based powder metallurgy train brake shoe materials[J].Journal of Materials Science and Engineering,2005,23(6):871-874.(in Chinese)

    • [11] 曹超,杜慧杰,王赫,等.某型磁浮列车制动闸片的磨损失效分析[J].润滑与密封,2021,46(8):76-82.CAO Chao,DU Huijie,WANG He,et al.Wear failure analysis of brake pads of a maglev train[J].Lubrication and Sealing,2021,46(8):76-82.(in Chinese)

    • [12] 刘联军,李利,吴其俊,等.刹车速度对铜基粉末冶金摩擦材料性能的影响[J].粉末冶金技术,2018,36(2):83-88.LIU Lianjun,LI Li,YU Qijun,et al.Effect of braking speed on properties of copper based powder metallurgy friction materials[J].Powder Metallurgy Technology,2018,36(2):83-88.(in Chinese)

    • [13] 朱旭光,孙乐民,陈跃,等.高速制动工况下Cu基粉末冶金闸片材料摩擦磨损性能[J].润滑与密封,2015,40(11):52-55,59.ZHU Xuguang,SUN Lemin,CHEN Yue,et al.Friction and wear properties of Cu based powder metallurgy brake pad materials under high-speed braking conditions[J].Lubrication and Sealing,2015,40(11):52-55,59.(in Chinese)

    • [14] PENG T,YAN Q,LIG,et al.The braking behaviors of Cu-based metallic brake pad for high-speed train under different initial braking speed[J].Tribology Letters,2017,65(4):1-13.

    • [15] 李志强,韩建民,李卫京,等.摩擦条件对钢质摩擦材料第三体及磨损的影响[J].北京交通大学学报,2013,37(4):174-178.LI Zhiqiang,HAN Jianmin,LI Weijing,et al.Influence of friction conditions on the third body and wear of steel friction materials[J].Journal of Beijing Jiaotong University,2013,37(4):174-178.(in Chinese)

    • [16] 惠阳,刘贵民,杜建华,等.基于第三体的制动材料摩擦磨损行为研究进展[J].材料导报,2021,35(19):19153-19160.HUI Yang,LIU Guimin,DU Jianhua,et al Research progress of friction and wear behavior of brake materials based on the third body[J].Material Guide,2021,35(19):19153-19160.(in Chinese)

    • [17] MA X,FAN S,SUN H,et al.Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs[J].Tribology International,2020,142:105981.

    • [18] LYU Y,BERGSETH E,WAHLSTROM J,et al.A pin-on-disc study on the tribology of cast iron,sinter and composite railway brake blocks at low temperatures[J].Wear,2019,424:48-52.

    • [19] ZHANG P,ZHANG L,WEI D B,et al.A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature[J].Wear,2020:444-445.

    • [20] 孙洪雨,马元明,陈辉,等.高速列车制动材料高温摩擦磨损行为研究[J].机械,2018,45(10):5-10.SUN Hongyu,MA Yuanming,CHEN Hui,et al Study on friction and wear behavior of high-speed train braking materials at high temperature[J].Machinery,2018,45(10):5-10.(in Chinese)

    • [21] XIAO J K,XIAO S X,CHEN J,et al.Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h[J].Tribology International,2020,150:106357.

    • [22] TANG B,MO J L,XU J W,et al.Effect of perforated structure of friction block on the wear,thermal distribution and noise characteristics of railway braking systems[J].Wear,2019,426:1176–1186.

    • [23] XIANG Z Y,CHEN W,MO J L,et al.The effects of the friction block shape on the tribological and dynamical behaviours of high-speed train brakes[J].International Journal of Mechanical Sciences,2021,194:106184.

  • 手机扫一扫看