en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王彪,男,1997年出生,硕士研究生。主要研究方向为聚苯胺/锌电池。E-mail:873922464@qq.com

通讯作者:

邓姝皓,女,博士,副教授,硕士研究生导师。主要研究方向为动力电池及电池材料。E-mail:dengweihuadi@sina.com

中图分类号:TQ152

DOI:10.11933/j.issn.1007−9289.20211208003

参考文献 1
EFTEKHARI A,LI L,YANG Y.Polyaniline supercapacitors[J].Journal of Power Sources,2017,347:86-107.
参考文献 2
HAN G,LIU Y,ZHANG L,et al.MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors[J].Scientific reports,2014,4(1):1-7.
参考文献 3
HUANG J,WANG Z,HOU M,et al.Polyanilineintercalated manganese dioxide nanolayers as a highperformance cathode material for an aqueous zinc-ion battery[J].Nature Communications,2018,9(1):1-8.
参考文献 4
WANG G,ZHUO S,XING W.Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells[J].Materials Letters,2012,69:27-29.
参考文献 5
WANG L,FENG X,REN L,et al.Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J].Journal of the American Chemical Society,2015,137(15):4920-4923.
参考文献 6
ZHANG S,ZHANG L,WANG W,et al.A novel cathode material based on polyaniline used for lithium/sulfur secondary battery[J].Synthetic Metals,2010,160(17-18):2041-2044.
参考文献 7
刘钊,孙亚伟.铁离子掺杂聚苯胺涂层的光热杀菌性能 [J].中国表面工程,2018,31(5):82-91.LIU Zhao,SUN Yawei.Photothermal sterilization performance of Fe3+ doped polyanilinecoating[J].China Surface Engineering,2018,31(5):82-91.(in Chinese)
参考文献 8
王颖,李健,顾卡丽.智能变色涂层[J].中国表面工程,2007(3):9-13.WANG Yin,LI Jian,GU Kali.Smartcolorshifting coatings[J].China Surface Engineering,2007(3):9-13.(in Chinese)
参考文献 9
XU J,WANG K,ZU S Z,et al.Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J].ACS nano,2010,4(9):5019-5026.
参考文献 10
HYDER M N,LEE S W,CEBECI F Ç,et al.Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications[J].ACS Nano,2011,5(11):8552-8561.
参考文献 11
HOU J,LIU Z,ZHANG P.A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J].Journal of Power Sources,2013,224:139-144.
参考文献 12
高珍珍,佟浩,陈建慧,等.聚苯胺共价接枝碳纳米管复合材料的制备及其超电容性能的研究[J].化学学报,2014,72(11):1175-1181.GAO Zhenzhen,TONG Hao,CHEN Jianhui,et al.Preparation and supercapacitive performance of polyaniline covalently grafted carbon nanotubes composite material[J].Acta Chimica Sinica,2014,72(11):1175-1181.(in Chinese)
参考文献 13
CAO M S,YANG J,SONG W L,et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J].ACS Applied Materials & Interfaces,2012,4(12):6949-6956.
参考文献 14
LIN Y,LI D,HU J,et al.Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J].The Journal of Physical Chemistry C,2012,116(9):5764-5772.
参考文献 15
RADHAKRISHNAN S,KRISHNAMOORTHY K,SEKAR C,et al.A promising electrochemical sensing platform based on ternary composite of polyaniline–Fe2O3–reduced graphene oxide for sensitive hydroquinone determination[J].Chemical Engineering Journal,2015,259:594-602.
参考文献 16
ZHU C,HE Y,LIU Y,et al.ZnO@ MOF@ PANI core-shell nanoarrays on carbon cloth for highperformance supercapacitor electrodes[J].Journal of Energy Chemistry,2019,35:124-131.
参考文献 17
李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.LI Fachuang,HUANG Hui,GUO Zhongcheng.Synthesis and characterization of conductive polyaniline cobaltosic oxide composites[J].Journal of Functional Polymers,2011,24(4):353-358.(in Chinese)
参考文献 18
KOBLISCHKA M R,KOBLISCHKA-VENEVA A.Fabrication of superconducting nanowires using the template method[J].Nanomaterials,2021,11(8):1970.
参考文献 19
YAO M,ZHAO X,ZHANG Q,et al.Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor[J].Electrochimica Acta,2021,390:138804.
参考文献 20
ZHANG H,ZHOU M,ZHAO H,et al.Ordered nanostructures arrays fabricated by anodic aluminum oxide(AAO)template-directed methods for energy conversion[J].Nanotechnology,2021,32(50):502006.
参考文献 21
ZHANG T,YUE H,GAO X,et al.Polyaniline nanowire arrays on three-dimensional hollow graphene balls for high-performance symmetric supercapacitor[J].Journal of Electroanalytical Chemistry,2019,855:113574.
参考文献 22
WANG J,MANGA K K,BAO Q,et al.High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J].Journal of the American Chemical Society,2011,133(23):8888-8891.
参考文献 23
ZHOU M,TANG J,CHENG Q,et al.Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J].Chemical Physics Letters,2013,572:61-65.
参考文献 24
邓姝皓,易丹青,郑康丽,等.新型 Mg/导电PANI海水激活电池性能研究[J].船电技术,2007(6):334-338.DENG Shuhao,YI Danqing,ZHENG Kangli,et al.Study on the performance of a novel Mg/conducting polyaniline seawater battery[J].MarineElectric& Electronic Engineering,2007(6):334-338.(in Chinese)
参考文献 25
邓姝皓,袁莉君,徐杨明,等.聚苯胺/二氧化锰/氧化石墨烯复合电极的制备及性能[J].高分子材料科学与工程,2020,36(9):150-156.DENG Shuhao,YUAN Lijun,XU Yangming,et al.Preparation and properties of polyaniline/manganese dioxide/graphene oxide composite cathode[J].Polymer Materials Science & Engineering,2020,36(9):150-156.(in Chinese)
参考文献 26
ZHANG L,ZHANG Z,HE C,et al.Rationally designed surfactants for few-layered graphene exfoliation:ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers[J].ACS nano,2014,8(7):6663-6670.
参考文献 27
邢晓晗,由针状焦制备石墨烯及其性能研究[D].太原:太原理工大学,2019.XING Xiaohan.Preparation of graphene from needle Coke and its properties [D].Taiyuan:Taiyuan University of Technology,2019.
参考文献 28
龚水水,光善仪,柯福佑,等.红外光谱法氧化石墨烯羧基官能团含量的测定[J].中国测试,2016,42(4):38-44.GONG Shuishui,GUANG Shanyi,KE Fuyou,et al.Determination of the content of carboxyl functional groups of graphene oxide by infrared spectroscopy[J].China Measurement & Test,2016,42(4):38-44.(in Chinese)
目录contents

    摘要

    针对软、硬模板法制备纳米线的缺陷,提出一种步骤简单、快速且低成本的方法来获得直径均匀的 PANI 纳米线复合材料,并对所制备出的 PANI 纳米线复合材料进行表征和电化学性能研究。首先,采用阳极氧化剥离法,分别在硝酸体系、磷酸还原体系及硫酸体系中对表面光滑的石墨板进行电化学剥离处理。随后,在经过电化学剥离后的粗糙石墨表面上进行电聚合,从而得到 PANI 纳米线复合材料。表征分析发现,经电化学剥离处理的石墨纸表面分别生成具有大量活性点的石墨烯和氧化石墨烯,与 PANI 结合显著提高了 PANI 的导电性。其中硝酸体系制备的聚苯胺复合材料(PANI / GO)微观为纳米线组成的三维网状结构;磷酸还原体系制备的聚苯胺复合材料(PANI / GR1)微观是纳米线和纳米片层混合结构;硫酸体系制备的聚苯胺复合材料(PANI / GR2)的微观结构介于二者之间。以镁合金和上述三种 PANI 复合材料为电极,制备出简易的海水电池。使其在电流密度为 3.75 mA·cm−2 下放电至 0.9 V 时止。三种电池的比能量分别为 540、228 和 363 mWh·g−1 ,结果表明 PANI / GO 的储能性最优。随后进行的 Tafel 曲线分析和交流阻抗分析表明,PANI / GO 复合电极的导电性和稳定性优异、比表面积大,有利于与电解液充分接触,促进离子在其上的传输和扩散,因而电池反应的极化小,电化学性能最优,有望应用于电池正极材料。

    Abstract

    Conductive polyaniline(PANI) is characterized by a high conductivity, easy doping, reversible electrochemical activity, good uniformity, good thermal stability, and high stability in air. Additionally, it has a high potential for application in batteries and other fields. However, PANI exhibits different morphologies, structures, and performances when synthesized under different conditions. Nanoscale PANI composites have promising applications in the development of small, lightweight, and convenient devices. Among them, PANI composites with a nanowire structure are conducive for electron transfer because of the reduced ion diffusion distance and migration, which provides the optimal energy storage effect for use as an electrode material in batteries. Presently, conductive PANI with a nanowire structure is typically prepared using a hard or soft template method. Based on the defects of the template method, a simple, fast, and low-cost method was proposed to synthesize uniform-sized PANI nanowire composites and study their electrochemical performance. The synthesis of PANI nanowire composites was a two-step process. The first step involved the electrochemical stripping of the graphite plates. An anodic oxidation stripping method was used to prepare a rough surface graphite plate in a nitric acid, phosphoric acid reduction, and sulfuric acid system. The second step included the polymerization of the PANI to obtain a PANI nanowire composite, which was performed on a graphite plate after electrochemical stripping treatment. The results showed that the surface roughness, layer spacing, and specific surface area of the graphite plates were increased after electrochemical stripping. Additionally, the XRD and FI-IR analyses revealed that graphene oxide and graphene were generated on the surface of the electrochemically-peeled graphite plates, thereby providing many active points for the electropolymerization process in the second step. Using an SEM analysis, the micromorphology of the PANI composite(PANI / GO) synthesized using a nitric acid system was found to be a three-dimensional network structure composed of nanowires with a diameter of approximately 100 nm. The micromorphology of the PANI composite synthesized using a phosphoric acid reduction system (PANI / GR1) was a mixture of nanosheets and nanowires with a diameter of approximately 50 nm, whereas that of the PANI composite synthesized using a sulfuric acid system(PANI / GR2) was nanowires with a diameter of approximately 80 nm. Subsequently, the electrochemical properties of the PANI composites were investigated. First, their energy storage properties were studied using a simple seawater battery that was prepared using a magnesium alloy and a PANI composite material as the electrodes. The battery started discharging at a current density of 3.75 mA·cm−2 and stopped at 0.9 V, and the specific energies were 540, 228 and 363 mWh·g1 . The results showed that PANI / GO exhibited the optimal energy-storage performance. Subsequently, Tafel curves and AC impedance diagrams were used to analyze the electrochemical properties of the three PANI composites, where a larger reaction current density and smaller Tafel curve slope angle was found to produce a semi-circle with a smaller diameter. The steep slope of the AC impedance diagram indicates that the polarization of the battery reaction of the PANI / GO composite electrode is the lowest, its reaction speed is the fastest, and its electrochemical performance is optimal owing to its excellent conductivity, stability, and large specific surface area, which are conducive for providing a sufficiently close approach with the electrolyte and promoting the transmission and diffusion of ions. Therefore, the proposed PANI / GO nanowire composite can be used as battery cathode material. Moreover, its preparation method provides a theoretical and practical basis for the controllable synthesis of other conductive polymer composites.

  • 0 前言

  • 导电聚苯胺(PANI)不仅具有优异的热稳定性、高导电性、可逆的电化学活性,而且具有聚合物结构多样化、易于加工成型、均匀性好、稳定性高和比重轻等优点,在智能材料、传感器和电池材料等方面应用很广[1-8]。但是不同条件下制备的 PANI 形貌不同,XU 等[9]通过稀释聚合,在二维氧化石墨烯纳米薄片上精细地合成了聚苯胺纳米线;HYDER 等[10]采用逐层组装的方法制备了聚苯胺纳米纤维和功能化多壁碳纳米管(MWNTs)薄膜电极, PANI 结构的不同导致其在性能方面差异巨大。从各类文献报道可知,纳米级别的 PANI 复合材料对于器件小型、轻量、便捷发展有着很好的应用前景,其中纳米线状 PANI 具有优异的导电性和储能效果,有利于电子传递,并减小离子扩散距离和利于迁移,因而能很好的提升电池的比能量,另外聚苯胺复合材料还可以大幅改善聚苯胺的加工性能。目前对于 PANI 的研究主要在于复合材料的开发与应用上,其中引起研究者重视的几类材料主要包括 PANI / 碳材料(活性碳、石墨烯、碳纳米管等[11-12])、PANI / 金属氧化物(ZnO、Fe2O3、Fe3O4、TiO2、Co3O4 [13-17]) 等复合材料。

  • 聚苯胺纳米线的制备主要采用模板的方法来实现。目前常用的模板法有硬模板法和软模板法。硬模板法是利用孔道有限延长方向的结构限制产物的生长方向,使产物沿模板生长从而得到一维纳米结构,常用的模板有 AAO 模板,聚碳酸酯模板等[18-21]。硬模板法获得的纳米线均匀,但数量受模板孔数量制约,并且模板价格较高,加工成本高,后续处理步骤较多。软模板法主要指的是利用表面活性剂等方法在液相进行自组装形成介观结构的界面模板。软模板法可以用于生产比硬模板数量多出数十倍的一维纳米结构材料,但获得的纳米线不如硬模板法的直径均匀。

  • 笔者前期工作发现采用电化学制备出氧化石墨烯,然后在其上合成聚苯胺材料,可以获得纳米线结构生长的聚苯胺,且其电化学性能优异。电化学制备石墨烯或氧化石墨烯分为阳极氧化剥离和阴极插层剥离两种方法,根据目前的文献报道,阴极插层剥离法其主要采用的电解质为含阳离子的电解液或离子液体熔融盐为主的有机溶液体系,其成本高,且阳离子插层效率较低。相对阴极插层剥离法来说,阳极氧化剥离制备石墨烯或氧化石墨烯的成本低廉,制备条件温和,并且由于氧化过程易于打开石墨边缘位置的层间通道,而具有较高的剥离插层效率[22-23],因而本文主要研究采用阳极氧化剥离的方法,在石墨纸表面制备石墨烯和氧化石墨烯聚苯胺纳米线复合材料,并探讨其制备条件和电化学性能,也为其他导电聚合物复合材料的可控制备提供理论和实践基础。

  • 1 材料与方法

  • 1.1 材料的制备

  • 1.1.1 原始基材的准备

  • 试验采用石墨板,选取并切割适当的尺寸,用绝缘胶带纸覆盖多余部分,留下 4 cm×4 cm 的光滑石墨作为准备。

  • 1.1.2 氧化石墨烯(GO)的制备

  • 硝酸由于具有强氧化性,可以用来对石墨进行氧化处理,因此选择硝酸溶液来进行阳极氧化剥离。选取准备好的石墨板,在浓度为 1 mol·L−1 的硝酸中进行电化学氧化剥离,阴极连接钢板,阳极连接石墨,设定电流密度和通电时间。氧化结束后用清水蘸洗石墨板,将表面附着的电解液浸洗掉,得到表层质地均匀,粗糙度增大,层间距明显增大的氧化石墨烯材料。

  • 1.1.3 石墨烯(GR)的制备

  • 采用电化学剥离法分别在两种不同体系(磷酸盐还原体系和硫酸体系)中制备石墨烯。由于石墨层间距为 0.335 nm,硫酸根离子大小为 0.46 nm,相对其他离子插层到石墨上更容易获得显著扩大的层间距。磷酸根离子大小为 0.23 nm,但磷酸盐体系中含有一定量的还原剂(次亚磷酸钠和抗坏血酸)以确保在插层过程中产生的石墨烯不被氧化,因此将上述两种体系作为对比。

  • 选取并切割 4 cm×4 cm 的石墨板,在不同的电解液中进行电化学氧化剥离,阴极连接钢板,阳极连接石墨,设定电流密度和通电时间。电化学剥离结束后用清水蘸洗,将表面附着的电解液浸洗掉,得到表层质地均匀,粗糙度和层间距都有一定增大的石墨烯材料。

  • 其中还原体系电解液为含有 15.6 g·L−1 磷酸二氢钠,20 g·L−1 次亚磷酸钠,调节 pH 到 3 的磷酸盐缓冲液,在其中添加 5 g·L−1 抗坏血酸以确保石墨在电剥离的过程中不会被氧化。电化学剥离也可以采用 1 M 硫酸体系的电解液。为增大石墨层间距离,在两种溶液其中都添加了 10 g·L−1 氨基磺酸。

  • 1.2 聚苯胺纳米线插层复合材料的制备

  • 在经上述电化学处理之后,将板材放入含苯胺、硫酸和硫酸锰的聚合溶液中进行聚合[24],阳极连接处理后的板材,阴极连接钢板,电流密度设置为 18 mA·cm−2,通电聚合 20 min。聚合反应结束后用清水蘸洗,得到表面较平整,质地均匀的墨绿色聚苯胺复合材料。

  • 1.3 表征分析

  • 对不同体系下制备出来的聚苯胺复合材料进行表征分析,包括 X 射线衍射分析(XRD)、红外光谱分析(FT-IR)、扫描电镜分析(SEM)。

  • (1)X 射线衍射分析(XRD)。将上述电化学处理的 3 种石墨表层粉末刮下,采用 D / max 2550 型衍射仪分析它们的结构。扫描范围为 5°~80°,扫描速度为 8(°)·min−1

  • (2)红外光谱分析(FT-IR)。采用型号为 Nicolet6700 的傅里叶红外光谱仪对上述 3 种表层粉末进行分子结构分析。

  • (3)扫描电镜分析(SEM)。采用 TESCAN 公司生产的 Tescan Mira3 型号场发射扫描电子显微镜,观察经 3 种电化学处理后的石墨表面及在其上制备的聚苯胺复合材料的微观形貌。

  • 1.4 性能分析

  • 将制备的聚苯胺复合材料作为电池正极,与相同面积的镁合金组成简易海水电池浸入 300 mL, 3.5%NaCl 溶液中(模拟海水),两极间距 1 cm,使用了灼智的 EBC-A05+电池测试系统对电池的放电过程进行研究,其中放电电流为 3.75 mA·cm−2,终止电压为 0.9 V。

  • 采用MUL AUTOLAB M204电化学工作站对电极进行电化学性能研究:将制备的聚苯胺纳米线插层材料作为研究电极,25℃下在 3.5%氯化钠溶液中进行电化学测试。其中 Pt 箔作为辅助电极,饱和甘汞电极为参比电极,进行测试时的 Tafel 曲线扫描速度为 3 mV · s −1,交流阻抗测试的范围是 100 mHz~106 Hz。

  • 2 结果与讨论

  • 2.1 宏观形貌及性能

  • 2.1.1 硝酸体系电化学剥离形成的氧化石墨烯(GO)/ PANI 复合电极

  • 石墨板在 1 M 硝酸中经电化学氧化后表面颜色变黑,质地均匀,表面粗糙度增大,整个板材显著膨胀,层间距明显增大,表面积相比较原始板材增大明显,这是由于硝酸的强氧化及电流对石墨的阳极化作用,石墨各层间插入许多的含氧基团导致层间距增大,在宏观上就是板材明显膨胀,其表面和侧面宏观形貌如图1 所示。表1 为不同条件下制备的电极上聚合聚苯胺后与镁电极组成海水电池的放电数据。从数据可以看出,较小的氧化电流密度,不能使石墨板层间距完全撑开,因此含氧基团进入不多,为聚合提供的活性点少,聚苯胺在其表面没有完全伸展开,因此放电性能一般。电流密度过大,表面形成的氧化石墨烯非常容易脱落到溶液中,也不利于聚苯胺生长。因此,在电流密度为 30 mA·cm−2 的条件下所制备的氧化石墨烯更利于聚苯胺生长,放电性能优异。

  • 图1 硝酸体系电化学剥离的石墨板表面及侧边形貌

  • Fig.1 Surface and side appearance of graphite plate after electrochemical stripping in nitric acid system

  • 表1 硝酸体系电化学剥离制备的氧化石墨烯上聚苯胺的放电数据

  • Table1 Discharge data of PANI on graphene oxide prepared by electrochemical stripping in nitric acid system

  • 2.1.2 还原体系电化学剥离石墨烯(GR1)/ PANI 电极

  • 石墨板经在磷酸盐还原体系中电化学剥离后,表面颜色也变深,但表面粗糙度相比在硝酸体系中氧化的要小,而且只有表层石墨板膨胀,表层部分的石墨层间距增大,从侧边可观察到仅有表层 1 mm 左右厚度的石墨板被撑开,侧面被撑开部分的外观比在硝酸中氧化后的更加细密,表面积相比较原始板材明显增大,但其表面积较经过硝酸氧化的板材要小,其表面和侧面宏观形貌如图2 所示。表2 列出不同电流密度下电化学剥离后电极上聚合聚苯胺后与镁电极组成海水电池的放电数据。从表2 数据可知,其结果与氧化石墨烯的较为类似。较小的剥离电流密度,不利于磷酸根、氨基磺酸根等插入石墨层,对石墨板进行剥离,聚苯胺无法在其表面和层间完全伸展开,因此放电性能一般。电流密度过大,石墨虽然被完成撑开,但表面形成的石墨烯易于脱落,也不利于聚苯胺生长。因此,在电化学剥离电流密度为 40 mA·cm−2 的条件下所制备的石墨烯最利于聚苯胺生长,放电性能最佳。

  • 图2 磷酸还原体系电化学剥离后的石墨板表面及侧边形貌

  • Fig.2 Surface and side appearance of graphite plate after electrochemical stripping in phosphoric acid reduction system

  • 表2 磷酸还原体系电化学剥离制备的石墨烯上聚苯胺放电数据

  • Table2 Discharge data of PANI on graphene prepared by electrochemical stripping in phosphoric acid reduction system

  • 2.1.3 硫酸体系电化学剥离石墨烯(GR2)/ PANI 电极

  • 石墨板经在 1 M 硫酸体系中电化学剥离后,表层颜色变黑,质地相比磷酸还原体系的表面粗糙度增加,石墨板整体膨胀,石墨层间距增大,但较在 1 M 硝酸氧化后表面相比,被撑开部分的层间距变化不够显著。其表面和侧面宏观形貌如图3 所示。表3 列出不同电流密度下电化学剥离所得电极上聚合聚苯胺后与镁电极组成海水电池的放电数据。从表3 数据可知,剥离电流密度为 45 mA·cm−2 时所制备的条件下性能最佳。

  • 比较不同体系、不同电流密度处理的基体上获得的聚苯胺电极最佳放电性能,可以看出,聚苯胺复合电极与镁合金组装电池时,最佳的比能量能够达到 540 mWh·g−1,最差的只有 228 mWh·g−1。因此通过系统比较三类基材经处理聚合聚苯胺后的电池放电性能可知(适于聚苯胺插层的基材处理工艺为):硝酸中氧化剥离处理优于硫酸体系电化学剥离,优于还原体系电化学剥离。虽然表面处理都创造了利于聚苯胺生长的活性点和环境,但由于处理工艺不同,表面微观结构不同,因此聚苯胺电极表现的放电性能也不相同。

  • 图3 硫酸体系电化学剥离后的石墨板表面及侧边形貌

  • Fig.3 Surface and side appearance of graphite plate after electrochemical stripping in sulfuric acid system

  • 表3 硫酸体系电化学剥离制备的石墨烯上聚苯胺放电数据

  • Table3 Discharge data of PANI on graphene prepared by electrochemical stripping in sulfuric acid system

  • 2.2 表征分析

  • 2.2.1 XRD 分析

  • 通过 XRD 来分析 3 种体系下处理的石墨表层材料的晶体结构,其结果如图4 所示。由图可知,3 种体系处理下的材料均在在2θ=26°附近出现高强度尖锐的衍射峰,这是石墨的(002)晶面衍射峰背景峰。石墨经硝酸氧化剥离,石墨表面各层被氧化,在 10.7°附近出现了一个很强的衍射峰,这是氧化石墨烯(001)晶面的衍射峰。说明通过电化学氧化反应可以使石墨表层的结构转化为氧化石墨烯(GO) 的结构,由于插入许多的氧化基团,石墨间距显著增大,为后续的插入聚苯胺、附着提供了适宜条件。经软件计算,氧化石墨烯使得石墨间层间距达到 0.826 nm,这应该是吸附了丰富的水分子和插入大量含氧基团造成的,这个间距为聚苯胺分子的插层聚合提供了足够的伸展空间[25]。经硫酸体系和还原体系电化学剥离后的石墨表面 XRD 谱图在 22°~23°附近出现了形状如馒头的特征峰,且峰值强度较低,为典型的石墨烯峰型,也表明制备出的为石墨烯[26-27]。但由于石墨纸的背景峰较强,很难与 26° 附近的衍射峰完全分开。经软件计算,电化学剥离使得石墨间层间距分别达到 0.402 nm(GR2)和 0.396 nm(GR1),较石墨层间距 0.335 nm 都有所增大,但与 GO 的间距相比,还是很小,硫酸体系制备的石墨烯层间距要大于磷酸体系的,应该与插层的阴离子尺寸有关,硫酸根离子体积较大,因此插层电剥离后,层间距较大,而磷酸根离子体积小,因此插层后层间距较小。另外由于体系含有还原剂,基本不含有含氧基团,聚苯胺在其中的聚合生长应不如前者。

  • 图4 GO 和两种体系得到的 GR 的 XRD 图谱 (GR1 还原体系,GR2 硫酸体系)

  • Fig.4 XRD patterns of GO andGR obtained by the two systems (GR1 reduction system, GR2 sulfuric acid system)

  • 2.2.2 FT-IR 分析

  • 电化学制备得到的 GO、GR1、GR2 红外谱图如图5 所示。GO 中在波长为 1 125 cm−1,1 389 cm−1,和1 742 cm−1 处分别为-COOH基团中的C-O伸缩振动,C-O-C,C-OH 的伸缩振动峰和-OH 伸缩振动,这些峰的出现表明了多种含氧基团已经成功被引入到石墨的各层中。在波长为 1 640 cm−1 处为 C=C 的伸缩振动峰,由 GO 的氧化机理可知,在其氧化过程中,羟基的形成需要断裂片层结构上的 C=C 双键,因此此处的强度相对较弱[28]

  • 图5 GO 和两种体系得到的 GR 的红外图谱 (GR1 还原体系,GR2 硫酸体系)

  • Fig.5 GR infrared spectra obtained by GO and the two systems (GR1 reduction system, GR2 sulfuric acid system)

  • 两个体系下电剥离制备的 GR 相比较于 GO,含氧基团的吸收峰 1 125、1 389、1 742 cm−1 明显减弱或消失,1 640 cm-1 的强度则显著增强,其中 1 057 和 1 210 cm−1 代表的是 C-H 的伸缩振动,可以认为原有的 C-H 基团仍明显存在,得到的石墨烯上仅含有少量的含氧基,是较完整的石墨烯基底。

  • 2.3 微观形貌

  • 2.3.1 氧化石墨烯上生成的聚苯胺形貌

  • 石墨经硝酸电化学氧化后的形貌和在其上生长的 PANI 形貌如图6a~6f 所示。可以看到石墨经氧化后表面的各层分开,出现了大量的褶皱,并且褶皱间距离较大,这应该是由大量氧化基团插入造成的,这种有着大间距和大量氧化基团的结构利于苯胺的插层生长,为聚苯胺纳米线生长提供了大量的活性点,使得 PANI 易于成核,由于聚苯胺与氧化石墨烯之间存在化学键,因此其与基体结合更为容易,也更牢固。聚苯胺在其上的生长呈纳米线生长形貌,纳米线直径在 100 nm 左右。根据 EDS 分析可知,明亮区是 MnO2 沉积的主要部位,主要是MnO2 在突起的纤维状聚苯胺上分布,可以有效地提高比表面积,还可以起到减弱极化的效果。暗区域是 PANI 沉积较多部位,导电性较好,明暗相间结构并不影响电极导电性,同时还增大了电极的比表面积和孔体积。随着聚苯胺纳米线在石墨层间的插入,也在一定程度上增强了氧化石墨烯和 PANI 复合材料的完整性。这样的导通结构不仅有利于提高电极的导电性,还为反应物提供了相对短的扩散路径,利于反应物在其上的扩散,同时这种疏松的结构也有利于电解液的渗入,使得电极与电解液广泛接触,而且这种结构能减小了放电过程中由于聚苯胺脱掺杂而造成的极化。这是因为电极反应过程中,PANI 的脱掺杂反应会使电极内阻增加,而三维导通的纳米线结构则一方面减轻了负面影响,减弱了电极反应的阻力,另一方面使得电极上的活性物质能够更高效的参与反应,有利于活性物质的利用率提高,促进电极反应的进行。同时 MnO2 的复合也对电极反应起到了去极化的作用,因此也使得整个电极极化降低,储能性优异。(能谱中的氯应该是制备后自来水洗带入的。)

  • 图6 硝酸氧化石墨纸表面和其上聚苯胺的形貌(a)-(d)聚苯胺复合物微观形貌(e)氧化石墨纸表面形貌(f)聚苯胺复合物 b 成分分析

  • Fig.6 Surface of graphite paper treated by nitric acid and the morphology of polyaniline on it (a) - (d) Microstructure of PANI composite, (e) Graphite oxide paper surface morphology, (f) Composition analysis of PANI composite b

  • 2.3.2 还原体系电剥离形成的石墨烯上(GR1)聚苯胺形貌

  • 石墨经还原体系电化学剥离后的形貌和在其上生长的 PANI 形貌如图7a~7f 所示。可以看到石墨经还原体系电化学剥离后表面的各层分开,也出现了大量的褶皱,并且非常规整,这种结构应该利于聚苯胺的插层生长。但是聚苯胺在其上的生长并不完全呈纳米线生长形貌,里面还夹杂一些非常规则的纳米片层结构堆积。其中的纳米线更细致,直径已经在 50 nm 以下,形成一定的三维的网状结构。而呈片状生长的聚苯胺则大小不一,也无法形成贯通的三维网络结构。能谱的分析表明,纳米线状的聚苯胺中锰含量较低,而片层状的锰含量很高。由于片层状结构比表面小,相互接触的比表面也小,电解液在其中的分散性和接触性都差,不利于扩散和离子迁移,因此电池放电效果差。这种混合结构远不如前种完整的三维纳米线结构更加开放,不利于电子的导通,比表面积和孔体积也都不如前种疏松的聚苯胺结构。另外 EDS 分析能谱显示元素分布不均,且能够发现含 N 元素量偏低,表明 PANI 并没有完全稳定的附着在其上面,因此结合前面放电数据,可知在放电过程中,由于极化很大,电池能量难以得到完全释放,在三种聚苯胺电极中储能性最差(能谱中的氯应该是制备后自来水洗带入的。)

  • 图7 还原体系处理的石墨纸表面和其上聚苯胺形貌(a)-(d)聚苯胺复合物微观形貌(e)氧化石墨纸表面形貌(f)聚苯胺复合物 d 的成分分析

  • Fig.7 Surface of graphite paper treated by reducing system and the morphology of polyaniline on it (a) - (d) Microstructure of PANI composite, (e) Graphite oxide paper surface morphology, (f) Composition analysis of PANI composite d

  • 2.3.3 硫酸体系电剥离形成的石墨烯(GR2)上聚苯胺形貌

  • 石墨经硫酸体系电化学剥离后的形貌和在其上生长的 PANI 形貌如图8a~8f 所示。可以看到,石墨经硫酸电化学剥离后表面的各层分开,也出现了大量的褶皱,并且较为规整,这种结构利于聚苯胺的插层生长,并且在其上生长的聚苯胺与在氧化石墨烯上的生长类似,也呈均匀的纳米线生长形貌,而且在石墨烯上沉积的纳米线更细致,直径在 80 nm 左右,因此其比表面更大,利于与电解液进入接触参与反应,因而电极的比能量也较高。但由于石墨烯片层间距小,PANI 径向生长受到限制,因此更利于沿轴向生长,纳米线较细而长,但过于密实,从微观形貌上分析,这种结构并不能显著提高电池性能。另外 PANI 沉积过于密集,团聚现象也较严重,实际进行放电的 PANI 量和实际预期存在偏差,影响了电池的均一性,导致电池导电和储能的性质较预期低很多。

  • 图8 硫酸体系电剥离石墨纸表面和其上聚苯胺的形貌(a)-(d)聚苯胺复合物微观形貌(e)氧化石墨纸表面形貌(f)聚苯胺复合物 d 的成分分析

  • Fig.8 Surface of graphite paper treated by sulfuric acid system and the morphology of PANI on it (a) - (d) Microstructure of PANI composite, (e) Graphite oxide paper surface morphology, (f) Composition analysis of PANI composite d

  • 2.4 聚苯胺电极的电化学性能

  • 2.4.1 储能性分析

  • 图9 是分别生长在 GO 和两种石墨烯上的 3 种聚苯胺复合材料与镁合金组成海水电池的恒流 (3.75 mA·cm−2 )放电至 0.9 V 的放电曲线,作为阴极的聚苯胺电极,其上发生的反应是质子酸的脱掺杂和氧气的还原。从图可以看出,3 种电极的放电起始电位大致相当,均在 2.0 V 以上,表明 GO 和石墨烯上复合聚苯胺后的电极电位变化不大,无论在哪个电极表面聚合的聚苯胺本质都一样,电极电位都较正,与镁合金组成电池的电势差很大,更易于驱动电池反应。但 3 种聚苯胺电极的放电曲线斜率各不相同,其中 GO 上的聚苯胺放电曲线的极化率最低,较为平坦,因而放电时间最长,电池比能量最大,为 540 mWh·g−1;硫酸体系剥离的石墨烯上生长的聚苯胺极化率较前者大,因而极化也大一些,放电时间较短,电池比能量为 363 mWh·g−1。还原体系剥离的石墨烯上生长的聚苯胺放电极化率最大,极化也最大,因此放电时间最短,电池比能量最小,仅为 228 mWh·g−1。GO 上的聚苯胺复合材料为纳米线组成的三维网状结构,电极反应时,电子在纳米线网络间传递阻力小,另外网状结构比表面积大,含一定的二氧化锰,电极与电解液接触充分,离子传递容易,这样电极反应的阻力与极化小,因而斜率也最低,放电最充分。还原体系由于是纳米线和纳米片层混合结构,电子和离子在其中传递阻力大,另外二氧化锰分布不均,因而放电性能最差。硫酸体系剥离得到的聚苯胺复合材料,微观结构介于二者之间,因此放电性能也介于两者之间。分析比较 3 种电极的放电时间,可以发现 GO 上制备的聚苯胺复合电极的放电时间最长,有近 2 h,而还原体系制备的石墨烯聚苯胺复合电极放电时间不到 1 h。由于镁海水电池放电时,镁阳极表面有大量的副产物氢气析出,对相隔仅 1 cm 远的聚苯胺正极有较强的冲击作用,但 GO 上获得的聚苯胺复合电极仍能维持近 2 h 放电,也间接说明聚苯胺与 GO 的结合力非常牢固,使得储能性得到很好的体现。而在石墨烯插层中生长的聚苯胺由于只有物理的结合,没有化学键键合,有可能放电时受到氢气析出的影响,造成 PANI 的脱落,放电性能远不如 GO 上的聚苯胺。

  • 图9 三种聚苯胺复合电极的放电性能比较 (GR1 代表磷酸体系,GR2 代表硫酸体系)

  • Fig.9 Comparison of discharge performance of three PANI composite electrodes (GR1 represents phosphoric acid system, GR2 represents sulfuric acid system)

  • 2.4.2 电化学性能

  • 2.4.2.1 Tafel 曲线

  • 图10 为三种聚苯胺电极三种聚苯胺电极在 3.5%氯化钠溶液中的极化曲线,表4 列出了对应的计算结果,这些电化学数据包括电极电位、反应电流密度和塔菲尔斜率。电极电位是一个热力学判据,其大小决定了组成电池的原始电势差大小,电势差越大,电池反应的驱动力越大。而反应电流密度和塔菲尔斜率是动力学判据,反应电流密度代表电极反应的速度大小,塔菲尔斜率则代表反应的阻力。对表4 数据分析可看出,PANI / GO 复合电极的反应电流密度相比于两种石墨烯复合电极提高了 1 个数量级,PANI / GO 的阴极塔菲尔斜率也小于两种石墨烯电极的,说明相比于石墨烯复合电极, PANI / GO 电极的电极反应阻力越小,反应速度更大。虽然 PANI / GO 的电极电位较石墨烯复合电极的要低一些,但这只是热力学因素,对反应起决定作用的是动力学因素,因此 3 种电极的电化学性能由好到差依次为 PANI / GO、PANI / GR2、 PANI / GR1。

  • 图10 不同电极反应的极化曲线

  • Fig.10 Polarization curves of different electrode reactions

  • 表4 不同电极反应的电化学数据

  • Table4 Electrochemical data of different electrode reactions

  • 2.4.2.2 交流-阻抗分析

  • 进一步对 PANI / GO 与 PANI / GR2 的交流阻抗图进行分析比较,结果如图11 所示。从图中可以看出,在高频段两者曲线均呈现半圆,此过程代表聚苯胺电极上质子酸的脱掺杂过程,PANI / GO 的前半段拟合后半圆较小表明电极上质子酸的脱掺杂速率更快;后半段直线代表参加反应的氧在电极中的扩散过程,从图中可明显看到 PANI / GO 的斜率大于 PANI / GR2 的,即氧在 PANI / GO 电极上的扩散速率更迅速,直线的斜率都低于 45°,表明电极表面都很粗糙。曲线斜率经拟合后分别为 35° 和 25°,可知参与反应的氧在 PANI / GO 电极上的扩散速度要大于在 PANI / GR2 上,也表明 PANI / GO 的导电性比 PANI / GR2 的导电性更高,这是由于氧化石墨烯相比石墨烯表面有着大量含氧官能团,更利于聚苯胺的成核和纳米线生长,其完整的三维结构更加均匀对称、性质更稳定,使得氧化石墨烯复合材料的导电性能比石墨烯复合的要高。

  • 图11 两种聚苯胺电极的交流-阻抗谱图

  • Fig.11 AC-impedance spectra of two polyaniline electrodes

  • 3 结论

  • (1)针对硬、软模板法制备聚苯胺纳米线的存在的缺陷,提出一种步骤简单、快速且低成本的纳米线制备方法。首先,对石墨板阳极氧化进行电剥离处理,随后在其上电聚合,制备出具有聚苯胺纳米线插层结构的复合材料。

  • (2)通过储能性分析、Tafel 曲线分析及交流阻抗分析,得出所制备的 3 种 PANI 复合材料中, PANI / GO 复合材料电化学性能最优。

  • (3)将 PANI / GO 复合材料与镁合金制备成简单的海水电池,它在电流密度为 3.75 mA·cm−2 时放电至 0.9 V 止,比能量达 540 mWh·g−1,PANI / GO 复合材料有望用作电池正极材料。

  • (4)纳米线制备过程简单易于控制,可为其他导电聚合物复合材料可控制备提供理论依据和实践基础,但受电极面积影响,大规模生产受限。

  • 参考文献

    • [1] EFTEKHARI A,LI L,YANG Y.Polyaniline supercapacitors[J].Journal of Power Sources,2017,347:86-107.

    • [2] HAN G,LIU Y,ZHANG L,et al.MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors[J].Scientific reports,2014,4(1):1-7.

    • [3] HUANG J,WANG Z,HOU M,et al.Polyanilineintercalated manganese dioxide nanolayers as a highperformance cathode material for an aqueous zinc-ion battery[J].Nature Communications,2018,9(1):1-8.

    • [4] WANG G,ZHUO S,XING W.Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells[J].Materials Letters,2012,69:27-29.

    • [5] WANG L,FENG X,REN L,et al.Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J].Journal of the American Chemical Society,2015,137(15):4920-4923.

    • [6] ZHANG S,ZHANG L,WANG W,et al.A novel cathode material based on polyaniline used for lithium/sulfur secondary battery[J].Synthetic Metals,2010,160(17-18):2041-2044.

    • [7] 刘钊,孙亚伟.铁离子掺杂聚苯胺涂层的光热杀菌性能 [J].中国表面工程,2018,31(5):82-91.LIU Zhao,SUN Yawei.Photothermal sterilization performance of Fe3+ doped polyanilinecoating[J].China Surface Engineering,2018,31(5):82-91.(in Chinese)

    • [8] 王颖,李健,顾卡丽.智能变色涂层[J].中国表面工程,2007(3):9-13.WANG Yin,LI Jian,GU Kali.Smartcolorshifting coatings[J].China Surface Engineering,2007(3):9-13.(in Chinese)

    • [9] XU J,WANG K,ZU S Z,et al.Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J].ACS nano,2010,4(9):5019-5026.

    • [10] HYDER M N,LEE S W,CEBECI F Ç,et al.Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications[J].ACS Nano,2011,5(11):8552-8561.

    • [11] HOU J,LIU Z,ZHANG P.A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J].Journal of Power Sources,2013,224:139-144.

    • [12] 高珍珍,佟浩,陈建慧,等.聚苯胺共价接枝碳纳米管复合材料的制备及其超电容性能的研究[J].化学学报,2014,72(11):1175-1181.GAO Zhenzhen,TONG Hao,CHEN Jianhui,et al.Preparation and supercapacitive performance of polyaniline covalently grafted carbon nanotubes composite material[J].Acta Chimica Sinica,2014,72(11):1175-1181.(in Chinese)

    • [13] CAO M S,YANG J,SONG W L,et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J].ACS Applied Materials & Interfaces,2012,4(12):6949-6956.

    • [14] LIN Y,LI D,HU J,et al.Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J].The Journal of Physical Chemistry C,2012,116(9):5764-5772.

    • [15] RADHAKRISHNAN S,KRISHNAMOORTHY K,SEKAR C,et al.A promising electrochemical sensing platform based on ternary composite of polyaniline–Fe2O3–reduced graphene oxide for sensitive hydroquinone determination[J].Chemical Engineering Journal,2015,259:594-602.

    • [16] ZHU C,HE Y,LIU Y,et al.ZnO@ MOF@ PANI core-shell nanoarrays on carbon cloth for highperformance supercapacitor electrodes[J].Journal of Energy Chemistry,2019,35:124-131.

    • [17] 李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.LI Fachuang,HUANG Hui,GUO Zhongcheng.Synthesis and characterization of conductive polyaniline cobaltosic oxide composites[J].Journal of Functional Polymers,2011,24(4):353-358.(in Chinese)

    • [18] KOBLISCHKA M R,KOBLISCHKA-VENEVA A.Fabrication of superconducting nanowires using the template method[J].Nanomaterials,2021,11(8):1970.

    • [19] YAO M,ZHAO X,ZHANG Q,et al.Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor[J].Electrochimica Acta,2021,390:138804.

    • [20] ZHANG H,ZHOU M,ZHAO H,et al.Ordered nanostructures arrays fabricated by anodic aluminum oxide(AAO)template-directed methods for energy conversion[J].Nanotechnology,2021,32(50):502006.

    • [21] ZHANG T,YUE H,GAO X,et al.Polyaniline nanowire arrays on three-dimensional hollow graphene balls for high-performance symmetric supercapacitor[J].Journal of Electroanalytical Chemistry,2019,855:113574.

    • [22] WANG J,MANGA K K,BAO Q,et al.High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J].Journal of the American Chemical Society,2011,133(23):8888-8891.

    • [23] ZHOU M,TANG J,CHENG Q,et al.Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J].Chemical Physics Letters,2013,572:61-65.

    • [24] 邓姝皓,易丹青,郑康丽,等.新型 Mg/导电PANI海水激活电池性能研究[J].船电技术,2007(6):334-338.DENG Shuhao,YI Danqing,ZHENG Kangli,et al.Study on the performance of a novel Mg/conducting polyaniline seawater battery[J].MarineElectric& Electronic Engineering,2007(6):334-338.(in Chinese)

    • [25] 邓姝皓,袁莉君,徐杨明,等.聚苯胺/二氧化锰/氧化石墨烯复合电极的制备及性能[J].高分子材料科学与工程,2020,36(9):150-156.DENG Shuhao,YUAN Lijun,XU Yangming,et al.Preparation and properties of polyaniline/manganese dioxide/graphene oxide composite cathode[J].Polymer Materials Science & Engineering,2020,36(9):150-156.(in Chinese)

    • [26] ZHANG L,ZHANG Z,HE C,et al.Rationally designed surfactants for few-layered graphene exfoliation:ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers[J].ACS nano,2014,8(7):6663-6670.

    • [27] 邢晓晗,由针状焦制备石墨烯及其性能研究[D].太原:太原理工大学,2019.XING Xiaohan.Preparation of graphene from needle Coke and its properties [D].Taiyuan:Taiyuan University of Technology,2019.

    • [28] 龚水水,光善仪,柯福佑,等.红外光谱法氧化石墨烯羧基官能团含量的测定[J].中国测试,2016,42(4):38-44.GONG Shuishui,GUANG Shanyi,KE Fuyou,et al.Determination of the content of carboxyl functional groups of graphene oxide by infrared spectroscopy[J].China Measurement & Test,2016,42(4):38-44.(in Chinese)

  • 参考文献

    • [1] EFTEKHARI A,LI L,YANG Y.Polyaniline supercapacitors[J].Journal of Power Sources,2017,347:86-107.

    • [2] HAN G,LIU Y,ZHANG L,et al.MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors[J].Scientific reports,2014,4(1):1-7.

    • [3] HUANG J,WANG Z,HOU M,et al.Polyanilineintercalated manganese dioxide nanolayers as a highperformance cathode material for an aqueous zinc-ion battery[J].Nature Communications,2018,9(1):1-8.

    • [4] WANG G,ZHUO S,XING W.Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells[J].Materials Letters,2012,69:27-29.

    • [5] WANG L,FENG X,REN L,et al.Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J].Journal of the American Chemical Society,2015,137(15):4920-4923.

    • [6] ZHANG S,ZHANG L,WANG W,et al.A novel cathode material based on polyaniline used for lithium/sulfur secondary battery[J].Synthetic Metals,2010,160(17-18):2041-2044.

    • [7] 刘钊,孙亚伟.铁离子掺杂聚苯胺涂层的光热杀菌性能 [J].中国表面工程,2018,31(5):82-91.LIU Zhao,SUN Yawei.Photothermal sterilization performance of Fe3+ doped polyanilinecoating[J].China Surface Engineering,2018,31(5):82-91.(in Chinese)

    • [8] 王颖,李健,顾卡丽.智能变色涂层[J].中国表面工程,2007(3):9-13.WANG Yin,LI Jian,GU Kali.Smartcolorshifting coatings[J].China Surface Engineering,2007(3):9-13.(in Chinese)

    • [9] XU J,WANG K,ZU S Z,et al.Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J].ACS nano,2010,4(9):5019-5026.

    • [10] HYDER M N,LEE S W,CEBECI F Ç,et al.Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications[J].ACS Nano,2011,5(11):8552-8561.

    • [11] HOU J,LIU Z,ZHANG P.A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J].Journal of Power Sources,2013,224:139-144.

    • [12] 高珍珍,佟浩,陈建慧,等.聚苯胺共价接枝碳纳米管复合材料的制备及其超电容性能的研究[J].化学学报,2014,72(11):1175-1181.GAO Zhenzhen,TONG Hao,CHEN Jianhui,et al.Preparation and supercapacitive performance of polyaniline covalently grafted carbon nanotubes composite material[J].Acta Chimica Sinica,2014,72(11):1175-1181.(in Chinese)

    • [13] CAO M S,YANG J,SONG W L,et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J].ACS Applied Materials & Interfaces,2012,4(12):6949-6956.

    • [14] LIN Y,LI D,HU J,et al.Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J].The Journal of Physical Chemistry C,2012,116(9):5764-5772.

    • [15] RADHAKRISHNAN S,KRISHNAMOORTHY K,SEKAR C,et al.A promising electrochemical sensing platform based on ternary composite of polyaniline–Fe2O3–reduced graphene oxide for sensitive hydroquinone determination[J].Chemical Engineering Journal,2015,259:594-602.

    • [16] ZHU C,HE Y,LIU Y,et al.ZnO@ MOF@ PANI core-shell nanoarrays on carbon cloth for highperformance supercapacitor electrodes[J].Journal of Energy Chemistry,2019,35:124-131.

    • [17] 李发闯,黄惠,郭忠诚.导电聚苯胺-四氧化三钴复合材料的合成及性能表征[J].功能高分子学报,2011,24(4):353-358.LI Fachuang,HUANG Hui,GUO Zhongcheng.Synthesis and characterization of conductive polyaniline cobaltosic oxide composites[J].Journal of Functional Polymers,2011,24(4):353-358.(in Chinese)

    • [18] KOBLISCHKA M R,KOBLISCHKA-VENEVA A.Fabrication of superconducting nanowires using the template method[J].Nanomaterials,2021,11(8):1970.

    • [19] YAO M,ZHAO X,ZHANG Q,et al.Polyaniline nanowires aligned on MOFs-derived nanoporous carbon as high-performance electrodes for supercapacitor[J].Electrochimica Acta,2021,390:138804.

    • [20] ZHANG H,ZHOU M,ZHAO H,et al.Ordered nanostructures arrays fabricated by anodic aluminum oxide(AAO)template-directed methods for energy conversion[J].Nanotechnology,2021,32(50):502006.

    • [21] ZHANG T,YUE H,GAO X,et al.Polyaniline nanowire arrays on three-dimensional hollow graphene balls for high-performance symmetric supercapacitor[J].Journal of Electroanalytical Chemistry,2019,855:113574.

    • [22] WANG J,MANGA K K,BAO Q,et al.High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J].Journal of the American Chemical Society,2011,133(23):8888-8891.

    • [23] ZHOU M,TANG J,CHENG Q,et al.Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J].Chemical Physics Letters,2013,572:61-65.

    • [24] 邓姝皓,易丹青,郑康丽,等.新型 Mg/导电PANI海水激活电池性能研究[J].船电技术,2007(6):334-338.DENG Shuhao,YI Danqing,ZHENG Kangli,et al.Study on the performance of a novel Mg/conducting polyaniline seawater battery[J].MarineElectric& Electronic Engineering,2007(6):334-338.(in Chinese)

    • [25] 邓姝皓,袁莉君,徐杨明,等.聚苯胺/二氧化锰/氧化石墨烯复合电极的制备及性能[J].高分子材料科学与工程,2020,36(9):150-156.DENG Shuhao,YUAN Lijun,XU Yangming,et al.Preparation and properties of polyaniline/manganese dioxide/graphene oxide composite cathode[J].Polymer Materials Science & Engineering,2020,36(9):150-156.(in Chinese)

    • [26] ZHANG L,ZHANG Z,HE C,et al.Rationally designed surfactants for few-layered graphene exfoliation:ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers[J].ACS nano,2014,8(7):6663-6670.

    • [27] 邢晓晗,由针状焦制备石墨烯及其性能研究[D].太原:太原理工大学,2019.XING Xiaohan.Preparation of graphene from needle Coke and its properties [D].Taiyuan:Taiyuan University of Technology,2019.

    • [28] 龚水水,光善仪,柯福佑,等.红外光谱法氧化石墨烯羧基官能团含量的测定[J].中国测试,2016,42(4):38-44.GONG Shuishui,GUANG Shanyi,KE Fuyou,et al.Determination of the content of carboxyl functional groups of graphene oxide by infrared spectroscopy[J].China Measurement & Test,2016,42(4):38-44.(in Chinese)

  • 手机扫一扫看