en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王丽,女,1988年出生,硕士,工程师。主要研究方向为PVD强化防护涂层。E-mail:wangl@nimte.ac.cn

通讯作者:

汪爱英,女,1975年出生,博士,教授,博士研究生导师。主要研究方向为表面强化涂层材料与功能改性。E-mail:aywang@nimte.ac.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220820001

参考文献 1
KRELLA Alicja.Resistance of PVD coatings to erosive and wear processes:A review[J].Coatings,2020,10(912):1-34.
参考文献 2
HE Guangyu,SUN Danyang,CHEN Jiao,et al.Key problems affecting the anti-erosion coating performance of aero-engine compressor:A review[J].Coatings,2019,9(812):1-17.
参考文献 3
金杰,黄晓林,孟祥宇,等.Cr-Ti-N 系多层膜成分及周期对抗冲蚀性能的影响[J].中国表面工程,2015,28(4):105-112.JIN Jie,HUANG Xiaolin,MENG Xiangyu,et al.Influence of Cr-Ti-N multilayers with different periods and constituents on erosion resistance performance[J].China Surface Engineering,2015,28(4):105-112.(in Chinese)
参考文献 4
耿明睿,陈皎,杨竹芳,等.TC4 钛合金表面冲蚀损伤机理的砂尘粒径依赖效应[J].中国表面工程,2018,31(3):17-26.GEN Mingrui,CHEN Jiao,YANG Zhufang,et al.Dependent effects of particle size on erosion wear mechanism of TC4 titanium alloy[J].China Surface Engineering,2018,31(3):17-26.(in Chinese)
参考文献 5
曹鑫,王冠,何卫锋,等.TC4 钛合金与多层 TiN/Ti 涂层的砂尘冲蚀损伤试验[J].航空动力学报,2016,31(9):2218-2225.CAO Xin,WANG Guan,HE Weifeng,et al.Sand erosion damage test on TC4 titanium alloy and TiN/Ti multilayer coating[J].Journal of Aerospace Power,2016,31(9):2218-2225.(in Chinese)
参考文献 6
马颖,任俊,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.MA Yin,RENG Jun,LI Yuandong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-25.(in Chinese)
参考文献 7
RICKERBY D,SBURNETT P J.The wear and erosion resistance of hard PVD coatings[J].Surface and Coatings Technology,1987,33(1-4):191-211.
参考文献 8
DOBRZANSKI L ALUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157:317-23.
参考文献 9
SUE JA,ATROUE HH.Influence of crystallographic orientation,residual strains,crystallite size and microhardness on erosion in ZrN coating[J].Surface and Coatings Technology,1989,39(1-3):421-434.
参考文献 10
GACHON Y,VANNES AB,FARGES G,et al.Study of sand particle erosion of magnetron sputtered multilayer coatings [J].Wear,1999,233:263-274.
参考文献 11
VLASVELD A C,HARRIS S G,DOYLE E D,et al.Characterisation and performance of partially filtered arc TiAlN coatings[J].Surface and Coatings Technology,2002,149(2-3):217-24.
参考文献 12
YANG Q,SEO DY,ZHAO LR,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J].Surface and Coatings Technology,2004,188:168-73.
参考文献 13
GUO Huixia,SUN Qinshou,ZHOU Dapeng,et al.Erosion behavior of CrN,CrAlN and CrAlN/CrN multilayer coatings deposited on Ti6Al4V[J].Surface and Coatings Technology,2022,437(128248):1-11.
参考文献 14
GU Jiabin,LI Liuhe,AI Meng,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface and Coatings Technology,2020,402(126270):1-8.
参考文献 15
SUI Xudong,LI Guojian,QIN Xuesi,et al.Relationship of microstructure,mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool[J].Ceramics International,2016,42(6):7524-7532.
参考文献 16
WEI Ronghua.Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5-7):538-544.
参考文献 17
LIU Zhengliang,KHAN Azim,SHEN Mingli,et al.Microstructure and cavitation erosion resistance of arc ion plating NiCrAlY coating on the 304L stainless steel[J].Tribology International,2022,173(107618)1-14.
参考文献 18
HAWKEYE Matthew,BREET Michael.Glancing angle deposition:fabrication,properties,and applications of micro-and nanostructured thin films[J].Journal of Vacuum Science and Technology A,2002,25(5):1317-1335.
参考文献 19
SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads[J].Journal of Materials Science and Technology,2021,80:179-190.
参考文献 20
马佳玉.掠射角磁控溅射沉积 NixOy薄膜及电致变色性能研究[D].沈阳:沈阳大学,2021.MA Jiayu.Study on electrochromic properties of NixOy thin films deposited by glancing angle magnetron sputtering[D].Shenyang:Shenyang University,2021.(in Chinese)
参考文献 21
DANIEL Rostislav,MEINDLHUMER Michael,BAUMEGGER Walter,et al.Grain boundary design of thin films:using tilted brittle interfaces for multiple crack deflection toughening[J].Acta Materialia,2017,122:130–137.
参考文献 22
WANG Li,WANG Zhenyu,ZUO Xiao,et al.Sandwich-zigzag structure enhanced erosion resistance of TiN coatings[J].Materials Letters,2022,310:(131496):1-4
参考文献 23
夏虎峰,田广科,陈庆春,等.不同工作环境CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working environments[J].China Surface Engineering,2019,2019,32(6):56-62.(in Chinese)
参考文献 24
BARATA A,CUNHA L,MOUTA C,Characterisation of chromium nitride films produced by PVD techniques[J].Thin Solid Films,2001,398:501-506.
参考文献 25
BORAWSKI Brian,SINGH Jogender,TODD Judith A,et al.Multi-layer coating design architecture for optimum particulate erosion resistance[J].Wear,2011,271:2782–2792.
参考文献 26
RECCO AAC,OLIVEIRA IC,MASSI M,et al.Adhesion of reactive magnetron sputtered TINx and TICy coatings to AISI H13 tool steel[J].Surface and Coatings Technology,2007,202:1078-1083.
参考文献 27
RUAN Haitao,WANG Zhenyu,WANG Li,et al.Designed Ti/TiN sub-layers suppressing the crack and erosion of TiAlN coatings[J].Surface and Coatings Technology,2022,438:(128419):1-12.
参考文献 28
KUMAR A,SHARMA A,GOEL S K.Erosion behaviour of WC-10Co-4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying[J].Applied Surface Science,2016,370:418-426.
参考文献 29
BITTER J G A.A study of erosion phenomena part Ⅱ[J].Wear,1963,6(1):169-190.
参考文献 30
TILLY G P.A two stage mechanism of ductile erosion[J].Wear,1973,23(1):87-96.
目录contents

    摘要

    飞机在沙漠等恶劣环境中服役,空气中的固体颗粒在高速气流作用下对叶片表面产生高速冲击。为提高钛合金叶片的抗冲蚀性能,采用掠角磁控溅射技术制备复合 zigzag 结构 CrN 涂层(简称 CrN-zigzag),并利用掠角 X 射线衍射仪(GIXRD)、扫描电子显微镜(SEM)、划痕测试系统(CSM Revetest)、白光干涉仪、纳米压痕仪、冲蚀设备等表征涂层的成分、组织结构、力学性能和冲蚀性能。研究结果表明,CrN-zigzag 涂层组织致密呈现柱状结构,厚度约为 3.7 μm,纳米硬度达到(19.2 ±2)GPa,具有良好的膜基结合强度(>48 N)。相比于常规 CrN 涂层,CrN-zigzag 涂层在 90°冲蚀角度下的抗冲蚀性能提高了 57.67%。CrN 涂层表现为明显的脆性失效特征,CrN-zigzag 涂层表现为明显的脆性和韧性失效双特征,符合变形磨损理论和二次冲蚀理论。CrN-zigzag 涂层在砂砾冲蚀试验中表现出良好的抗冲蚀性能主要归因于其特有的 zigzag 晶界取向设计,提高了材料的损伤容限。

    Abstract

    With the rapid development of aircraft, titanium alloys have been widely adopted as promising lightweight materials to resist harsh marine conditions, in particular for compressor engine blades. However, due to their poor mechanical properties, titanium alloys are vulnerable to erosion damage when operating in a solid-particle sandy environment. CrN coatings are considered the most promising candidate to suppress erosion damage due to their combined mechanical properties and easily controlled structures during deposition. However, CrN coatings with a traditional columnar structure suffer from serious erosion damage under the harsh impact of solid particles. The issue of how to design and fabricate CrN coatings with the necessary comprehensive mechanical performance is of significant importance for the development of aircraft high-technology. In this study, CrN-zigzag coatings were fabricated by tilting magnetron sputtering technique, and, importantly, the middle layer exhibited a designed zigzag structure that could dissipate crack energy and deflect cracks induced by erosion. The morphology and crystallographic structure of the coatings was characterized by field emission scanning electron microscopy and grazing incidence X-ray diffraction. The nano-indentation was employed to measure the mechanical properties of coatings, including hardness (H), elastic modulus (E), H / E, and H3 / E2 . The adhesion strength of the coatings to the substrates was determined by scratch tests. The erosion tests were performed at room temperature by a homemade test rig according to the ASTM G76-13 standard. The thickness of the CrN-zigzag coatings was 3.7 μm. The hardness of the normal CrN coatings was 22.4±3 GPa, while it decreased to 19.2±2 GPa for the CrN-zigzag coatings. Compared with the normal CrN coatings, the H / E ratio of CrN-zigzag coatings has increased by ~12.16%. However, the H3 / E2 ratio increases from 0.125 GPa up to 0.133 GPa, indicating that the resistance to plastic deformation of the CrN coatings could be significantly improved by introducing the tilted columnar microstructure within the coating. Scratch tests indicated that similar Lc3 values of 48 N were found for both coatings, whereas the quantities and widths of ring cracks of the CrN-zigzag coatings were smaller than the normal CrN coatings. Both the coatings exhibited a cubic CrN phase (PDF#65-2889) and a hexagonal Cr2N phase (PDF#35-0803). The X-ray diffractogram of the CrN-zigzag coatings contained five peaks, corresponding to the (111), (200), (220), (311), and (222) planes of cubic CrN, whereas the CrN coatings exhibited the cubic CrN phase with (200) orientation due to its lowest surface energy. The erosion rate of the CrN-zigzag coatings, benefiting from their superior mechanical properties, was lower than that of the CrN coatings under the same erosion conditions. In contrast to the normal CrN coating, the erosion resistance of CrN-zigzag coatings was enhanced by 57.67% at a 90° erosion angle. The results showed that the normal CrN coatings exhibited the predominant brittle failure characteristics. However, the failure of CrN-zigzag coatings is dominated by the brittle and ductile failure characteristics, which conform to deformation wear theory and secondary erosion theory. This could be attributed to the easy way to dissipate crack energy and deflect cracks on the tilted interface within the zigzag layer, resulting in absorbing and balancing the external impact stress from erosion. The results provide new insights into the relationship between the zigzag structure and the properties, as well as brings forward a strategy to fabricate the desired CrN-based coatings for erosion protection.

  • 0 前言

  • 航空、航天领域中,飞机在起降、低空飞行,或在沙漠等恶劣环境中服役,砂粒、灰尘等空气中的固体颗粒在高速气流作用下对叶片表面产生高速冲击和摩擦[1-3],造成叶片冲蚀损伤及损耗,从而影响发动机性能,使发动机寿命变短,甚至导致飞机失事。美军发布的一份研究报告指出:“沙漠风暴”行动中装配 CH-6E 直升机的涡轴发动机压气机叶片的初始设计寿命为 3 000 h,在沙漠环境下的使用寿命仅为 100 h[4-5]。因此,如何减缓和避免发动机叶片的冲蚀磨损,已成为保障发动机正常工作和安全飞行的迫切需求。

  • 冲蚀是流体或固体颗粒以一定的速度和角度对材料表面进行冲击所造成的磨损[6-7],因此材料的表面是控制冲蚀动力学的关键。采用物理气相沉积 (PVD)技术,在工件表面涂覆强结合、抗冲蚀性能的涂层,可在不损伤基体材料力学性能,保证基体加工精度的情况下,有效降低冲蚀磨损对工件的损害,提高设备的稳定性、可靠性,延长使用寿命。

  • 在发展抗冲蚀 PVD 涂层的初期,二元氮(碳) 化物(TiN、CrN、ZrN、WC 等[8-10]),硬质涂层较早被应用于抗冲蚀防护领域,尤其具有一定耐蚀性能的 CrN 涂层因其结构易于控制及优异的耐氧化、抗腐蚀等综合性能受到广泛的关注。近年来,研究者为进一步提高涂层的抗冲蚀性能,先后发展出三元(TiCrN、TiZrN、TiAlN)[11-13]、甚至多元(TiAlSiN、 TiSiCN、TiAlCrN 等)[14-16]的氮化物复合涂层。多元素耦合作用可以显著提高涂层的硬度[17],明显改善涂层的耐腐蚀抗低角度冲蚀性能。然而,过高的硬度同时也会牺牲涂层的断裂韧性,在高角度冲蚀时,冲击产生的微裂纹或者损伤成为疲劳源,损伤涂层的抗冲蚀和耐腐蚀性能。因此,在保持二元涂层组分不变的基础上,如何设计新颖结构,实现强韧抗冲蚀防腐蚀一体化,是关注的热点和难点。 Zigzag 结构[18]是采用晶界取向设计的思路,使涂层柱状晶发生周期性偏转形成的“类弹簧”结构,吸收应变能,协调变形,抑制裂纹产生或使裂纹发生偏转,从而提高涂层的损伤容限,为涂层强韧抗冲蚀功能一体化设计提供了新途径。

  • 为提高钛合金基体抗冲蚀性能,通过中间层特有的晶界取向设计,采用掠角磁控溅射技术制备复合 zigzag 结构 CrN(简写 CrN-zigzag)涂层,与传统磁控溅射沉积垂直结构 CrN 涂层进行对比,研究了 CrN-zigzag 涂层的微观结构、力学性能、冲蚀性能及冲蚀行为,为降低叶片冲蚀磨损提供依据。

  • 1 试验

  • 1.1 涂层制备

  • 采用直流磁控溅射技术,在单晶硅片(100)和钛合金(TC4)基体上沉积 CrN 涂层。基体放入真空腔体之前,分别在丙酮溶液和酒精中超声清洗 15 min,以清洗基体表面的油污等,烘干后置于可公自转的基体旋转架上,靶基距为 15 cm,本底真空为 2.67 mPa。制备 CrN 涂层前,在基体负偏压为 100 V 条件下,使用离子束对基体清洗 30 min,主要是清除基体表面的附着物和和氧化物层,达到清洁表面增强膜基结合力的目的。靶材为纯度 99.9% 的 Cr 靶(400 mm×100 mm×7 mm)。在沉积过程中使用 1∶1 的 Ar(99.999%)和 N2(99.99%),工作压力保持在 0.4 Pa。Cr 靶的直流溅射电流 3 A,基体直流负偏压 300 V,腔体温度 450℃,基体正对靶材沉积 122 min 获得厚度为 3.8 μm 垂直结构 CrN 涂层。在相同沉积条件下,通过调整基体的旋转方向(45°、135°),制备出 CrN-zigzag 涂层,底层垂直结构沉积时间 40 min,旋转基体与靶材之间的夹角为 45°沉积 20 min 获得 zigzag 结构第一折,再次旋转基体与靶材之间的夹角为 135°沉积 20 min 获得 zigzag 结构第二折,重复第一折工艺实现 zigzag 结构,顶层垂直结构与底层工艺一致,制备 CrN-zigzag 涂层,其中底层、顶层垂直结构及 zigzag 结构厚度分别为 1.25 μm,实验示意图如 1a 所示, CrN 涂层示意图1b、1c。

  • 图1 沉积系统和涂层结构示意图

  • Fig.1 Schematic diagram of the experiment arrangement and coating structure

  • 1.2 结构性能测试

  • 涂层的晶体结构采用掠角 X 射线衍射 (GIXRD,Bruker D8 Advance diffractometer,德国) 进行表征,采用 Cu 靶 Kα 辐射,波长为 1.540 6 Å; 管电压为 40 kV,管电流为 40 mA;X 射线入射角为 0.5°。使用纳米压痕(MTS NANO200,美国) 测试涂层硬度(H)、弹性模量(E)、H / EH3 / E2 等力学性能,测试所用压头为 Berkovich 金刚石压头,涂层的泊松比为 0.18。涂层与基体之间的结合力用划痕测仪(CSM Revetest,瑞士)测定,选用压头为洛氏(Rockwell C)金刚石压头,压头顶角为 120°,直径为 120 μm。采用 SEM(S4800,日本)进行形貌分析。冲蚀试验使用自制的试验装置在室温下进行(符合 ASTM G76-13 标准),样品与喷嘴之间的距离为 20 mm,采用角硅砂(~61 μm)作为冲蚀粒子[19]。气压为 0.2 MPa,冲蚀角度 90°,冲蚀介质总质量为 10.0±0.5 g。涂层的冲蚀率采用失重法进行计算,冲蚀率的大小反映涂层抗冲蚀性能的优劣。试样在冲蚀前后均在无水乙醇中超声清洗 10 min,用高压氮气吹干后进行称重,目的是为了提高测量数据的准确性和可靠性。样品的称重采用精度为 0.01 mg 的电子分析天平(Mettler Toledo,XS205 DU)。冲蚀设备示意图如图2 所示。

  • 图2 冲蚀设备示意图

  • Fig.2 Schematic diagram of the erosion test rig

  • 2 结果与讨论

  • 2.1 涂层组分结构

  • 涂层的表面形貌和截面形貌如图3 所示。图3a、 3b 及图3c、3d 分别为 CrN 涂层和及 CrN-zigzag 涂层截面形貌和表面形貌,两种涂层表面形貌差别不大,主要呈现棱锥型形貌。在基体与溅射源平行布置溅射中,溅射粒子沿法向方向沉积到基体表面,呈现典型贯穿性柱状纳米晶结构生长(图3a)。 CrN-zigzag 涂层由垂直底层结构、zigzag 结构及垂直顶层结构组成,其中 zigzag 结构为倾斜柱状晶组成。碰撞粒子的动能会引起表面扩散和体扩散,改变入射离子与基体之间的方向,这三种机制的相互竞争形成倾斜的柱状晶体,本文主要采用改变入射离子与基体之间的方向来形成 zigzag 结构。但在涂层的生长过程中,若溅射粒子扩散能力不足,基体上己沉积的涂层会对后沉积到基体上的粒子产生遮挡阴影效应,导致涂层内存在晶间空隙和孔洞。一方面有文献表明而当入射角度小于 80°时形成结构致密[20],所以本研究在沉积 CrN-zigzag 涂层过程中选择了相对较小的倾角 45°,以获得高密度的微观结构。另一方面在涂层生长过程中,促进表面吸附原子扩散的基体温度和高的溅射离子能量是保持涂层高密度的重要因素,这可在一定程度上弥补遮蔽效应[21],并有助于涂层致密微观结构的形成,所以本文采用 450℃沉积温度。此外,生长方向的改变并没有改变 zigzag 结构中扭结面柱状晶粒的不连续,而柱状晶粒在整个涂层中不断生长[22],不间断生长的原因之一是生长表面始终暴露在同一个等离子体放电的溅射源中,角度改变交替发生。第二个原因是足够高的表面扩散导致在扭结面上柱状结构致密排列。最终结果如 3c 截面图所示,在晶界处没有宏观缺陷。CrN 涂层和 CrN-zigzag 涂层的总厚度分别约为 3.8 μm 和 3.7 μm,基体和涂层结合紧密,涂层厚度相对均一。

  • 图3 涂层表面和截面形貌图

  • Fig.3 Surface and cross-sectional morphologies of the coatings

  • EDS测得的CrN涂层和CrN-zigzag涂层的化学成分如图4b 所示,CrN 涂层和 CrN-zigzag 涂层中 Cr 与 N 的原子百分比分别为 30.62∶69.38、30.09∶ 68.91,成分相差不大。图4a 为 CrN 涂层及 CrN-zigzag 涂层的微观结构 XRD 图。如图4a 所示,两种涂层均呈现出立方 CrN 相(PDF#65-2889)和六方 Cr2N(PDF#35-0803)相。从 XRD 图谱中可发现 CrN-zigzag 涂层中立方 CrN 主要为(111)、 (200)、(220)、(311)和(222)峰,呈多晶结构[23]。而 CrN 涂层中为(200)峰,主要因在涂层生长的初始阶段和更大厚度时晶粒的取向不同。zigzag 结构 CrN 涂层改变沉积方向后虽然没改变柱状晶的连续生长,但抑制了垂直柱状晶的生长,从而改变取向。两种涂层立方 CrN 中取向主要为(200),由于 (200)晶体平面在 CrN 中相对于其他取向具有最低的表面能,因此需要较长的扩散距离才能形成。较高的沉积温度使吸收原子的扩散能力增强,从而形成强(200)取向。涂层在 42°~45°处显示宽峰,这是由于对应的 Cr2N(002)、CrN(200)平面的衍射峰的叠加[24]

  • 图4 涂层 GIXRD 和成分图谱

  • Fig.4 GIXRD patterns and chemical composition of the coatings

  • 2.2 涂层力学性能

  • 涂层的硬度和弹性模量通过连续刚度法测试得到,为了避免基体对涂层硬度的影响,设定压入深度小于涂层厚度的 1 / 10 [25]。图5a 为涂层的硬度、模量、H / EH3 / E2。CrN涂层和 CrN-zigzag 涂层的硬度分别为 22.4±3 GPa 和 19.2±2 GPa,模量分别为 301.1±34 GPa 和 230.9±20 GPa。此外,图5b 给出了 H / EH3 / E2 比值的变化,其中断裂韧性与 H / E 值相关,塑性变形抗力可用 H3 / E2 值表示[26]。CrN 涂层和 CrN-zigzag 涂层 H / E 值分别为 0.074 和 0.083,H3 / E2 值分别为 0.125 和 0.133。与 CrN 涂层相比,CrN-zigzag 涂层的硬度虽然有略微降低,但其 H / EH3 / E2 比有一定程度增加,表明 zigzag 结构 CrN 涂层的韧性得到了改善。这归因于特殊的晶界设计形成的类弹簧结构。

  • 图5 涂层力的硬度(H),弹性模量(E),H / EH3 / E2

  • Fig.5 Hardness (H) , elastic modulus (E) , H / E and H3 / E2 of the coatings

  • 通过划痕试验评价涂层的结合力,图6 所示为涂层结合力及其相应的划痕形貌。随着载荷的增加,划痕的宽度和厚度逐渐增大,这里将膜基结合力定义为在划痕中出现完全且连续的剥落,即基体完全暴露时的载荷 LC3[27]。通过图6a 可以看到,两种涂层拥有相近的膜基结合力,当载荷接近 48 N 时,样品基体完全暴露,同时划痕边缘发生大面积剥落。由图6b、6c 对应的放大图可知,涂层的脱落区域包含了许多向外扩展的裂纹,说明裂纹是从划痕边缘开始的。涂层表现出典型的粘接破坏特征,在剥离区边缘伴有内聚破坏。涂层的失效是由划痕轨道内的半圆形裂纹引起的。这些拉伸裂纹与触针平行,并且它们的密度增加,直到基体显露。CrN-zigzag 涂层在 0~48 N 范围内声音信号波动明显弱于 CrN 涂层,环形裂纹数量及裂纹宽度均小于 CrN 涂层,说明 zigzag 层在协调涂层与基体之间的变形以及吸收变形过程中产生的能量等方面有着重要作用,进而提高涂层的韧性。复杂的晶界设计可以有效地控制具有塑性微观结构硬脆性涂层断裂过程中的裂纹扩展,在亚微米尺寸、呈线形的倾斜柱状晶粒的扭结面上进行可控的多裂纹偏转,可以有效降低裂纹驱动力,同时提高裂纹扩展能力。

  • 图6 涂层划痕形貌

  • Fig.6 Scratch morphologies of the coatings

  • 2.3 涂层冲蚀性能

  • 材料的抗冲蚀性能可以通过冲蚀率来反映,冲蚀率越低,说明材料在冲蚀过程中损失的质量越少,即材料的抗冲蚀性能越好。CrN 涂层和 CrN-zigzag 涂层的冲蚀速率如图7 所示。在相同的冲蚀条件下, CrN 涂层的冲蚀速率为 2.57±0.92 mg / g,比 CrN-zigzag 涂层的冲蚀速率(1.63±0.13 mg / g)高出约 57.67%。使用 3D 白光干涉仪对冲蚀后的三维表面形貌进行表征如图7 插图所示,表明冲蚀区域存在冲蚀坑,为典型脆性材料的冲蚀特征[28]。涂层最深凹坑深度分别约为 12 μm,涂层厚度为 3.8 μm,表明在经过冲蚀后涂层损伤并暴露基体,CrN 涂层冲蚀后裸露基体面积大于 CrN-zigzag 涂层。单层金属氮化硬质涂层在抗冲蚀方面存在内应力高、脆性高、断裂韧性低等缺点,导致涂层在受到砂的冲击时容易开裂。CrN-zigzag 涂层使裂纹在材料中扩展产生多层扰度,吸收应变能,提高涂层的损伤容限,同时,在某种程度上可以释放涂层中的残余应力,协调变形,并提高涂层的结合强度和韧性,zigzag 结构涂层可以看作一种多层涂层,它由于多层界面的协同作用,具有较强的力学性能和良好的冲蚀性能。

  • 图7 涂层的冲蚀率

  • Fig.7 Erosion rate of the coatings

  • 为了揭示两种涂层的冲蚀损伤机理,通过 SEM 对其表面形貌进行观察分析。冲蚀后涂层的表面形貌如图8 所示。两种涂层(图8a、8b),基体已经暴露,中心冲蚀区比边缘冲蚀损伤更严重,归因于粒子浓度沿径向的下降。从冲蚀痕的边缘区域,可以看到许多材料去除留下的离散的圆形凹坑。在中心冲蚀区暴露出基体面积可能是由于大量颗粒撞击产生的离散圆形凹坑逐渐扩展和相交形成的。涂层随着颗粒的冲蚀而逐渐磨损,最后,中心冲蚀区域的涂层全部脱落暴露基体。CrN-zigzag 涂层基体的暴露面积小于 CrN 涂层,证明在相同的冲蚀条件下, CrN-zigzag 涂层抗冲蚀性优于 CrN 涂层。在图8a 中可以看到,90°冲蚀后涂层出现大面积的冲蚀破坏以及局部的冲蚀坑存在,远离中心区域可以看到涂层整体保持完整,仅有小尺寸的冲蚀坑存在。通过局部放大图(图8a-1)可以看到 CrN 涂层表现为明显的脆性失效特征,以及在冲蚀中心区域表现为块状破碎,符合硬质材料脆性失效特征。同时,涂层表面布满的环形裂纹(黄色虚线)也表明表层 CrN 涂层的高脆性。通过局部放大图(图8b-1)可以看到 CrN-zigzag 涂层表现为明显的脆性和韧性失效双特征,涂层表面存在因砂砾的冲击形成的塑性变形冲击坑如图8b-1 中圆形处,也存在因涂层脆性断裂形成的凹坑如图8b-1 中矩形处,该现象与 BITTER[29]提出的变形磨损理论符合。涂层表面也存在垂直入射产生的挤压痕和倾斜入射的犁耕痕 (图8b-1 椭圆虚线),这些冲蚀形貌特征说明以塑性方式去除的。从犁耕痕方向上看,与砂砾冲击涂层的方向不一致,显示出一定的随机性。粒子斜射入涂层的原因有两种:一是垂直入射的粒子冲击涂层后破碎,有动能较大的尖锐碎片对涂层进行二次切割;二是粒子冲击涂层后直接反弹或者破碎反弹,后续粒子撞击这些反弹回的粒子,造成其方向改变。这些粒子中动能较大的粒子斜射入涂层,会对涂层造成损伤。这也与 TILLY 等 [30]的二次冲蚀理论相符。CrN-zigzag 涂层表现出的冲击坑的尺寸和裂纹数量均比 CrN 涂层少,究其原因,是 zigzag 结构的设计增强了其韧性,抵抗脆性开裂的能力提高,不易产生裂纹。

  • 图8 涂层冲蚀后形貌图

  • Fig.8 Morphologies of the coatings after erosion

  • 3 结论

  • (1)采用磁控溅射技术制备出 CrN 及 CrN-zigzag 涂层,涂层组织致密,呈现柱状结构, CrN-zigzag 涂层在 90°冲蚀角度下的具有优异的抗冲蚀性能。

  • (2)CrN-zigzag 涂层在砂砾冲蚀试验中表现出良好的抗冲蚀性能与 zigzag 结构设计有关,主要归因于其专门的晶界取向设计,涂层具有更高的韧性,使裂纹在材料中多层挠度,提高了材料的损伤容限。

  • (3)对于涂层的抗冲蚀性能测试仅停留在垂直角度,与实际使用工况存在一定差异,后续开展多角度冲蚀性能测试更能符合实际工况。

  • 参考文献

    • [1] KRELLA Alicja.Resistance of PVD coatings to erosive and wear processes:A review[J].Coatings,2020,10(912):1-34.

    • [2] HE Guangyu,SUN Danyang,CHEN Jiao,et al.Key problems affecting the anti-erosion coating performance of aero-engine compressor:A review[J].Coatings,2019,9(812):1-17.

    • [3] 金杰,黄晓林,孟祥宇,等.Cr-Ti-N 系多层膜成分及周期对抗冲蚀性能的影响[J].中国表面工程,2015,28(4):105-112.JIN Jie,HUANG Xiaolin,MENG Xiangyu,et al.Influence of Cr-Ti-N multilayers with different periods and constituents on erosion resistance performance[J].China Surface Engineering,2015,28(4):105-112.(in Chinese)

    • [4] 耿明睿,陈皎,杨竹芳,等.TC4 钛合金表面冲蚀损伤机理的砂尘粒径依赖效应[J].中国表面工程,2018,31(3):17-26.GEN Mingrui,CHEN Jiao,YANG Zhufang,et al.Dependent effects of particle size on erosion wear mechanism of TC4 titanium alloy[J].China Surface Engineering,2018,31(3):17-26.(in Chinese)

    • [5] 曹鑫,王冠,何卫锋,等.TC4 钛合金与多层 TiN/Ti 涂层的砂尘冲蚀损伤试验[J].航空动力学报,2016,31(9):2218-2225.CAO Xin,WANG Guan,HE Weifeng,et al.Sand erosion damage test on TC4 titanium alloy and TiN/Ti multilayer coating[J].Journal of Aerospace Power,2016,31(9):2218-2225.(in Chinese)

    • [6] 马颖,任俊,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.MA Yin,RENG Jun,LI Yuandong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-25.(in Chinese)

    • [7] RICKERBY D,SBURNETT P J.The wear and erosion resistance of hard PVD coatings[J].Surface and Coatings Technology,1987,33(1-4):191-211.

    • [8] DOBRZANSKI L ALUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157:317-23.

    • [9] SUE JA,ATROUE HH.Influence of crystallographic orientation,residual strains,crystallite size and microhardness on erosion in ZrN coating[J].Surface and Coatings Technology,1989,39(1-3):421-434.

    • [10] GACHON Y,VANNES AB,FARGES G,et al.Study of sand particle erosion of magnetron sputtered multilayer coatings [J].Wear,1999,233:263-274.

    • [11] VLASVELD A C,HARRIS S G,DOYLE E D,et al.Characterisation and performance of partially filtered arc TiAlN coatings[J].Surface and Coatings Technology,2002,149(2-3):217-24.

    • [12] YANG Q,SEO DY,ZHAO LR,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J].Surface and Coatings Technology,2004,188:168-73.

    • [13] GUO Huixia,SUN Qinshou,ZHOU Dapeng,et al.Erosion behavior of CrN,CrAlN and CrAlN/CrN multilayer coatings deposited on Ti6Al4V[J].Surface and Coatings Technology,2022,437(128248):1-11.

    • [14] GU Jiabin,LI Liuhe,AI Meng,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface and Coatings Technology,2020,402(126270):1-8.

    • [15] SUI Xudong,LI Guojian,QIN Xuesi,et al.Relationship of microstructure,mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool[J].Ceramics International,2016,42(6):7524-7532.

    • [16] WEI Ronghua.Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5-7):538-544.

    • [17] LIU Zhengliang,KHAN Azim,SHEN Mingli,et al.Microstructure and cavitation erosion resistance of arc ion plating NiCrAlY coating on the 304L stainless steel[J].Tribology International,2022,173(107618)1-14.

    • [18] HAWKEYE Matthew,BREET Michael.Glancing angle deposition:fabrication,properties,and applications of micro-and nanostructured thin films[J].Journal of Vacuum Science and Technology A,2002,25(5):1317-1335.

    • [19] SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads[J].Journal of Materials Science and Technology,2021,80:179-190.

    • [20] 马佳玉.掠射角磁控溅射沉积 NixOy薄膜及电致变色性能研究[D].沈阳:沈阳大学,2021.MA Jiayu.Study on electrochromic properties of NixOy thin films deposited by glancing angle magnetron sputtering[D].Shenyang:Shenyang University,2021.(in Chinese)

    • [21] DANIEL Rostislav,MEINDLHUMER Michael,BAUMEGGER Walter,et al.Grain boundary design of thin films:using tilted brittle interfaces for multiple crack deflection toughening[J].Acta Materialia,2017,122:130–137.

    • [22] WANG Li,WANG Zhenyu,ZUO Xiao,et al.Sandwich-zigzag structure enhanced erosion resistance of TiN coatings[J].Materials Letters,2022,310:(131496):1-4

    • [23] 夏虎峰,田广科,陈庆春,等.不同工作环境CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working environments[J].China Surface Engineering,2019,2019,32(6):56-62.(in Chinese)

    • [24] BARATA A,CUNHA L,MOUTA C,Characterisation of chromium nitride films produced by PVD techniques[J].Thin Solid Films,2001,398:501-506.

    • [25] BORAWSKI Brian,SINGH Jogender,TODD Judith A,et al.Multi-layer coating design architecture for optimum particulate erosion resistance[J].Wear,2011,271:2782–2792.

    • [26] RECCO AAC,OLIVEIRA IC,MASSI M,et al.Adhesion of reactive magnetron sputtered TINx and TICy coatings to AISI H13 tool steel[J].Surface and Coatings Technology,2007,202:1078-1083.

    • [27] RUAN Haitao,WANG Zhenyu,WANG Li,et al.Designed Ti/TiN sub-layers suppressing the crack and erosion of TiAlN coatings[J].Surface and Coatings Technology,2022,438:(128419):1-12.

    • [28] KUMAR A,SHARMA A,GOEL S K.Erosion behaviour of WC-10Co-4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying[J].Applied Surface Science,2016,370:418-426.

    • [29] BITTER J G A.A study of erosion phenomena part Ⅱ[J].Wear,1963,6(1):169-190.

    • [30] TILLY G P.A two stage mechanism of ductile erosion[J].Wear,1973,23(1):87-96.

  • 参考文献

    • [1] KRELLA Alicja.Resistance of PVD coatings to erosive and wear processes:A review[J].Coatings,2020,10(912):1-34.

    • [2] HE Guangyu,SUN Danyang,CHEN Jiao,et al.Key problems affecting the anti-erosion coating performance of aero-engine compressor:A review[J].Coatings,2019,9(812):1-17.

    • [3] 金杰,黄晓林,孟祥宇,等.Cr-Ti-N 系多层膜成分及周期对抗冲蚀性能的影响[J].中国表面工程,2015,28(4):105-112.JIN Jie,HUANG Xiaolin,MENG Xiangyu,et al.Influence of Cr-Ti-N multilayers with different periods and constituents on erosion resistance performance[J].China Surface Engineering,2015,28(4):105-112.(in Chinese)

    • [4] 耿明睿,陈皎,杨竹芳,等.TC4 钛合金表面冲蚀损伤机理的砂尘粒径依赖效应[J].中国表面工程,2018,31(3):17-26.GEN Mingrui,CHEN Jiao,YANG Zhufang,et al.Dependent effects of particle size on erosion wear mechanism of TC4 titanium alloy[J].China Surface Engineering,2018,31(3):17-26.(in Chinese)

    • [5] 曹鑫,王冠,何卫锋,等.TC4 钛合金与多层 TiN/Ti 涂层的砂尘冲蚀损伤试验[J].航空动力学报,2016,31(9):2218-2225.CAO Xin,WANG Guan,HE Weifeng,et al.Sand erosion damage test on TC4 titanium alloy and TiN/Ti multilayer coating[J].Journal of Aerospace Power,2016,31(9):2218-2225.(in Chinese)

    • [6] 马颖,任俊,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.MA Yin,RENG Jun,LI Yuandong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-25.(in Chinese)

    • [7] RICKERBY D,SBURNETT P J.The wear and erosion resistance of hard PVD coatings[J].Surface and Coatings Technology,1987,33(1-4):191-211.

    • [8] DOBRZANSKI L ALUKASZKOWICZ K.Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate[J].Journal of Materials Processing Technology,2004,157:317-23.

    • [9] SUE JA,ATROUE HH.Influence of crystallographic orientation,residual strains,crystallite size and microhardness on erosion in ZrN coating[J].Surface and Coatings Technology,1989,39(1-3):421-434.

    • [10] GACHON Y,VANNES AB,FARGES G,et al.Study of sand particle erosion of magnetron sputtered multilayer coatings [J].Wear,1999,233:263-274.

    • [11] VLASVELD A C,HARRIS S G,DOYLE E D,et al.Characterisation and performance of partially filtered arc TiAlN coatings[J].Surface and Coatings Technology,2002,149(2-3):217-24.

    • [12] YANG Q,SEO DY,ZHAO LR,et al.Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J].Surface and Coatings Technology,2004,188:168-73.

    • [13] GUO Huixia,SUN Qinshou,ZHOU Dapeng,et al.Erosion behavior of CrN,CrAlN and CrAlN/CrN multilayer coatings deposited on Ti6Al4V[J].Surface and Coatings Technology,2022,437(128248):1-11.

    • [14] GU Jiabin,LI Liuhe,AI Meng,et al.Improvement of solid particle erosion and corrosion resistance using TiAlSiN/Cr multilayer coatings[J].Surface and Coatings Technology,2020,402(126270):1-8.

    • [15] SUI Xudong,LI Guojian,QIN Xuesi,et al.Relationship of microstructure,mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool[J].Ceramics International,2016,42(6):7524-7532.

    • [16] WEI Ronghua.Plasma enhanced magnetron sputter deposition of Ti–Si–C–N based nanocomposite coatings[J].Surface and Coatings Technology,2008,203(5-7):538-544.

    • [17] LIU Zhengliang,KHAN Azim,SHEN Mingli,et al.Microstructure and cavitation erosion resistance of arc ion plating NiCrAlY coating on the 304L stainless steel[J].Tribology International,2022,173(107618)1-14.

    • [18] HAWKEYE Matthew,BREET Michael.Glancing angle deposition:fabrication,properties,and applications of micro-and nanostructured thin films[J].Journal of Vacuum Science and Technology A,2002,25(5):1317-1335.

    • [19] SHUAI Jintao,ZUO Xiao,WANG Zhenyu,et al.Erosion behavior and failure mechanism of Ti/TiAlN multilayer coatings eroded by silica sand and glass beads[J].Journal of Materials Science and Technology,2021,80:179-190.

    • [20] 马佳玉.掠射角磁控溅射沉积 NixOy薄膜及电致变色性能研究[D].沈阳:沈阳大学,2021.MA Jiayu.Study on electrochromic properties of NixOy thin films deposited by glancing angle magnetron sputtering[D].Shenyang:Shenyang University,2021.(in Chinese)

    • [21] DANIEL Rostislav,MEINDLHUMER Michael,BAUMEGGER Walter,et al.Grain boundary design of thin films:using tilted brittle interfaces for multiple crack deflection toughening[J].Acta Materialia,2017,122:130–137.

    • [22] WANG Li,WANG Zhenyu,ZUO Xiao,et al.Sandwich-zigzag structure enhanced erosion resistance of TiN coatings[J].Materials Letters,2022,310:(131496):1-4

    • [23] 夏虎峰,田广科,陈庆春,等.不同工作环境CrN涂层的摩擦磨损性能[J].中国表面工程,2019,32(6):56-62.XIA Hufeng,TIAN Guangke,CHEN Qingchun,et al.Friction and wear properties of CrN films in different working environments[J].China Surface Engineering,2019,2019,32(6):56-62.(in Chinese)

    • [24] BARATA A,CUNHA L,MOUTA C,Characterisation of chromium nitride films produced by PVD techniques[J].Thin Solid Films,2001,398:501-506.

    • [25] BORAWSKI Brian,SINGH Jogender,TODD Judith A,et al.Multi-layer coating design architecture for optimum particulate erosion resistance[J].Wear,2011,271:2782–2792.

    • [26] RECCO AAC,OLIVEIRA IC,MASSI M,et al.Adhesion of reactive magnetron sputtered TINx and TICy coatings to AISI H13 tool steel[J].Surface and Coatings Technology,2007,202:1078-1083.

    • [27] RUAN Haitao,WANG Zhenyu,WANG Li,et al.Designed Ti/TiN sub-layers suppressing the crack and erosion of TiAlN coatings[J].Surface and Coatings Technology,2022,438:(128419):1-12.

    • [28] KUMAR A,SHARMA A,GOEL S K.Erosion behaviour of WC-10Co-4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying[J].Applied Surface Science,2016,370:418-426.

    • [29] BITTER J G A.A study of erosion phenomena part Ⅱ[J].Wear,1963,6(1):169-190.

    • [30] TILLY G P.A two stage mechanism of ductile erosion[J].Wear,1973,23(1):87-96.

  • 手机扫一扫看