en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨高林,男,1980年出生,博士,讲师。主要研究方向为激光增材制造与再制造技术。E-mail:ygaolin@163.com

通讯作者:

姚建华,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为激光增材制造与再制造技术、激光先进制造技术与装备、高能束多能量场复合制造与材料制备技术。E-mail:laser@zjut.edu.cn

中图分类号:TN249

DOI:10.11933/j.issn.1007−9289.20211227001

参考文献 1
顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):32-55.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Laser,2020,47(5):32-55.(in Chinese)
参考文献 2
YAN H,SHEN L,WANG X,et al.Stress and deformation evaluation of the subarea scanning effect in Direct Laser-deposited Ti6Al4V[J].Advanced Manufacturing Technology,2018,97:915-926.
参考文献 3
褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.ZHU Qingkun,YU Chunfeng,DENG Chaoyang,et al.Effect of TiC on microstructure and wear properties of Inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)
参考文献 4
杨永强,吴伟辉,来克娴,等.金属零件选区激光熔化直接快速成形工艺及最新进展[J].航空制造技术,2006(2):73-76,97.YANG Yongqiang,WU Weihui,LAI Kexian,et al.Newest progress of direct rapid prototyping of metal part by selective laser melting[J].Aeronautical Manufacturing Technology,2006(2):73-76,97.(in Chinese)
参考文献 5
张凯,刘婷婷,张长东,等.基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J].中国激光,2015,42(9):135-141.ZHANG Kai,LIU Tingting,ZHANG Changdong,et al.Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J].Chinese Journal of Laser,2015,42(9):135-141.(in Chinese)
参考文献 6
杨雄文,杨永强,刘洋,等.激光选区熔化成型典型几何特征尺寸精度研究[J].中国激光,2015,42(3):70-79.YANG Xiongwen,YANG Yongqiang,LIU Yang,et al.Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J].Chinese Journal of Laser,2015,42(3):70-79.(in Chinese)
参考文献 7
刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)
参考文献 8
罗正国,蒲竞秋.表面结构与粗糙度测量方法浅析[J].工具技术,2006(3):123-125.LUO Zhengguo,PU Jingqiu.Surface structure and roughness measurement methods[J].Tool Engineering,2006(3):123-125.(in Chinese)
参考文献 9
石文天,王朋,刘玉德,等.选区激光熔化成形316L表面质量及工艺试验研究[J].表面技术,2019,48(3):257-267.SHI Tianpeng,WANG Peng,LIU Yude,et al.Experimental study on surface quality and process of selective laser melting forming 316L[J].Surface Technology,2019,48(3):257-267.(in Chinese)
参考文献 10
RAMOS D,BELBLIDIA F,SIENZ J.New scanning strategy to reduce warpage in additive manufacturing[J].Additive Manufacturing,2019,28:554-564..
参考文献 11
LI C,LIU J F.GUO Y B.Prediction of residual stress and part distortion in selective laser melting[J].3rd Cirp Conference on Surface Integrity,2016,45:171-174.
参考文献 12
GABRIELE P,ALESSANDRO S,ELEONORA A.On the quality of unsupported overhangs produced by laser powder bed fusion[J].International Journal of Manufacturing Research,2019,134(2):198-216.
参考文献 13
MATSUMOTO M,SHIOMI M,OSAKADA K,et al.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J].Machine Tools & Manufacture,2002,42:61-67.
参考文献 14
WANG D,WU S,YANG Y,et al.The Effect of a scanning strategy on the residual stress of 316l steel parts fabricated by selective laser melting(SLM)[J].Materials,2018,11(10):1821.
参考文献 15
万乐,王思琦,张晓伟,等.基于分区扫描的选区激光熔化钛合金的成形质量[J].激光与光电子学进展,2018,55(9):250-259.WAN Le,WANG Siqi,ZHANG Xiaowei,et al.Forming quality of titanium alloys by selective laser melting based on partition scanning[J].Laser & Optoelectronics Progress,2018,65:1471-1484.(in Chinese)
参考文献 16
VALENTE E H,GUNDLACH C,CHRISTIANSEN T L,et al.Effect of scanning strategy during selective laser melting on surface topography,porosity,and microstructure of additively manufactured Ti6Al4V[J].Applied Sciences,2019,9(24):5554.
参考文献 17
LOU S,JIANG X,SUN W,et al.Characterisation methods for powder bed fusion processed surface topography[J].Precision Engineering,2019,57:1-15.
参考文献 18
LI R,WANG G L,DING Y Y,et al.Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing[J].Additive Manufacturing,2020,36:101546.
参考文献 19
柯林达,殷杰,朱海红,等.钛合金薄壁件选区激光熔化应力演变的数值模拟[J].金属学报,2020,56(3):374-384.KE Linda,YIN Jie,ZHU Haihong,et al.Numerical simulation of stress evolution of Thin-Wall titanium parts fabricated by selective laser melting[J].Acta Metallurgica Sinica,2020,56(3):374-384.(in Chinese)
参考文献 20
PARRY L,ASHCROFT I A,WILDMAN R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through Thermomechanical simulation[J].Additive Manufacturing,2016,12:1-15.
参考文献 21
BO C,SUBIN S,KEVIN C.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive Manufacturing,2016,12:240-251.
参考文献 22
LI Z H,XU R J,ZHANG Z W,et al.The influence of scan length on fabricating Thin-walled components in selective laser melting[J].International Journal of Machine Tools and Manufacture,2018,126:1-12.
参考文献 23
陈昌棚,雷杨,陈冰清,等.激光选区熔化增材制造TC4钛合金典型结构变形的数值模拟研究[J].应用激光,2021,41(4):814-821.CHEN Changpeng,LEI Yang,CHEN Bingqian,et al.Numerical simulation of deformation of typical parts in selective laser melting additive manufacturing[J].Applied Laser,2021,41(4):814-821.(in Chinese)
参考文献 24
AN K,YUAN L,DIAL L,et al.Neutron residual stress measurement and numerical modeling in a curved Thin-walled structure by laser powder bed fusion additive manufacturing[J].Materials & Design,2017,135:122-132.
参考文献 25
GUSAROV A V,LAOUI T,FROYEN L,et al.Contact thermal conductivity of a powder bed in selective laser sintering[J].International Journal of Heat and Mass Transfer,2003,46:1103-1109.
参考文献 26
CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources [J].Metallurgical Transactions B-Process Metallurgy,1984,15(2):299-305.
参考文献 27
段成红,郝晓杰,罗翔鹏.选区激光熔化316L温度场研究[J].应用激光,2018,38(5):748-753.DUAN Chenghong,HAO Xiaojie,LUO Xiangpeng.Study on temperature field of selective laser melting 316L[J].Applied Laser,2018,38(5):748-753.(in Chinese)
参考文献 28
梁祖磊,孙中刚,张少驰,等.数值模拟在激光选区熔化中的应用及研究现状[J].航空制造技术,2018,61(22):87-91,97.LIANG Zulei,SUN Zhonggang,ZHANG Shaochi,et al.Application and research status of numerical simulation in laser selective melting[J].Aeronautical Manufacturing Technology,2018,61(22):87-91,97.(in Chinese)
参考文献 29
LU Y J,WU S Q,GAN Y L,et al.Study on the microstructure,mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing Island scanning strategy[J].Optics & Laser Technology,2015,75:197-206.
参考文献 30
PATCHARAPIT P,SHI C Y.Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing:Numerical and experimental studies[J].Journal of Manufacturing Processes,2020,49:247-259.
参考文献 31
LIU S B,LIU J C,CHEN J X,et al.Influence of surface tension on the molten pool morphology in laser melting[J].International Journal of Thermal Sciences,2019,146:106075.
目录contents

    摘要

    分区扫描策略对选区激光熔化成形件的表面质量有重要影响,而目前分区尺寸对成形件表面结构的影响规律尚不清晰。为进一步提高选区激光熔化成形带支撑悬垂结构的表面质量及尺寸精度,以带支撑方形悬垂结构为研究对象,结合数值模拟与成形试验从表面原始轮廓的形状误差、波纹度与表面粗糙度三个不同波距的表面结构进行研究。研究结果表明:随着分区尺寸的减小,成形件表面边缘的翘曲高度逐渐降低,但相邻分区之间的轮廓起伏程度逐渐增加,成形件截面轮廓的形状误差与表面粗糙度得到改善,波纹度呈现出增大趋势,使成形表面形貌呈先改善后降低趋势。形状误差、波纹度与表面粗糙度随分区尺寸的减小变化趋势并不一致,分区尺寸过小会导致热累积现象明显,波纹度增加。在减小分区尺寸的同时适当降低激光能量输入,能有效改善表面形貌。为提高 SLM 成形带支撑悬垂结构的尺寸精度和表面形貌提供了理论基础。

    Abstract

    Recently, laser additive manufacturing technology has become a research hotspot in engineering, manufacturing, materials, optics, and other disciplines. Namely, it provides a new technical approach for lightweight and structural integration design and manufacturing of complex structural metal components. Selective laser melting (SLM) uses a high-energy laser beam with a diameter of 20–100 μm as the heat source to melt the metal powder and matrix surface below the powder by high-speed scanning and realizes layer-by-layer formation after cooling and solidification. Compared to other additive manufacturing technologies, SLM exhibits better forming accuracy, free forming, and a wide range of material selections. However, it is difficult to carry out the subsequent surface processing of complex structure precision metal parts manufactured by additive manufacturing, which puts higher requirements on the surface quality of SLM parts. The divisional scanning strategy can substantially enhance the surface quality of parts printed with SLM. This is because there is a large temperature gradient in the parts during the SLM forming process, which causes the expansion and contraction trends of each area in the parts to be inconsistent. This means the parts will produce large thermal stress in the forming process and exhibit a warping deformation trend. The influence of the scanning strategy on shape error and surface roughness is obtained by comparing the divisional scanning strategy with the conventional “S”-shaped scanning strategy. However, the effect of the divisional scanning size on the surface quality of printed parts is still unclear, and the undulation morphology between the divisions under the divisional scanning strategy has not been analyzed. To improve the surface quality and dimensional accuracy of cantilever structures by SLM, taking a square overhanging structure with support as the research object, a set of samples with the same specifications was designed, and the size of the samples was 25 mm × 25 mm. All the samples were added to the same support structure. The “S” shape laser scanning strategy with a reentrant width of 5 mm and the partitioned laser scanning strategy with different partition sizes (1.2, 3.6, 9.6, and 13.2 mm) were used for the samples. Using ABAQUS finite element software as the analysis tool, a numerical simulation of the SLM forming process was carried out using the thermal-mechanical coupling analysis method. The surface structure with three different wave distances, namely shape error, waviness, and surface roughness, were studied by combining numerical simulations and experiments. The profile data of the entire upper surface of the sample were obtained using confocal microscopy. The structural quality of square overhanging parts with supports was evaluated based on geometry errors, waviness, and surface roughness. The results showed that the variation trends of the geometry error, waviness, and surface roughness concerning the divisional size were different. The warpage height of the surface edge of the parts gradually decreased as the divisional size decreased. The width of the single-channel molten pool in the division gradually increased and the convexity gradually decreased. The contour fluctuation between the adjacent divisional zones gradually increased. The cross-sectional geometry error and surface roughness of the printed parts were reduced, but the waviness increased with decreasing divisional size. The surface quality of the printed parts first improved and then decreased. The increase in waviness with decreasing divisional size could be attributed to heat accumulation if the divisional size is too small. Improving the surface quality by decreasing the laser energy input by tuning the divisional size would provide a theoretical foundation for optimizing the surface quality and dimensional accuracy of cantilever structures using SLM.

  • 0 前言

  • 近年来,激光增材制造技术正成为工程、制造、材料和光学等学科的研究热点,为复杂结构金属构件的轻量化及结构一体化设计与制造提供了新的技术途径[1-3]。选区激光熔化技术(Selective laser melting,SLM)是一种以直径在 20~100 μm 间的高能激光束为热源,以高速扫描的方式将粒径在 5~50 μm 间的金属粉末以及位于粉末下方的基体表面熔化,共同形成熔池后经冷却凝固而逐层成形的增材制造技术[4]。SLM 技术较其他增材制造技术具有成形精度好、可成形自由度高和材料可选范围广等优点,因此在难以进行后续加工的复杂结构精密金属零件增材制造领域,对 SLM 成形零件的表面质量提出了更高要求[5-7]

  • 可从形状误差、波纹度与表面粗糙度三个角度衡量表面质量[8]。当 SLM 成形过程中工艺参数选取不当时,零件表面易出现球化和翘曲等缺陷,造成表面质量的降低。翘曲等缺陷将直接影响到成形件精度、表面质量和后续的 SLM 过程正常进行[9]。其中翘曲主要从形状误差尺度对表面质量产生影响,其出现的主要原因是,SLM 成形过程中零件内部存在较大的温度梯度,温度梯度的存在将使零件内部各区域间膨胀与收缩趋势不一致,使零件在成形过程中产生较大热应力引起零件出现翘曲变形趋势[10-12]。现有研究表明,使用分区扫描时可有效改善工件在 SLM 成形过程中的翘曲程度。 MATSUMOTO 等[13]使用有限元方法分析了激光熔化与粉末凝固时的弹性变形和热传导,得出翘曲程度与扫描线长度呈正比例关系的结论,并提出可通过减小激光螺旋分区扫描线的长度来降低残余应力。王迪等[14]通过试验验证了激光扫描长度越长,应力的累积越多,翘曲现象越严重。并通过对比不同扫描策略发现,由螺旋分区激光扫描策略成形的 316L 零件致密度较高、成形件力学性能较优且改善残余应力分布情况的效果较好。分区扫描还可在一定程度上改善 SLM 成形件的表面粗糙度。万乐等[15] 探究了分区扫描策略和传统整体扫描策略下成形 Ti6Al4V 钛合金零件的致密度、尺寸精度和表面质量,发现使用分区扫描策略可获得尺寸精度高和表面质量良好的钛合金成形件,能显著改善悬垂面的成形效果。VALENTE 等[16]对比了“S”形扫描策略与不同扫描路径的分区扫描策略制备 SLM 试样,发现分区扫描成形件的表面形貌较好、硬度更高。

  • 现有研究主要通过对比分区扫描方式与常规 “S”形扫描方式,得出扫描策略对形状误差和表面粗糙度的影响,并未探究分区尺寸的大小对形状误差与表面粗糙度的影响,且未对分区扫描策略下分区与分区之间的起伏形貌进行分析。分区尺寸对成形表面原始轮廓的形状误差、波纹度和表面粗糙度三个表面结构评价指标间的影响规律尚不清晰,因此本文以 316L 材料为例,使用不同分区尺寸的激光扫描策略成形规格相同的带支撑正方形悬垂结构。通过共聚焦显微镜得到成形试样的整个上表面轮廓数据,结合数值模拟得到不同扫描策略下 SLM 过程的温度场、应力场以及变形情况,对激光分区尺寸对 SLM 成形表面结构的影响进行研究,为提高 SLM 成形带支撑悬垂结构的尺寸精度和表面形貌提供理论基础。

  • 1 试验准备

  • 1.1 试验设备与材料

  • 试验设备采用由德国 SOLUTIONS 公司生产的 SLM280 型号选区激光熔化设备,该设备激光扫描单道时激光加速与减速过程时不出光,当运动为匀速时出光。使用氩气作为 SLM 过程的保护气体,试样基板采用 316L 材料。采用西安欧中公司生产的 316L 粉末。金属粉末呈规则球形,粒径范围 15~53 μm,粉末扫描电镜(SEM)形貌图如图1 所示。

  • 图1 316L 粉末形态

  • Fig.1 Morphology of 316L powder

  • 1.2 试验方法

  • 设计一组同样规格的试样,试样的截面为 25 mm×25 mm 的正方形,所有试样添加完全相同的支撑结构,支撑高度为 4 mm,支撑排布方式如图2 所示。

  • 图2 SLM 成形试验支撑结构排布方式

  • Fig.2 Support arrangement of SLM model

  • 分别采用折返宽度为 5 mm 的“S”形激光扫描策略,以及不同分区尺寸的分区激光扫描策略(1.2、 3.6、9.6、13.2 mm),逐层扫描策略示意图如图3 所示。每一层之间的扫描策略旋转角度为 67°,每一条熔道之间的激光扫描间隔为 0.12 mm。激光功率、激光扫描速度、扫描间隔、铺粉层厚等工艺参数均相同,激光功率为 235 W,激光扫描速度 700 mm / s,扫描间隔为 0.12 mm,单层铺粉厚度为 50 μm,激光光斑直径为 70 μm。

  • 图3 SLM 成形过程中激光扫描策略逐层变化方法示意图

  • Fig.3 Schematic diagram of laser scanning strategy in different layers of SLM process

  • 1.3 成形件表面测试分析方法

  • 使用成形表面整体轮廓的算术平均偏差值来描述整个表面截面轮廓的起伏情况。如图4 所示,表面实际轮廓可根据平面的截面轮廓曲线相邻两波峰,或两波谷之间距离的不同分为三种类型的轮廓误差[817-18]:波距大于 10 mm 的形状误差、波距在 1~10 mm之间的波纹度以及波距小于1 mm的表面粗糙度,即微观不平度。波峰与波谷的振幅可用于描述截面轮廓起伏的剧烈程度。表面原始轮廓是截面上形状误差、波纹度以及表面粗糙度的叠加,三者共同影响轮廓曲线的起伏情况。因此可分别探究分区尺寸对 SLM 成形带支撑悬垂结构表面形状误差、波纹度以及表面粗糙度的影响机制,进而实现对表面轮廓形貌与尺寸精度的提升。

  • 图4 表面轮廓示意图

  • Fig.4 The diagram of the surface profile

  • 分区尺寸对成形件形状误差的影响主要体现在方形悬垂结构边缘处易出现的翘曲情况;对波纹度的影响主要体现在激光扫描分区与相邻分区之间的截面轮廓起伏特征的影响;对表面粗糙度的影响主要体现在表面上的颗粒粘附物,以及熔池受表面张力及重力共同影响而形成的表面凸起情况对截面轮廓的影响。

  • 1.4 物理模型建立及数值求解

  • SLM 过程经历了一系列复杂过程,模型得到热量后将通过热传导的形式在固体中传递,材料的物理参数、力学性能和温度都随着时间和空间在变化,具有明显的非线性瞬态热传导特征,热传导过程可以在笛卡尔坐标系中根据傅里叶微分方程表示[19]

  • xkxTx+ykyTy+zkzTz+q˙=ρcTt
    (1)
  • 式中,kxkykz表示沿 xyz 方向上的导热系数,W /(m·℃); q˙是单位时间内单位体积中内热源的生成热,W / m3ρ 是材料密度,kg / m3c 是材料的比热容,J /(kg·℃);T 是模型表面温度,℃; t 是传热时间,s。

  • 选用 ABAQUS 有限元软件作为分析工具,使用热力耦合分析方法进行 SLM 成形过程数值模拟。顺序热力耦合分析是在分析步的每一个增量步中先计算得到该步的温度场后,再基于所得到的温度场导入预定义场中进行力分析,进而得到该步的应力情况。考虑温度变化产生的热应力与热变形,最终得到 SLM 过程的温度场、应力场与变形场[20-22]。数值模拟技术难以完全实现与试验一样的过程,因此基于不同研究目标的着重点,在保证不会产生较大误差情况下对模型进行合理的假设和简化:不同扫描策略下的数值模拟模型设置均相同;金属粉末层的孔隙率为40 %;激光热源为双椭球体热源;忽略熔池的流动作用与 SLM 过程中材料发生的汽化与飞溅。本文 SLM 成形试验的预热温度为 100℃,因此数值模拟时将初始状态的环境温度设置为初始条件[19]

  • T(x,y,z)t=0=T0
    (2)
  • 式中,T0 为初始温度,℃。

  • 设置边界条件时模拟实际 SLM 过程,将模型支撑结构底部节点的位移与旋转自由度均进行约束。模型周围未加工的金属粉末不直接体现在模型中,对模型与粉末接触的表面设置了等效换热系数来表示表面处模型边界与金属粉末的热交换情况[23-24],本文以 100℃下 316L 金属粉末的导热系数值作为模型与金属粉末接触表面的等效换热系数值,并设置模型边界因对流和辐射散失的总热流密度为q1,可表示为[19]

  • q1=hconvT-Tamb+εσSBT4-Tamb4
    (3)
  • 式中,hconv 是对流换热系数,W /(m2 ·℃);T 为模型表面温度,℃;Tamb 为环境温度,℃;ε 为物体在环境中的发射率,0~1;σ SB 为 Stefan-Boltzmann 常数。

  • 试验与仿真所选用的金属粉末为 Stainless Steel316L。设置数值模拟模型材料为各向同性,材料力学参数随着温度变化而变化,模型实体部分的材料热物性参数见表1。

  • 由于金属粉末的颗粒之间存在一定空隙,因此实体金属与金属粉末的部分物性参数存在一定差异,粉体的孔隙度为:

  • φ=ρs-ρpρs
    (4)
  • 式中,ρs 为块状金属的密度,取 7 980 kg / m3; ρp为金属粉末的密度,取 4 800 kg / m3,金属粉末层的孔隙率为 40%。

  • 金属粉末的导热系数与实体金属导热系数的关系为[25]

  • Kp=Ks(1-φ)
    (5)
  • 式中,Kp 为金属粉末的导热系数,W /(m·℃); Ks 为实体金属的导热系数,W /(m·℃)。通过计算得到金属粉末状态下的 316L 导热系数为相同温度下块状金属参数的 60%。

  • 表1 316L 材料热物性参数

  • Table1 316L material thermal and physical parameters

  • 由于一般情况下 SLM 成形截面面积远大于选区激光熔化技术中所使用直径在 20~100 μm 间的激光光斑,在划分网格时单元尺寸应小于等于 1 / 4 热源尺寸。而较大的模型将导致网格数量过多,增加运算的耗时,甚至导致宕机,因此须对模型结构进行简化并对尺寸进行了缩小,设置表面单元尺寸为 10 μm,单元类型为 C3D8T。所建模型下方为简化后的支撑结构,高度为 2 mm。支撑上方为 1.8 mm× 1.8 mm×450 μm 的金属实体作为支撑上方已成形部分,最上方的 50 μm 厚模型为金属粉末部分。模型中支撑与已成形部分的连接面积共为 0.3 mm2,划分网格后的有限元模型如图5 所示。

  • 图5 有限元模型

  • Fig.5 Finite element model

  • 通过 DFLUX 子程序加载并控制双椭球体热源的运动轨迹来模拟 SLM 过程中激光热源的扫描路径[26]。分别设置热源轨迹如图6 所示,“S”形扫描策略为自上至下、四等分分区与九等分分区尺寸扫描策略为先成形纵向扫描分区后成形横向扫描分区且先成形下方的分区后成形上方的分区。

  • 图6 数值模拟 SLM 过程热源的移动轨迹示意图

  • Fig.6 Schematic diagram of heat source scanning strategy in SLM process numerical simulation

  • 双椭球热源模型内部热流密度可表示为[27]

  • q(x,y,z)=63Pηππabcexp-3x2a2-3y2b2-3z2c2
    (6)
  • 式中,P 为激光功率,W;η 为 316L 粉末对激光的吸收率,取 0.25;abc 为热源形状参数,m。

  • 分别对相同的有限元模型施加除扫描策略外,激光参数均相同,其中激光功率取 235 W、激光扫描速度取 1 m / s 而双椭球热源形状参数分别取 a=80 μm,b=80 μm,c=50 μm。在保证总能量输入量相同的情况下,可得到仿真模型在不同热源扫描策略下的温度、应力与变形情况。

  • 2 结果与讨论

  • 2.1 成形表面特征分析

  • SLM 成形过程至第 95 层后因“S”形扫描策略成形悬垂面的四角出现严重翘曲而试验停止。不同 SLM 扫描策略成形件均可观察到边缘处存在翘曲现象,其中四角处的翘曲现象最为明显。通过共聚焦显微镜得到各成形试样的上表面轮廓数据,得到成形试样的表面轮廓如图7 所示。

  • 图7 SLM 成形试样轮廓图

  • Fig.7 Surface profile of SLM forming parts

  • 通过分析软件得出成形整体表面几何高度的算术平均偏差值,来描述其整个表面轮廓的起伏情况,得到如图8 所示为不同扫描策略成形试样整体表面轮廓的平均起伏情况。可发现分区扫描的起伏情况普遍比“S”形扫描方式所成形表面剧烈,且随着分区尺寸的逐渐减小,整个 SLM 成形上表面原始轮廓的起伏程度先改善后降低。表面起伏程度受翘曲、表面粗糙度和波纹度三者的共同作用影响,其具体影响规律将在下文中阐述。

  • 图8 不同激光扫描策略下成形整体表面的算术平均偏差值

  • Fig.8 Arithmetic average deviation of forming integral surface in different scanning strategies

  • 通过对扫描策略不同成形件的中线位置轮廓数据进行处理,得到中线截面轮廓的曲线如图9 所示。从截面轮廓曲线可以发现,不同扫描策略下截面轮廓尺寸的成形件边缘均存在较明显翘曲现象,其中分区扫描方式成形件的上表面边缘翘曲高度普遍低于“S”形扫描策略成形件,且随着分区尺寸的减小,轮廓起止边缘的翘曲高度逐渐降低,而表面轮廓曲线的振幅逐渐增大。而如图9 所示的 1.2 mm 分区尺寸成形表面轮廓,边缘处几乎没有明显的翘曲趋势,抑制翘曲效果较好。

  • 2.2 形状误差分析

  • 从图9 所示成形件截面轮廓曲线上来看,翘曲现象主要发生于零件的边缘位置,因此当成形截面尺寸较大的零件时,翘曲所引起的轮廓起伏波距在 10 mm 以上,属于形状误差。方形带支撑悬垂面的边缘与四角结构处极易出现翘曲现象,不同扫描方式成形方形带支撑薄板四角的平均翘曲高度如图10 所示,通过观察可发现分区扫描策略所成形悬垂结构的四角平均翘曲高度均低于“S”形扫描策略,且随着分区尺寸的减小,四角平均翘曲高度不断降低,形状误差的程度逐渐减小。

  • 图9 SLM 成形表面中线轮廓曲线图

  • Fig.9 Profile curve of SLM forming parts’ midline

  • 图10 成形方形带支撑薄板角结构处的平均翘曲高度

  • Fig.10 Average warpage of SLM forming parts’ angular structure in different scanning strategies

  • 分区扫描策略可一定程度上均匀 SLM 过程中的应力分布情况,进而抑制翘曲现象的出现,降低成形件的形状误差[28-30]。为探究实际 SLM 成形带支撑零件的应力场情况,通过数值模拟进行分析。图11 所示为数值模拟激光四等分分区扫描带支撑方形悬垂面模型步长时间为 1 时,上表面对角线处的应力及变形情况分布曲线。

  • 图11 四等分分区扫描方式下数值模拟模型的等效应力分布与变形结果

  • Fig.11 Equivalent stress and deformation of divisional scanning strategy in numerical simulation

  • 图11a 所示为数值模拟模型的上表面数据提取路径,从图11b 中可以发现,模型中部到角结构处的翘曲变形情况逐渐加重,等效应力值呈现先降低后升高再明显降低的趋势。支撑结构相较于基板对成形件变形趋势的约束能力较弱,仅能对成形悬垂结构下表面的部分位置进行约束,因此成形件未受支撑约束的部分应力将会更容易释放,引起悬垂面的变形。而随着分区尺寸的逐渐减小,SLM 成形件内部的应力分布更均匀,四角处的平均翘曲程度逐渐减小,成形表面轮廓的形状误差越低,成形件的尺寸精度越高。

  • 2.3 波纹度分析

  • 观察图12 中50 倍放大下不同扫描策略SLM 成形试样的截面轮廓金相图可以发现,当单道扫描过程中激光为匀速状态时,“S”形扫描策略所成形表面轮廓的起伏情况与分区尺寸为 13.2 mm 的成形表面近似。随着分区尺寸的不断减小,成形件截面轮廓的起伏波动情况逐渐明显,因分区尺寸不同而周期性出现于分区倾斜起伏情况与相邻分区交界处的形貌特征逐渐明显。波纹度尺度下的轮廓振幅情况逐渐增大,截面轮廓在波纹度尺度下的波距逐渐减小。通过结合图9、12 所示的截面轮廓起伏情况特征可发现,轮廓的波峰波谷等转折处主要出现在相邻分区的交界位置,各分区的中间部分相对平整。图12 所示的分区尺寸为 1.2 mm 的成形表面轮廓起伏的振幅约为 169.31 μm,轮廓起伏的波距在 1~10 mm,且同一分区内较晚成形部分的熔池深度要深于较早成形的熔池。

  • 图12 SLM 成形试样表面的截面轮廓 50 倍金相图

  • Fig.12 Metallographic figure of SLM forming parts’ cross section profile in 50×

  • 如图13 所示为数值模拟不同扫描策略下 SLM 过程中的模型温度场情况,当新一道激光扫描相同距离时,分区尺寸更小、激光折返扫描宽度更短的零件表面达到 316L 熔点约 1 400℃以上的显示灰色部分区域更聚集。单道激光扫描过后将形成一道熔池,虽然熔池在没有激光辐照后将会快速冷却凝固,但仍会在熔池附近留下温度较高的热影响区。在前一道熔池的热影响区尚未冷却,高速折返扫描的激光在其旁边将形成一段温度更高的新熔池,且前一道熔池扫过的方向因温度较高更易熔化。其中前一道激光所形成熔池的末端位置是相反方向激光扫描生成熔池的初始端,单位时间、较小范围内输入的能量更多,因此激光扫描折返两端处的熔池热累积现象更明显。

  • 提取图13 中所示的白色箭头路径上的温度数值得到如图14 所示的该路径温度分布情况。从图14 可以看出,当新一道激光扫描开始扫描时,前一道热源扫描的热影响区温度仍接近 316L 材料的熔点。随着分区内激光热源的不断扫描,新形成的熔池温度在热累积效应的影响下不断提升。当分区尺寸减小的同时激光往复扫描的宽度也将减小,对比不同扫描策略下熔池截面的温度分布曲线可以发现,九等分分区扫描所形成的较高温度范围宽于其他扫描策略,表示形成的熔池的表面积也更大。

  • 图13 不同扫描路径下熔池的热累积情况的数值模拟温度场

  • Fig.13 Temperature field of different divisional size in SLM process numerical simulation

  • 图14 数值模拟不同扫描策略下熔池截面的温度分布曲线

  • Fig.14 Numerical simulation of temperature profile of different scanning strategies during SLM

  • 分区扫描策略下折返端处的热累积现象将使得折返端处的金属液滴温度更高,因此扫描策略的折返端的汽化现象与液滴飞溅现象较熔池中间部分更明显,在不同分区边界激光扫描折返处易造成凹坑缺陷,如图12 所示。当分区尺寸在 1 mm 以上时,折返处凹坑缺陷的周期性出现将对表面的波纹度产生影响。

  • 分区扫描策略通常是先成形同一个扫描方向的分区后,再扫描另一扫描方向的所有分区,不同扫描方向的分区呈间隔排布,因此成形单个分区时,其他分区对其成形过程中热量的影响较小。结合数值模拟所得规律以及图12 中成形件截面轮廓金相图可以发现,在分区尺寸较小的 SLM 成形过程中,因激光扫描速度相同,扫描长度较短,短时间激光内输入的能量较为集中,因此单个分区内偏后成形的单道熔池温度将高于先成形的单道熔池。温度较高的金属液滴内部运动将会更剧烈,更容易出现汽化现象与液滴飞溅现象,造成分区后扫描一端高度低于先扫描的一端。最终单个分区内呈现出明显倾斜趋势,相邻分区的不同倾斜趋势共同作用将造成轮廓周期性起伏。

  • 根据分析结果,随着分区尺寸的减小热累积效应将会逐渐明显,进而造成成形表面波纹度的增加。因此当分区尺寸降低时可通过减小激光功率或提高激光扫描速度来降低单个分区内能量输入量与该分区匹配来减弱热累积效应,进而提高波纹度尺度表面质量。激光能量输入量可通过激光功率除以激光扫描速度来计算。图15 所示两试样的能量输入量相同,分区尺寸均为 1.2 mm,图15a 所示成形试样截面金相图为在激光扫描速度仍为 700 mm / s,激光功率降为 165 W,图15b 所示成形试样截面金相图为激光功率仍为 235 W,激光扫描速度提升为 1 m / s。与图12e 所示分区间轮廓起伏振幅值为 169.31 μm 相比,降低能量输入后分区之间也就是波纹度的起伏振幅情况明显减小,其中降低激光功率试样的分区间轮廓起伏振幅值为 68.56 μm,分区间轮廓起伏振幅值低于通过提高激光扫描速度保证相同能量输入量所成形试样的 134.09 μm,成形件截面轮廓更为平整,表面波纹度更低。虽然分区内总的能量输入量相同,但更大的激光扫描速度使得分区中单位时间内激光输入的能量更多,熔池所能达到的温度更高,金属液滴内部运动将会更剧烈,因此更容易出现汽化现象与液滴飞溅现象。因此通过调节工艺参数来降低能量输入可有效改善表面波纹度,且调节工艺参数时通过降低激光功率的方式比提高激光扫描速度对表面波纹度的改善效果更为明显。

  • 图15 低能量输入 SLM 成形表面试样表面的截面轮廓 50 倍金相图

  • Fig.15 Metallographic figure of SLM low energy input forming parts’ cross section profile in 50×

  • 2.4 表面粗糙度分析

  • 各激光扫描策略成形表面形貌如图16 所示,通过对比相同放大倍数下不同分区尺寸的 SLM 成形表面扫描电镜图,可直观发现分区尺寸较大的表面中相邻熔池之间的分界线较为明显,而分区尺寸为 1.2 mm 的 SLM 成形表面中的熔池边界不清晰,说明该成形表面较为平整。“S”形扫描策略所成形表面上的金属粉末及飞溅等颗粒粘附物要少于分区尺寸在 9.6 mm 和 13.2 mm 的成形表面,与分区尺寸为 1.2 mm 与 3.6 mm 的成形表面颗粒粘附物密集程度相似。分区尺寸减小时,热累积效应更明显,使熔池维持在液态的时间更长,落入熔池中的飞溅数量相对更多,而落在已成形表面的相对较少。因此,随着分区尺寸的逐渐减小,成形表面的颗粒粘附物数量逐渐减少,结合相邻熔池边界,表面粗糙度逐渐降低。观察图16 可明显发现,当分区尺寸减小至 1.2 mm 时,不同的扫描方向所成形分区上表面的颗粒粘附物分布情况差异逐渐明显,相同现象在较大分区尺寸成形的表面中并不明显,较多的颗粒粘附物将增加表面粗糙度。

  • 因所有成形件为同一次试验成形,且成形零件的尺寸特征与工艺参数除分区尺寸外完全相同,因此表面成形时受侧向送风吹来的金属粉末粘附情况应基本相同,表面颗粒粘附物数量的差异主要取决于 SLM 成形过程中的飞溅情况。在分区尺寸为 1.2 mm 的最上层表面的成形过程中,是先成形所有纵向分区后再进行所有横向扫描分区。由成形顺序靠后的横向分区可以看出,较小分区尺寸成形表面本身的颗粒粘附物较少,因此纵向表面的颗粒粘附物主要是由横向分区成形时所产生的飞溅凝固后形成的。当激光扫描尺寸较大的分区时,将不断有飞溅落在该分区已成形部分,因此不同扫描方向分区表面颗粒粘附物的区别不明显。因此随着扫描分区尺寸的逐渐降低,成形表面的颗粒粘附物逐渐减少。当分区尺寸足够小时,将导致不同扫描方向分区的成形先后顺序对各自分区成形表面颗粒粘附物数量分布的影响加剧。

  • 图16 SLM 成形表面 100 倍放大扫描电镜图

  • Fig.16 SEM of SLM forming parts’ surface in 100×

  • 在较大分区尺寸的成形表面中,激光熔化金属粉末与部分已成形基体形成的熔池将在表面张力与重力的共同作用下形成凸起结构,随后逐渐冷却凝固[31]。如图17 所示为不同激光扫描策略 SLM 成形件截面的金相图,当其他工艺参数保持不变,扫描分区尺寸减小到一定程度后,熔池的半轴宽度与深度逐渐增大。

  • SLM 技术中所使用的激光光斑直径一般为 20~100 μm,所产生的单道熔池宽度基本在 1 mm 以下,相邻熔池的凸起结构不断叠加所造成的成形表面轮廓起伏会对截面轮廓的表面粗糙度产生影响。熔池的凸起情况主要受到液态金属的表面张力与重力的影响,如图18 所示,随着分区尺寸的逐渐减小,单道熔池的宽度逐渐增大,表面张力对熔池内金属液滴的影响逐渐降低,在重力的作用下,熔池的凸起程度逐渐降低,熔池之间表面逐渐平整。

  • 图17 SLM 成形试样单道熔池截面尺寸及熔池轮廓起伏高度

  • Fig.17 Size and bulge height of SLM forming parts’ molten pool section

  • 图18 不同扫描策略下熔池的结构尺寸

  • Fig.18 Structure dimensions of molten pool in different scanning strategies

  • 3 结论

  • (1)针对 SLM 成形悬垂结构表面尺寸精度较差的问题,从不同波距长度尺度下分析分区尺寸对 SLM 成形表面结构的影响,分别得到分区尺寸对形状误差、波纹度以及表面粗糙度的影响因素,阐明三者在不同分区尺寸下的相互作用机理。

  • (2)随着分区尺寸的逐渐减小,成形件内部残余应力的分布更均匀,成形件边缘处的翘曲趋势逐渐降低,形状误差减小;分区内单道熔池的宽度逐渐增加,单道熔池的凸起程度逐渐降低,表面粗糙度得到改善;分区之间的起伏情况更为剧烈,波纹度升高,表面形貌先改善后降低。可通过降低激光功率来降低能量输入,改善分区尺寸减小时波纹度增加的情况。

  • (3)在 SLM 过程的数值模拟研究方面,目前使用固定的吸收率来进行模拟,但熔池受激光加热到不同温度时,内部运动剧烈程度不同,在后续研究中需要根据模型热源加载处的温度、材料非固态时的物理性质等,动态调节模型对体热源的吸收率来贴合实际的 SLM 过程。

  • 参考文献

    • [1] 顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):32-55.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Laser,2020,47(5):32-55.(in Chinese)

    • [2] YAN H,SHEN L,WANG X,et al.Stress and deformation evaluation of the subarea scanning effect in Direct Laser-deposited Ti6Al4V[J].Advanced Manufacturing Technology,2018,97:915-926.

    • [3] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.ZHU Qingkun,YU Chunfeng,DENG Chaoyang,et al.Effect of TiC on microstructure and wear properties of Inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [4] 杨永强,吴伟辉,来克娴,等.金属零件选区激光熔化直接快速成形工艺及最新进展[J].航空制造技术,2006(2):73-76,97.YANG Yongqiang,WU Weihui,LAI Kexian,et al.Newest progress of direct rapid prototyping of metal part by selective laser melting[J].Aeronautical Manufacturing Technology,2006(2):73-76,97.(in Chinese)

    • [5] 张凯,刘婷婷,张长东,等.基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J].中国激光,2015,42(9):135-141.ZHANG Kai,LIU Tingting,ZHANG Changdong,et al.Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J].Chinese Journal of Laser,2015,42(9):135-141.(in Chinese)

    • [6] 杨雄文,杨永强,刘洋,等.激光选区熔化成型典型几何特征尺寸精度研究[J].中国激光,2015,42(3):70-79.YANG Xiongwen,YANG Yongqiang,LIU Yang,et al.Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J].Chinese Journal of Laser,2015,42(3):70-79.(in Chinese)

    • [7] 刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)

    • [8] 罗正国,蒲竞秋.表面结构与粗糙度测量方法浅析[J].工具技术,2006(3):123-125.LUO Zhengguo,PU Jingqiu.Surface structure and roughness measurement methods[J].Tool Engineering,2006(3):123-125.(in Chinese)

    • [9] 石文天,王朋,刘玉德,等.选区激光熔化成形316L表面质量及工艺试验研究[J].表面技术,2019,48(3):257-267.SHI Tianpeng,WANG Peng,LIU Yude,et al.Experimental study on surface quality and process of selective laser melting forming 316L[J].Surface Technology,2019,48(3):257-267.(in Chinese)

    • [10] RAMOS D,BELBLIDIA F,SIENZ J.New scanning strategy to reduce warpage in additive manufacturing[J].Additive Manufacturing,2019,28:554-564..

    • [11] LI C,LIU J F.GUO Y B.Prediction of residual stress and part distortion in selective laser melting[J].3rd Cirp Conference on Surface Integrity,2016,45:171-174.

    • [12] GABRIELE P,ALESSANDRO S,ELEONORA A.On the quality of unsupported overhangs produced by laser powder bed fusion[J].International Journal of Manufacturing Research,2019,134(2):198-216.

    • [13] MATSUMOTO M,SHIOMI M,OSAKADA K,et al.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J].Machine Tools & Manufacture,2002,42:61-67.

    • [14] WANG D,WU S,YANG Y,et al.The Effect of a scanning strategy on the residual stress of 316l steel parts fabricated by selective laser melting(SLM)[J].Materials,2018,11(10):1821.

    • [15] 万乐,王思琦,张晓伟,等.基于分区扫描的选区激光熔化钛合金的成形质量[J].激光与光电子学进展,2018,55(9):250-259.WAN Le,WANG Siqi,ZHANG Xiaowei,et al.Forming quality of titanium alloys by selective laser melting based on partition scanning[J].Laser & Optoelectronics Progress,2018,65:1471-1484.(in Chinese)

    • [16] VALENTE E H,GUNDLACH C,CHRISTIANSEN T L,et al.Effect of scanning strategy during selective laser melting on surface topography,porosity,and microstructure of additively manufactured Ti6Al4V[J].Applied Sciences,2019,9(24):5554.

    • [17] LOU S,JIANG X,SUN W,et al.Characterisation methods for powder bed fusion processed surface topography[J].Precision Engineering,2019,57:1-15.

    • [18] LI R,WANG G L,DING Y Y,et al.Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing[J].Additive Manufacturing,2020,36:101546.

    • [19] 柯林达,殷杰,朱海红,等.钛合金薄壁件选区激光熔化应力演变的数值模拟[J].金属学报,2020,56(3):374-384.KE Linda,YIN Jie,ZHU Haihong,et al.Numerical simulation of stress evolution of Thin-Wall titanium parts fabricated by selective laser melting[J].Acta Metallurgica Sinica,2020,56(3):374-384.(in Chinese)

    • [20] PARRY L,ASHCROFT I A,WILDMAN R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through Thermomechanical simulation[J].Additive Manufacturing,2016,12:1-15.

    • [21] BO C,SUBIN S,KEVIN C.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive Manufacturing,2016,12:240-251.

    • [22] LI Z H,XU R J,ZHANG Z W,et al.The influence of scan length on fabricating Thin-walled components in selective laser melting[J].International Journal of Machine Tools and Manufacture,2018,126:1-12.

    • [23] 陈昌棚,雷杨,陈冰清,等.激光选区熔化增材制造TC4钛合金典型结构变形的数值模拟研究[J].应用激光,2021,41(4):814-821.CHEN Changpeng,LEI Yang,CHEN Bingqian,et al.Numerical simulation of deformation of typical parts in selective laser melting additive manufacturing[J].Applied Laser,2021,41(4):814-821.(in Chinese)

    • [24] AN K,YUAN L,DIAL L,et al.Neutron residual stress measurement and numerical modeling in a curved Thin-walled structure by laser powder bed fusion additive manufacturing[J].Materials & Design,2017,135:122-132.

    • [25] GUSAROV A V,LAOUI T,FROYEN L,et al.Contact thermal conductivity of a powder bed in selective laser sintering[J].International Journal of Heat and Mass Transfer,2003,46:1103-1109.

    • [26] CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources [J].Metallurgical Transactions B-Process Metallurgy,1984,15(2):299-305.

    • [27] 段成红,郝晓杰,罗翔鹏.选区激光熔化316L温度场研究[J].应用激光,2018,38(5):748-753.DUAN Chenghong,HAO Xiaojie,LUO Xiangpeng.Study on temperature field of selective laser melting 316L[J].Applied Laser,2018,38(5):748-753.(in Chinese)

    • [28] 梁祖磊,孙中刚,张少驰,等.数值模拟在激光选区熔化中的应用及研究现状[J].航空制造技术,2018,61(22):87-91,97.LIANG Zulei,SUN Zhonggang,ZHANG Shaochi,et al.Application and research status of numerical simulation in laser selective melting[J].Aeronautical Manufacturing Technology,2018,61(22):87-91,97.(in Chinese)

    • [29] LU Y J,WU S Q,GAN Y L,et al.Study on the microstructure,mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing Island scanning strategy[J].Optics & Laser Technology,2015,75:197-206.

    • [30] PATCHARAPIT P,SHI C Y.Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing:Numerical and experimental studies[J].Journal of Manufacturing Processes,2020,49:247-259.

    • [31] LIU S B,LIU J C,CHEN J X,et al.Influence of surface tension on the molten pool morphology in laser melting[J].International Journal of Thermal Sciences,2019,146:106075.

  • 参考文献

    • [1] 顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):32-55.GU Dongdong,ZHANG Hongmei,CHEN Hongyu,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Laser,2020,47(5):32-55.(in Chinese)

    • [2] YAN H,SHEN L,WANG X,et al.Stress and deformation evaluation of the subarea scanning effect in Direct Laser-deposited Ti6Al4V[J].Advanced Manufacturing Technology,2018,97:915-926.

    • [3] 褚清坤,余春风,邓朝阳,等.TiC 含量对激光选区熔化 Inconel 625 合金微观组织及表面摩擦磨损性能的影响[J].中国表面工程,2021,34(1):76-84.ZHU Qingkun,YU Chunfeng,DENG Chaoyang,et al.Effect of TiC on microstructure and wear properties of Inconel 625 alloy fabricated via selective laser melting technology[J].China Surface Engineering,2021,34(1):76-84.(in Chinese)

    • [4] 杨永强,吴伟辉,来克娴,等.金属零件选区激光熔化直接快速成形工艺及最新进展[J].航空制造技术,2006(2):73-76,97.YANG Yongqiang,WU Weihui,LAI Kexian,et al.Newest progress of direct rapid prototyping of metal part by selective laser melting[J].Aeronautical Manufacturing Technology,2006(2):73-76,97.(in Chinese)

    • [5] 张凯,刘婷婷,张长东,等.基于熔池数据分析的激光选区熔化成形件翘曲变形行为研究[J].中国激光,2015,42(9):135-141.ZHANG Kai,LIU Tingting,ZHANG Changdong,et al.Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J].Chinese Journal of Laser,2015,42(9):135-141.(in Chinese)

    • [6] 杨雄文,杨永强,刘洋,等.激光选区熔化成型典型几何特征尺寸精度研究[J].中国激光,2015,42(3):70-79.YANG Xiongwen,YANG Yongqiang,LIU Yang,et al.Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J].Chinese Journal of Laser,2015,42(3):70-79.(in Chinese)

    • [7] 刘文浩,陈燕,王杰,等.SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究[J].中国表面工程,2021,34(3):100-109.LIU Wenhao,CHEN Yan,WANG Jie,et al.Study on electrolysis assisted magnetic abrasive finishing of SLM parts cavity surface[J].China Surface Engineering,2021,34(3):100-109.(in Chinese)

    • [8] 罗正国,蒲竞秋.表面结构与粗糙度测量方法浅析[J].工具技术,2006(3):123-125.LUO Zhengguo,PU Jingqiu.Surface structure and roughness measurement methods[J].Tool Engineering,2006(3):123-125.(in Chinese)

    • [9] 石文天,王朋,刘玉德,等.选区激光熔化成形316L表面质量及工艺试验研究[J].表面技术,2019,48(3):257-267.SHI Tianpeng,WANG Peng,LIU Yude,et al.Experimental study on surface quality and process of selective laser melting forming 316L[J].Surface Technology,2019,48(3):257-267.(in Chinese)

    • [10] RAMOS D,BELBLIDIA F,SIENZ J.New scanning strategy to reduce warpage in additive manufacturing[J].Additive Manufacturing,2019,28:554-564..

    • [11] LI C,LIU J F.GUO Y B.Prediction of residual stress and part distortion in selective laser melting[J].3rd Cirp Conference on Surface Integrity,2016,45:171-174.

    • [12] GABRIELE P,ALESSANDRO S,ELEONORA A.On the quality of unsupported overhangs produced by laser powder bed fusion[J].International Journal of Manufacturing Research,2019,134(2):198-216.

    • [13] MATSUMOTO M,SHIOMI M,OSAKADA K,et al.Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing[J].Machine Tools & Manufacture,2002,42:61-67.

    • [14] WANG D,WU S,YANG Y,et al.The Effect of a scanning strategy on the residual stress of 316l steel parts fabricated by selective laser melting(SLM)[J].Materials,2018,11(10):1821.

    • [15] 万乐,王思琦,张晓伟,等.基于分区扫描的选区激光熔化钛合金的成形质量[J].激光与光电子学进展,2018,55(9):250-259.WAN Le,WANG Siqi,ZHANG Xiaowei,et al.Forming quality of titanium alloys by selective laser melting based on partition scanning[J].Laser & Optoelectronics Progress,2018,65:1471-1484.(in Chinese)

    • [16] VALENTE E H,GUNDLACH C,CHRISTIANSEN T L,et al.Effect of scanning strategy during selective laser melting on surface topography,porosity,and microstructure of additively manufactured Ti6Al4V[J].Applied Sciences,2019,9(24):5554.

    • [17] LOU S,JIANG X,SUN W,et al.Characterisation methods for powder bed fusion processed surface topography[J].Precision Engineering,2019,57:1-15.

    • [18] LI R,WANG G L,DING Y Y,et al.Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing[J].Additive Manufacturing,2020,36:101546.

    • [19] 柯林达,殷杰,朱海红,等.钛合金薄壁件选区激光熔化应力演变的数值模拟[J].金属学报,2020,56(3):374-384.KE Linda,YIN Jie,ZHU Haihong,et al.Numerical simulation of stress evolution of Thin-Wall titanium parts fabricated by selective laser melting[J].Acta Metallurgica Sinica,2020,56(3):374-384.(in Chinese)

    • [20] PARRY L,ASHCROFT I A,WILDMAN R D.Understanding the effect of laser scan strategy on residual stress in selective laser melting through Thermomechanical simulation[J].Additive Manufacturing,2016,12:1-15.

    • [21] BO C,SUBIN S,KEVIN C.Stress and deformation evaluations of scanning strategy effect in selective laser melting[J].Additive Manufacturing,2016,12:240-251.

    • [22] LI Z H,XU R J,ZHANG Z W,et al.The influence of scan length on fabricating Thin-walled components in selective laser melting[J].International Journal of Machine Tools and Manufacture,2018,126:1-12.

    • [23] 陈昌棚,雷杨,陈冰清,等.激光选区熔化增材制造TC4钛合金典型结构变形的数值模拟研究[J].应用激光,2021,41(4):814-821.CHEN Changpeng,LEI Yang,CHEN Bingqian,et al.Numerical simulation of deformation of typical parts in selective laser melting additive manufacturing[J].Applied Laser,2021,41(4):814-821.(in Chinese)

    • [24] AN K,YUAN L,DIAL L,et al.Neutron residual stress measurement and numerical modeling in a curved Thin-walled structure by laser powder bed fusion additive manufacturing[J].Materials & Design,2017,135:122-132.

    • [25] GUSAROV A V,LAOUI T,FROYEN L,et al.Contact thermal conductivity of a powder bed in selective laser sintering[J].International Journal of Heat and Mass Transfer,2003,46:1103-1109.

    • [26] CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources [J].Metallurgical Transactions B-Process Metallurgy,1984,15(2):299-305.

    • [27] 段成红,郝晓杰,罗翔鹏.选区激光熔化316L温度场研究[J].应用激光,2018,38(5):748-753.DUAN Chenghong,HAO Xiaojie,LUO Xiangpeng.Study on temperature field of selective laser melting 316L[J].Applied Laser,2018,38(5):748-753.(in Chinese)

    • [28] 梁祖磊,孙中刚,张少驰,等.数值模拟在激光选区熔化中的应用及研究现状[J].航空制造技术,2018,61(22):87-91,97.LIANG Zulei,SUN Zhonggang,ZHANG Shaochi,et al.Application and research status of numerical simulation in laser selective melting[J].Aeronautical Manufacturing Technology,2018,61(22):87-91,97.(in Chinese)

    • [29] LU Y J,WU S Q,GAN Y L,et al.Study on the microstructure,mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing Island scanning strategy[J].Optics & Laser Technology,2015,75:197-206.

    • [30] PATCHARAPIT P,SHI C Y.Influence of scanning length and energy input on residual stress reduction in metal additive manufacturing:Numerical and experimental studies[J].Journal of Manufacturing Processes,2020,49:247-259.

    • [31] LIU S B,LIU J C,CHEN J X,et al.Influence of surface tension on the molten pool morphology in laser melting[J].International Journal of Thermal Sciences,2019,146:106075.

  • 手机扫一扫看