en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杜志浩,男,1996年出生,硕士。主要研究方向为钛锆基合金表面改性及摩擦学性能。E-mail:duzhihaott@163.com

通讯作者:

岳赟,男,1989年出生,博士,副教授,硕士研究生导师。主要研究方向为钛合金加工、组织调控及力学性能。E-mail:yueyunbw@haust.edu.com

中图分类号:TG156

DOI:10.11933/j.issn.1007−9289.20220610001

参考文献 1
ELSHAER R N,IBRAHIM K M,AHMED M A,et al.Effect of cooling rate and aging process on wear behavior of deformed TC21 Ti-alloy[J].Key Engineering Materials,2020,835:265-273.
参考文献 2
SHAO J Z,LI J,SONG R,et al.Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti)matrix coating produced by laser cladding[J].Rare Metals,2016,39(7):1-12.
参考文献 3
PHILIP J T,MATHEW J,KURIACHEN B.Tribology of Ti6Al4V[J].Wear,2019,7(6):497-536.
参考文献 4
王兰.钛合金磨损行为及磨损机理的研究[D].镇江:江苏大学,2014.WANG Lan.Study on wear behavior and wear mechanism of titanium alloy[D].Zhenjiang:Jiangsu University,2014.(in Chinese)
参考文献 5
JIA Y F,PAN R J,ZHANG P Y,et al.Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique[J].Corrosion Science,2019,157:256-267.
参考文献 6
ZHOU L C,PAN X L,SHI X S,et al.Research on surface integrity of Ti-6Al-4V alloy with compound treatment of laser shock peening and shot peening[J].Vacuum,2022,196:110717-110717.
参考文献 7
WU Z,XING Y,HUANG P,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.
参考文献 8
李兆峰,李志强,赵朋举,等.TC4 钛合金表面CrN和 DLC 耐磨涂层制备及性能研究[J].材料开发与应用,2014,29(4):43-47.LI Zhaofeng,LI Zhiqiang,ZHAO Pengju,et al.Preparation and performance of CrN and DLC coationgs on TC4 titanium alloy[J].Material Development and Application,2014,29(4):43-47.(in Chinese)
参考文献 9
陆健,吕晨,吴盾,等.等离子喷涂TaC和 NbC 涂层的结构和耐磨耐蚀性能[J].材料保护,2018(12):1-5.LU Jian,LÜ Chen,WU Dun,et al.Microstructures,abrasion resistance and corrosion resistance of plasma-sprayed TaC and NbC coatings[J].Material Protection,2018(12):1-5.(in Chinese)
参考文献 10
刘顺,罗杰,陈衡,等.冷喷涂和低压等离子喷涂 Ni-Ti 涂层:组织和性能[J].稀有金属材料与工程,2019(11):3621-3627.LIU Shun,LUO Jie,CHEN Heng,at etl.Cold-sprayed and low-pressure plasma Sprayed Ni-Ti coatings:microstructure and properties[J].Rare Metal Materials and Engineering,2019(11):3621-3627.(in Chinese)
参考文献 11
徐照英,张腾飞,苏永要,等.钛合金表面阳极氧化着色及摩擦学特性研究[J].真空科学与技术学报,2020,40(8):734-740.XU Zhaoying,ZHANG Tengfei,SU Yongyao,et al.Tribological properties of TC4 Ti-Alloy surfaces modified by anodizing coloring[J].Chinese Journal of Vacum Science and Technology,2020,40(8):734-740.(in Chinese)
参考文献 12
姚小春.TC4 钛合金表面激光气体氮化工艺及性能研究 [D].兰州:兰州理工大学,2019.YAO Xiaochun.Study on laser gas nitriding technology and properties of TC4titanium alloy surface[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)
参考文献 13
孙信阳.新型TiZrAlV合金表面激光氮化工艺及组织性能研究[D].石家庄:河北科技大学,2019.SUN Xinyang.Microstructure evolution and properties of the coating layer on novel TiZrAlV alloy by laser gas nitriding[D].Shijiazhuang:Heibei University of Science and Technology,2019.(in Chinese)
参考文献 14
JI P F,LI B,LIU S G,et al.Effect of laser surface re-melting on the microstructure and properties of Zr alloy[J].Materials Letters,2020,264:127352.
参考文献 15
宋强.AZ91D 镁合金等离子表面改性研究[D].青岛:中国石油大学,2012.SONG Qiang.Plasma surface modification of AZ91D magnesium alloy[D].Qingdao:China University of Pertroleum,2012.(in Chinese)
参考文献 16
袁建军,谢艳春,崔洪芝,等.汽车发动机缸体灰铸铁等离子相变硬化组织及性能分析[J].热加工工艺,2007,36(10):15-16.YUAN Jianjun,XIE Yanchun,CUI Hongzhi,et al.Analysis of structure and properties of plasma phase-change hardening for automobile engine body[J].Material &Heat Treatment,2007,36(10):15-16.(in Chinese)
参考文献 17
景然.高强度TiZrAlV合金的制备及组织性能研究[D].秦皇岛:燕山大学,2013.JING Ran.Praparation and microstructure properties of High strength TiZrAlV alloy[D].Qinhuangdao:Yanshan University,2013.(in Chinese)
参考文献 18
ZHONG H,WANG W X,MA M Z,et al.Comparative study on tribological behaviors of two TiZr-Based alloys in vacuum[J].Journal of Materials Engineering and Performance,2022,31(2):1108-1117.
参考文献 19
岳赟.TiZr 基合金组织调控及疲劳行为研究[D].秦皇岛:燕山大学,2017.YUE Yun.Microstructure regulation and fatigue behavior of TiZr based alloys[D].Qinhuangdao:Yanshan University,2017.(in Chinese)
参考文献 20
钟华.新型钛锆基合金在不同环境下的摩擦磨损行为研究[D].秦皇岛:燕山大学,2018 ZHONG Hua.Friction and wear behavior of new ti-zr base alloy in different environments[D].Qinhuangdao:Yanshan University,2018.(in Chinese)
参考文献 21
ZHOU Xin,WANG Dianzheng,LIU Xihe,et al.3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT[J].Acta Materialia,2015,98:1-16.
参考文献 22
李继康,张净凯,张振武,等.激光选区熔化 Cu-15Ni-8Sn 合金的显微组织、拉伸和摩擦磨损性能[J].中国有色金属学报,2023,33(2):386-399.LI Jikang,ZHANG Jingkai,ZHANG Zhenwu,et al.Laser selective melting of Cu-15Ni-8Sn alloy microstructure,tensile and tribological properties[J].The Chinese Journal of Nonferrous Metals,2023,33(2):386-399.(in Chinese)
参考文献 23
CHENG L,YIN G,ZHAO Y,et al.Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters[J].Materials Chemistry & Physics,2011,125(3):411-417.
参考文献 24
韩靖,盛光敏,胡国雄.高能喷丸TA17近 α 钛合金晶粒细化机制[J].中国有色金属学报,2008,18(5):799-804.HAN Jing,SHENG Guangmin,HU Guoxiong,Mechanism of grain refinement for TA17 near α Ti alloy by high energy shot peening[J].The Chinese Journal of Nonferrous Metals,2008,18(5):799-804.(in Chinese)
参考文献 25
张志强,董利民,胡明,等.冷却速率对TC16钛合金显微组织和力学性能的影响[J].中国有色金属学报,2019,29(7):1391-1398.ZHANG Zhiqiang,DONG Limin,HU Ming,et al.The effect of cooling rate on microstructure and microstructure of TC16titanium alloy influence of mechanical properties[J].The Chinese Journal of Nonferrous Metals,2019,29(7):1391-1398.(in Chinese)
参考文献 26
党薇,薛祥义,寇宏超,等.TC21 钛合金慢速冷却过程中的相组成及组织演化[J].航空材料学报,2010,30(3):19-23.DANG Wei,XUE Xiangyi,KOU Hongchao,et al.Phase composition and microstucture evolution of TC 21 titanium alloy during slow cooling[J].Journal of Aeronautical Materials,2010,30(3):19-23.(in Chinese)
参考文献 27
李伟.激光选区熔化成形钛铝合金微观组织与性能演变规律研究[D].武汉:华中科技大学,2017.LI Wei.Microstructure and property evolution of Ti-Al alloy formed by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)
参考文献 28
MAGAZINER R S,JAIN V K,MALL S.Investigation into wear of Ti–6Al–4V under reciprocating sliding conditions[J].Wear,2009,267(1-4):368-373.
目录contents

    摘要

    常见的钛合金表面改性常具备成本高、周期长、改性层薄的缺点。为改善新型钛锆基合金 Ti-20Zr-6.5Al-4V 的耐磨性能,采用不同等离子弧重熔电流对 T20Z 合金重熔试验。使用扫描电子显微镜(SEM)和 X 射线衍射仪(XRD)、显微维氏硬度计、UMT-2 摩擦磨损试验机及三维形貌仪对等离子弧重熔后合金的组织、物相、硬度及摩擦磨损性能进行分析和测试。结果表明,不同重熔电流均使 T20Z 表层组织细化,硬度提升,低电流的硬化效果最为明显,硬度最高达 600 HV0.2,较基体提高 225 HV0.2。随着电流增大,重熔区与热影响区逐渐增大,硬度有所降低。摩擦磨损试验显示,80A 重熔电流下磨损率下降 25.89%,耐磨性提升最为明显。不同电流等离子弧重熔的 T20Z 合金在室温干摩擦条件下磨损机制均为磨粒磨损。通过等离子弧重熔的方式可获得较厚的重熔区,且在低重熔电流下样品具有较高的耐磨性提升。

    Abstract

    Owing to their outstanding resistance to corrosion in oil and gas environments, titanium alloys have been used to produce high-pressure gas wellhead sealing parts, including large-area valve plates and seats, which are always washed by high-speed airflow containing acidic gases. It is well known that the valves must be opened and closed frequently, and severe wear phenomena may occur on the contact surfaces. As vital structural components, the sealing parts must possess high hardness on the surface to enhance their anti-wear property. However, severe adhesive wear can always be observed when a titanium surface slides against any other surface, and the poor tribology behavior has restricted its large-scale applications. At the same time, the application of titanium alloys in a corrosive environment can be extended by improving their surface properties. Given the disadvantages of high cost, long period, and a thin modified layer for the common surface modification techniques, systematic research by plasma transferred arc remelting with a remelting current ranging from 80 A to 140 A has been conducted to improve the wear resistance of Ti-20Zr-6.5Al-4V alloy (hereinafter referred to as T20Z alloy). The cross-section microstructure, phase composition, and microhardness were analyzed using a scanning electron microscope(SEM), X-ray diffractometer(XRD), and Vickers hardness tester, respectively. The UMT-2 multifunctional tribometer and three-dimension profilometer were used to evaluate the tribological properties of T20Z alloys, and the wear mechanism was also analyzed comprehensively. The results showed that the remelted samples consisted of a surface remelted zone, heat-affected zone, and interior substrate on the cross-section, and the corresponding microstructures were fine lamellar, martensitic and coarse lamellar structures, respectively. It is important to note that no elements such as N and O were introduced into the remelted zone during the remelting process in the argon atmosphere. For a remelting current of 80 A, the thickness of the remelted zone was approximately 1.2 mm, and its microstructure had been refined significantly. The average α lamellae thickness in the remelted zone was only 0.31 μm, which was not more than one-tenth of that in the substrate. Considering the well-known Hall-Petch relationship, the hardness of the remelted zone, which could be as high as 600 HV0.2, was increased by 225 HV0.2 compared to the hardness of the substrate owing to the grain refinement. The heat-affected zone with a hardness of 450 HV0.2 was located between the surface remelted layer and the substrate. By increasing the remelting current to 140 A, the thickness of the remelted zone increased gradually from 1.2 mm to 1.98 mm. Due to the large heat input under the condition of a high remelting current, the decreased supercooling degree and the driving force for the grain nucleation occurred, resulting in a large lamellae thickness of 0.56 μm. Although the remelting current had some influence on the lamellae thickness and the lamellae thickness increased slightly, the hardness was improved to a varying extent compared to that of the substrate. The friction-wear tests indicated that the most apparent wear resistance enhancement was obtained when the remelting current was 80 A, and the wear rate of the remelted specimen decreased by 25.89% compared to that of the untreated specimen. Meanwhile, the dry sliding friction coefficient of the remelted specimen was similar to that of the untreated specimen and exhibited good stability. Based on the analysis of the wear trace morphology of the surface remelted specimen, the underlying mechanism of dry sliding friction at room temperature was abrasive wear. Thus, the plasma arc remelting method is beneficial in obtaining a thick and hard remelted layer with a significantly refined microstructure and improves the wear resistance of the surface remelted T20Z alloy, especially when the remelting current is low.

  • 0 前言

  • 钛合金作为一种高性能材料,因其比强度高、耐蚀性优异及良好的耐热性,在航空航天、兵器、化工、造船、生物医学等领域获得日益广泛的应用[1-3]。但钛合金因较低的硬度和塑性剪切抗力,其耐磨性较差,使得钛合金的应用受限[4]

  • 为提升钛合金的表面强度和耐摩擦磨损性能,学者们做了大量研究,如通过滚压[5]、喷丸[6]、织构[7]等进行表面强化,通过气相沉积[8]、冷 / 热喷涂[9-10]、阳极氧化[11]等涂层制备技术均能在一定程度上改善其耐磨性,但也存在一些突出的问题,如硬化层较薄、易脱落等。钛合金表面激光合金化是一种常见的改善钛合金耐磨性的方法,通过高能束激光辐照使钛合金金属液与氮气发生化学冶金交互作用,获得硬质氮化钛并通过快速凝固使晶粒细化从而提高硬度与耐磨性[12]。孙信阳[13]通过激光气体氮化新型 TiZrAlV 合金,硬度由基体的 375 HV 提升至硬化层的 1 300 HV,硬化层深约 600 μm。JI 等[14]通过激光重熔改善 Zr-5Ti 性能,硬度由 197 HV 提升至 986 HV,硬化层深 200 μm。钛合金通过激光表面氮化及重熔均获得了较大的硬度提升,但是硬化层均较浅。

  • 宋强[15]对 AZ91D 镁合金进行等离子重熔试验,不同电流下的重熔层硬度提升 50%~78%,耐磨性提升 37%~52.3%,重熔层厚度显著增大至 2 mm。袁建军等[16]对汽车发动机缸体灰铸铁进行等离子表面重熔,重熔层组织为初生奥氏体和莱氏体,显微硬度最高为 926 HV,耐磨性显著提高。

  • 钛锆基合金是我国近年来研发的新型钛合金,锻态 T20Z 相较传统 TC4 钛合金,抗拉强度由 895 MPa 提升至 1 595 MPa[17],但钛锆基合金同样耐磨性差,易发生黏着磨损[18]。新型钛锆基合金的研究大多涉及组织调控及传统力学性能测试与优化[19-20],关于耐磨性的改善及优化研究较少,钛合金通过激光重熔得到了硬度较高的硬化层,但硬化层一般很薄,采用等离子重熔技术有望提高硬化层厚度,进而改善其耐磨性。

  • 1 材料与方法

  • 1.1 试验材料及前处理

  • 试验采用 α+β 型锻态 TiZrAlV 合金,合金中各元素质量分数如表1 所示,利用线切割制备出 35 mm×20 mm×10 mm 的试样。为使试验样品微观组织统一稳定,所有样品经过退火处理,退火工艺为 800℃,保温 120 min 后随炉冷却至室温。进行重熔试验前粗磨并使用无水乙醇超声波清洗。

  • 表1 T20Z 的质量分数

  • Table1 Chemical composition of T20Z (wt.%)

  • 1.2 等离子弧重熔试验

  • 重熔试验采用武汉材料保护研究所制造的 PTA-400E2-ST 型粉末等离子喷焊机,重熔工艺参数如表2。

  • 表2 重熔参数

  • Table2 Remelting parameters

  • 1.3 摩擦磨损试验及磨损形貌分析

  • 使用 Leica DMI8C 光学显微镜观察样品截面合金组织和形貌,采用 D8 Advance(XRD)对样品截面不同分区物相进行表征。使用 HV-1000 显微维氏硬度计测试合金在纵截面的硬度,测试载荷为 200 g,保荷时间 15 s,测试方法为从距离合金表面 100 μm 处开始测第一个点,重熔区每隔 200 μm 取一个点,热影响区及基体每隔 400 μm 取一个点。

  • 试验采用φ6.3 mm 的 GCr15 钢球与 35 mm× 20 mm×10 mm 的 T20Z 合金对磨盘进行往复干摩擦磨损试验,图1 为 CETR UMT-2 多功能摩擦磨损试验机的往复摩擦磨损示意图。试验在室温下进行,试验载荷力为 30 N,其静态接触赫兹应力为 1.61 GPa,试验速度为 6 mm / s,试验行程为 4 mm,试验时间为 30 min。

  • 样品的磨痕通过 Nanofocus AG 三维形貌测试仪与 JSM-5610LV 型扫描电镜观察与表征,磨损率计算选择为体积磨损率:

  • W=ΔVFnvt
    (1)
  • 式中,W 为磨损速率,mm 3 / Nm;ΔV 为磨损体积, mm 3Fn为试验载荷,N;v 为滑动速度,mm / s;t 为摩擦时间,min。

  • 图1 UMT 往复模块示意图

  • Fig.1 UMT Reciprocating module

  • 2 结果与分析

  • 2.1 合金的微观组织与形貌

  • 图2 为重熔样品截面的宏观形貌及不同重熔电流下的重熔区厚度柱状图。图2a 为 80A 电流等离子弧重熔后的 T20Z 宏观截面形貌,可以看出,经等离子重熔后,样品明显分为重熔区(RZ)、热影响区(HAZ)、基体(BZ)。重熔区与热影响区均为细针状组织,前者整体分布均匀。重熔区在重熔过程中会快速熔化与凝固,在快速的加热冷却过程中,材料因其独特的“无界面热阻”快速传导自淬火[21],快速地进行 β 相到 α 相的固态转变。图2b 为 140A 电流等离子弧重熔后的宏观截面形貌,可看到热影响区中存在粗大的柱状原始 β 晶粒,晶粒由热影响区向熔池心部汇聚生长,宏观组织可见部分外延生长的粗大 β 柱状晶,大量的板条组织存在其中。可以看到,140 A 重熔样品较 80 A 重熔样品,随热输入量增大,重熔区厚度增加。由于等离子束的能量呈高斯分布,中心能量比两侧高,熔池凝固时液相在表面张力及重力的作用下呈底部内凹的半球形[22],在热输入量较大的情况下半球形更加明显。图2c 为等离子弧重熔后重熔区厚度随电流大小变化图,随电流增大,热输入量增加,重熔区厚度随之逐渐增加。由 80~120 A 电流,重熔区厚度增加明显,120~140 A,重熔区厚度提高变缓,电流增大对重熔区厚度的增加效果减弱,不再继续增大试验电流。同时为获得可观的重熔区厚度,不再减小试验电流。

  • 图2 重熔样品宏观形貌与重熔区厚度

  • Fig.2 Macroscopic of remelting samples and thickness of remelting zone

  • 图3 为 80A 重熔样品不同区域的 XRD 衍射图谱,可见基体主要物相为密排六方的 α 相及部分体心立方结构的 β 相。热影响区中为 α"马氏体相,在 2θ 角约等于 35°的位置,分别为(110)和(020)两个强度较低的晶面衍射峰。TC4 合金中完全高温 β 相在淬火过程中会形成 α'马氏体相,T20Z 合金因 Zr 元素的加入有利于 α"马氏体的形成[23],生成了 α" 马氏体。在 2θ 角约等于 38°的位置,β 相的(110) 面衍射峰消失。重熔区物相与基体物相相同,为 α 相与 β 相,没有其他新的物相生成。

  • 图3 80A 样品不同分区 X 射线衍射图谱

  • Fig.3 XRD of different zones of 80A sample

  • 重熔区的衍射峰相较基体产生了一定程度的宽化并向左偏移,衍射峰宽化主要是由于晶粒细化引起的[24],由谢乐公式计算,重熔区晶粒发生了一定程度的细化。因而,经过等离子弧重熔后,重熔区为大量细小的 α 相与少量 β 相构成的稳态组织,而热影响区为亚稳态的 α″马氏体组织。

  • 图4 为原始样品与重熔样品的表面微观组织形貌图,4a 为原始样品表面微观组织形貌,可以看到原始组织为分布均匀的“网篮”状组织,组织较为粗大。图4b~4e 为 80~140 A 重熔电流下样品的表面微观组织形貌,较原始样品,α 片层厚度明显降低,且随重熔电流的增大,α 片层厚度呈增大趋势。等离子弧重熔过程中,重熔区被迅速熔化与凝固,熔池内的温度梯度与凝固速率均较大。冷却速率提高,过冷度增大,凝固驱动力也越大,临界形核半径与形核功随之减小,更利于形成细小的晶粒。此外,重熔区内熔体的 Marangoni 对流、震荡、失稳行为,可与凝固界面前沿发生交互作用,促进晶粒非均质形核[22]。重熔区底部与热影响区顶部液固交界处,凝固过程中为晶核的产生提供了有利的表面,减小了界面能,晶核形成功减小。因此,重熔过程中,凝固驱动力增加及非均质形核引起的形核功减小,以及形核半径减少导致的形核数目的增多,是重熔过程中晶粒细化的主要原因。

  • 图4 原始样品及重熔样品表面微观形貌

  • Fig.4 Surface micromorphology of initial and remelted samples

  • 2.2 合金的硬度及影响层深

  • 图5 为不同电流等离子弧重熔 T20Z 合金从表层到心部的硬度变化曲线,从重熔区至热影响区、基体,硬度值依次降低,至基体的 375 HV0.2后保持不变。试样经不同电流等离子弧重熔后表面硬度均有所提高,当重熔电流为 80 A 时取得硬度最大值,为 600 HV0.2,相较基体提升 225 HV0.2,提升幅度达到 60%。随着重熔电流增大,硬度值有所降低,但降低幅度不大,如重熔电流80 A时硬化层平均硬度值为573.3 HV0.2,140 A 重熔电流时硬化层平均硬度为 517.4 HV0.2。同时合金的重熔区和热影响区的区间范围随重熔电流的增大而扩大,高重熔电流样品硬度值的突变点因而相对滞后,在距离表面更远的距离达到基体硬度,硬化层厚度从 80 A 时的 1.1 mm 增加至 140 A 的 1.9 mm,硬化层厚度与图2c 中重熔区厚度基本一致。因此,试验样品重熔区硬度表现为:合金表面硬度较基体均一定程度提高,但在不同试验电流下重熔区硬度差别不大,整体表现为低电流下硬度值更高。

  • 图5 不同电流重熔截面硬度分布图

  • Fig.5 Hardness distribution of different current remelting sections

  • 对 80 A 重熔样品的重熔区进行能谱分析,结果如图6 所示。可以看到重熔区元素仍然为 Ti、Zr、 Al、V,没有检测到 N、O、C 等强合金化元素的存在,因而不可能形成 Ti 的氮化物、氧化物以及碳化物等硬质相颗粒以提高重熔区硬度,与 XRD 分析结果相吻合。因此,重熔区硬度的大幅度提高与第二相强化无关。同时可以看到不同检测点之间合金元素 Al、V 有微小的差别,这主要是由于重熔后在高冷却速率下存在一定的成分偏析,并且 Al 为 α 相稳定元素,V 为 β 相稳定元素,两种元素在 α 相和 β 相中的含量有所不同。

  • 图6 80 A 样品重熔区能谱分析

  • Fig.6 EDS analysis of 80 A sample remelting zone

  • 一般来说,材料强度越高,硬度值也越大,重熔区硬度的升高可归因于组织细化引起的强度提升,晶粒细化导致的强度提升可由式(2)的霍尔-佩奇公式解释:

  • σy=σ0+ky×d-1/2
    (2)
  • 式中,σy为屈服强度;σ0 为强度系数;ky为 Hall-Petch 系数,对一种材料为常数;d 为平均晶粒尺寸。

  • 图7 为不同处理条件下的 α 板条片层厚度统计图,对不同处理条件下重熔区的片层厚度进行统计分析,结果如图7 所示。原始样品 α 板条片层厚度最厚,平均值为 3.25 μm,重熔样品 α 板条片层厚度均相对较薄,当重熔电流由 80 A 增加至 140 A,样品的 α 板条片层厚度平均值依次为 0.31、0.35、0.54、 0.56 μm,可见试验后样品重熔区发生了晶粒细化,且低电流的细化程度更明显。因为重熔电流降低,试验热输入量减小,重熔区被加热至熔融态所保留的时间缩短,凝固时间变短,冷却速率加快。同时,重熔区与热影响区为液固交界,高热输入量下,重熔区与热影响区的温度梯度相对小,低热输入下,两者之间的温度梯度则相对增大,冷却速率加快。冷却速度越快,实际结晶温度越低,过冷度就越大,较大过冷度下形核率的增加比晶核长大的速度更快,从而可以获得更细晶粒。

  • 图7 不同处理状态下的 α 片层厚度

  • Fig.7 α lamellar thickness under different treatment conditions

  • 张志强等[25]研究表明,较高冷却速率的水冷与空冷,相较更低冷却速率的空冷,初生 α 相的晶粒更加细小。党薇等[26]的研究表明 5℃ / min 较 1℃ / min 的冷却速率下,α 相在晶界形核的同时晶内形核,随着冷却速率的增大,α 片层厚度减小。在李伟[27]关于激光选区重熔成形钛铝合金的研究中也得到类似的结论,在重熔过程中随激光能量密度的增大会导致晶粒变大。综上,合金重熔区硬度提高的原因是晶粒细化。

  • 2.3 合金的摩擦磨损与机理分析

  • 图8 所示为试验载荷下 T20Z 合金的摩擦曲线图。原始样品的平均摩擦因数为 0.321,等离子弧重熔的样品摩擦因数相较原始样品均有所升高,当重熔电流为 140 A 时平均摩擦因数为 0.375,且随着电流的降低而逐渐减小,当重熔电流降至 80 A 时摩擦因数为 0.329,与原始样品摩擦因数接近。同时摩擦磨损过程中,低电流重熔样品摩擦因数相较高电流重熔样品表现出更高的稳定性,120 A 样品与 140 A 样品摩擦因数波动相对较大,电流由 140 A 降低至 80 A,摩擦因数标准差分别为 0.020、0.021、0.018、0.017。

  • 图8 30N 载荷不同处理条件下 T20Z 合金摩擦曲线

  • Fig.8 Friction curves of T20Z alloy treated with different conditions under 30N load

  • 图9 为 T20Z 合金的磨痕三维形貌。图9a 为原始样品在试验载荷下的磨损形貌,磨痕内犁沟明显且粗糙。图9b~9e 分别为 140~80 A 重熔样品的磨痕三维形貌,随着重熔电流的降低,合金的犁沟逐渐变得平滑。由三维形貌图色阶与磨痕深度的对应关系可以看出,低电流下的重熔样品磨痕深度最浅。随重熔电流的降低,磨痕宽度总体表现为逐渐变窄,磨损体积逐渐减小。

  • 图9 T20Z 合金磨痕三维形貌

  • Fig.9 3D morphology of wear marks of T20Z alloys

  • 图10 为 T20Z 的磨痕截面曲线,经测量原始样品磨痕深度为 37 μm,试验样品随重熔电流的降低,磨痕深度由 140 A 的 36 μm 降低至 80 A 的 31 μm,均低于原始样品。原始样品磨痕宽度为 1 078 μm,140 A 重熔电流样品与 120 A 重熔电流样品磨痕宽度变化较原始样品不明显,100 A 电流重熔样品与 80 A 电流重熔样品较原始样品,磨痕宽度降低明显。磨痕截面曲线显示磨痕宽度与深度变化与图9 的三维形貌相一致,总体表现为均随重熔电流的降低而降低。原始样品与试验样品摩擦磨损的截面曲线均显示磨痕凹坑两侧较试样表面有不同程度的隆起。这是因为 T20Z 在滑动过程中与钢球接触的部分摩擦生热,而 T20Z 的热导率约为 17 W / mK[20],较低的热导率下钢球与对磨副间的热量不能及时传导,在接触部位出现热软化区,其他部位温度变化不大,因而试样的软化区域出现向两边挤出的隆起,形成磨痕边缘的凸起现象。原始试样磨痕二维形貌为底部更加平缓的“U”形凹坑,重熔试样均表现为底部向上微凸起的“W”形凹坑,分析其成因,重熔样品表面硬度提升,对磨时抵抗塑性变形的能力增强,对磨生成的磨粒在底部聚集时,在载荷压力及往复剪切力作用下,在磨痕底部形成其他微型磨损槽,因此显示为多处向下凹陷的“W”形[28]

  • 图10 T20Z 合金磨痕截面曲线

  • Fig.10 Wear mark section curve of T20Z alloys

  • 图11为试验载荷下不同重熔电流下T20Z合金的平均磨损率直方图,合金的磨损率表现为随重熔电流的降低而降低,120 A 和 140 A 重熔样品与原始样品接近,磨损率未见显著降低。80 A 与 100 A 重熔样品磨损率相近,且相较于原始样品,磨损率由原始样品的 0.282×10−3 mm 3 /(N·m)降低至 0.211×10−3 mm 3 /(N·m)与 0.209×10−3 mm 3 /(N·m),均下降约 25%。不同重熔电流下的摩擦磨损试验表明:低电流下的重熔样品耐磨性提高更加明显。

  • 图12 为 T20Z 合金的磨损形貌扫描电镜图。图12a 为原始样品的磨痕形貌,其中存在明显的犁沟,磨粒堆积及少量微裂纹与剥落。图12b~12e 为 80~140 A 电流重熔样品的磨痕形貌,80 A 样品与 100 A 样品,磨痕内主要为犁沟和少量磨屑,犁沟相对较浅,摩擦磨损过程中磨屑粘附、堆积减少,很难观察到磨屑堆积现象。120 A 重熔样品磨痕内可见明显犁沟,140 A 样品与 120 A 样品类似,磨痕内可见明显的磨屑堆积和较深犁沟。综上,T20Z 经重熔试验后,硬度提升引起耐磨性的改善,但磨损机制均为磨粒磨损,不同的是低重熔电流下磨屑堆积减少,犁沟变浅,而高重熔电流样品与原始样品磨损形貌类似,存在大量的磨屑堆积及较深的犁沟。

  • 图11 30N 载荷下 T20Z 合金平均磨损率直方图

  • Fig.11 Histogram of mean wear rate of T20Z alloy under 30N load

  • 图12 T20Z 合金的磨损形貌

  • Fig.12 Wear morphology of T20Z alloy

  • 3 结论

  • 系统研究等离子弧重熔电流对钛锆基合金重熔制备的物相组成、显微组织与耐磨性的影响规律,得到如下结论:

  • (1)对 T20Z 合金以不同重熔电流等离子弧重熔后,重熔区无其他物相生成,热影响区中 α 相与 β 相受热量影响发生相转变,并在快速冷却过程中发生马氏体相变形成 α"马氏体。

  • (2)重熔区因快速凝固导致晶粒细化,α 片层厚度降低,重熔区硬度与耐磨性提升,低重熔电流的改性提升效果更明显。

  • (3)调控等离子弧重熔工艺参数,重熔过程中熔覆硬质合金粉末,有望进一步提升合金耐磨性。

  • 参考文献

    • [1] ELSHAER R N,IBRAHIM K M,AHMED M A,et al.Effect of cooling rate and aging process on wear behavior of deformed TC21 Ti-alloy[J].Key Engineering Materials,2020,835:265-273.

    • [2] SHAO J Z,LI J,SONG R,et al.Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti)matrix coating produced by laser cladding[J].Rare Metals,2016,39(7):1-12.

    • [3] PHILIP J T,MATHEW J,KURIACHEN B.Tribology of Ti6Al4V[J].Wear,2019,7(6):497-536.

    • [4] 王兰.钛合金磨损行为及磨损机理的研究[D].镇江:江苏大学,2014.WANG Lan.Study on wear behavior and wear mechanism of titanium alloy[D].Zhenjiang:Jiangsu University,2014.(in Chinese)

    • [5] JIA Y F,PAN R J,ZHANG P Y,et al.Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique[J].Corrosion Science,2019,157:256-267.

    • [6] ZHOU L C,PAN X L,SHI X S,et al.Research on surface integrity of Ti-6Al-4V alloy with compound treatment of laser shock peening and shot peening[J].Vacuum,2022,196:110717-110717.

    • [7] WU Z,XING Y,HUANG P,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.

    • [8] 李兆峰,李志强,赵朋举,等.TC4 钛合金表面CrN和 DLC 耐磨涂层制备及性能研究[J].材料开发与应用,2014,29(4):43-47.LI Zhaofeng,LI Zhiqiang,ZHAO Pengju,et al.Preparation and performance of CrN and DLC coationgs on TC4 titanium alloy[J].Material Development and Application,2014,29(4):43-47.(in Chinese)

    • [9] 陆健,吕晨,吴盾,等.等离子喷涂TaC和 NbC 涂层的结构和耐磨耐蚀性能[J].材料保护,2018(12):1-5.LU Jian,LÜ Chen,WU Dun,et al.Microstructures,abrasion resistance and corrosion resistance of plasma-sprayed TaC and NbC coatings[J].Material Protection,2018(12):1-5.(in Chinese)

    • [10] 刘顺,罗杰,陈衡,等.冷喷涂和低压等离子喷涂 Ni-Ti 涂层:组织和性能[J].稀有金属材料与工程,2019(11):3621-3627.LIU Shun,LUO Jie,CHEN Heng,at etl.Cold-sprayed and low-pressure plasma Sprayed Ni-Ti coatings:microstructure and properties[J].Rare Metal Materials and Engineering,2019(11):3621-3627.(in Chinese)

    • [11] 徐照英,张腾飞,苏永要,等.钛合金表面阳极氧化着色及摩擦学特性研究[J].真空科学与技术学报,2020,40(8):734-740.XU Zhaoying,ZHANG Tengfei,SU Yongyao,et al.Tribological properties of TC4 Ti-Alloy surfaces modified by anodizing coloring[J].Chinese Journal of Vacum Science and Technology,2020,40(8):734-740.(in Chinese)

    • [12] 姚小春.TC4 钛合金表面激光气体氮化工艺及性能研究 [D].兰州:兰州理工大学,2019.YAO Xiaochun.Study on laser gas nitriding technology and properties of TC4titanium alloy surface[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [13] 孙信阳.新型TiZrAlV合金表面激光氮化工艺及组织性能研究[D].石家庄:河北科技大学,2019.SUN Xinyang.Microstructure evolution and properties of the coating layer on novel TiZrAlV alloy by laser gas nitriding[D].Shijiazhuang:Heibei University of Science and Technology,2019.(in Chinese)

    • [14] JI P F,LI B,LIU S G,et al.Effect of laser surface re-melting on the microstructure and properties of Zr alloy[J].Materials Letters,2020,264:127352.

    • [15] 宋强.AZ91D 镁合金等离子表面改性研究[D].青岛:中国石油大学,2012.SONG Qiang.Plasma surface modification of AZ91D magnesium alloy[D].Qingdao:China University of Pertroleum,2012.(in Chinese)

    • [16] 袁建军,谢艳春,崔洪芝,等.汽车发动机缸体灰铸铁等离子相变硬化组织及性能分析[J].热加工工艺,2007,36(10):15-16.YUAN Jianjun,XIE Yanchun,CUI Hongzhi,et al.Analysis of structure and properties of plasma phase-change hardening for automobile engine body[J].Material &Heat Treatment,2007,36(10):15-16.(in Chinese)

    • [17] 景然.高强度TiZrAlV合金的制备及组织性能研究[D].秦皇岛:燕山大学,2013.JING Ran.Praparation and microstructure properties of High strength TiZrAlV alloy[D].Qinhuangdao:Yanshan University,2013.(in Chinese)

    • [18] ZHONG H,WANG W X,MA M Z,et al.Comparative study on tribological behaviors of two TiZr-Based alloys in vacuum[J].Journal of Materials Engineering and Performance,2022,31(2):1108-1117.

    • [19] 岳赟.TiZr 基合金组织调控及疲劳行为研究[D].秦皇岛:燕山大学,2017.YUE Yun.Microstructure regulation and fatigue behavior of TiZr based alloys[D].Qinhuangdao:Yanshan University,2017.(in Chinese)

    • [20] 钟华.新型钛锆基合金在不同环境下的摩擦磨损行为研究[D].秦皇岛:燕山大学,2018 ZHONG Hua.Friction and wear behavior of new ti-zr base alloy in different environments[D].Qinhuangdao:Yanshan University,2018.(in Chinese)

    • [21] ZHOU Xin,WANG Dianzheng,LIU Xihe,et al.3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT[J].Acta Materialia,2015,98:1-16.

    • [22] 李继康,张净凯,张振武,等.激光选区熔化 Cu-15Ni-8Sn 合金的显微组织、拉伸和摩擦磨损性能[J].中国有色金属学报,2023,33(2):386-399.LI Jikang,ZHANG Jingkai,ZHANG Zhenwu,et al.Laser selective melting of Cu-15Ni-8Sn alloy microstructure,tensile and tribological properties[J].The Chinese Journal of Nonferrous Metals,2023,33(2):386-399.(in Chinese)

    • [23] CHENG L,YIN G,ZHAO Y,et al.Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters[J].Materials Chemistry & Physics,2011,125(3):411-417.

    • [24] 韩靖,盛光敏,胡国雄.高能喷丸TA17近 α 钛合金晶粒细化机制[J].中国有色金属学报,2008,18(5):799-804.HAN Jing,SHENG Guangmin,HU Guoxiong,Mechanism of grain refinement for TA17 near α Ti alloy by high energy shot peening[J].The Chinese Journal of Nonferrous Metals,2008,18(5):799-804.(in Chinese)

    • [25] 张志强,董利民,胡明,等.冷却速率对TC16钛合金显微组织和力学性能的影响[J].中国有色金属学报,2019,29(7):1391-1398.ZHANG Zhiqiang,DONG Limin,HU Ming,et al.The effect of cooling rate on microstructure and microstructure of TC16titanium alloy influence of mechanical properties[J].The Chinese Journal of Nonferrous Metals,2019,29(7):1391-1398.(in Chinese)

    • [26] 党薇,薛祥义,寇宏超,等.TC21 钛合金慢速冷却过程中的相组成及组织演化[J].航空材料学报,2010,30(3):19-23.DANG Wei,XUE Xiangyi,KOU Hongchao,et al.Phase composition and microstucture evolution of TC 21 titanium alloy during slow cooling[J].Journal of Aeronautical Materials,2010,30(3):19-23.(in Chinese)

    • [27] 李伟.激光选区熔化成形钛铝合金微观组织与性能演变规律研究[D].武汉:华中科技大学,2017.LI Wei.Microstructure and property evolution of Ti-Al alloy formed by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)

    • [28] MAGAZINER R S,JAIN V K,MALL S.Investigation into wear of Ti–6Al–4V under reciprocating sliding conditions[J].Wear,2009,267(1-4):368-373.

  • 参考文献

    • [1] ELSHAER R N,IBRAHIM K M,AHMED M A,et al.Effect of cooling rate and aging process on wear behavior of deformed TC21 Ti-alloy[J].Key Engineering Materials,2020,835:265-273.

    • [2] SHAO J Z,LI J,SONG R,et al.Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti)matrix coating produced by laser cladding[J].Rare Metals,2016,39(7):1-12.

    • [3] PHILIP J T,MATHEW J,KURIACHEN B.Tribology of Ti6Al4V[J].Wear,2019,7(6):497-536.

    • [4] 王兰.钛合金磨损行为及磨损机理的研究[D].镇江:江苏大学,2014.WANG Lan.Study on wear behavior and wear mechanism of titanium alloy[D].Zhenjiang:Jiangsu University,2014.(in Chinese)

    • [5] JIA Y F,PAN R J,ZHANG P Y,et al.Enhanced surface strengthening of titanium treated by combined surface deep-rolling and oxygen boost diffusion technique[J].Corrosion Science,2019,157:256-267.

    • [6] ZHOU L C,PAN X L,SHI X S,et al.Research on surface integrity of Ti-6Al-4V alloy with compound treatment of laser shock peening and shot peening[J].Vacuum,2022,196:110717-110717.

    • [7] WU Z,XING Y,HUANG P,et al.Tribological properties of dimple-textured titanium alloys under dry sliding contact[J].Surface & Coatings Technology,2017,309:21-28.

    • [8] 李兆峰,李志强,赵朋举,等.TC4 钛合金表面CrN和 DLC 耐磨涂层制备及性能研究[J].材料开发与应用,2014,29(4):43-47.LI Zhaofeng,LI Zhiqiang,ZHAO Pengju,et al.Preparation and performance of CrN and DLC coationgs on TC4 titanium alloy[J].Material Development and Application,2014,29(4):43-47.(in Chinese)

    • [9] 陆健,吕晨,吴盾,等.等离子喷涂TaC和 NbC 涂层的结构和耐磨耐蚀性能[J].材料保护,2018(12):1-5.LU Jian,LÜ Chen,WU Dun,et al.Microstructures,abrasion resistance and corrosion resistance of plasma-sprayed TaC and NbC coatings[J].Material Protection,2018(12):1-5.(in Chinese)

    • [10] 刘顺,罗杰,陈衡,等.冷喷涂和低压等离子喷涂 Ni-Ti 涂层:组织和性能[J].稀有金属材料与工程,2019(11):3621-3627.LIU Shun,LUO Jie,CHEN Heng,at etl.Cold-sprayed and low-pressure plasma Sprayed Ni-Ti coatings:microstructure and properties[J].Rare Metal Materials and Engineering,2019(11):3621-3627.(in Chinese)

    • [11] 徐照英,张腾飞,苏永要,等.钛合金表面阳极氧化着色及摩擦学特性研究[J].真空科学与技术学报,2020,40(8):734-740.XU Zhaoying,ZHANG Tengfei,SU Yongyao,et al.Tribological properties of TC4 Ti-Alloy surfaces modified by anodizing coloring[J].Chinese Journal of Vacum Science and Technology,2020,40(8):734-740.(in Chinese)

    • [12] 姚小春.TC4 钛合金表面激光气体氮化工艺及性能研究 [D].兰州:兰州理工大学,2019.YAO Xiaochun.Study on laser gas nitriding technology and properties of TC4titanium alloy surface[D].Lanzhou:Lanzhou University of Technology,2019.(in Chinese)

    • [13] 孙信阳.新型TiZrAlV合金表面激光氮化工艺及组织性能研究[D].石家庄:河北科技大学,2019.SUN Xinyang.Microstructure evolution and properties of the coating layer on novel TiZrAlV alloy by laser gas nitriding[D].Shijiazhuang:Heibei University of Science and Technology,2019.(in Chinese)

    • [14] JI P F,LI B,LIU S G,et al.Effect of laser surface re-melting on the microstructure and properties of Zr alloy[J].Materials Letters,2020,264:127352.

    • [15] 宋强.AZ91D 镁合金等离子表面改性研究[D].青岛:中国石油大学,2012.SONG Qiang.Plasma surface modification of AZ91D magnesium alloy[D].Qingdao:China University of Pertroleum,2012.(in Chinese)

    • [16] 袁建军,谢艳春,崔洪芝,等.汽车发动机缸体灰铸铁等离子相变硬化组织及性能分析[J].热加工工艺,2007,36(10):15-16.YUAN Jianjun,XIE Yanchun,CUI Hongzhi,et al.Analysis of structure and properties of plasma phase-change hardening for automobile engine body[J].Material &Heat Treatment,2007,36(10):15-16.(in Chinese)

    • [17] 景然.高强度TiZrAlV合金的制备及组织性能研究[D].秦皇岛:燕山大学,2013.JING Ran.Praparation and microstructure properties of High strength TiZrAlV alloy[D].Qinhuangdao:Yanshan University,2013.(in Chinese)

    • [18] ZHONG H,WANG W X,MA M Z,et al.Comparative study on tribological behaviors of two TiZr-Based alloys in vacuum[J].Journal of Materials Engineering and Performance,2022,31(2):1108-1117.

    • [19] 岳赟.TiZr 基合金组织调控及疲劳行为研究[D].秦皇岛:燕山大学,2017.YUE Yun.Microstructure regulation and fatigue behavior of TiZr based alloys[D].Qinhuangdao:Yanshan University,2017.(in Chinese)

    • [20] 钟华.新型钛锆基合金在不同环境下的摩擦磨损行为研究[D].秦皇岛:燕山大学,2018 ZHONG Hua.Friction and wear behavior of new ti-zr base alloy in different environments[D].Qinhuangdao:Yanshan University,2018.(in Chinese)

    • [21] ZHOU Xin,WANG Dianzheng,LIU Xihe,et al.3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT[J].Acta Materialia,2015,98:1-16.

    • [22] 李继康,张净凯,张振武,等.激光选区熔化 Cu-15Ni-8Sn 合金的显微组织、拉伸和摩擦磨损性能[J].中国有色金属学报,2023,33(2):386-399.LI Jikang,ZHANG Jingkai,ZHANG Zhenwu,et al.Laser selective melting of Cu-15Ni-8Sn alloy microstructure,tensile and tribological properties[J].The Chinese Journal of Nonferrous Metals,2023,33(2):386-399.(in Chinese)

    • [23] CHENG L,YIN G,ZHAO Y,et al.Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters[J].Materials Chemistry & Physics,2011,125(3):411-417.

    • [24] 韩靖,盛光敏,胡国雄.高能喷丸TA17近 α 钛合金晶粒细化机制[J].中国有色金属学报,2008,18(5):799-804.HAN Jing,SHENG Guangmin,HU Guoxiong,Mechanism of grain refinement for TA17 near α Ti alloy by high energy shot peening[J].The Chinese Journal of Nonferrous Metals,2008,18(5):799-804.(in Chinese)

    • [25] 张志强,董利民,胡明,等.冷却速率对TC16钛合金显微组织和力学性能的影响[J].中国有色金属学报,2019,29(7):1391-1398.ZHANG Zhiqiang,DONG Limin,HU Ming,et al.The effect of cooling rate on microstructure and microstructure of TC16titanium alloy influence of mechanical properties[J].The Chinese Journal of Nonferrous Metals,2019,29(7):1391-1398.(in Chinese)

    • [26] 党薇,薛祥义,寇宏超,等.TC21 钛合金慢速冷却过程中的相组成及组织演化[J].航空材料学报,2010,30(3):19-23.DANG Wei,XUE Xiangyi,KOU Hongchao,et al.Phase composition and microstucture evolution of TC 21 titanium alloy during slow cooling[J].Journal of Aeronautical Materials,2010,30(3):19-23.(in Chinese)

    • [27] 李伟.激光选区熔化成形钛铝合金微观组织与性能演变规律研究[D].武汉:华中科技大学,2017.LI Wei.Microstructure and property evolution of Ti-Al alloy formed by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)

    • [28] MAGAZINER R S,JAIN V K,MALL S.Investigation into wear of Ti–6Al–4V under reciprocating sliding conditions[J].Wear,2009,267(1-4):368-373.

  • 手机扫一扫看