en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

伊文静,女,1998年出生,硕士研究生。主要研究方向为表面技术。E-mail:1842158228@qq.com;

栗心明,男,1979年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学。E-mail:lixinmingsd@163.com

通讯作者:

刘长松,男,1973年出生,博士,教授,硕士研究生导师。主要研究方向为表面技术与摩擦学。E-mail:CSL@qut.edu.cn

中图分类号:TB34;O614

DOI:10.11933/j.issn.1007−9289.20220617001

参考文献 1
SAITO N,HANEDA H,SEO W S,et al.Selective deposition of ZnF(OH)on self-assembled monolayers in Zn-NH4F aqueous solutions for micropatterning of zinc oxide[J].Langmuir,2001,17(5):1461–1469.
参考文献 2
DAI M,XU F,LU Y N,et al.Synthesis of submicron rhombic ZnO rods via ZnOHF intermediate using electrodeposition route[J].Applied Surface Science,2011,257(8):3586-3591.
参考文献 3
WANG M,SUN T M,TANG Y F,et al.Template-free synthesis and photocatalytic properties of flower-like ZnOHF nanostructures[J].Materials Letters,2015,160(1):150-153.
参考文献 4
GUO Y Y,MO Y X,WANG M,et al.Green and facile synthesis of hierarchical ZnOHF microspheres for rapid and selective adsorption of cationic dyes[J].Journal of Molecular Liquids,2021,329(1):115529-115537.
参考文献 5
LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):1-9.
参考文献 6
CHEN Z Y,HUANG J B,WANG Y Y,et al.Controllable synthesis of Eu3+ ions doped Zn(OH)F and ZnO micro-structures:phase,morphology and luminescence property[J].Rare Earths,2019,37(9):955–960.
参考文献 7
YAN X T,JIN Y K,CHEN X M,et al.Nature-inspired surface topography:design and function[J].Science China-Physics Mechanics & Astronomy,2020,63(2):224601-224616
参考文献 8
ZHANG S N,HUANG J Y,CHEN Z,et al.Bioinspired special wettability surfaces:From funda-mental research to water harvesting applications[J].Small,2017,13(3):1602992-1603020.
参考文献 9
YASUDA T,HARADA S,DAIMON K.Microfluidic dispensing device using wettability gradient and electrowetting[J].IEEJ Transactions on Sensors and Micromachines,2008,128(3):75-79.
参考文献 10
ZHOU H,WANG H X,NIU H T,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports.2013,3(1):2964-2969.
参考文献 11
江雷,冯琳.仿生智能纳界面材料[M].北京:化学工业出版社,2007.JIANG Lei,FENG Lin.Biomimetic intelligent nanointerface materials [M].Beijing:Chemical Industry Press,2007.(in Chinese)
参考文献 12
LIU C S.Li Z W,WANG L,et al.Rapid reversible superhydrophobicity to superhydrophilicity conversion of HF-tuned ZnO flower-like micro-sphere films[J].Key Engineering Materials.2008,368(2):1374-1376.
参考文献 13
WANG M,SUN T M,SHI Y J,et al.3D hierarchical ZnOHF nanostructures:synthesis,characterization and photocatalytic properties[J].CrystEngComm,2014,16(46):10624-10630.
参考文献 14
XIA Y,WANG J,CHEN R S,et al.A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application[J].Crystals,2016,6(11):148-167.
参考文献 15
ZHAGN T R,DONG W J,KEETER-BREWER M.,et al,Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites[J].Journal of the American Chemical Society,2006,128(33):10960-10968.
参考文献 16
LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):291-299.
参考文献 17
王雪,江智渊,蒋亚琪,等.高表面能晶面裸露的金属氧化物微纳米晶体的可控合成[J].中国科学:化学,2013,43(12):1630-1639.WANG Xue,JAING Zhiyuan,JAING Yaqi,et al.Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy[J].Scientia Sinica(Chimica),2013,43(12):1630-1639.(in Chinese)
参考文献 18
LI S H,HUANG J Y,CHEN Z,et al.A review on special wettability textiles:theoretical models,fabrication technologies and multifunctional applications[J].Journal of Materials Chemistry A,2017,5(1):31-55.
参考文献 19
石彦龙,杨武,冯晓娟.超疏水-超亲油棉织物的制备及在油水分离中的应用[J].高等学校化学学报,2015,36(9):1724-1729.SHI Yanlong,YANG Wu,FENG Xiaojuan.Fabrication of superhydrophobic-superoleophilic cotton fabric and its application in water-oil separation[J].Chemical Journal of Chinese Universities,2015,36(9):1724-1729.(in Chinese)
参考文献 20
WATANABLE T,NAKAJIMA A,WANG R,et al.Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J].Thin Solid Films,1999,351(1-2):260-263.
参考文献 21
WANG S T,SONG Y L,JIANG L.Photoresponsive surfaces with controllable wettability[J].Journal of Photochemistry & Photobiology C Photochemistry Reviews,2007,8(1):18-29.
参考文献 22
杨奇彪,卞若男,王杰,等.飞秒激光制备梯度润湿性单晶硅表面[J].中国表面工程,2021,34(6):175-180.YANG Qibiao,BIAN Ruonan,WANG Jie,et al.Gradient wettability of monocrystalline silicon surface prepared by femtosecond laser[J].China Surface Engineering,2021,34(6):175-180.(in Chinese)
参考文献 23
袁腾,陈卓,周显宏,等.基于超亲水超疏油原理的网膜及其在油水分离中的应用[J].化工学报,2014,65(6):1943-1951.YUAN Teng,CHEN Zhuo,ZHOU Xianhong,et al.Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J].Acta Chimica Sinica,2014,65(6):1941-1955.(in Chinese)
目录contents

    摘要

    目前对 ZnOHF 的润湿性相关的研究较少。借助 ZnOHF 的光响应润湿性转变特性制备梯度润湿性表面,研究该表面上的液滴定向铺展行为,验证应用该表面可提高潮湿环境中的集水量。通过水热法制备花状 ZnOHF 薄膜,基于其光响应特性对 ZnOHF 薄膜进行不同时间的紫外光照制备单侧梯度润湿性表面,研究液滴在梯度表面上的定向铺展行为。采用 XRD 和 SEM 表征产物的物相组成和微观结构,使用 FT-IR 表征紫外光照前后 ZnOHF 薄膜的-OH 基团变化,使用接触角测量仪表征 ZnOHF 薄膜的润湿性,记录液滴的铺展行为。结果表明,在紫外光照射下,薄膜的接触角变化速度先快后慢,3 h 即可由 152°转化为 0°。在梯度表面上水滴以 7.42 mm / s 的速度从光照起始线向超亲水端定向铺展 4.08 mm,与均匀表面(1.16 mm / s)相比铺展速度更快,距离(3.82 mm)更远;梯度表面上的液滴可以克服重力铺展,其速度(3.84 mm / s) 依然大于均匀表面。液滴在梯度表面定向铺展的主要驱动力为不平衡的表面张力,不同体积的液滴铺展到光照分界线处均出现加速现象。双侧梯度表面可以使小液滴汇聚于亲水区域,当液滴累积到一定体积时会向下渗透,达到集水的效果。模拟潮湿环境测试其集水性能,双侧梯度表面的集水量与原始表面相比提高 31%。通过控制紫外光照制备梯度润湿性 ZnOHF 薄膜,研究液滴在梯度润湿性表面上的定向铺展行为,并验证了双侧梯度表面在集水方面的应用。

    Abstract

    A surface with gradient wettability can realize the directional movement of droplets based on only its own characteristics without any external energy input, which makes it suitable for use in water collection, microfluidics, and self-cleaning. Therefore, flower-like ZnOHF films were prepared using a hydrothermal method and based on their photo-response characteristics, single-side wettability gradient surfaces were prepared using UV irradiation under different irradiation times. The directional spreading behavior of droplets on the gradient surface was then studied, and the phase composition of the product was characterized using an XRD analysis. The results show that the product of the hydrothermal reaction was ZnOHF with high purity and crystallinity, whose microstructure was observed using SEM. Based on the results, many flower-like ZnOHF were densely distributed on the surface of the mesh, which was composed of many slender nanosheets. Many of the nanosheet monomers converged at the same center on one end and diverged in all directions at the other end, indicating the structure is highly-branched. The morphology of the reaction process was observed and combined with an existing branching crystal growth mechanism, and the results showed that the flower-like ZnOHF was obtained via crystal separation. Moreover, the wettability of the ZnOHF films was characterized using contact angle measurement, and the surface changes on the ZnOHF film before and after UV irradiation were characterized using FT-IR. Before UV irradiation, the ZnOHF film was superhydrophobic, and the peak value of the -OH group was low, indicating that the number of-OH groups was less. After 3 h of UV irradiation, the peak value of the -OH group significantly increased, indicating that the number of -OH groups adsorbed on the surface of the ZnOHF film had increased, which shows the transition from superhydrophobic to superhydrophilic. However, the -OH group adsorbed on the oxygen vacancy was not stable, and the contact angle of the ZnOHF film with water was restored to 152° after 5 days of darkroom treatment. Additionally, the surface could still be converted to a superhydrophilic state after 3 h of UV light treatment. This process was repeated multiple times, and the results showed that the wettability conversion of the ZnOHF film is reversible. The gradient wettability surface was prepared by varying the UV irradiation time of the ZnOHF film, and the spreading process of the droplets was recorded using contact angle measurement. The results showed that under UV irradiation, the contact angle of the mesh first rapidly changes before decelerating, and it can be varied from 152° to 0° within 3 h. On the gradient surface, the water droplets were spread 4.08 mm from the light initiation line to superhydrophilic at a speed of 7.42 mm / s, which was faster (1.16 mm / s) and farther (3.82 mm) than that on the non-gradient surface. Moreover, the droplets on the gradient surface could also overcome gravity, and their velocity (3.84 mm / s) was higher than that on the non-gradient surface. The main driving force for the spreading of droplets on the gradient surface was the unbalanced surface tension; thus, the spreading of the droplets with different volumes to the light boundary was accelerated. Additionally, the two-side wettability gradient surface can also make small droplets converge in the hydrophilic region. When the droplets accumulated and reached a certain volume, they penetrated downwards to achieve the effect of water collection. In this regard, the water collection capacity of the two-sided gradient wettability surface was increased by 31% compared to that of the original surface. In summary, a gradient wettability ZnOHF film was prepared using controlled UV irradiation, the directional spreading behavior of droplets on the gradient wettability surface was studied, and the application of the two-sided gradient wettability surface in water collection was verified.

  • 0 前言

  • ZnOHF 因其形态多样,并且经过高温煅烧后可以转化成 ZnO,最初常用作制备各种形态 ZnO 的前体[1],迄今为止,各研究团队已通过各种方法制备出不同形态的 ZnOHF,例如菱形棒状[2]、花状[3]、微球状[4]、雪状[5]、网状[6]等。随着研究逐步深入,它的氧化催化、光致发光、光降解以及气敏性等性能也逐渐受到关注,但有关 ZnOHF 的润湿性研究极少。表面润湿性的主要影响因素为表面自由能和表面粗糙结构,因此形貌多样、制备简单的 ZnOHF 在润湿性研究中具有独特的优势。

  • 智能响应润湿性材料是指在光、磁、pH 值、温度等外界刺激下,材料润湿性会随之改变,与适当的表面粗糙度相结合,可实现超亲水到超疏水的润湿性调控[7]。在此基础上研究者通过适当控制外界刺激的强度,可制备出润湿性沿着一定的方向连续变化的表面,称之为梯度润湿性表面,其表面能梯度可引起液滴在固体表面上自发运动,在集水[8]、液滴微流控[9]及油水分离[10]等方面都发挥着重要作用。润湿性研究与材料学、化学、物理学、仿生学等重要学科紧密结合,其发展必定能推动诸多技术进步,开拓材料设计新思路,在基础研究和工业应用中都占据重要位置[11]

  • 本文以镍网为基底,采用水热法[12]在表面生长花状 ZnOHF,研究 ZnOHF 薄膜对水的接触角随紫外光照时间的变化。随后通过控制光照时间制备具有梯度润湿性的 ZnOHF 网膜,研究水滴在梯度润湿表面上的定向铺展过程,并制备可用于集水的双侧梯度润湿性 ZnOHF 薄膜。

  • 1 试验

  • 1.1 试验材料

  • 试验基底为镍网(纯度 99.9%,孔径 53 μm,丝径 74 μm),试验前须将镍网剪裁成 10 mm× 20 mm 大小,依次放入石油醚,无水乙醇和去离子水中,用超声清洗机(GW0203)清洗 20 min,除去表面油污,随后氮气吹干备用。

  • 石油醚、无水乙醇(天津市富宇精细化工有限公司),盐酸(广州和为医药科技有限公司),六次甲基四胺(上海埃比化学试剂有限公司),硝酸锌(上海阿拉丁科技股份有限公司),氢氟酸(天津市北辰方正试剂厂),以上化学试剂均为分析纯。

  • 1.2 试验方法

  • 1.2.1 水热法制备超疏水薄膜

  • 用盐酸(pH=1)浸泡镍网基底 30 s 以去除表面氧化膜,然后用大量去离子水冲洗并用氮气吹干备用。配置 0.075 mol / L 六次甲基四胺溶液和硝酸锌溶液各 20 mL,将硝酸锌溶液置于磁力搅拌器上缓慢搅拌,同时以 1 滴 / s 的速度滴入六次甲基四胺溶液。待溶液混合均匀后添加 400 μL 体积分数为 5% 的 HF,将混合溶液搅拌 5 min 后移入反应釜。将镍网基底浸没在溶液中,密封后置于 95℃的干燥箱中保温 180 min。水热反应结束后取出,用去离子水冲洗表面的沉淀,放入干燥箱 60℃烘干 30 min,随后将样品置于暗室储存一周后得到超疏水薄膜。

  • 1.2.2 光响应润湿性转换

  • 使用波长为 254 nm 的紫外光(UV)对超疏水薄膜进行不同时间的光照处理,测量该表面对水的接触角随光照时间的变化情况。

  • 1.2.3 制备 ZnOHF 均匀表面与梯度表面

  • 制备均匀表面:对超疏水薄膜实施 UV 光照处理 3 h,获得均匀的超亲水表面,以下简称均匀表面。

  • 制备单侧梯度表面:将超疏水薄膜置于位移台上,在其上方设置固定的遮光挡板。将实验台置于光源下进行 UV 光照处理,遮光挡板保持固定,每隔 1 h 将超疏水薄膜移动 1 mm,如图1 所示。通过位移台的移动控制光照时间的变化,获得具有单侧梯度润湿性的表面,下文简称梯度表面。其中红色虚线为光照起始线,黑色虚线为光照分界限。

  • 图1 制备梯度表面示意图

  • Fig.1 Sketch of gradient surface

  • 1.3 表征

  • 使用 X 射线衍射仪(RigakuMAX 2500)以 5(°)/ min 的扫描速度在 10 °~80 °范围内进行扫描,分析其产物中存在的物相。使用扫描电子显微镜(Hitachi S-3400N)观察样品表面的微观形貌,在观察前需对薄膜进行喷金处理以确保其导电性。使用傅里叶变换红外光谱仪(Bruker INVENIO R)测试 UV 光照前后样品表面的官能团变化。使用接触角测量仪(JC2000C1B)表征表面润湿性并观察液滴铺展情况,取 5 μL 水滴在样品表面至少 3 个位置测量接触角,取平均值作为最终结果;将水滴滴在均匀表面和梯度表面上,记录水滴在不同表面上的铺展过程。使用喷雾器连续均匀的喷洒水雾模拟大雾天气时的潮湿环境,将 2 cm2 大小的双梯度表面置于量筒上方,随后放置在潮湿环境中 20 min,通过读取量筒中的集水量表征集水性能。

  • 2 结果与讨论

  • 2.1 表面物相及形貌分析

  • 图2 为超疏水薄膜的 XRD 图谱,图中 4 个主要特征峰的位置分别为 2θ=20.64°、35.45°、32.41° 和 33.67°,与正交晶系 ZnOHF(JCPDS No: 32-1469,空间结群为 Pna21,晶胞参数 a=10.130 nm, b=4.760 nm,c=3.120 nm)的特征峰相位完全相符,分别对应(110)、(400)、(310)和(201)晶面,其余衍射峰均与该标准卡片相吻合,衍射峰尖锐且无明显杂峰。结果表明水热反应产物为 ZnOHF,并且具有较高的纯度和结晶度。因此,下文中超疏水薄膜称为 ZnOHF 薄膜。

  • 图2 超疏水薄膜的 XRD 图谱

  • Fig.2 XRD spectra of superhydrophobic film

  • ZnOHF 的反应原理为:六次甲基四胺 (C6H12N4)是一种弱碱,在水溶液中会缓慢水解为甲醛(HCHO 和氨(NH3),氨进一步水解产生 OH。添加剂 HF 为反应提供 F与硝酸锌(Zn(NO32)提供的 Zn2+结合形成 ZnF+ 络合物,ZnF+ 络合物进一步与 OH反应生成 ZnOHF[13]

  • 对于分支状晶体的生长,已提出三种生长机制。第一种为“二次成核”机制,其生长过程通常是先形成初级晶体,然后在其表面生成二次晶核,最终初级晶体发展成分支纳米结构的“茎”,次级晶核发展成“树枝”[14]。第二种机制认为分支结构的形成原因可能是定向附着和自组装[15]。该机制有两步典型生长过程:首先生成纳米棒、纳米带和纳米线等基本组元;下一步由基本组元间的内在相互作用引导其定向附着,使个体纳米晶体自组装成具有分支化的结构。第三种是晶体分裂机制[16-17]。该机制认为,早期快速生长阶段中存在的微小晶核的团聚易形成动力学结构缺陷,当团聚生长到临界尺寸时,晶体需要分裂成亚个体以释放累积的缺陷能量。

  • 图3a 是 ZnOHF 反应 90 min 时的形貌,可见 ZnOHF 晶体呈一端生长在基底上,另一端在垂直于基底的某一平面内分裂的扇形。每个扇形个体由长度 15 μm 左右,宽度约 1 μm,厚度小于 100 nm 的纳米薄片组成。反应 180 min 时,扇形 ZnOHF 进一步向各个方向展开,形成直径约 33 μm 的花状,如图3b 所示。构成花状 ZnOHF 的纳米薄片长度约 15 μm,宽度约 1 μm,厚度小于 10 nm。与扇形 ZnOHF 相比,组成花状 ZnOHF 的纳米薄片长度与宽度保持不变,厚度从 100 nm 减小到 10 nm,这表明分支化 ZnOHF 的形成可能是晶体分裂的结果。另外,在结晶学中,各向异性较强的一维结构的材料更有可能发生晶体分裂。ZnOHF 具有类似水铝石的晶体结构,从属于空间群 Pna21 的正交晶系,由晶胞参数可知其晶体各向异性很强,有利于晶体分裂[16]

  • 图3 不同的反应时间下 ZnOHF 薄膜的 SEM 图像

  • Fig.3 SEM images of ZnOHF film at different reaction time

  • 2.2 光响应润湿性转换

  • ZnOHF 薄膜表面水的接触角随 UV 光照时间的变化如图4所示。ZnOHF网膜的初始接触角为152°,随着 UV 光照时间的增加,其接触角逐渐下降,3 h 后接触角降低至 0°,呈现出超亲水性。由图可知,该转化过程呈现先快后慢的趋势,前 1 h 中接触角从152°下降到50°,而后1 h仅由13°下降到0°,图4 右上方为 ZnOHF 网膜在 UV 光照前后的接触角光学图像。

  • 图4 UV 光照下 ZnOHF 薄膜对水的接触角变化

  • Fig.4 Change in water contact angle of ZnOHF film under UV irradiation

  • 表面润湿性的关键在于表面自由能和粗糙结构,通过构建适当的表面粗糙结构,可以将疏水表面调整至超疏水,也可让亲水表面更加亲水[18]。 ZnOHF 薄膜表面分布着尺寸远小于水滴的微纳米粗糙结构,由 Cassis 模型解释润湿现象,当水滴与表面接触时,水滴与粗糙固体表面之间存在部分空气,使实际接触面积减小,进而使表面达到超疏水状态[19]

  • 在 UV 光照射时,ZnOHF 被光激发产生电子空穴对,这些空穴能够与晶格间的氧发生反应生成氧空位,而空气中的水分子可以将这些氧空位修复,使表面快速吸附亲水性-OH 基团,进而表现出超亲水特性[20]。为验证 ZnOHF 薄膜的光响应特性,采用傅里叶变换红外光谱仪对 UV 光照前后的样品进行分析,结果如图5 所示。经过 UV 光照,波数为 688 cm−1 与 3 321 cm −1 处的吸收峰均出现明显增大,两处吸收峰分别位于 O-H 键的弯曲振动 (650~769 cm−1)与伸缩振动(3 200~3 550 cm−1 ) 频率范围内。结果表明经过 UV 光照,ZnOHF 薄膜表面吸附的-OH 基团急剧增加,从而展现出超疏水向超亲水转变特性。通过对 ZnOHF 薄膜的光响应润湿性转化特性的研究,可以为梯度润湿性的制备提供理论基础。

  • 图5 UV 光照前后 ZnOHF 薄膜的 FT-IR 图谱

  • Fig.5 FT-IR spectra of ZnOHF film before and after UV irradiation

  • 但是,吸附在氧空位上的-OH 并不十分稳定,从热力学上来看氧空位更倾向与氧分子结合,从而逐渐恢复到超疏水状态[21]。将 ZnOHF 薄膜移入暗室后观察超亲水表面润湿性变化,5 d 后表面与水的接触角恢复到 152°。将暗室处理后的样品再次 UV 光照处理 3 h 后表面依然能转换为超亲水状态,并且该过程重复多次依然保持不变,结果表明 ZnOHF 薄膜的润湿性转换是可逆的。

  • 2.3 液滴定向铺展

  • 将 5 μL 水滴滴在均匀表面和梯度表面上,观察液滴的铺展过程,图6 为水滴在表面的铺展运动俯视图及侧视图,蓝色箭头的方向为水滴的铺展方向,虚线代表水滴铺展界限。由图可知,在均匀表面上水滴会以一点为圆心向周围铺展,最终润湿图案呈圆形。而当水滴滴在梯度表面的光照起始线位置时,由于液滴两端的表面张力不同,液滴会在表面能梯度的驱动下向亲水端定向铺展,形成以光照起始线为界线,近似矩形的润湿性形貌。

  • 图6 水滴在不同表面上的铺展运动

  • Fig.6 Spreading motion of a water droplet on different surfaces

  • 为了定量分析液滴在不同润湿性表面上的铺展性能,使用接触角测量仪记录液滴在不同表面上的铺展情况。通过测量液滴的铺展距离并计算其铺展速度,表征梯度润湿性表面上液滴的铺展性能。因 ZnOHF 薄膜存在粗糙结构,因此液滴在向前铺展的同时也会有少量液体被超亲水 ZnOHF 粗糙结构吸收。相对于铺展的液滴,渗入网膜的液滴较少,这里主要分析液滴的铺展过程。

  • 当水滴与均匀表面接触时,会同时向两侧铺展,液滴最高点逐渐降低,3.3 s 后完全铺展在表面上,最大铺展距离约为 3.82 mm,平均铺展速度约为 1.16 mm / s。当水滴与梯度表面的光照起始线接触时,未经光照的超疏水处(光照起始线右侧)会把水滴排开,同时液滴倾向于吸附在经过 UV 光照处理的亲水区域(光照起始线左侧),在这种力的作用下液滴出现变形。同时在 ZnOHF 薄膜表面微纳米粗糙结构的毛细力作用下,液滴一端钉扎在光照起始线位置,另一端则向前快速铺展,最大铺展距离增大至 4.08 mm,平均速度约为 7.42 mm / s。结果表明,通过适当的 UV 光照处理,能够得到控制液滴定向铺展梯度润湿性表面,并且相比于均匀表面,梯度润湿性表面能够增加液滴的铺展距离,使液滴快速铺展。

  • 将梯度表面倾斜 30°后,将水滴滴在光照起始线位置,铺展过程如图7 所示。经过 1.05 s 水滴完全铺展在表面上,最大铺展距离约为 4.02 mm,平均铺展速度为 3.84 mm / s。结果表明,即使将梯度表面倾斜放置,水滴依然能克服重力沿梯度方向铺展,其铺展距离和铺展速度均大于水平放置的均匀表面,受重力影响其铺展距离和铺展速度均小于水平放置的梯度表面。

  • 图7 梯度表面倾斜 30°后液滴克服重力铺展过程

  • Fig.7 Droplets spreading process of overcome gravity on a gradient surface tilted 30°

  • 图8 为水滴在梯度表面的铺展示意图,水滴运动过程中主要受 3 个力的作用:水滴两侧不平衡的表面张力产生(σsv1σsv2)产生的驱动力 Fdri 为液滴向前铺展的主要驱动力,接触角滞后产生的滞后力 Fhys 和粗糙结构与水滴间的毛细作用所产生的阻力 Fcap 为阻碍液滴铺展的主要因素[22]。亲水的 ZnOHF 粗糙结构会吸附部分液体,因此固-液-气界面接触转变为固-液-液界面接触,其相互运动产生的粘滞阻力较小。受力分析可得水滴在梯度表面上定向铺展时所受的合力 F 为:

  • F=Fdri+Fhys+Fcap
    (1)
  • 图8 水滴在梯度表面上的铺展示意图

  • Fig.8 Diagram of water droplet spreading on gradient surface

  • 将不同体积的水滴滴到梯度表面的光照起始线位置,使用接触角测量仪连续拍摄图片,记录水滴的定向铺展过程。图9 显示了不同体积的液滴(2、3、5 μL)在梯度表面上定向铺展时,铺展距离、铺展速度和接触角随时间的变化。铺展距离以光照起始点为零点,已知实际样品长度 L1、图片中的样品长度 l1 和图中水滴铺展距离 l2,可以通过计算得到实际水滴铺展距离 L2,计算公式为:

  • L2=l2×L1l1
    (2)
  • 铺展速度为铺展距离的导数,接触角由测量液滴的前进接触角所得。由图9a 可知,随着水滴体积增大,水滴在梯度表面上的铺展距离更长,铺展运动持续时间也更长。由图9b 可知,水滴的铺展速度在初始和结束时较快,且液滴体积越小的水滴初始速度大,具有更高的铺展效率。此外,在 50~100 ms 时不同体积的液滴均出现加速现象,可能由于液滴此时经过 2 mm 处的光照分界线,液滴两侧表面张力差增大,引起水滴的铺展速度突然增大。与此对应的,5 μL 液滴在 200 ms 时(经过 3 mm 光照分界线时)再次出现加速现象。由图9c 可知,接触角随时间的变化规律为先快后慢,且体积越小越明显,这与铺展距离的规律一致。铺展过程中,前进角随着时间增加和铺展距离延长而减小,这一现象也说明表面能梯度为水滴定向铺展的主要驱动力。

  • 图9 不同体积液滴铺展距离,铺展速度及接触角随时间的变化

  • Fig.9 Variation of droplet spreading distance, velocity and contact angle with time for a droplet with different volumes

  • 2.4 双侧梯度表面的集水性能

  • 在 ZnOHF 薄膜两侧均制备梯度表面,得到疏亲-疏的双侧梯度表面,图10 中的接触角图片描述双侧梯度表面不同区域上的润湿特性。将水滴滴在两侧的光照起始线位置,两侧水滴均有一侧钉扎于光照起始线,另一侧向亲水区域定向铺展,直至与另一液滴合并为同一液滴,合并后的液滴在亲水位置逐渐铺展,直至遍布整个亲水区域且不润湿疏水区域,结果如图10 所示。结果表明,通过两侧的梯度光照可以控制液滴在中间的亲水区域铺展,达到集水的效果。

  • 图10 双侧梯度表面上的水滴铺展情况

  • Fig.10 Water drop spreading on a bilateral gradient surface

  • 将双侧梯度表面润湿后,向两侧的光照起始线连续滴加水滴,双侧梯度表面会不断将小水滴汇集到中间的亲水区域,成为体积较大的水滴,如图11 所示。由于 ZnOHF 薄膜网孔较密,当水滴处于网膜表面时,在垂直方向上除了受到向下的重力外,还会受到向上毛细驱动压力和毛细管侧壁黏附阻力[23],因此水滴体积较小时不能穿透薄膜。当水滴大量聚集时,在重力作用下水滴开始穿透薄膜;随着水滴体积逐渐增大,重力逐渐占据主导作用,穿过薄膜的水滴越来越多;当穿透网膜的水滴达到极限体积时则会滴落。

  • 图11 双侧梯度表面的集水过程

  • Fig.11 Water collecting process on bilateral gradient surface

  • 通过模拟潮湿环境下的集水试验,放置在潮湿环境中 20 min 后的梯度表面可集水 2.1 mL,相同环境下的原始表面仅集水 1.6 mL。结果表明,双侧梯度表面可以将分散的小水滴聚集到中间的亲水区域,汇集成大水滴后借助重力进行收集,经过测试双侧梯度表面的集水量与原始表面相比提高了 31%,这是一种方便有效的集水方式。

  • 3 结论

  • 借助 ZnOHF 的光响应润湿性转换特性,制备梯度润湿性表面,研究液滴在梯度润湿性表面上的铺展行为,并制备可用于集水的双侧梯度润湿性表面。所得主要结论如下:

  • (1)利用水热法生长花状 ZnOHF,借助其粗糙结构增强表面润湿性。ZnOHF 薄膜经暗室处理后呈现超疏水特性,经过 3 h UV 光照处理后可完全转变为超亲水,其转变过程呈现先快后慢的趋势。

  • (2)通过控制光照时间制备的梯度润湿性表面可实现水滴的定向铺展,也可以在斜面上克服重力铺展。进一步分析液滴铺展过程,发现不同体积的液滴到达光照分界线处均出现加速现象,证明液滴在梯度表面的铺展的主要驱动力为不平衡的表面张力。

  • (3)在 ZnOHF 薄膜两侧制备梯度润湿性表面,可以控制水滴向亲水区域铺展并聚集渗透。与原始表面相比,双侧梯度表面的集水量提高了 31 %,提供了一种新的集水方案。

  • 参考文献

    • [1] SAITO N,HANEDA H,SEO W S,et al.Selective deposition of ZnF(OH)on self-assembled monolayers in Zn-NH4F aqueous solutions for micropatterning of zinc oxide[J].Langmuir,2001,17(5):1461–1469.

    • [2] DAI M,XU F,LU Y N,et al.Synthesis of submicron rhombic ZnO rods via ZnOHF intermediate using electrodeposition route[J].Applied Surface Science,2011,257(8):3586-3591.

    • [3] WANG M,SUN T M,TANG Y F,et al.Template-free synthesis and photocatalytic properties of flower-like ZnOHF nanostructures[J].Materials Letters,2015,160(1):150-153.

    • [4] GUO Y Y,MO Y X,WANG M,et al.Green and facile synthesis of hierarchical ZnOHF microspheres for rapid and selective adsorption of cationic dyes[J].Journal of Molecular Liquids,2021,329(1):115529-115537.

    • [5] LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):1-9.

    • [6] CHEN Z Y,HUANG J B,WANG Y Y,et al.Controllable synthesis of Eu3+ ions doped Zn(OH)F and ZnO micro-structures:phase,morphology and luminescence property[J].Rare Earths,2019,37(9):955–960.

    • [7] YAN X T,JIN Y K,CHEN X M,et al.Nature-inspired surface topography:design and function[J].Science China-Physics Mechanics & Astronomy,2020,63(2):224601-224616

    • [8] ZHANG S N,HUANG J Y,CHEN Z,et al.Bioinspired special wettability surfaces:From funda-mental research to water harvesting applications[J].Small,2017,13(3):1602992-1603020.

    • [9] YASUDA T,HARADA S,DAIMON K.Microfluidic dispensing device using wettability gradient and electrowetting[J].IEEJ Transactions on Sensors and Micromachines,2008,128(3):75-79.

    • [10] ZHOU H,WANG H X,NIU H T,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports.2013,3(1):2964-2969.

    • [11] 江雷,冯琳.仿生智能纳界面材料[M].北京:化学工业出版社,2007.JIANG Lei,FENG Lin.Biomimetic intelligent nanointerface materials [M].Beijing:Chemical Industry Press,2007.(in Chinese)

    • [12] LIU C S.Li Z W,WANG L,et al.Rapid reversible superhydrophobicity to superhydrophilicity conversion of HF-tuned ZnO flower-like micro-sphere films[J].Key Engineering Materials.2008,368(2):1374-1376.

    • [13] WANG M,SUN T M,SHI Y J,et al.3D hierarchical ZnOHF nanostructures:synthesis,characterization and photocatalytic properties[J].CrystEngComm,2014,16(46):10624-10630.

    • [14] XIA Y,WANG J,CHEN R S,et al.A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application[J].Crystals,2016,6(11):148-167.

    • [15] ZHAGN T R,DONG W J,KEETER-BREWER M.,et al,Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites[J].Journal of the American Chemical Society,2006,128(33):10960-10968.

    • [16] LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):291-299.

    • [17] 王雪,江智渊,蒋亚琪,等.高表面能晶面裸露的金属氧化物微纳米晶体的可控合成[J].中国科学:化学,2013,43(12):1630-1639.WANG Xue,JAING Zhiyuan,JAING Yaqi,et al.Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy[J].Scientia Sinica(Chimica),2013,43(12):1630-1639.(in Chinese)

    • [18] LI S H,HUANG J Y,CHEN Z,et al.A review on special wettability textiles:theoretical models,fabrication technologies and multifunctional applications[J].Journal of Materials Chemistry A,2017,5(1):31-55.

    • [19] 石彦龙,杨武,冯晓娟.超疏水-超亲油棉织物的制备及在油水分离中的应用[J].高等学校化学学报,2015,36(9):1724-1729.SHI Yanlong,YANG Wu,FENG Xiaojuan.Fabrication of superhydrophobic-superoleophilic cotton fabric and its application in water-oil separation[J].Chemical Journal of Chinese Universities,2015,36(9):1724-1729.(in Chinese)

    • [20] WATANABLE T,NAKAJIMA A,WANG R,et al.Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J].Thin Solid Films,1999,351(1-2):260-263.

    • [21] WANG S T,SONG Y L,JIANG L.Photoresponsive surfaces with controllable wettability[J].Journal of Photochemistry & Photobiology C Photochemistry Reviews,2007,8(1):18-29.

    • [22] 杨奇彪,卞若男,王杰,等.飞秒激光制备梯度润湿性单晶硅表面[J].中国表面工程,2021,34(6):175-180.YANG Qibiao,BIAN Ruonan,WANG Jie,et al.Gradient wettability of monocrystalline silicon surface prepared by femtosecond laser[J].China Surface Engineering,2021,34(6):175-180.(in Chinese)

    • [23] 袁腾,陈卓,周显宏,等.基于超亲水超疏油原理的网膜及其在油水分离中的应用[J].化工学报,2014,65(6):1943-1951.YUAN Teng,CHEN Zhuo,ZHOU Xianhong,et al.Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J].Acta Chimica Sinica,2014,65(6):1941-1955.(in Chinese)

  • 参考文献

    • [1] SAITO N,HANEDA H,SEO W S,et al.Selective deposition of ZnF(OH)on self-assembled monolayers in Zn-NH4F aqueous solutions for micropatterning of zinc oxide[J].Langmuir,2001,17(5):1461–1469.

    • [2] DAI M,XU F,LU Y N,et al.Synthesis of submicron rhombic ZnO rods via ZnOHF intermediate using electrodeposition route[J].Applied Surface Science,2011,257(8):3586-3591.

    • [3] WANG M,SUN T M,TANG Y F,et al.Template-free synthesis and photocatalytic properties of flower-like ZnOHF nanostructures[J].Materials Letters,2015,160(1):150-153.

    • [4] GUO Y Y,MO Y X,WANG M,et al.Green and facile synthesis of hierarchical ZnOHF microspheres for rapid and selective adsorption of cationic dyes[J].Journal of Molecular Liquids,2021,329(1):115529-115537.

    • [5] LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):1-9.

    • [6] CHEN Z Y,HUANG J B,WANG Y Y,et al.Controllable synthesis of Eu3+ ions doped Zn(OH)F and ZnO micro-structures:phase,morphology and luminescence property[J].Rare Earths,2019,37(9):955–960.

    • [7] YAN X T,JIN Y K,CHEN X M,et al.Nature-inspired surface topography:design and function[J].Science China-Physics Mechanics & Astronomy,2020,63(2):224601-224616

    • [8] ZHANG S N,HUANG J Y,CHEN Z,et al.Bioinspired special wettability surfaces:From funda-mental research to water harvesting applications[J].Small,2017,13(3):1602992-1603020.

    • [9] YASUDA T,HARADA S,DAIMON K.Microfluidic dispensing device using wettability gradient and electrowetting[J].IEEJ Transactions on Sensors and Micromachines,2008,128(3):75-79.

    • [10] ZHOU H,WANG H X,NIU H T,et al.Superphobicity/philicity janus fabrics with switchable,spontaneous,directional transport ability to water and oil fluids[J].Scientific Reports.2013,3(1):2964-2969.

    • [11] 江雷,冯琳.仿生智能纳界面材料[M].北京:化学工业出版社,2007.JIANG Lei,FENG Lin.Biomimetic intelligent nanointerface materials [M].Beijing:Chemical Industry Press,2007.(in Chinese)

    • [12] LIU C S.Li Z W,WANG L,et al.Rapid reversible superhydrophobicity to superhydrophilicity conversion of HF-tuned ZnO flower-like micro-sphere films[J].Key Engineering Materials.2008,368(2):1374-1376.

    • [13] WANG M,SUN T M,SHI Y J,et al.3D hierarchical ZnOHF nanostructures:synthesis,characterization and photocatalytic properties[J].CrystEngComm,2014,16(46):10624-10630.

    • [14] XIA Y,WANG J,CHEN R S,et al.A review on the fabrication of hierarchical ZnO nanostructures for photocatalysis application[J].Crystals,2016,6(11):148-167.

    • [15] ZHAGN T R,DONG W J,KEETER-BREWER M.,et al,Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites[J].Journal of the American Chemical Society,2006,128(33):10960-10968.

    • [16] LI Y W,HE D X,LUO Y X,et al.Hyperbranched hierarchical nanoarchitectures of ZnOHF:synthesis,characterization,growth mechanism and their gas sensing property[J].Applied Physics A,2021,127(4):291-299.

    • [17] 王雪,江智渊,蒋亚琪,等.高表面能晶面裸露的金属氧化物微纳米晶体的可控合成[J].中国科学:化学,2013,43(12):1630-1639.WANG Xue,JAING Zhiyuan,JAING Yaqi,et al.Shape-controlled synthesis of metal oxides micro/nanocrystals enclosed by crystal facets of high surface energy[J].Scientia Sinica(Chimica),2013,43(12):1630-1639.(in Chinese)

    • [18] LI S H,HUANG J Y,CHEN Z,et al.A review on special wettability textiles:theoretical models,fabrication technologies and multifunctional applications[J].Journal of Materials Chemistry A,2017,5(1):31-55.

    • [19] 石彦龙,杨武,冯晓娟.超疏水-超亲油棉织物的制备及在油水分离中的应用[J].高等学校化学学报,2015,36(9):1724-1729.SHI Yanlong,YANG Wu,FENG Xiaojuan.Fabrication of superhydrophobic-superoleophilic cotton fabric and its application in water-oil separation[J].Chemical Journal of Chinese Universities,2015,36(9):1724-1729.(in Chinese)

    • [20] WATANABLE T,NAKAJIMA A,WANG R,et al.Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass[J].Thin Solid Films,1999,351(1-2):260-263.

    • [21] WANG S T,SONG Y L,JIANG L.Photoresponsive surfaces with controllable wettability[J].Journal of Photochemistry & Photobiology C Photochemistry Reviews,2007,8(1):18-29.

    • [22] 杨奇彪,卞若男,王杰,等.飞秒激光制备梯度润湿性单晶硅表面[J].中国表面工程,2021,34(6):175-180.YANG Qibiao,BIAN Ruonan,WANG Jie,et al.Gradient wettability of monocrystalline silicon surface prepared by femtosecond laser[J].China Surface Engineering,2021,34(6):175-180.(in Chinese)

    • [23] 袁腾,陈卓,周显宏,等.基于超亲水超疏油原理的网膜及其在油水分离中的应用[J].化工学报,2014,65(6):1943-1951.YUAN Teng,CHEN Zhuo,ZHOU Xianhong,et al.Coated mesh film based on superhydrophilic and superoleophobic principle and its application in oil-water separation[J].Acta Chimica Sinica,2014,65(6):1941-1955.(in Chinese)

  • 手机扫一扫看