en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭星星,男,1997年生,硕士研究生。主要研究方向为激光增材制造成形技术及理论。E-mail:gxx022300@126.com

通讯作者:

帅美荣,女,1978年生,教授。主要研究方向为复合材料制备关键技术。E-mail:ruoxin2001@163.com

中图分类号:TG456;TG665;TP18

DOI:10.11933/j.issn.1007−9289.20221006001

参考文献 1
衡钊,舒林森.激光功率对27SiMn钢激光熔覆力学性能的影响[J].中国激光,2022,49(8):118-126.HENG Zhao,SHU Linsen.Effect of laser power on mechanical properties of laser cladding 27SiMn steel[J].Chinese Journal of Lasers,2022,49(8):118-126.(in Chinese)
参考文献 2
王贤才,张亚普,柴蓉霞.27SiMn 钢表面激光熔覆304不锈钢的组织和性能[J].金属热处理,2020,45(4):188-193.WANG Xiancai,ZHANG Yapu,CHAI Rongxia.Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J].Heat Treatment of Metals,2020,45(4):188-193.(in Chinese)
参考文献 3
KUMAR Shakti,MANDAL Amitava,DAS Alokkumar.The effect of process parameters and characterization for the laser cladding of cBN based composite clad over the Ti6Al4V alloy[J].Materials Chemistry and Physics,2022,288:126410.
参考文献 4
SHI Bowen,LI Tao,GUO Zhiwei,et al.Selecting process parameters of crack-free Ni60A alloy coating prepared by coaxial laser cladding[J].Optics & Laser Technology,2022,149:107805.
参考文献 5
娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)
参考文献 6
WU H,ZHANG S,WANG Z Y,et al.New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating:The role of Mo[J].International Journal of Refractory Metals and Hard Materials,2022,102:105721.
参考文献 7
JEYAPRAKASH N,KANTIPUDI M B,YANG C H.Study on microstructure and anti-corrosion property of stainless steel particles deposition on Ti–6Al–4V substrate using laser cladding technique[J].Lasers in Manufacturing and Materials Processing,2022,9(2):214-227.
参考文献 8
曹强,练国富,肖石洪,等.基于灰色关联分析激光熔覆Ni60A工艺参数优化[J].精密成形工程,2022,14(1):173-181.CAO Qiang,LIAN Guofu,XIAO Shihong,et al.Optimization of process parameters of laser cladding Ni60A based on gray relational analysis[J].Journal of Netshape Forming Engineering,2022,14(1):173-181.(in Chinese)
参考文献 9
CHAI Qing,WANG Zhandong,FANG Chen,et al.Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J].Surface and Coatings Technology,2021,422:127494.
参考文献 10
FAN Pengfei,ZHANG Guan.Study on process optimization of WC-Co50 cermet composite coating by laser cladding[J].International Journal of Refractory Metals and Hard Materials,2020,87:105133.
参考文献 11
欧阳昌耀,白峭峰,韩斌慧,等.激光熔覆Fe基非晶合金涂层裂纹分析[J].金属热处理,2022,47(5):252-256.OUYANG Changyao,BAI Qiaofeng,HAN Binhui,et al.Analysis of cracks in laser clad Fe-based amorphous alloy coating[J].Heat Treatment of Metals,2022,47(5):252-256.(in Chinese)
参考文献 12
YI Peng,ZHAN Xianghua,HE Qingkun,et al.Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding[J].Optics & Laser Technology,2019,109:480-487.
参考文献 13
MONDAL Subrata,BANDYOPADHYAY Asish,PAL Pradipkumar.Application of artificial neural network for the prediction of laser cladding process characteristics at Taguchi-based optimized condition[J].The International Journal of Advanced Manufacturing Technology,2014,70(9):2151-2158.
参考文献 14
ONWUBOLU G C,DAVIM J P,OLIVEIRA C,et al.Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J].Optics & Laser Technology,2007,39(6):1130-1134.
参考文献 15
CHEN Tao,WU Weining,LI Wenpeng,et al.Laser cladding of nanoparticle TiC ceramic powder:Effects of process parameters on the quality characteristics of the coatings and its prediction model[J].Optics & Laser Technology,2019,116:345-355.
参考文献 16
MA Minyu,XIONG Wenjing,LIAN Yong,et al.Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm[J].Surface and Coatings Technology,2020,381:125129.
参考文献 17
姜兴宇,刘傲,杨国哲,等.激光增材制造过程低碳建模与工艺参数优化[J].机械工程学报,2022,58(5):223-238.JIANG Xingyu,LIU Ao,YANG Guozhe,et al.Lowcarbon modeling and process parameter optimization in laser additive manufacturing process[J].Journal of Mechanical Engineering,2022,58(5):223-238.(in Chinese)
参考文献 18
张胜江,王明娣,倪超,等.QT800-2 球墨铸铁表面激光熔覆工艺参数多目标优化[J].表面技术,2021,50(7):74-82.ZHANG Shengjiang,WANG Mingdi,NI Chao,et al.Multi-objective optimization of laser cladding process parameters on QT800-2 ductile iron surface[J].Surface Technology,2021,50(7):74-82.(in Chinese)
参考文献 19
YANG Sirui,BAI Haiqing,LI Chaofang,et al.Numerical simulation and multi-objective parameter optimization of Inconel718 coating laser cladding[J].Coatings,2022,12(5):708.
参考文献 20
GAO Jiali,WU Chengzu,HAO Yunbo,et al.Numerical simulation and experimental investigation on threedimensional modelling of single-track geometry and temperature evolution by laser cladding[J].Optics & Laser Technology,2020,129:106287.
参考文献 21
杨思瑞,白海清,鲍骏,等.激光熔覆铁基合金粉末单道形貌及性能研究[J].应用激光,2022,42(2):33-40.YANG Sirui,BAI Haiqing,BAO Jun,et al.Single pass forming process of laser cladding iron base alloy powder[J].Applied Laser,2022,42(2):33-40.(in Chinese)
参考文献 22
ANSARI M,RAZAVI R S,BAREKAT M.An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J].Optics & Laser Technology,2016,86:136-144.
参考文献 23
张浩,练国富,陈昌荣,等.激光熔覆曲面基体曲线轨迹成形内部质量与效率影响研究[J].激光与红外,2020,50(12):1433-1442.ZHANG Hao,LIAN Guofu,CHEN Changrong,et al.Investigation into forming internal quality and efficiency of the curve path in curved surface laser cladding[J].Laser &Infrared,2020,50(12):1433-1442.(in Chinese)
参考文献 24
HU Guofang,YANG Yong,QI Kang,et al.Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters[J].Transactions of the Indian Institute of Metals,2020,73(10):2623-2634.
参考文献 25
MOHAMMED Sayeed,ZHANG Zhe,KOVACEVIC Radovan.Optimization of processing parameters in fiber laser cladding[J].The International Journal of Advanced Manufacturing Technology,2020,111(9):2553-2568
参考文献 26
HUANG Yubin,HU Yongle,ZHANG Mingjun,et al.Multi-objective optimization of process parameters in laser cladding CoCrCuFeNi high-entropy alloy coating[J].Journal of Thermal Spray Technology,2022,31:1-16.
参考文献 27
MENG Guiru,ZHU Lida,ZHANG Jingdong,et al.Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating[J].Optik,2021,240:166828.
参考文献 28
王燕燕,李家豪,舒林森,等.基于RSM与 NSGA-Ⅱ算法的激光熔覆参数多目标优化[J].激光与光电子学进展,2022,59(7):195-201.WANG Yanyan,LI Jiahao,SHU Linsen,et al.Multi-objective optimization of laser cladding parameters based on RSM and NSGA-Ⅱalgorithm[J].Optoelectronics Progress,2022,59(7):195-201.(in Chinese)
参考文献 29
GUO Chenguang,HE Shunzhi,YUE Haitao,et al.Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition[J].Optics & Laser Technology,2021,134:106607.
参考文献 30
郭士锐,赵阳,崔陆军,等.灰铸铁表面单道激光熔覆 Ni45A+5%WC 合金形貌研究[J].应用激光,2022,42(3):21-27.GUO Shirui,ZHAO Yang,CUI Lujun,et al.Study on the morphology of single-pass laser cladding Ni45A+5%WC coating on the surface of gray cast iron[J].Applied Laser,2022,42(3):21-27.(in Chinese)
参考文献 31
ERFANMANESH M,ABDOLLAH-POUR H,MOHAMMADIAN-SEMNANI H,et al.An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J].Optics & Laser Technology,2017,97:180-186.
参考文献 32
PENG Shitong,LI Tao,ZHAO Jiali,et al.Towards energy and material efficient laser cladding process:Modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II[J].Journal of Cleaner Production,2019,227:58-69.
参考文献 33
张颖,李明祥,胡生双,等.激光成形工艺对TB18钛合金微观组织的影响[J].特种铸造及有色合金,2022,42(4):436-440.ZHANG Ying,LI Mingxiang,HU Shengshuang,et al.Effects of laser forming on microstructure of TB18 titanium alloy[J].Special Casting & Nonferrous Alloys,2022,42(4):436-440.(in Chinese)
参考文献 34
GUO Chenguang,LV Ning,YUE Haitao,et al.Laser additive remanufacturing parameters optimization and experimental study of heavy-duty sprocket[J].The International Journal of Advanced Manufacturing Technology,2022,118(11):3789-3800.
参考文献 35
丁昊昊,慕鑫鹏,祝毅,等.车轮材料表面 h-BN/CaF2/Fe 基激光熔覆涂层组织与磨损性能[J].中国表面工程,2021,34(4):139-148.DING Haohao,MU Xinpeng,ZHU Yi,et al.Microstructures and wear properties of h-BN/CaF2/Fe based laser claddings on wheel material surface[J].China Surface Engineering,2021,34(4):139-148.(in Chinese)
参考文献 36
LI H X,LU Z C,WANG S L,et al.Fe-based bulk metallic glasses:Glass formation,fabrication,properties and applications[J].Progress in Materials Science,2019,103:235-318
目录contents

    摘要

    激光熔覆参数设计和产品成形质量评估是多输入多输出耦合控制,但关于各参数权重配分以及多目标协同优化研究鲜有报道。设计 L16(43 )激光单道熔覆正交试验方案,研究 27SiMn 钢表面熔覆 GS-Fe01 铁基合金粉末的最优工艺参数;通过建立以激光功率、扫描速度和送粉速率关键参数表征的优化变量,构建以熔覆层性能评估为指标的目标响应非线性数学模型;探究优化变量及其权重排序对覆层性能的影响规律。基于快速非支配排序遗传算法(NSGA-II)多目标优化的 Pareto 解集,寻求最佳参数。结果表明:在激光功率 744 W,扫描速度 233 mm / min,送粉速率 1.2 r / min 工况下,熔覆层稀释率 19.9%,宽高比 3.001,显微硬度 747.15 HV0.5时,目标响应值匹配最佳。沿激光熔覆凝固方向,熔覆界面微观组织形貌逐步由树枝晶和柱状晶组织转换为体积小、数量多的非定向等轴晶粒。研究结果可为激光熔覆多目标工艺参数优化及复合涂层质量控制提供理论支撑。

    Abstract

    Owing to its high strength, 27SiMn steel is typically used in making the power components of the hydraulic supports of coal mine machinery. However, its surface is prone to cause wear, corrosion, and other forms of failure under harsh working environments, resulting in a hidden danger and significant resource wastage. Laser cladding technology is as an emerging re-manufacturing method that can form a surface coating with an extremely low rate of dilution, dense micro-morphology, and good metallurgical bonding. This type of technology has achieved demonstrable results in the field of surface modification and substrate material repair. Therefore, a series of studies on laser cladding were developed to improve the service life of the power components, and mainly focused on the optimization of the process parameters in this paper. 27SiMn steel and GS-Fe01 iron alloy powder were used as the substrate and surface, respectively, and an orthogonal scheme L16(43 ) was designed for the single-pass laser cladding experiments. Additionally, a set of non-linear mathematical models were constructed and characterized by optimized variables such as the laser power, scanning speed, and powder feeding rate, and objective functions such as the dilution rate, aspect ratio, and micro-hardness. In this regard, the influence rules of the optimized variables and weight order on the cladding performance were thoroughly studied. Furthermore, using the quick non-dominated sorting genetic algorithm(NSGA-II) and solution set from Pareto, the optimal parameters of the cladding process were quickly searched and determined. The calculation results based on the established models show that the weight distribution of the process parameters and influence degree on the evaluation indicators of the cladding layer are completely different. The laser power has a positive effect on the dilution rate, aspect ratio, and micro-hardness of the cladding layer. The scanning speed has a positive effect on the dilution rate and aspect ratio, but a negative effect on the micro-hardness. While the effect law of powder feeding rate is opposite to that of scanning speed. The weight order of influence on the dilution rate is laser power > scanning speed > powder feeding rate, that on the aspect ratio is scanning speed > laser power > powder feeding rate, and that influencing the micro-hardness is powder feeding rate > laser power > scanning speed. According to the solution set from Pareto, a laser power of 744 W, scanning speed of 233 mm/min, and powder feeding rate of 1.2 r/min produces the optimal matching of the objective functions, that is, a dilution rate of 19.9%, an aspect ratio of 3.001, and a micro-hardness of 747.15 HV0.5. Compared with the experimental values, the calculation deviations are 5.3%, 2.1%, and 1.6%, respectively. The experimental results also show that the micro-tissue morphology of the cladding is gradually changed from a branch and column tissue to non-directional equiaxed grains with a small size and large quantity along the freezing direction of cladding, which enhances the comprehensive performance of the cladding layer. Moreover, the micro-hardness of the substrate, heat-affected zone, and cladding layer all exhibit an increasing trend characterized by a three-level stepwise pattern, which is conducive for the stable transformation of the mechanical properties along the cladding thickness direction. Thus, these studies can provide a theoretical basis for the optimization of the multi-objective parameters of the laser cladding process, which improves the quality of the composite coating.

  • 0 前言

  • 27 SiMn 钢立柱作为煤矿机械液压支架的动力元件,其性能的稳定性和可靠性是保证煤矿安全生产的关键。由于长期服役于煤矿井下恶劣的工况环境,立柱表面极易产生严重的磨损、腐蚀等失效形式,进而导致液压支架无法正常使用[12]。激光熔覆作为新兴的再制造手段,可形成稀释率极低、组织成分致密、冶金结合良好的表面涂层[3-5]。基材表面的耐磨性、耐腐蚀性、耐热性和电化学性能明显提高,以达到基材表面改性或修复的目的[6-8]。但是激光熔覆过程受到热积累和温度梯度的影响,熔覆层极易产生裂纹、热应力和气孔等缺陷;加之激光单道熔覆是多层多道激光熔覆的基础,直接决定着整个熔覆层的质量和成形效率,因此优化激光熔覆单道成形工艺参数尤为重要[9-11]

  • 目前学者们对激光熔覆工艺参数优化进行了较多研究。YI 等[12]将铁基合金粉末熔覆于灰铸铁表面,研究涂层与基板结合区的微观组织,发现扫描速度对涂层形貌有显著影响,并获得最佳加工参数集。MONDAL 等[13]通过激光熔覆在商用低碳钢 (S235)上制备 Cr / Ni / Mo 复合涂层,并使用反向传播人工神经网络(BPANN)建立工艺参数和响应指标(熔覆层宽度和深度)之间的相互关系。由于响应指标选取单一,对于熔覆层的几何特征反映片面,而无法保证熔覆层的整体质量。ONWUBOLU 等[14]等采用响应面法建立了激光功率、粉末流量等工艺参数的入射角模型,结合离散搜索优化技术确定最优工艺参数。CHEN 等[15]采用田口方法设计试验,通过信噪比对影响质量特征的因素进行排序,建立了相关系数为 0.94 的支持向量机(SVM)模型,以获得最优工艺参数。不足之处是人工神经网络建模涉及复杂的数学结构,因此需要大量试验数据。 MA 等[16]采用响应面法对熔覆层的稀释率和残余应力进行建模,研究各参数对熔覆层性能的影响,并采用粒子群优化算法求解最小稀释率和残余应力,成功预测了最佳工艺参数,但优化后的工艺参数对熔覆层性能提升较小。姜兴宇[17]等系统分析了激光增材制造过程碳足迹特性,建立了以碳排放、粉末利用率和成形质量为响应值的优化模型,为后续熔覆制造能耗优化设计提供参考。

  • 迄今,机器算法对激光熔覆工艺参数的优化成效显著。激光熔覆是多参数耦合相互作用的过程,并且熔覆层的性能取决于多项评价指标[18-19]。但目前的研究仅限于单目标优化,对于多目标优化鲜有报道,因此需要选择合适的算法综合评价熔覆层的性能。通常采用的算法包括粒子群算法算法(PSO)、模拟退火算法(SA)、快速非支配排序遗传算法 (NSGA-II)等。PSO 虽有较快的收敛速度,但缺乏速度动态调节,易陷入局部最优,导致精度较差;SA 有摆脱陷入局部最优的能力,但运行效率低,进化速度慢。与之相比,NSGA-II 是在遗传算法的基础上引入了快速非支配排序、聚集距离排序和精英策略理念;无须对适应度函数和权重进行计算,且算法计算复杂度低,全局寻优能力强,Pareto 解收敛性好,更适合激光熔覆工艺参数优化。

  • 本文针对激光单道成形熔覆层的几何建模和工艺参数优化问题开展研究。首先,基于正交试验法设计 16 组具有 3 因素 4 水平的激光单道熔覆试验,将激光功率(P)、扫描速度(v)、送粉速率(vf) 作为激光熔覆工艺参数优化的输入变量,将熔覆层稀释率(η)、宽高比(W / H)和显微硬度(HV) 作为目标响应值,建立工艺参数与熔覆层性能指标之间的目标模型。然后,基于 NSGA-II 算法,视工艺参数为决策变量,制定不等式约束条件和多目标优化模型,寻求最佳参数。最后,采用最优工艺参数进行二次试验,并结合微观试验,检验多目标优化工艺参数匹配的可靠性和准确性。

  • 1 激光熔覆单道试验

  • 1.1 材料与方法

  • 激光熔覆系统主要包括台达 NC300 数控系统、控制氧和水含量 50×10−6 以内的洗气+循环气体净化系统、精度达 0.1 g / min 的双筒送粉器、2 kW 德国 IPG 光纤激光器、YC52 熔覆头及变位机等,整体成形效率为 10~30 cm3 / h。送粉方式为光外同轴送粉,送粉速率由送粉气流量和粉盘转速共同决定,保证熔覆过程中合金粉末的连续性和均匀性;光斑为圆形光斑,保护气和送粉气均为氩气(纯度 99.9%)。

  • 熔覆基体选择 27SiMn 钢,规格为 100 mm× 100 mm×20 mm,熔覆前对工件表面打磨抛光提高其平整度,用无水乙醇清洗表面油污等杂质。熔覆合金粉末为 GS-Fe01,该粉末具有良好的耐蚀性、耐磨性和流动性,适用于液压支柱等部件表面熔覆。试验前将基体和合金粉末放入加热炉中加热至 120℃并保温 2~3 h,防止基体内的水分影响熔覆效果以及出现送粉系统堵塞现象。基体和粉末的化学成分如表1 所示。采用扫描电子显微镜观察 GS-Fe01 合金粉末形貌,如图1 所示, GS-Fe01 合金粉末为球形颗粒,大小分布均匀,未出现团聚现象,粒度分布为 20~63 μm,霍尔流速为 17 s / 50 g。

  • 表1 基体和合金粉末化学成分(质量分数)

  • Table1 Chemical composition of matrix and powder (wt. %)

  • 图1 GS-Fe01 合金粉末形貌

  • Fig.1 Morphology of GS-Fe01 alloy powder

  • 根据前期大量预试验经验,在激光熔覆过程中调整光斑直径为φ2.5 mm,保护气流量为 20 L / min,送粉气流量为 7.5 L / min。以激光功率(P)、扫描速度 (v)、送粉速率(vf)为影响激光熔覆质量的工艺参数,以熔覆层稀释率(η)、宽高比(W / H)和显微硬度 (HV)为熔覆层性能评价指标,设计 4 水平 3 因素 L16 (4 3)正交试验方案。将 16 组 10 mm×10 mm×10 mm 的小试样打磨抛光腐蚀后,使用 VHX-1000E 超景深显微镜观察熔覆层微观形貌,并测量熔覆层的宽度、高度、熔覆区和基体熔化区的面积。显微硬度的测量选用 HX-1000TM/LCD 维氏显微硬度仪,采用小负荷维氏硬度试验(Ra≤0.20 μm)从熔覆层表面开始,间隔 0.2 mm 测量 1 次,每组测量 3 次取平均值,加载条件为:试验力大小为 5 N,试验力保持时间为 10 s。

  • 1.2 正交试验结果分析

  • 16 组单道熔覆形貌如图2 所示,可以看出熔覆层表面平整,起伏较低,宏观质量良好;熔道成形平整均匀,规则饱满,与基体结合良好,未出现褶皱、断续、甚至脱落现象。

  • 图2 单道熔覆形貌图

  • Fig.2 Morphology diagram of single-pass cladding

  • 熔覆层的几何特征是评价熔覆层性能的重要指标,因此激光熔覆工艺参数的优化目标需考虑熔覆层的几何结构参数。单道熔覆试样截面结构示意图如图3 所示,激光熔覆界面分为熔覆区、基体熔化区、热影响区和基体 4 部分,WH 分别表示熔覆层宽度、高度;W1h 分别表示基体熔化区的宽度、深度;A1A2 分别表示熔覆区、基体熔化区面积。

  • 稀释率是评价熔覆层和基体冶金结合的重要指标,一般用基体合金占熔覆层的百分比表示,如式(1)所示;熔覆层宽高比的大小是熔覆层润湿性能和平整度的评价指标,合适的宽高比有利于后续多道熔覆的搭接成形;显微硬度则可以直观的衡量熔覆层以及基体熔化区质量的优劣性[20-21]

  • 图3 激光熔覆界面示意图

  • Fig.3 Interface schematic diagram of laser cladding

  • η=A2A1+A2
    (1)
  • 式中,A1为熔覆区面积,A2 为基体熔化区面积。

  • 正交试验响应值如表2 所示,根据实际服役工况考虑,第 10 组和第 14 组试验条件下,熔覆层目标响应值匹配较好。

  • 表2 正交试验方案及响应值

  • Table2 Orthogonal experimental scheme and response values

  • 2 激光熔覆目标模型构建

  • 为了实现最佳参数匹配,须构建多参数目标模型,用以分析和表征不同参数变量对覆层性能的影响规律及其权重关系,以便进一步提高激光熔覆层的成形质量。

  • 2.1 目标模型构建原理

  • 多项式回归模型是工程中最常用的对试验数据回归分析的预测模型,回归模型的构造就是建立试验因子与目标响应值之间的函数关系,在变量约束范围内利用最小二乘法原理拟合目标函数,则高阶回归拟合方程为:

  • yu=β0+i=1t βixiu+i=1t j=1t βijxiuxju+i=1t j=1t k=1t βijkxiuxjuxku+εu
    (2)
  • 式中,yu 表示响应面上拟合点处目标响应的估计值; β0βiβijβijk 表示回归系数拟合值;ijk 表示试验因子个数;u 表示试验次数;xiuxjuxku 分别表示第 ijk 个因子在第 u 次试验的水平;εu 表示第 u 次试验中的误差。

  • 如上所述,激光熔覆工艺参数自变量有激光功率、扫描速度、送粉速率 3 个,熔覆层性能评价指标响应值有熔覆层稀释率、宽高比、显微硬度 3 个。参考 ANSARI 等[22]建立同轴激光熔覆工艺参数和熔覆层几何特征的预测模型,将熔覆层稀释率和宽高比的一阶多项式表达模型转化为指数模型; 而熔覆层的显微硬度采用多项式模型进行构造拟合。

  • 由式(2)可得熔覆层三元一次多项式模型为:

  • yu=β0+β1x1u+β2x2u+β3x3u
    (3)
  • 为将式(3)转化为指数模型,对自变量 x1ux2ux3u 进行以下变量代换:

  • x1u=ln(P)-lnP1lnP4-lnP1x2u=ln(v)-lnv1lnv4-lnv1x3u=lnvf-lnvf1lnvf4-lnvf1
    (4)
  • 式中,Pnvnvfn 分别为激光功率、扫描速度、送粉速率第 n 水平。

  • 整理可得转化后的指数回归模型为:

  • eyu=eβ0P1kv1lvf1mPkvlvfm
    (5)
  • 式中,k=β1lnP4-lnP1; l=β2lnv4-lnv1; m=β3lnvf4-lnvf1

  • 在式(5)的基础上引入修订系数 b,主要是考虑在激光熔覆过程中熔覆层的成形时间大于实际激光束与粉末材料的接触时间,以及熔覆层参数测量值存在一定误差。

  • 最终经修订得到的工艺参数与稀释率、宽高比的指数模型为:

  • Z=aPkvlvfm+b
    (6)
  • 式中,Z 表示目标响应值;a=eβ0/P1kv1lvf1m,表示拟合系数;b 表示修订系数;Pvvf 分别表示激光功率、扫描速度和送粉速率;klm 分别表示激光功率、扫描速度和送粉速率的影响指数。

  • 2.2 目标模型拟合结果

  • 2.2.1 稀释率目标模型及评估

  • 基于上述指数回归模型构造原理,以激光熔覆工艺参数为自变量,以熔覆层稀释率为目标响应值, 引入非线性最小二乘法—麦夸特法(Levenber-Marquardt)对 16 组试验数据进行多元非线性拟合, 运用 1stOpt 软件求解函数系数,构造稀释率-工艺参数的目标函数为:

  • η=0.16024P0.25578v0.128 73vf-0.08142-1.53161
    (7)
  • Pv 的影响指数均为正值,说明这些因素对熔覆层稀释率具有正效应,而 vf 的影响指数为负值,说明送粉速率对熔覆层稀释率具有负效应。由各工艺参数影响指数的绝对值可得,对熔覆层稀释率的影响强弱依次为:激光功率>扫描速度 >送粉速率。根据激光熔覆的基本原理,激光熔覆时激光束的能量主要被粉末材料吸收,只有少部分能量会穿透粉末材料到达基体使其熔化形成熔池。当激光功率的增加时,到达基体的能量增加,基体熔池面积相应增大,最终导致熔覆层稀释率增加;当激光功率恒定时,扫描速度降低或送粉速率增加,输送至单位长度熔覆层的粉末量增加,使透光率下降,基体熔池面积随之减小,导致熔覆层的稀释率降低。

  • 通过检验工艺参数与熔覆层稀释率的拟合情况,来评价模型对稀释率发生变化的解释程度,决定系数 R2 越接近 1,表明模型拟合程度越好。如图4a 所示为稀释率拟合方程,16 组稀释率数据点沿着拟合直线有规律的分布,且无异常点存在,表明拟合情况良好,相关系数 R=0.968(R2 =0.937)。

  • 图4 稀释率目标模型评估

  • Fig.4 Evaluation of dilution rate target model

  • 熔覆层稀释率试验值残差的分布方式可评估模型的有效性,残差表示试验值与模型预测值之间的差异,残差越小,表明模型的精度越高。通过图4b稀释率残差与预测值图发现,稀释率残差数据点是 0 均值的白噪声分布,未遵循特定的分布模式,证明稀释率模型的有效性[23]。如图4c 所示,稀释率测量值和预测值误差较小,模型具有较高的预测精度,进一步证明构建模型的可靠性。

  • 2.2.2 宽高比目标模型及评估

  • 同理,建立熔覆层宽高比-工艺参数目标函数,基于麦夸特法实现式(6)中 abklm 等参数的一举寻优,采用 1stOpt 软件处理试验数据,拟合输出熔覆层宽高比-工艺参数目标函数为:

  • W/H=1.67614×10-6P0.88703v1.54758vf-0.20172+0.36296
    (8)
  • 同理,Pv 对熔覆层宽高比具有正效应,而 vf 具有负效应。这是因为当激光功率增加时,粉末材料能获得充足的能量使其充分熔化,熔池中的液态金属在重力和马兰戈尼对流等驱动力的作用下向下流动,使熔覆层的高度略有下降,导致宽高比增加;当扫描速度降低或送粉速率增加时,熔池单位时间熔化的粉末量增加,使熔覆层宽度和高度增加,由于光斑直径固定,熔覆层宽度变化不明显,因而熔覆层的宽高比降低。由各工艺参数影响指数的绝对值可得,对于熔覆层宽高比的影响大小依次为:扫描速度>激光功率>送粉速率。

  • 如图5a、5b 所示为熔覆层宽高比的拟合方程和残差图,相关系数 R=0.973(R2 =0.947),试验值与 A0.887 03B1.547 58C-0.201 72 的工艺参数组合具有良好的相关性,并且数据点与宽高比直线拟合情况较好; 图5c 所示为熔覆层宽高比的试验值和预测值的分布,可知模型误差较小,预测精度较高。

  • 另外,上述指数回归模型中各工艺参数影响指数的正负和绝对值的大小分别决定其对熔覆层稀释率、宽高比的影响效应和权重排序,弥补了传统多项式模型需进行极差分析才能确定各工艺参数对熔覆层性能影响规律的不足,分析便捷。

  • 2.2.3 显微硬度目标模型及评估

  • 基于上节高阶多项式回归模型构造原理,熔覆层的显微硬度采用一阶和二阶多项式拟合效果不佳,当最高项为三次时拟合效果良好,由式(2)拟合熔覆层显微硬度-工艺参数的目标函数为:

  • HV=745.13399-0.32380v+91.76825vf-10-4×3.25757P2-2.70382Pv-4.50694v2-0.12856Pvf+4.11454×10-7P3+0.35344vvf2
    (9)
  • 熔覆层显微硬度极差分析如表3 所示,其中 K1K4 表示工艺参数各水平对应显微硬度的均值。可知工艺参数对显微硬度的影响权重排序为:送粉速率>激光功率>扫描速度;Pvf对显微硬度具有正效应,而 v 具有负效应。这是因为随着激光功率增加、扫描速度降低或者送粉速率增加,都会使熔化的粉末量增加,最终导致熔覆层的显微硬度增大[24]。由于粉末材料和基体获得充足的能量,熔覆层残留的粉末大幅度减少,使熔覆层表面粗糙度降低。

  • 图5 宽高比目标模型评估

  • Fig.5 Evaluation of aspect ratio target model

  • 表3 显微硬度极差分析表

  • Table3 Range analysis of microhardness

  • 如图6a、6b、6c 所示,决定系数 R2 =0.986 (R=0.993),试验值和预测值相关性显著;残差呈现随机分布,不包含任何人为模态信息,符合残差分布要求;多项式模型预测精度较高,完全满足多目标优化要求。

  • 本文建立了工艺参数和稀释率、宽高比、显微硬度等熔覆层性能评价指标之间的多元目标模型,与 MOHAMMED 等[25]采用响应面法构建的稀释率响应值与自变量之间的二次函数(R2 =0.825)比较,与 HUANG 等 [26] 构建的熔覆层宽高比模型 (R2 =0.840)比较,与 MENG 等[27]采用响应面建模技术构建的显微硬度模型(R2 =0.887)比较,显然,本文构建的模型具有更高的精度。

  • 根据构建的目标函数(7)~(9),可以看出,激光功率对三个目标模型(熔覆层稀释率、宽高比、显微硬度)的影响均为正效应;扫描速度对熔覆层稀释率、宽高比具有正效应,对显微硬度具有负效应;而送粉速率对熔覆层评价指标的影响效应与扫描速度的影响效应恰恰相反。

  • 此外,还可以进一步得出,这三个工艺参数对目标函数影响的权重配分各不相同。对稀释率影响的权重排序为:激光功率>扫描速度>送粉速率,对宽高比影响的权重排序为:扫描速度>激光功率>送粉速率,而对显微硬度影响的权重排序为:送粉速率>激光功率>扫描速度。因此,参数优化还须依赖于多目标模型优化。

  • 图6 显微硬度目标模型评估

  • Fig.6 Evaluation of microhardness target model

  • 3 工艺参数优化与验证

  • 3.1 NSGA-II 算法原理

  • NSGA-II 是在遗传算法的基础上引入了快速非支配排序、聚集距离排序和精英策略理念。快速非支配排序是依据个体的非劣解水平分层,利用非支配解集中解的秩升序排序,挑选优异的个体进入下一次迭代,算法的计算复杂度由 O(N3)降低到 O(N2),运行效率得到提高。其中非支配解集必须满足以下条件,如式(10)所示[28]

  • Mxx1,x2,x3,,xnQ=Pi,j{1,2,3,,n},ij,ij,xixj=x1>x2>x3>>xn
    (10)
  • 式中,P 为非支配集合,M 为种群,Q 为子代在空间中的位置,xk为任意因子。

  • 为解决须指定共享参数的适应度共享机制,在快速排序后相同秩的解按照聚集距离降序排序,使准 Pareto 域中的个体向整个 Pareto 域均匀扩展,保持种群的多样性。

  • 精英策略是对当前种群进行非支配排序和聚集度计算,选出最优个体作为新父代种群。经过多代选择、交叉、变异产生的种群将均匀分布收敛于 Pareto 最优前端上,使算法收敛性得到提高。 NSGA-II 算法流程如图7 所示(P0表示随机生成的初始种群,P1 表示第一代新父种群,P2 表示选择交叉变异后的子代,Ngen 表示当前迭代次数,Nmax 表示最大迭代次数)。

  • 3.2 多目标优化模型

  • 将熔覆层性能评价指标稀释率(η)、宽高比 (W / H)、显微硬度(HV)定义为 3 个优化目标。在实际生产过程中,稀释率过大会导致熔覆层开裂的倾向增加,所以要求稀释率尽可能小[29]。熔覆层宽高比过小,会使熔覆层的润湿性能和平整度降低,不利于后续多道搭接工序,因此宽高比取最大[30]。实际工况条件下对工件的耐磨性有一定的要求,显微硬度作为熔覆层力学性能的衡量因素,期望显微硬度尽可能大。因此,激光熔覆工艺参数多目标优化模型为:

  • η=f1minP,v,vfW/H=f2maxP,v,vfHV=f3maxP,v,vf
    (11)
  • 式中,P 为激光功率,v 为扫描速度,vf为送粉速率。

  • 约束条件是激光熔覆过程中各工艺参数水平的取值范围,由实际设备参数条件与试验设计方案决定,各工艺参数的不等式约束条件为:

  • s.t. 700P1000150v2400.6vf1.2
    (12)
  • 本文采用最小值求解法优化各工艺参数,须对熔覆层宽高比和显微硬度目标模型取相反数学方程式。综上所述,激光熔覆多目标优化模型为:

  • minfP,v,vf=ηP,v,vf,-δP,v,vf,-γP,v,vfTK=P,v,vfT
    (13)
  • 图7 NSGA-II 算法流程图

  • Fig.7 Flow chart of NSGA-II algorithm

  • 3.3 优化结果与验证

  • 基于 NSGA-II 算法对激光熔覆工艺参数进行优化,前端显示系数为 0.1,种群大小为 200,迭代次数为 300,适应度函数偏差为 0.01,优化后得到的目标函数和工艺参数的 Pareto 前沿解集中包含 83 个点,如图8 所示。

  • 图8 优化结果 Pareto 前沿解集

  • Fig.8 Pareto front solution set of optimization results

  • Pareto 前沿解集是多目标优化问题的可行解,理论上可根据实际服役的工况环境选择其中任意一组工艺参数。实际上为了获得完全致密的熔覆层,稀释率应保持在 5%~10%[31]。由于在多道熔覆过程中相邻熔覆层搭接部分重熔会消耗一部分激光能量,加之多道搭接形成的熔覆层通常比单道熔覆层厚 20%~35%,所以本文将单道熔覆层稀释率限制在 15%~25%,以确保形成搭接处无孔隙、结合良好且致密的多道熔覆层[32]。此外,宽高比大于 3 的单道熔覆层有利于通过多道搭接获得平整的表面[33],显微硬度则要求大于 700 HV0.5 即可。

  • 因此,按照稀释率最小原则,在满足实际工况要求的区间范围内选择激光功率为 744 W,扫描速度为 233 mm / min,送粉速率为 1.2 r / min 的点作为工艺参数多目标优化的最优解,优化预测的熔覆层稀释率为 19.9%,宽高比为 3.001,显微硬度为 747.15 HV0.5

  • 对最佳工艺参数组合进行二次工艺验证试验,熔覆层稀释率、宽高比、显微硬度预测结果及试验结果见表4,最终测得熔覆层稀释率为 18.9%,宽高比为 2.940,显微硬度为 759.63 HV0.5,对比熔覆层稀释率、宽高比、显微硬度的预测值与实测值,两者吻合较好。计算偏差分别为 5.3%、 2.1%、1.6%。

  • 表4 优化预测结果与试验结果对比

  • Table4 Comparison of optimized prediction results and experimental results

  • 为验证工艺参数优化后熔覆层性能的提升效果,从表2 正交试验方案中选取响应值较优的第 10 组和第 14 组试样,与上述最佳工艺参数组进行对比,如图9 所示,可以发现最佳工艺参数组的稀释率降低 32.5%,宽高比增加 15.7%,显微硬度增大 3.9%。

  • 3.4 微观组织分析

  • 熔覆层横截面不同区域微观组织如图10 所示,图10b、10c、10d 分别为图10a 中熔覆层特定区域高倍率图。由图10b 可知,3 组试样的熔覆层与基体热影响区结合处,均存在一条以界面为核心的平面晶;对比发现,第 10 组和第 14 组试样,组织以粗大且分布不均的树枝晶和柱状晶为主,晶体沿着散热方向由熔池底部向熔覆层顶部生长显著。最佳工艺参数制备的试样,树枝晶和柱状晶数量和尺寸明显减少,树枝晶长度约 50 μm,宽度约 8 μm,约为对比试样组织形貌大小的 1 / 2。

  • 图9 各组目标响应值对比

  • Fig.9 Comparison of target response values for each group

  • 如图10c、10d 所示,3 组试样的熔覆层中部和顶部,树枝晶和柱状晶数量和尺寸明显减少,同时产生更多细小等轴晶粒,尺寸均小于 10 μm。然而由于热积累的影响和散热方式的改变,晶粒生长方向杂乱。

  • 以上研究表明,沿着激光熔覆凝固方向,树枝晶和柱状晶逐步转换为体积小、数量多的非定向等轴晶及少量晶粒尺寸细小的胞状晶。这是由于结合界面的熔池与基体接触,热量传输较快,温度梯度 (G)大,凝固速率(R)小,晶体的生长速度大于形核速度;而从熔覆层底部到顶部,温度梯度减小,凝固速率增大,使得 G / R 值减小,晶体的形核速度大于生长速度,从而产生更加细小均匀的晶粒[34-35]

  • 图10 熔覆层横截面微观组织

  • Fig.10 Microstructure of cross-section of cladding layers

  • 3.5 显微硬度分析

  • 熔覆层显微硬度纵向分布如图11 所示,基体、热影响区和熔覆层的显微硬度均呈三级阶梯状递增分布,有利于基层与覆层金属之间的牢固结合以及厚度方向上力学性能的稳定转变。从图11 可以看出,熔覆层和热影响区相对于基体,显微硬度提升显著,这主要是由于熔覆过程中,熔覆材料在基体表面形成熔池,二者之间元素相互扩散生成少量碳化物、硼化物等新硬化相,导致热影响区硬度有一定提升;而激光熔覆具有快速冷凝的特点,熔覆层微观组织细小均匀,导致细晶强化作用明显,另一方面,合金元素大量固溶带来的弥散强化作用,提高了熔覆层的形核率,组织结构更加致密,促使熔覆层硬度提升更显著[36]

  • 图11 激光熔覆试样显微硬度纵向分布

  • Fig.11 Longitudinal distribution of microhardness of laser cladding specimen

  • 对比 3 组试样的硬度值,最佳工艺参数制备的试样硬度最高。其熔覆层的显微硬度为 759.63 HV0.5,约为基体显微硬度的 2.4 倍,基体表面的显微硬度显著提升。

  • 4 结论

  • (1)采用麦夸特(Levenber-Marquardt)非线性参数拟合方法,构建工艺参数与熔覆层多目标的非线性数学模型,精准确定工艺参数的影响效应和权重配分,弥补了传统多项式模型的不足。

  • (2)基于 NSGA-II 算法和多目标寻优,获得多工艺参数的最优耦合和熔覆层评价指标的多目标匹配,为激光熔覆表面涂层技术提供理论支撑。

  • (3)微观试验表明,沿着激光凝固方向,晶粒逐步细化为非定向等轴晶,覆层综合性能显著提高;显微硬度纵向呈三级阶梯状递增分布,有利于基层与覆层金属之间的牢固结合以及力学性能的稳定转变。

  • (4)研究结果为复合涂层成形的控制和预测提供一定技术支持,但如何解决熔池对流和元素热扩散不均匀导致的偏析问题仍须进一步探索。

  • 参考文献

    • [1] 衡钊,舒林森.激光功率对27SiMn钢激光熔覆力学性能的影响[J].中国激光,2022,49(8):118-126.HENG Zhao,SHU Linsen.Effect of laser power on mechanical properties of laser cladding 27SiMn steel[J].Chinese Journal of Lasers,2022,49(8):118-126.(in Chinese)

    • [2] 王贤才,张亚普,柴蓉霞.27SiMn 钢表面激光熔覆304不锈钢的组织和性能[J].金属热处理,2020,45(4):188-193.WANG Xiancai,ZHANG Yapu,CHAI Rongxia.Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J].Heat Treatment of Metals,2020,45(4):188-193.(in Chinese)

    • [3] KUMAR Shakti,MANDAL Amitava,DAS Alokkumar.The effect of process parameters and characterization for the laser cladding of cBN based composite clad over the Ti6Al4V alloy[J].Materials Chemistry and Physics,2022,288:126410.

    • [4] SHI Bowen,LI Tao,GUO Zhiwei,et al.Selecting process parameters of crack-free Ni60A alloy coating prepared by coaxial laser cladding[J].Optics & Laser Technology,2022,149:107805.

    • [5] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)

    • [6] WU H,ZHANG S,WANG Z Y,et al.New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating:The role of Mo[J].International Journal of Refractory Metals and Hard Materials,2022,102:105721.

    • [7] JEYAPRAKASH N,KANTIPUDI M B,YANG C H.Study on microstructure and anti-corrosion property of stainless steel particles deposition on Ti–6Al–4V substrate using laser cladding technique[J].Lasers in Manufacturing and Materials Processing,2022,9(2):214-227.

    • [8] 曹强,练国富,肖石洪,等.基于灰色关联分析激光熔覆Ni60A工艺参数优化[J].精密成形工程,2022,14(1):173-181.CAO Qiang,LIAN Guofu,XIAO Shihong,et al.Optimization of process parameters of laser cladding Ni60A based on gray relational analysis[J].Journal of Netshape Forming Engineering,2022,14(1):173-181.(in Chinese)

    • [9] CHAI Qing,WANG Zhandong,FANG Chen,et al.Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J].Surface and Coatings Technology,2021,422:127494.

    • [10] FAN Pengfei,ZHANG Guan.Study on process optimization of WC-Co50 cermet composite coating by laser cladding[J].International Journal of Refractory Metals and Hard Materials,2020,87:105133.

    • [11] 欧阳昌耀,白峭峰,韩斌慧,等.激光熔覆Fe基非晶合金涂层裂纹分析[J].金属热处理,2022,47(5):252-256.OUYANG Changyao,BAI Qiaofeng,HAN Binhui,et al.Analysis of cracks in laser clad Fe-based amorphous alloy coating[J].Heat Treatment of Metals,2022,47(5):252-256.(in Chinese)

    • [12] YI Peng,ZHAN Xianghua,HE Qingkun,et al.Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding[J].Optics & Laser Technology,2019,109:480-487.

    • [13] MONDAL Subrata,BANDYOPADHYAY Asish,PAL Pradipkumar.Application of artificial neural network for the prediction of laser cladding process characteristics at Taguchi-based optimized condition[J].The International Journal of Advanced Manufacturing Technology,2014,70(9):2151-2158.

    • [14] ONWUBOLU G C,DAVIM J P,OLIVEIRA C,et al.Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J].Optics & Laser Technology,2007,39(6):1130-1134.

    • [15] CHEN Tao,WU Weining,LI Wenpeng,et al.Laser cladding of nanoparticle TiC ceramic powder:Effects of process parameters on the quality characteristics of the coatings and its prediction model[J].Optics & Laser Technology,2019,116:345-355.

    • [16] MA Minyu,XIONG Wenjing,LIAN Yong,et al.Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm[J].Surface and Coatings Technology,2020,381:125129.

    • [17] 姜兴宇,刘傲,杨国哲,等.激光增材制造过程低碳建模与工艺参数优化[J].机械工程学报,2022,58(5):223-238.JIANG Xingyu,LIU Ao,YANG Guozhe,et al.Lowcarbon modeling and process parameter optimization in laser additive manufacturing process[J].Journal of Mechanical Engineering,2022,58(5):223-238.(in Chinese)

    • [18] 张胜江,王明娣,倪超,等.QT800-2 球墨铸铁表面激光熔覆工艺参数多目标优化[J].表面技术,2021,50(7):74-82.ZHANG Shengjiang,WANG Mingdi,NI Chao,et al.Multi-objective optimization of laser cladding process parameters on QT800-2 ductile iron surface[J].Surface Technology,2021,50(7):74-82.(in Chinese)

    • [19] YANG Sirui,BAI Haiqing,LI Chaofang,et al.Numerical simulation and multi-objective parameter optimization of Inconel718 coating laser cladding[J].Coatings,2022,12(5):708.

    • [20] GAO Jiali,WU Chengzu,HAO Yunbo,et al.Numerical simulation and experimental investigation on threedimensional modelling of single-track geometry and temperature evolution by laser cladding[J].Optics & Laser Technology,2020,129:106287.

    • [21] 杨思瑞,白海清,鲍骏,等.激光熔覆铁基合金粉末单道形貌及性能研究[J].应用激光,2022,42(2):33-40.YANG Sirui,BAI Haiqing,BAO Jun,et al.Single pass forming process of laser cladding iron base alloy powder[J].Applied Laser,2022,42(2):33-40.(in Chinese)

    • [22] ANSARI M,RAZAVI R S,BAREKAT M.An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J].Optics & Laser Technology,2016,86:136-144.

    • [23] 张浩,练国富,陈昌荣,等.激光熔覆曲面基体曲线轨迹成形内部质量与效率影响研究[J].激光与红外,2020,50(12):1433-1442.ZHANG Hao,LIAN Guofu,CHEN Changrong,et al.Investigation into forming internal quality and efficiency of the curve path in curved surface laser cladding[J].Laser &Infrared,2020,50(12):1433-1442.(in Chinese)

    • [24] HU Guofang,YANG Yong,QI Kang,et al.Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters[J].Transactions of the Indian Institute of Metals,2020,73(10):2623-2634.

    • [25] MOHAMMED Sayeed,ZHANG Zhe,KOVACEVIC Radovan.Optimization of processing parameters in fiber laser cladding[J].The International Journal of Advanced Manufacturing Technology,2020,111(9):2553-2568

    • [26] HUANG Yubin,HU Yongle,ZHANG Mingjun,et al.Multi-objective optimization of process parameters in laser cladding CoCrCuFeNi high-entropy alloy coating[J].Journal of Thermal Spray Technology,2022,31:1-16.

    • [27] MENG Guiru,ZHU Lida,ZHANG Jingdong,et al.Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating[J].Optik,2021,240:166828.

    • [28] 王燕燕,李家豪,舒林森,等.基于RSM与 NSGA-Ⅱ算法的激光熔覆参数多目标优化[J].激光与光电子学进展,2022,59(7):195-201.WANG Yanyan,LI Jiahao,SHU Linsen,et al.Multi-objective optimization of laser cladding parameters based on RSM and NSGA-Ⅱalgorithm[J].Optoelectronics Progress,2022,59(7):195-201.(in Chinese)

    • [29] GUO Chenguang,HE Shunzhi,YUE Haitao,et al.Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition[J].Optics & Laser Technology,2021,134:106607.

    • [30] 郭士锐,赵阳,崔陆军,等.灰铸铁表面单道激光熔覆 Ni45A+5%WC 合金形貌研究[J].应用激光,2022,42(3):21-27.GUO Shirui,ZHAO Yang,CUI Lujun,et al.Study on the morphology of single-pass laser cladding Ni45A+5%WC coating on the surface of gray cast iron[J].Applied Laser,2022,42(3):21-27.(in Chinese)

    • [31] ERFANMANESH M,ABDOLLAH-POUR H,MOHAMMADIAN-SEMNANI H,et al.An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J].Optics & Laser Technology,2017,97:180-186.

    • [32] PENG Shitong,LI Tao,ZHAO Jiali,et al.Towards energy and material efficient laser cladding process:Modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II[J].Journal of Cleaner Production,2019,227:58-69.

    • [33] 张颖,李明祥,胡生双,等.激光成形工艺对TB18钛合金微观组织的影响[J].特种铸造及有色合金,2022,42(4):436-440.ZHANG Ying,LI Mingxiang,HU Shengshuang,et al.Effects of laser forming on microstructure of TB18 titanium alloy[J].Special Casting & Nonferrous Alloys,2022,42(4):436-440.(in Chinese)

    • [34] GUO Chenguang,LV Ning,YUE Haitao,et al.Laser additive remanufacturing parameters optimization and experimental study of heavy-duty sprocket[J].The International Journal of Advanced Manufacturing Technology,2022,118(11):3789-3800.

    • [35] 丁昊昊,慕鑫鹏,祝毅,等.车轮材料表面 h-BN/CaF2/Fe 基激光熔覆涂层组织与磨损性能[J].中国表面工程,2021,34(4):139-148.DING Haohao,MU Xinpeng,ZHU Yi,et al.Microstructures and wear properties of h-BN/CaF2/Fe based laser claddings on wheel material surface[J].China Surface Engineering,2021,34(4):139-148.(in Chinese)

    • [36] LI H X,LU Z C,WANG S L,et al.Fe-based bulk metallic glasses:Glass formation,fabrication,properties and applications[J].Progress in Materials Science,2019,103:235-318

  • 参考文献

    • [1] 衡钊,舒林森.激光功率对27SiMn钢激光熔覆力学性能的影响[J].中国激光,2022,49(8):118-126.HENG Zhao,SHU Linsen.Effect of laser power on mechanical properties of laser cladding 27SiMn steel[J].Chinese Journal of Lasers,2022,49(8):118-126.(in Chinese)

    • [2] 王贤才,张亚普,柴蓉霞.27SiMn 钢表面激光熔覆304不锈钢的组织和性能[J].金属热处理,2020,45(4):188-193.WANG Xiancai,ZHANG Yapu,CHAI Rongxia.Microstructure and properties of 304 stainless steel laser cladding on 27SiMn steel surface[J].Heat Treatment of Metals,2020,45(4):188-193.(in Chinese)

    • [3] KUMAR Shakti,MANDAL Amitava,DAS Alokkumar.The effect of process parameters and characterization for the laser cladding of cBN based composite clad over the Ti6Al4V alloy[J].Materials Chemistry and Physics,2022,288:126410.

    • [4] SHI Bowen,LI Tao,GUO Zhiwei,et al.Selecting process parameters of crack-free Ni60A alloy coating prepared by coaxial laser cladding[J].Optics & Laser Technology,2022,149:107805.

    • [5] 娄丽艳,张煜,徐庆龙,等.超高速激光熔覆低稀释率金属涂层微观组织及性能[J].中国表面工程,2020,33(2):149-159.LOU Liyan,ZHANG Yu,XU Qinglong,et al.Microstructure and properties of metallic coatings with low dilution ratio by high speed laser cladding[J].China Surface Engineering,2020,33(2):149-159.(in Chinese)

    • [6] WU H,ZHANG S,WANG Z Y,et al.New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating:The role of Mo[J].International Journal of Refractory Metals and Hard Materials,2022,102:105721.

    • [7] JEYAPRAKASH N,KANTIPUDI M B,YANG C H.Study on microstructure and anti-corrosion property of stainless steel particles deposition on Ti–6Al–4V substrate using laser cladding technique[J].Lasers in Manufacturing and Materials Processing,2022,9(2):214-227.

    • [8] 曹强,练国富,肖石洪,等.基于灰色关联分析激光熔覆Ni60A工艺参数优化[J].精密成形工程,2022,14(1):173-181.CAO Qiang,LIAN Guofu,XIAO Shihong,et al.Optimization of process parameters of laser cladding Ni60A based on gray relational analysis[J].Journal of Netshape Forming Engineering,2022,14(1):173-181.(in Chinese)

    • [9] CHAI Qing,WANG Zhandong,FANG Chen,et al.Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J].Surface and Coatings Technology,2021,422:127494.

    • [10] FAN Pengfei,ZHANG Guan.Study on process optimization of WC-Co50 cermet composite coating by laser cladding[J].International Journal of Refractory Metals and Hard Materials,2020,87:105133.

    • [11] 欧阳昌耀,白峭峰,韩斌慧,等.激光熔覆Fe基非晶合金涂层裂纹分析[J].金属热处理,2022,47(5):252-256.OUYANG Changyao,BAI Qiaofeng,HAN Binhui,et al.Analysis of cracks in laser clad Fe-based amorphous alloy coating[J].Heat Treatment of Metals,2022,47(5):252-256.(in Chinese)

    • [12] YI Peng,ZHAN Xianghua,HE Qingkun,et al.Influence of laser parameters on graphite morphology in the bonding zone and process optimization in gray cast iron laser cladding[J].Optics & Laser Technology,2019,109:480-487.

    • [13] MONDAL Subrata,BANDYOPADHYAY Asish,PAL Pradipkumar.Application of artificial neural network for the prediction of laser cladding process characteristics at Taguchi-based optimized condition[J].The International Journal of Advanced Manufacturing Technology,2014,70(9):2151-2158.

    • [14] ONWUBOLU G C,DAVIM J P,OLIVEIRA C,et al.Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J].Optics & Laser Technology,2007,39(6):1130-1134.

    • [15] CHEN Tao,WU Weining,LI Wenpeng,et al.Laser cladding of nanoparticle TiC ceramic powder:Effects of process parameters on the quality characteristics of the coatings and its prediction model[J].Optics & Laser Technology,2019,116:345-355.

    • [16] MA Minyu,XIONG Wenjing,LIAN Yong,et al.Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm[J].Surface and Coatings Technology,2020,381:125129.

    • [17] 姜兴宇,刘傲,杨国哲,等.激光增材制造过程低碳建模与工艺参数优化[J].机械工程学报,2022,58(5):223-238.JIANG Xingyu,LIU Ao,YANG Guozhe,et al.Lowcarbon modeling and process parameter optimization in laser additive manufacturing process[J].Journal of Mechanical Engineering,2022,58(5):223-238.(in Chinese)

    • [18] 张胜江,王明娣,倪超,等.QT800-2 球墨铸铁表面激光熔覆工艺参数多目标优化[J].表面技术,2021,50(7):74-82.ZHANG Shengjiang,WANG Mingdi,NI Chao,et al.Multi-objective optimization of laser cladding process parameters on QT800-2 ductile iron surface[J].Surface Technology,2021,50(7):74-82.(in Chinese)

    • [19] YANG Sirui,BAI Haiqing,LI Chaofang,et al.Numerical simulation and multi-objective parameter optimization of Inconel718 coating laser cladding[J].Coatings,2022,12(5):708.

    • [20] GAO Jiali,WU Chengzu,HAO Yunbo,et al.Numerical simulation and experimental investigation on threedimensional modelling of single-track geometry and temperature evolution by laser cladding[J].Optics & Laser Technology,2020,129:106287.

    • [21] 杨思瑞,白海清,鲍骏,等.激光熔覆铁基合金粉末单道形貌及性能研究[J].应用激光,2022,42(2):33-40.YANG Sirui,BAI Haiqing,BAO Jun,et al.Single pass forming process of laser cladding iron base alloy powder[J].Applied Laser,2022,42(2):33-40.(in Chinese)

    • [22] ANSARI M,RAZAVI R S,BAREKAT M.An empirical-statistical model for coaxial laser cladding of NiCrAlY powder on Inconel 738 superalloy[J].Optics & Laser Technology,2016,86:136-144.

    • [23] 张浩,练国富,陈昌荣,等.激光熔覆曲面基体曲线轨迹成形内部质量与效率影响研究[J].激光与红外,2020,50(12):1433-1442.ZHANG Hao,LIAN Guofu,CHEN Changrong,et al.Investigation into forming internal quality and efficiency of the curve path in curved surface laser cladding[J].Laser &Infrared,2020,50(12):1433-1442.(in Chinese)

    • [24] HU Guofang,YANG Yong,QI Kang,et al.Investigation of the microstructure and properties of NiCrBSi coating obtained by laser cladding with different process parameters[J].Transactions of the Indian Institute of Metals,2020,73(10):2623-2634.

    • [25] MOHAMMED Sayeed,ZHANG Zhe,KOVACEVIC Radovan.Optimization of processing parameters in fiber laser cladding[J].The International Journal of Advanced Manufacturing Technology,2020,111(9):2553-2568

    • [26] HUANG Yubin,HU Yongle,ZHANG Mingjun,et al.Multi-objective optimization of process parameters in laser cladding CoCrCuFeNi high-entropy alloy coating[J].Journal of Thermal Spray Technology,2022,31:1-16.

    • [27] MENG Guiru,ZHU Lida,ZHANG Jingdong,et al.Statistical analysis and multi-objective process optimization of laser cladding TiC-Inconel718 composite coating[J].Optik,2021,240:166828.

    • [28] 王燕燕,李家豪,舒林森,等.基于RSM与 NSGA-Ⅱ算法的激光熔覆参数多目标优化[J].激光与光电子学进展,2022,59(7):195-201.WANG Yanyan,LI Jiahao,SHU Linsen,et al.Multi-objective optimization of laser cladding parameters based on RSM and NSGA-Ⅱalgorithm[J].Optoelectronics Progress,2022,59(7):195-201.(in Chinese)

    • [29] GUO Chenguang,HE Shunzhi,YUE Haitao,et al.Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition[J].Optics & Laser Technology,2021,134:106607.

    • [30] 郭士锐,赵阳,崔陆军,等.灰铸铁表面单道激光熔覆 Ni45A+5%WC 合金形貌研究[J].应用激光,2022,42(3):21-27.GUO Shirui,ZHAO Yang,CUI Lujun,et al.Study on the morphology of single-pass laser cladding Ni45A+5%WC coating on the surface of gray cast iron[J].Applied Laser,2022,42(3):21-27.(in Chinese)

    • [31] ERFANMANESH M,ABDOLLAH-POUR H,MOHAMMADIAN-SEMNANI H,et al.An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel[J].Optics & Laser Technology,2017,97:180-186.

    • [32] PENG Shitong,LI Tao,ZHAO Jiali,et al.Towards energy and material efficient laser cladding process:Modeling and optimization using a hybrid TS-GEP algorithm and the NSGA-II[J].Journal of Cleaner Production,2019,227:58-69.

    • [33] 张颖,李明祥,胡生双,等.激光成形工艺对TB18钛合金微观组织的影响[J].特种铸造及有色合金,2022,42(4):436-440.ZHANG Ying,LI Mingxiang,HU Shengshuang,et al.Effects of laser forming on microstructure of TB18 titanium alloy[J].Special Casting & Nonferrous Alloys,2022,42(4):436-440.(in Chinese)

    • [34] GUO Chenguang,LV Ning,YUE Haitao,et al.Laser additive remanufacturing parameters optimization and experimental study of heavy-duty sprocket[J].The International Journal of Advanced Manufacturing Technology,2022,118(11):3789-3800.

    • [35] 丁昊昊,慕鑫鹏,祝毅,等.车轮材料表面 h-BN/CaF2/Fe 基激光熔覆涂层组织与磨损性能[J].中国表面工程,2021,34(4):139-148.DING Haohao,MU Xinpeng,ZHU Yi,et al.Microstructures and wear properties of h-BN/CaF2/Fe based laser claddings on wheel material surface[J].China Surface Engineering,2021,34(4):139-148.(in Chinese)

    • [36] LI H X,LU Z C,WANG S L,et al.Fe-based bulk metallic glasses:Glass formation,fabrication,properties and applications[J].Progress in Materials Science,2019,103:235-318

  • 手机扫一扫看