en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

向阳阳,男,1992年出生,博士研究生。主要研究方向为材料表界面功能化、防护涂层、智能驱动材料的开发和应用。E-mail:xiangyy92@126.com

通讯作者:

于波,女,1979年出生,博士,研究员,博士研究生导师。主要研究方向为表面改性方法学、表面功能材料和功能防护技术等。E-mail:yubo@licp.cas.cn

中图分类号:TG317;TB304

DOI:10.11933/j.issn.1007−9289.20220731001

参考文献 1
HIRVIKORPI T,VäHä-NISSI M,MUSTONEN T,et al.Atomic layer deposited aluminum oxide barrier coatings for packaging materials[J].Thin Solid Films,2010,518(10):2654-2658.
参考文献 2
薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surface Engineering,2021,34(4):53-59.(in Chinese)
参考文献 3
KOPANATI G N,SEETHAMRAJU S,RAMAMURTHY P C,et al.Water vapor barrier material by covalent self-assembly for organic device encapsulation[J].Industrial & Engineering Chemistry Research,2014,53(46):17894-17900.
参考文献 4
ANDRINGA A M,PERROTTA A,DE PEUTER K,et al.Low-temperature plasma-assisted atomic layer deposition of silicon nitride moisture permeation barrier layers[J].ACS Applied Materials & Interfaces,2015,7(40):22525-22532.
参考文献 5
ZHANG Z,SONG R,LI G,et al.Improving barrier properties of pet by depositing a layer of DLC films on surface[J].Advances in Materials Science and Engineering,2013,2013:1-6.
参考文献 6
XIE J,WANG Z,ZHAO Q,et al.Scale-up fabrication of biodegradable poly(butylene adipate-co terephthalate)/organophilic-clay nanocomposite films for potential packaging applications[J].ACS Omega,2018,3(1):1187-1196.
参考文献 7
PERROTTA A,GARCIA S J,MICHELS J J,et al.Analysis of nanoporosity in moisture permeation barrier layers by electrochemical impedance spectroscopy[J].ACS Applied Materials & Interfaces,2015,7(29):15968-15977.
参考文献 8
DAMERON A A,DAVIDSON S D,BURTON B B,et al.Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J].Journal of Physical Chemistry C,2008,112(12):4573-4580.
参考文献 9
HOFFMANN L,THEIRICH D,PACK S,et al.Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD[J].ACS Applied Materials & Interfaces,2017,9(4):4171-4176.
参考文献 10
TESHIMA K,SUGIMURA H,INOUE Y,et al.Gas barrier performance of surface-modified silica films with grafted organosilane molecules[J].Langmuir,2003,19(20):8331-8334.
参考文献 11
丁雪佳,薛海蛟,李洪波,等.硬质聚氨酯泡沫塑料研究进展[J].化工进展,2009,28(2):278-282.DING Xuejia,XUE Haijiao,LI Hongbo,et al.Review of rigid polyurethane foam plastic[J].Chemical Industry and Engineering Progress,2009,28(2):278-282.(in Chinese)
参考文献 12
杨春柏.硬质聚氨酯泡沫塑料研究进展[J].中国塑料,2009,23(2):12-15.YANG Chunbai.Research progress in rigid polyurethane foam[J].China Plastics,2009,23(2):12-15.(in Chinese)
参考文献 13
马丽红.硬质聚氨酯泡沫塑料研究进展[J].石化技术,2016,23(6):24-25,36.MA Lihong.Research progress of rigid polyurethane foam[J].Petrochemical Technology,2016,23(6):24-25,36.(in Chinese)
参考文献 14
ZHENG Z,CUI Z,SI J,et al.Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating[J].ACS Omega,2019,4(4):6382-6391.
参考文献 15
吴彪,谢金华,陈艳平.Parylene 薄膜及其在防潮保护中的应用[J].科技与创新,2019(1):142-143,146.WU Biao,XIE Jinhua,CHEN Yanping.Parylene film and its application in moisture-proof protection[J].Science and Technology & Innovation,2019(1):142-143,146.(in Chinese)
参考文献 16
韩辉升,张飞.聚对二甲苯薄膜制备工艺及其在橡胶制品上的应用[J].高分子通报,2014(12):99-103.HAN Huisheng,ZHANG Fei.Preparation technology of poly(p-xylene)film and its application in rubber products[J].Polymer Bulletin,2014(12):99-103.(in Chinese)
参考文献 17
LI X,ZHANG L,FENG Y,et al.Solid-liquid triboelectrification control and antistatic materials design based on interface wettability control[J].Advanced Functional Materials,2019,29(35):1903587.
参考文献 18
LI B,DU T,YU B,et al.Caterpillar-inspired design and fabrication of a self-walking actuator with anisotropy,gradient,and instant response[J].Small,2015,11(28):3494-3501.
参考文献 19
景泽坤.聚氯代对二甲苯/石墨烯多层阻水复合膜的制备及其性能研究[D].绵阳:西南科技大学,2021.JING Zekun.Preparation and properties of multilayer parylene C/graphene water vapor barrier composite films[D].Mianyang:Southwest University of Science and Technology,2021.(in Chinese)
参考文献 20
张官铭,张坤,陈晨,等.硬质聚氨酯泡沫的制备及表征[J].浙江理工大学学报(自然科学版),2022,47(5):687-695.ZHANG Guanming,ZHANG Kun,CEHN Chen,et al.Preparation and characterization of rigid polyurethane foam[J].Journal of Zhejiang Sci-Tech University(Natural Sciences Edition),2022,47(5):687-695.(in Chinese)
参考文献 21
魏定邦,李晓民,何孝万,等.基于衰减全反射红外光谱技术的水在沥青中扩散过程研究[J].建筑材料学报,2019,22(1):120-126.WEI Dingbang,LI Xiaomin,HE Xiaowan,et al.Study on water diffusion in asphalt based om FTIR-ATR[J].Journal of Building Materials,2019,22(1):120-126.(in Chinese)
参考文献 22
刘伟,王莉丽,刘连利,等.石英玻璃中羟基含量测定的红外光谱法研究[J].渤海大学学报(自然科学版),2008,29(4):332-335.LIU Wei,WANG Lili,LIU Lianli,et al.Study on infrared spectroscopy for determination of hydroxyl content in quartz glass[J].Journal of Bohai University(Natural Science Edition),2019,29(4):332-335.(in Chinese)
参考文献 23
肖胜玉,李茂林,孙昱东.沥青质中官能团结构和氢键的红外光谱表征[J].石油炼制与化工,2022,53(3):99-103.XIAO Shengyu,LI Maolin,SUN Yudong,et al.Infrared spectroscopic characterization of functional group structure and hydrogen bonding in asphaltene[J].Petroleum Processing and Petrochemicals,2022,53(3):99-103.(in Chinese)
参考文献 24
NODA I.Generalized 2-dimensional correlation method applicable to infrared,raman,and other types of spectroscopy[J].Advanced Materials,1993,47(9):1329-1336.
参考文献 25
GONG K,HOU L,WU P Y.Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering[J].Advanced Materials,2022,34:2201065.
参考文献 26
IGARASHI T,HOSHI M,NAKAMURA K.,et al.Direct Observation of bound water on cotton surfaces by atomic force microscopy and atomic force microscopy-infrared spectroscopy[J].The Journal of physical chemistry C,2020,124(7):4196-4201.
参考文献 27
STRIKOVSKY A G,ZHARKOV V V,Infra-red spectroscopy study of equilibrium association of urethane groups in poly(ether urethane)s[J].Polymer,1993,34(16):3397-3401.
参考文献 28
胡永茂,李汝恒,何鋆,等.聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究[J].应用光学,2014,35(4):663-669.HU Yongmao,LI Ruheng,HE Yun,et al.Preparation of parylenen-N ultrathin films and their applications in organic light emitting diodes[J].Journal of Applied Optics,2014,35(4):663-669.(in Chinese)
参考文献 29
DI W S,WANG X,ZHOU Y Y,et al.Fluorination increases hydrophobicity at the macroscopic level but not at the microscopic level[J].Chinese Physics Letters,2022,39(3):038701.
参考文献 30
汪国庆,姚兰芳,沈军,等.聚对二甲苯防潮薄膜的研究[J].同济大学学报(自然科学版),2005(10):61-65.WANG Guoqing,YAO Lanfang,SHEN Jun,et al.Parylene used for moisture-proof films[J].Journal of Tongji University(Natural Science Edition),2005(10):61-65.(in Chinese)
参考文献 31
吉祥波,唐贤臣,鲜晓斌,等.聚氯代对二甲苯薄膜热氧老化性能研究[J].塑料工业,2008(5):46-49.JI Xiangbo,TANG Xianchen,XIAN Xiaobing,et al.Study of thermal aging property of parylene C film[J].China Plastics Industry,2008(5):46-49.(in Chinese)
参考文献 32
舒忠虎,鲍江涌,陈标,等.基于磁控溅射–氟化改性的新型 ZnO/SiO2 复合超疏水涂层防冰性能研究[J].表面技术,2022,51(8):452-459.SHU Zhonghu,BAO Jiangyong,CHEN Biao.Research on anti-ice performance of a novel ZnO/SiO2 composite superhydrophobic coating modified by magnetron sputtering and fluoridation[J].Surface Technology,2022,51(8):452-459.(in Chinese)
参考文献 33
鲍春辉,徐杰,刘哲.低场核磁共振技术在稻谷水分测定中的应用[J].现代农业装备,2022,43(4):46-55.BAO Chunhui,XU Jie,LIU Zhe.Application of low field nuclear magnetic resonance technology in rice moisture determination[J].Modern Agricultural Equipment,2022,43(4):46-55.(in Chinese)
参考文献 34
DENG G H,SHEN Y,CHEN H,et al.Ordered to disordered transformation of enhanced water structure on hydrophobic surfaces in concentrated alcohol-water solutions[J].Journal of Physical Chemistry Letters,2019,10(24):7922-7928.
参考文献 35
KIM S H,KIM M,LEE J H,et al.Moisture barrier films containing plasma polymer fluorocarbon/inorganic multilayers fabricated via continuous roll-to-roll sputtering[J].Plasma Processes and Polymers,2018,15(7):1700221.
参考文献 36
WANG X,YE Q,LIU J,et al.Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups[J].Journal of Colloid and Interface Science,2010,351(1):261-266.
参考文献 37
栗培龙,马云飞,宿金菲,等.橡胶沥青表面能影响因素分析[J].中国科技论文,2022,17(4):388-393.LI Peilong,MA Yunfei,SU Jinfei,et al.Analysis of influencing factors of rubber-asphalt surface free energy[J].China Science Paper,2022,17(4):388-393.(in Chinese)
参考文献 38
FOWKES F M.Attractive forces at interfaces[J].Industrial and Engineering Chemistry,1964,56(12):40-52.
参考文献 39
DROZDOV A D,CHRISTIANSEN J D,GUPTA R K,et al.Model for anomalous moisture diffusion through a polymer–clay nanocomposite[J].Journal of Polymer Science Part B-Polymer Physics,2003,41(5):476-92.
参考文献 40
SHEN C H,SPRINGER G S.Moisture absorption and desorption of composite materials[J].Journal of Composite Materials,1976,10:2-10.
参考文献 41
庄婷婷.有机高分子吸湿材料的研究进展[J].塑料工业,2018,46(5):30-33.ZHUANG Tingting.Research progress in moisture absorbing polymers[J].China Plastics Industry,2018,46(5):30-33.(in Chinese)
参考文献 42
KIM J K,HU C G,WOO R S C,et al.Moisture barrier characteristics of organoclay–epoxy nanocomposites[J].Composites Science and Technology,2004,65(5):805-813.
目录contents

    摘要

    硬质聚氨酯泡沫(RPUF)的吸湿特性导致泡沫塑化、溶胀变形,影响其服役安全性及稳定性。但目前针对这种亲水性多孔界面的阻湿研究鲜有报道。通过表面改性的方法引入阻湿层是一种非常有效的解决方法,聚对二甲苯(Parylene C)可在室温沉积条件下形成致密薄膜,具有优异的阻湿性能。在 RPUF 表面沉积 Parylene C 薄膜,然后利用全氟小分子组装进行界面疏水改性。通过一维和二维红外、低场核磁、微观形貌和元素组成等表征以及不同厚度镀膜试样吸湿曲线等分析,阐明 RPUF 的吸湿机理及复合涂层体系阻湿的相关规律。结果表明:当 Parylene C 镀膜达到一定厚度后, RPUF 表面的孔缺陷会被覆盖,其阻湿性能可提高 73.6%,同时全氟小分子表面疏水改性后聚氨酯泡沫表面和水分子的相互作用和吸附会被减弱,进一步降低吸湿率。揭示了 RPUF 吸湿机理和 Parylene C 薄膜界面阻湿的基本规律,有望用于解决硬质聚氨酯泡沫的长效阻湿问题。

    Abstract

    The rigid polyurethane foam(RPUF) with porous structure possesses the characteristics of low density, high strength, strong thermal insulation, excellent shock absorption property, and so on. Therefore, it is widely used in outer packing fields such as aviation, navigation, and precision instruments, and has many application prospects. However, there are random micron-scale pore structures and polar hygroscopic chemical groups on the surface of RPUF, which cause foam plasticization, swelling, and deformation due to moisture absorption. The existence of these unfavorable factors would influence the dimensional accuracy and mechanical properties of precision components, which seriously affect service safety and stability. However, there are few reports about moisture barrier research aimed at this hydrophilic porous polymer material. Fortunately, the introduction of a moisture barrier layer by surface modification is a very effective solution. Generally, the deposition temperature of the moisture barrier exceeds 50 °C, which will cause outgassing and damaging to the polyurethane foam. Coating the RPUF surface is another strategy to make up for defects, as this kind of method is complicated and the organic solvents used in the coating make polyurethane foam swell and crack. In this paper, a fully shape-matched micron-scale moisture barrier film is growing on the surface of polyurethane foam using Parylene C room-temperature deposition technology. The advantages are that the conditions of the deposition process are mild and undamaged to the substrate, and the high crystallinity and high molecular weight of the coating can effectively conceal the pore defects on the surface of the RPUF. Besides, the film has good adhesion with RPUF, and possesses uniform thickness and compact structure, which can effectively block the penetration of water molecules. Meanwhile, perfluorinated small molecules with hydrophobic properties are assembled on the surface of Parylene C film by the method of vapor deposition. The interaction between the hydrophobic modified interface and water molecules are weakened, which further reduced the adsorption and penetration of water molecules for RPUF. In addition, the moisture absorption mechanism and moisture barrier laws of the composite coating system were elucidated through the characterization of one-dimensional and two-dimensional infrared, low-field nuclear magnetic resonance, microscopic morphology, and element composition, as well as investigation of the adsorption kinetic curves of samples with different thickness Parylene C film. Results show that there are abundant hydrophilic groups in the RPUF segment, such as –NH and –C=O, which create water molecules with high solubility in the RPUF and form hydrogen bonding interactions. On the other hand, the loosely arranged polymer segments also provide a larger free volume for the diffusion of water molecules. Meanwhile, the external water molecules can directly enter the RPUF, or adsorb on the inner wall of the pores to form a hydration layer that increases penetration and moisture absorption under the action of capillary forces, which is due to the existence of the pore defects on the RPUF surface. However, the surface energy is significantly reduced after the RPUF or Parylene C film surface undergoes hydrophobic modification by perfluorinated small molecules, which is beneficial to reduce moisture absorption and slow down the adsorption saturation time, although the moisture barrier effect is not obvious. Fortunately, the water contact angle of hydrophobic modification surfaces remains almost unchanged when undergoing long-term ultrasonic treatment, which shows excellent durability and is conducive to a long-term moisture barrier. Moreover, the number of pore defects and sizes on the RPUF surface are decreased with the increase of the thickness of the Parylene C coating. The results demonstrated that Parylene C film can completely cover the pore defects on the surface of RPUF when its thickness reached 40 µm, and the property of the moisture barrier is improved by 73.6%. Meanwhile, the Parylene C film has excellent adhesion on the surface of RPUF, and high and low temperature and relative humidity impact tests have little effect on it. To summarize, the reason for the moisture absorption of the RPUF and the basic laws of the Parylene C film for moisture barrier are revealed, which is expected to be used to solve the issue of the long-term moisture barrier of rigid polyurethane foam.

  • 0 前言

  • 阻湿技术广泛用于食品包装、医药包装及电子封装等领域[1-3],针对所用到的聚合物薄膜展开阻湿材料的研制以阻隔水汽,提升材料或器件的稳定性。通过聚合物薄膜的改性以及表面阻湿技术均可提升其阻湿性能,其中表面阻湿技术是常用的最为有效的方法之一[4-5]。学者们已证实在聚合物材料表面沉积金属、陶瓷等无机纳米薄膜可显著降低透湿率,其湿气阻隔性明显优于聚合物材料的本体改性(疏水改性的聚合物或添加无机纳米填料的聚合物)[6-7]。这主要归结于无机薄膜致密均匀,与基底结合牢固。然而无机薄膜表面会对水分子产生吸附或吸收甚至凝结,增加吸附量,或与水分子发生反应导致其不能长期稳定、高效的阻湿[8-9]。为此研究者采用疏水改性无机纳米薄膜的方法解决上述问题[10]

  • 硬质聚氨酯泡沫(RPUF)因其独有的结构及优异的物理和力学性能,近年来在航天、航海、武器装备以及精密设备等领域发挥着重要作用[11-13]。然而泡沫的吸湿行为导致泡沫塑化、溶胀甚至变形,影响精密部件尺寸精度及力学性能,严重影响其服役安全性及稳定性[14]。然而,工程化应用的闭孔型通用硬质聚氨酯表面存在随机的微米尺度孔结构,较薄厚度的无机沉积薄膜难以覆盖孔结构,阻湿效果不理想。一般薄膜沉积温度超过 50℃,会造成聚氨酯泡沫发生放气现象,造成镀膜缺陷,且较高的沉积温度也会对聚氨酯泡沫造成一定的损伤。另外可采用泡沫表面涂覆聚合物涂层弥补缺陷然后镀膜的策略,但这种方法工艺复杂,且涂覆聚合物过程中用到的有机溶剂也会对聚氨酯泡沫造成影响。

  • 针对硬质聚氨酯泡沫界面阻隔湿气所面临的难点和问题,本文利用聚对二甲苯(Parylene)低温沉积技术在聚氨酯泡沫表面生长出完全敷形的微米尺度阻湿薄膜[15-16]。其优点在于,沉积过程条件温和不损伤基材,镀膜结晶度高且分子量大能够有效的掩盖 RPUF 表面的孔缺陷,而且镀层结合力好、厚度均匀、致密,能够有效阻隔水分子的渗透。在其表面进行疏水改性后,也可有效降低界面与水分子的相互作用,阻湿性能进一步提升。

  • 1 材料与方法

  • 1.1 试验材料

  • 本试验试剂及材料包括 1H,1H,2H,2H-全氟辛基三氯硅烷(97%,上海迈瑞尔化学技术有限公司); Parylene C 粉(苏州派华纳米科技有限公司);聚醚多元醇(N303,工业级,江苏金栖聚氨酯有限公司),多亚甲基多苯基异氰酸酯(PAPI),PM-200,工业级,烟台万华有限公司;聚氨酯泡沫模具(定制); 蒸馏水(实验室自制)。

  • 1.2 硬质聚氨酯泡沫的制备

  • 在聚醚多元醇(N303)中按比例加入催化剂、发泡剂、匀泡剂,在 1 500 r / min 转速下搅拌混合均匀。接着将聚醚组分、PAPI 的物料温度分别调节至 25℃,按比例将 PAPI 加入聚醚组分,迅速搅拌 1 min。将混合均匀的物料浇筑到定制的模具中(预热温度:50℃)进行发泡,然后在 100℃的烘箱中熟化一段时间,待到自然冷却后再进行脱模处理,得到平均密度为 0.32 g / cm3 的硬质聚氨酯泡沫。

  • 1.3 Parylene C 膜的制备

  • 利用化学气相沉积(CVD)法,在 RPUF 表面均匀地沉积聚合一定厚度的 Perylene C 型薄膜(简称 PC 膜)。具体工艺流程为:首先将镀膜设备 (PHL8090)气化室中的 C 型 Parylene 二聚体固态粉末加热气化,然后高温下裂解成气态活性单体,最后活性单体在 RPUF 表面经过吸附、沉积并聚合的过程(压力 5 Pa 左右),形成厚度均匀的涂层,如图1a 所示。PC 膜的厚度通过沉积时间控制,每小时镀膜 2 µm 左右。所用 RPUF 试样的外表面均进行沉积。

  • 图1 阻湿试样制备示意图

  • Fig.1 Schematic diagram of preparation of moisture barrier sample

  • 1.4 表面的疏水改性

  • 将全氟辛基三氯硅烷组装到 RPUF 和 RPUF / PC 试样表面[17-18]。首先采用氧等离子体对试样进行处理提升其表面活性,然后将其平放于真空干燥器内,取 15 µL 全氟辛基三氯硅烷液体放置于小瓶盖内,并放入干燥器内。使用机械泵将腔室内压力降至 100 Pa 以下,最后封闭干燥器静置 40 min,确保单分子层全氟小分子在试样表面均匀组装,如图1b 所示;RPUF 和不同厚度的 PC 镀膜试样依次完成改性。

  • 1.5 吸湿试验

  • 试样测试前置于 40±2℃烘箱干燥处理,参考 GB / T20313,当间隔 24 h 的连续三次测量,试样质量变化小于 0.1%,即视为恒重。记录干燥后试样的质量 m0。然后对试样进行封边,参照 GB / T17146—2015,使用 60%微晶蜡和 40%石蜡混合熔液封边,封边后再次称量试样质量,记为 m1。将试样放置一定湿度和温度的恒温恒湿箱(东莞市勤卓环境测试设备有限公司,可程式恒温恒湿箱 TT5166),在间隔时间内称量其质量,记为 mt。吸湿率 Mt随时间变化计算方法为:

  • Mt=mt-m1m0×100%

  • 每种厚度的试样做三组对照试样,吸湿率取三组数据平均值。

  • 具体吸湿测试条件如下:

  • (1)25℃,RH=80%,综合评测 RPUF、RPUF 表面氟化、RPUF 表面 PC 镀膜、RPUF 表面 PC 镀膜后表面氟化四类试样的吸湿性能,进而分析 RPUF 表面沉积不同厚度 Parylene C 膜后的阻湿效果。

  • (2)将吸湿率较低的 40 µm 厚度试样 (RPUF / PC40 / F)分别在 35℃,RH=80%;45℃, RH=80%;25℃,RH=60%;25℃,RH=40%条件下进行吸湿性能测试。

  • 1.6 高低温、湿度冲击试验

  • 高低湿冲击实验:保持温度 25℃,10 min 内湿度升至 80%,保持 3 h,然后在 10 min 内湿度降至 40%,保持 3 h,以此循环 10 次。高低温冲击实验:保持湿度 80%,10 min 内温度升至 45℃,保持 3 h,然后在 10 min 内温度降至 25℃,保持 3 h,以此循环 10 次。

  • 1.7 附着力测试

  • 采用划格法对冲击试验前后的试样 ( RPUF / PC40)进行附着力测试,参考标准 GB / T9286—1988,选用划格刀片间距 1 mm 的刀具进行测试。

  • 2 结果与讨论

  • 2.1 聚氨酯泡沫结构及元素组成表征

  • 图2a 为试验所用硬质聚氨酯闭孔泡沫的光学照片,宏观视野下 RPUF 外表面比较致密,但从图2b 场发射扫描电子显微镜(FESEM,JSM–6701F,Japan)表征结果可以看出,泡沫表面存在随机分布且孔径不一的孔缺陷,其尺度为微米级别,形状各异。图2c 为选取的一个典型孔缺陷放大图片,孔洞一直延伸到材料内部。图2d 为 RPUF 断面的光学照片,可以看出断面处存在大量孔隙。采用 SEM 观察侧面微观形貌,可以看出泡沫内部孔径分布范围较宽,连接紧密且尺度较大,甚至存在直径超过 150 µm 的孔结构(图2e、2f)。

  • 图2 不同放大倍数的 RPUF 形貌表征

  • Fig.2 Morphology characterization of RPUF at different magnification

  • 2.2 RPUF 吸湿机理分析

  • 大多数小分子渗透过程涉及三个主要过程,分别为膜表面的吸收、溶解过程和扩散过程[19]。为了更好地探究 RPUF 与水分子间的相互作用机制,首先利用衰减全反射傅里叶变换红外光谱法 (ATR-FTIR,Nicolet iS10)分别对干燥及吸湿饱和的试样进行表征。图3 为 RPUF 干燥和吸湿饱和试样的一维红外谱图,从干燥样品的红外谱图中可知, 3 298 cm−1 处为缔合的伯酰胺基的N-H伸缩吸收峰, 2 971~2 871 cm−1 为饱和的 C-H 吸收峰,1 704 cm−1 为氨酯羰基中 C=O 的伸缩振动峰,1 596 cm−1 处为 N-H 变形振动吸收峰,这些为 RPUF 的典型特征峰[20]。值得注意的是,随着试样吸湿增多,3 675 cm−1 处峰值增大,说明吸湿过程在试样中游离态羟基含量增多[21-22]。此外,干燥试样 3 298 cm−1 附近出现的吸收峰归属于 O–H 与 N–H 的伸缩振动,随着试样吸湿饱和,该区域的吸收峰位置出现红移现象且峰变宽,说明吸湿后两者间氢键作用增强,基团频率发生了迁移[23]。二维红外相关光谱可以同时增强光谱分辨率,识别不同化学基团的变化序列。借助二维红外光谱技术,可以分析出 RPUF 吸湿过程 –C=O 和–NH 基团和水分子作用的先后顺序,从而更好地认识泡沫吸湿过程。

  • 图3 RPUF 干燥、吸湿红外谱图

  • Fig.3 Infrared spectrum of drying and hygroscopic RPUF sample

  • 图4a给出了RPUF干燥试样到吸湿饱和过程的二维红外光谱(3 700~1 600 cm−1),根据 Noda 规则可以推断在 RPUF 动态吸湿过程中,特定官能团的顺序 1 704→3 298 cm−1,即基团形成氢键的顺序为 C=O···H–O→N–H···O-H,说明 RPUF 吸湿过程中,水分子先与 C=O 发生氢键作用[24-25]。然而,在一维图谱显示 C=O 峰值吸湿过程没有产生变化,结合 IGARASHI 等的研究发现,自然干燥(RH=50%) 的棉单纤维表面存在结合水,但即使将棉布试样完全干燥(真空条件,110℃),棉布中依然存在 0.27 wt.%的水,说明完全干燥的棉布依然存在部分结合水难以完全脱去[26]。由此推断试验中所用的干燥 RPUF 试样(40℃)仍然存在此类难以脱去的强结合水,使得羰基峰值在吸湿前后没有发生变化。

  • 图4 RPUF 试样吸湿二维红外谱图

  • Fig.4 Hygroscopic two-dimensional infrared spectra of RPUF samples

  • 分析图4b 异步谱图可知:1 800~1 600 cm−1 范围内 C=O 基团在 1 741、1 704、1 722 cm−1 有交叉峰,且 1 722→1 704→1 741 cm−1。根据 ZHARKOV 等使用红外技术的分析,NHCOO 存在八种聚集状态[27],故确定 1 741 cm−1 为 C=O 基的自由伸缩振动峰(即自由链段),1 704 cm−1 和 1 722 cm−1 分别为 A 和 B 状态,即 NHCOO 间可能以环型二聚体的状态存在,如图5 所示。

  • 综合以上分析可得,在吸湿试验开始前相对干燥的 RPUF 试样中难以脱去的水分子与自由链段的 C=O,以及环状二聚体结构的 C=O 已经形成氢键相互作用,在试样吸湿过程中,由于环状二聚体基团相对稳定,故水分子主要与自由链段的 N–H 发生氢键相互作用,造成 3 298 cm−1 处峰变宽和向低波数方向移动。即造成 RPUF 吸湿的另一主要原因归为水分子和 N–H 间的氢键作用。

  • 图5 NHCOO 基团环型二聚体结构式

  • Fig.5 Structural formula for ring dimer of NHCOO group

  • 通过以上表征可得出,水分子在有机多孔高分子材料中的渗透吸湿过程比较复杂:一方面 RPUF 链段中存在丰富的亲水基团,如–NH 和–C=O 等,使得水分子在 RPUF 基质中具有较高的溶解度,形成氢键相互作用;另一方面 RPUF 存在较多的孔缺陷,也为水分子的扩散提供了更大的自由体积,外界水分子可直接进入泡沫内部,或吸附于孔洞内壁,形成水化层,在毛细力作用下增加渗透和吸湿。

  • 因此,利用 Parylene C 膜优异的阻湿以及结构致密等特性,在多孔 RPUF 表面原位生长出可以覆盖孔缺陷的镀膜意义重大。

  • 2.3 Parylene C 膜结构表征

  • PC 膜沉积聚合过程链自引发生长,无需溶剂和其他掺杂物,且聚合过程温度较低,不会对 RPUF 物理及化学结构产生破坏[28]。图6 给出几种不同厚度的 Parylene C 镀膜试样表面微观形貌,结果表明 10、20、30 µm 厚度的 RPUF / PC 试样表面依然存在孔缺陷,且随着厚度的增加,孔缺陷逐渐变小且同一放大倍数视野内数量减少,这说明 Parylene C 镀膜厚度的增加可以有效遮盖 RPUF 表面的孔缺陷。值得注意的是,40 µm 厚度的试样表面已经看不到孔缺陷的存在,这也是多孔 RPUF 阻湿的关键。

  • 2.4 疏水改性表征及对吸湿的影响

  • 界面阻湿的另一关键因素是表面疏水化,疏水分子的极性很低,可以有效降低与水分子的相互作用[29]。为了验证 RPUF 和 RPUF / PC 试样表面全氟辛基三氯硅烷的成功组装,利用扫描电子显微镜 (JSM–5601LV,Japan)分别对 RPUF、RPUF / F、 RPUF / PC、RPUF / PC / F 试样进行 EDS 分析。与图7a 和 7c 相比,图7b 和 7d 中 F、Si 以及少量 Cl元素的出现,表示 RPUF 和 RPUF / PC 试样表面疏水改性成功。

  • 图6 RPUF 表面沉积不同厚度 Parylene C 膜 SEM 图片,图中圆圈虚线部分表示孔洞缺陷

  • Fig.6 SEM images of different thickness of Parylene C films on the surface of RPUF by vapor deposition, the circular dotted line represents hole defects

  • 图7 不同试样 EDS 分析

  • Fig.7 EDS analysis of different samples

  • 对比 RPUF 试样(图7a),疏水改性后 RPUF / F 试样表面 C、N、O 元素原子百分比均有不同程度的降低,其中 O 元素降低较为明显。此外,RPUF / PC试样(图7c)中 N 元素的消失和 Cl 元素的出现,说明 Parylene 镀膜在 RPUF 表面覆盖性较好。值得注意的是,Parylene C 镀膜的表面存在一定含量的 O 元素,这是由薄膜表面的聚合物链端与空气中的氧气或水发生反应引起的[30],也和薄膜的老化有一定关系[31]

  • 进一步探究表面疏水改性界面和水分子间的相互作用,图8a、 8b 为 RPUF、 RPUF / PC 和 RPUF / PC / F 试样在干燥和吸湿饱和状态下的红外光谱图。1 143 cm−1、1 119 cm−1 (图8a)以及 1 076 cm−1 (图8b)处峰值的出现归因于–CF2、–CF3 基团的伸缩振动,标志着全氟小分子在 RPUF 和 Parylene C 薄膜表面组装成功[32]。同时,对比图3 中 RPUF 干燥和吸湿试样红外谱图不难看出, RPUF / F 试样在干燥和吸湿饱和状态下 3 675 cm−1 处几乎没有特征峰出现,说明游离态羟基很难在氟改性界面存在。图8b 中,1 606 cm−1 和 1 556 cm−1 处为苯环发生取代的骨架振动峰,1 450 cm−1 处为亚甲基的 C–H 间的振动吸收峰,873 cm−1 处为苯环取代后 C–H 键面外弯曲振动峰,686 cm−1 处为 C–Cl 键的振动吸收峰,表明 Parylene C 成功沉积在 RPUF 表面。同时,结合 EDS 分析结果,Parylene C 膜表面存在氧元素,对照红外光谱曲线在 1 048 cm-1 处有吸收峰,可能为–CH2–OH 醇羟基中 C–O 键的伸缩振动,故 RPUF / PC 试样在吸湿后此处峰值明显增强,且强于同为吸湿饱和的 RPUF / PC / F 试样,同样 3 000~3 600 cm−1 处峰值的增强也说明这一点。

  • 此外,借助低场核磁共振技术(苏州纽迈测试公司,Micro MR20-025V),根据 RPUF / PC 和 RPUF / PC / F 试样干燥和吸湿饱和状态时的弛豫特性,分析试样中结合水和游离水[33]。首先将试样置 40℃的烘箱中干燥至恒重后进行水分弛豫表征;随后在 12~24 h,48~96 h 以及 96 h 之后的吸湿饱和阶段分别对试样再进行水分弛豫表征。参数设置如下: CPMG 脉冲序列,采样频率(SW)200 kHz,谱仪频率(SF)21 MHZ,90°脉冲宽度(P1)5.52, 180°脉冲宽度(P2)11.52,采样总点数(TD)为 1260 038,采样间隔时间(TW)6 000 s,回波时间 (TE)0.35 s,回波个数(NECH)18 000,重复采样次数(NS)16,测试完后经 CONTIN 软件多指数拟合,得到 T2 反演波谱图。

  • 图9 中不同试样同时含有多个峰,其中结合水、半结合水(自由度介于结合水和自由水之间)、自由水所对应的 T2 在 0~10 ms、10~100 ms 以及大于100 ms 区间。通常弛豫时间越短,说明水分子与底物结合越紧密,反之亦然。对比 RPUF / PC 和 RPUF / PC / F 试样干燥和吸湿饱和两种状态的 T2 可知:干燥状态下,RPUF / PC / F 试样自由水含量小于 RPUF / PC 试样。吸湿饱和时,在 0~10 ms 区间内,相比于 RPUF / PC 试样,RPUF / PC / F 试样峰值向自由水方向移动,且峰值明显减弱,同时 RPUF / PC试样在10~100 ms和100 ms之后区间存在较多的半自由水以及自由水。说明同样条件下进行吸湿,疏水界面可以减少水分子的吸附,减缓水分子的渗透。

  • 图8 不同试样红外谱图

  • Fig.8 Infrared spectra of different samples

  • 综上,疏水改性界面可以减弱与水分子之间相互作用,水分子的吸附和渗透作用有所降低。此外,通过调研相关文献可知,当疏水分子暴露在水汽环境中时,疏水基团与水分子产生斥力,疏水基团附近的水分子之间氢键键合作用增强,结构更为有序[34-35],从而减少了水分子在疏水表面的吸附量,进一步减小了水分子扩散速率和扩散量。

  • 图9 不同试样低场核磁共振图

  • Fig.9 Low field NMR picture of different samples

  • 2.5 表面浸润性及吸湿前后结合力表征

  • 采用 Owens-Wendt-Kaelble 二液法(水和二碘甲烷)几何平均方程与杨氏方程来计算试样表面能(γS),接触角选用 DSA-100 光学接触角测量仪(Kruu Company,Ltd.,Germany)测得 [36-38]。根据 Owens–Wendt–Kaelble 二液法几何平均方程以及杨氏方程计算相关试样的表面能,如下所示:

  • γL(1+cosθ)=2γsdγLd12+2γSPγLP12
    (1)
  • γL=γLd+γLP
    (2)
  • γS=γSd+γLP
    (3)
  • 式中,γSγL 代表被测试样和测试液体的表面能,γsdγSP 代表被测试样的色散和极性分量,γLdγLP代表测试液体的色散和极性分量,θ代表接触角。式中需两种已知γLdγLP的测试液体,同时两种液体的γLdγLP值不能接近,且必须极性不同,也不能和试样表面发生溶解、膨胀或变形等,此处选用水和二碘甲烷作为测试液体。测得两种液体在试样表面的接触角,并分别将其表面能和接触角数据代入上式,即得两个独立方程,解此方程组即可得试样的γsdγSP以及表面能γS

  • 具体地,将 5 µL 水滴或二碘甲烷液滴置于试样表面,计算接触角并记录,每种样品取 5 个点进行测试,结果取平均计为最终接触角值。为避免 Prylene C 薄膜厚度较小时,RPUF / PC 表面暴露的孔缺陷影响其接触角测量的准确性,故采用 40 μm 厚度的镀膜试样进行表征。RPUF、RPUF / F、 RPUF / PC40、RPUF / PC40 / F 试样表面能结果如图10 所示。

  • 图10 不同试样表面能、接触角对照图

  • Fig.10 Comparison figure of surface energy and Contact Angle of different samples

  • 可以看出,组装全氟小分子之后 RPUF 和 Parylene C 的表面能有不同程度的降低,说明全氟小分子可以有效降低 RPUF 和 Parylene C 镀膜表面亲水性。同时因为 Parylene C 镀膜表面相对致密且结构平整,故 RPUF / F 较 RPUF / PC40 / F 试样表面能小。值得注意的是,与 RPUF 试样相比, RPUF / PC40试样表面能只是略有降低且还存在含氧基团,故水分子仍然较易吸附在在试样表面导致水汽阻隔性降低,故对 Parylene C 镀膜表面进行疏水改性,以降低与水分子的相互作用十分必要。

  • 2.6 Parylene C 膜附着力表征

  • 采用划格法对 RPUF / PC40 试样冲击试验前后镀膜附着力进行表征,从图11a~11d 可以看出,试样在进行高低湿和高低温试验前后附着力等级为 0 级,且显微镜观察划痕(放大 4 倍)未出现涂层剥落发生,说明 Parylene C 薄膜在 RPUF 表面的附着力非常好。

  • 图11 RPUF / PC40试样不同条件下镀膜附着力表征

  • Fig.11 Characterization of coating adhesion of RPUF / PC40 samples under different conditions

  • 2.7 全氟小分子耐久性分析

  • 基于前面分析可知(2.4 节),疏水界面对阻湿确有一定作用,为了验证试样疏水耐久性,对 RPUF / F 和 RPUF / PC / F 试样进行超声处理(水中),并记录不同超声时间后试样的水接触角。

  • 如图12 所示,两种试样在 5 个时间间隔超声处理后,接触角基本不变,依然稳定在超声前状态,说明全氟小分子在 RPUF和 Parylene C 表面的组装,具备一定的耐久性。

  • 图12 RPUF / F、RPUF / PC / F 试样接触角随超声时间变化曲线

  • Fig.12 Curves of contact angles of RPUF / F and RPUF / PC / F samples with ultrasonic time

  • 2.8 吸湿动力学分析

  • 2.2 节先后讨论了 RPUF 吸湿原因以及阻湿的关键因素,发现随着 Parylene C 镀膜厚度的增加, RPUF 表面的孔缺陷逐渐变少、变小直到完全被覆盖。为了更加清楚地解释镀膜厚度和阻湿性之间的关系,分别在 RPUF 试样表面沉积不同厚度的 Parylene C 镀膜,并验证其阻湿性。

  • 如图13a1 所示,RPUF 表面沉积不同厚度的 Parylene C 薄膜吸湿率随时间的变化曲线图。从图中可以看出,不同厚度的 PC 膜试样吸湿率和吸湿时间呈正相关关系,即随着时间的增加吸湿率逐渐增大。对比厚度 30 µm 及以上厚度的试样, 20 µm 以内厚度的试样前期吸湿率曲线斜率较大,说明吸湿较明显,达到饱和的时间较前者快,难以长效阻湿。此外,对比试样 30 d 吸湿率可以发现(图13a2),厚度 1、5、10、15 μm 四种厚度的试样较 RPUF 试样阻湿性能分别提高 6%、 18.4%、21.9%、26.9%,厚度 20、30、40、50 µm 试样阻湿性能分别提高 56.7%、70.6%、73.6%、 79.6%。不难看出随着 Parylene C 膜沉积厚度的增加,聚氨酯泡沫试样吸湿率呈台阶式下降,趋势明显,其中厚度 15、20、30 µm 的试样吸湿率差距较大。这主要是因为通过层层堆积覆盖方式生长起来的 Parylene C 镀膜,会将 RPUF 表面的孔洞掩盖,且相对较厚的薄膜针孔发生率相应变小,因此阻湿性能大大提高。结合几种厚度的电镜照片 (如图6 所示)可以看出,孔缺陷数量越少且尺寸越小的试样吸湿率越小,所以覆盖多孔材料表面孔缺陷是界面阻湿的关键。同时,全氟小分子改性的试样吸湿率也有不同程度的下降,说明疏水化界面在阻湿方面具有一定的效果(图13b1、13b2)。

  • 聚合物中水分扩散机理已被广泛研究[39-40],根据 RPUF 及 RPUF / PC 等的吸湿曲线,吸湿过程符合 Fick 第二定律[40-42],可表述为:

  • dMdt=Dd2Md2Z2
    (1)
  • 式中,D 为扩散系数(mm 2 / s),M 为吸湿率(%), t 为吸湿时间(h),Z 为试样厚度(mm)。

  • 图13 不同厚度 RPUF / PCx试样吸湿率随时间变化曲线,x 代表厚度

  • Fig.13 Curve of moisture absorption rate of RPUF / PCx samples with different thicknesses over time, the x represents thickness

  • 在时刻 t 式样的吸湿率 Mt和试样达到平衡时的吸湿率 M的关系:

  • MtM=1-8π2n=0 1(2n+1)2exp-DtZ2π2(2n+1)2
    (2)
  • 简化式(2)后可得扩散系数 D 为:

  • D=πZ4M2Mt2-Mt1t2-t12
    (3)
  • 式中,Mt1Mt2分别为试样在时刻 t1t2 时的吸湿率。将 RPUF厚度 Z=6.5 mm,Mt1=1.21%,Mt2 =1.75%,饱和吸湿率 M=2.01%,t1=24 h,t2=72 h 代入式(3),即 RPUF 试样扩散系数 D1=1.29×10−5 mm 2 / s。同理得 RPUF / F、RPUF / PC40、RPUF / PC40 / F 试样扩散系数分别为 D2=8.77×10−6 mm 2 / s、D3=1.58× 10−7 mm 2 / s、D4=1.4×10−7 mm 2 / s。由此可定性分析出水分子在氟化试样和 40 μm 厚的 Parylene C 镀膜的扩散系数相对 RPUF 试样较小,且表面全氟小分子改性界面也可以起到减缓吸湿的作用。此外,对比 RPUF 试样,沉积不同厚度 Parylene C 试样 30 d 吸湿之后仍未达到饱和,说明 Parylene C 膜具备优异阻湿性能,可以达到长效阻湿的效果,表面全氟小分子改性之后,阻湿性能进一步提升,明显减慢了吸湿速率。

  • 通常温度和湿度会影响材料的吸湿,综合以上结果,选用阻湿性能好的 40 µm 厚度试样,研究不同湿度和温度对 RPUF / PC40 / F 吸湿的影响。具体的采用控制变量法,选择湿度80%,温度分别为35℃ 和 45℃,以及温度 25℃、湿度 60%和 40%分别进行吸湿试验,如图14 所示。

  • 图14 不同条件下 RPUF / PC40 / F 试样吸湿率随时间变化曲线图

  • Fig.14 Curve of moisture absorption rate of RPUF / PC40 / F samples with time under different conditions

  • 从图14a 可以看出,RPUF / PC40 / F 试样的吸湿率随时间逐渐升高,且湿度不变,温度越高吸湿率越大;同样地,温度不变,湿度越大吸湿率越大 (图14b)。由于环境温湿度越大,外界水蒸气压越大,水分子的活性增加,水分子扩散运动更加剧烈,水分子更易向泡沫内部扩散。另外,温度升高,聚合物链间自由体积增大,水分子在聚合物内的扩散速度加快。所以,高温和高湿环境更利于 RPUF 吸湿,说明聚氨酯泡沫吸湿率的大小受其表面阻湿层厚度和疏水性,以及环境温度和湿度等变量的共同影响。

  • 3 结论

  • (1)工业应用的硬质聚氨酯泡沫吸湿主要受其表面多孔结构、亲水链段、高表面能等的影响,同时环境温度越高、湿度越大,RPUF 吸湿越明显。

  • (2)全氟小分子疏水改性 RPUF,其表面能降低明显,有利于降低 RPUF 的吸湿,减缓吸附饱和时间,但阻湿效果不明显。不过其可经受长时间超声处理其水接触角基本不变,表现出优异的耐久性,有利于长效阻湿。

  • (3)Parylene C 镀膜具备优异的阻湿性能,且随着 Parylene C 镀膜厚度增加,RPUF 表面孔缺陷数量减少,尺寸变小。40 µm 厚的 Parylene C 镀膜可将聚氨酯泡沫表面的孔缺陷完全覆盖,且阻湿性能提高 73.6%,阻湿效果明显。同时,Parylene C 镀膜表面全氟小分子改性试样吸湿率也有不同程度的下降,说明疏水化界面对阻湿具有一定效果。

  • 参考文献

    • [1] HIRVIKORPI T,VäHä-NISSI M,MUSTONEN T,et al.Atomic layer deposited aluminum oxide barrier coatings for packaging materials[J].Thin Solid Films,2010,518(10):2654-2658.

    • [2] 薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surface Engineering,2021,34(4):53-59.(in Chinese)

    • [3] KOPANATI G N,SEETHAMRAJU S,RAMAMURTHY P C,et al.Water vapor barrier material by covalent self-assembly for organic device encapsulation[J].Industrial & Engineering Chemistry Research,2014,53(46):17894-17900.

    • [4] ANDRINGA A M,PERROTTA A,DE PEUTER K,et al.Low-temperature plasma-assisted atomic layer deposition of silicon nitride moisture permeation barrier layers[J].ACS Applied Materials & Interfaces,2015,7(40):22525-22532.

    • [5] ZHANG Z,SONG R,LI G,et al.Improving barrier properties of pet by depositing a layer of DLC films on surface[J].Advances in Materials Science and Engineering,2013,2013:1-6.

    • [6] XIE J,WANG Z,ZHAO Q,et al.Scale-up fabrication of biodegradable poly(butylene adipate-co terephthalate)/organophilic-clay nanocomposite films for potential packaging applications[J].ACS Omega,2018,3(1):1187-1196.

    • [7] PERROTTA A,GARCIA S J,MICHELS J J,et al.Analysis of nanoporosity in moisture permeation barrier layers by electrochemical impedance spectroscopy[J].ACS Applied Materials & Interfaces,2015,7(29):15968-15977.

    • [8] DAMERON A A,DAVIDSON S D,BURTON B B,et al.Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J].Journal of Physical Chemistry C,2008,112(12):4573-4580.

    • [9] HOFFMANN L,THEIRICH D,PACK S,et al.Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD[J].ACS Applied Materials & Interfaces,2017,9(4):4171-4176.

    • [10] TESHIMA K,SUGIMURA H,INOUE Y,et al.Gas barrier performance of surface-modified silica films with grafted organosilane molecules[J].Langmuir,2003,19(20):8331-8334.

    • [11] 丁雪佳,薛海蛟,李洪波,等.硬质聚氨酯泡沫塑料研究进展[J].化工进展,2009,28(2):278-282.DING Xuejia,XUE Haijiao,LI Hongbo,et al.Review of rigid polyurethane foam plastic[J].Chemical Industry and Engineering Progress,2009,28(2):278-282.(in Chinese)

    • [12] 杨春柏.硬质聚氨酯泡沫塑料研究进展[J].中国塑料,2009,23(2):12-15.YANG Chunbai.Research progress in rigid polyurethane foam[J].China Plastics,2009,23(2):12-15.(in Chinese)

    • [13] 马丽红.硬质聚氨酯泡沫塑料研究进展[J].石化技术,2016,23(6):24-25,36.MA Lihong.Research progress of rigid polyurethane foam[J].Petrochemical Technology,2016,23(6):24-25,36.(in Chinese)

    • [14] ZHENG Z,CUI Z,SI J,et al.Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating[J].ACS Omega,2019,4(4):6382-6391.

    • [15] 吴彪,谢金华,陈艳平.Parylene 薄膜及其在防潮保护中的应用[J].科技与创新,2019(1):142-143,146.WU Biao,XIE Jinhua,CHEN Yanping.Parylene film and its application in moisture-proof protection[J].Science and Technology & Innovation,2019(1):142-143,146.(in Chinese)

    • [16] 韩辉升,张飞.聚对二甲苯薄膜制备工艺及其在橡胶制品上的应用[J].高分子通报,2014(12):99-103.HAN Huisheng,ZHANG Fei.Preparation technology of poly(p-xylene)film and its application in rubber products[J].Polymer Bulletin,2014(12):99-103.(in Chinese)

    • [17] LI X,ZHANG L,FENG Y,et al.Solid-liquid triboelectrification control and antistatic materials design based on interface wettability control[J].Advanced Functional Materials,2019,29(35):1903587.

    • [18] LI B,DU T,YU B,et al.Caterpillar-inspired design and fabrication of a self-walking actuator with anisotropy,gradient,and instant response[J].Small,2015,11(28):3494-3501.

    • [19] 景泽坤.聚氯代对二甲苯/石墨烯多层阻水复合膜的制备及其性能研究[D].绵阳:西南科技大学,2021.JING Zekun.Preparation and properties of multilayer parylene C/graphene water vapor barrier composite films[D].Mianyang:Southwest University of Science and Technology,2021.(in Chinese)

    • [20] 张官铭,张坤,陈晨,等.硬质聚氨酯泡沫的制备及表征[J].浙江理工大学学报(自然科学版),2022,47(5):687-695.ZHANG Guanming,ZHANG Kun,CEHN Chen,et al.Preparation and characterization of rigid polyurethane foam[J].Journal of Zhejiang Sci-Tech University(Natural Sciences Edition),2022,47(5):687-695.(in Chinese)

    • [21] 魏定邦,李晓民,何孝万,等.基于衰减全反射红外光谱技术的水在沥青中扩散过程研究[J].建筑材料学报,2019,22(1):120-126.WEI Dingbang,LI Xiaomin,HE Xiaowan,et al.Study on water diffusion in asphalt based om FTIR-ATR[J].Journal of Building Materials,2019,22(1):120-126.(in Chinese)

    • [22] 刘伟,王莉丽,刘连利,等.石英玻璃中羟基含量测定的红外光谱法研究[J].渤海大学学报(自然科学版),2008,29(4):332-335.LIU Wei,WANG Lili,LIU Lianli,et al.Study on infrared spectroscopy for determination of hydroxyl content in quartz glass[J].Journal of Bohai University(Natural Science Edition),2019,29(4):332-335.(in Chinese)

    • [23] 肖胜玉,李茂林,孙昱东.沥青质中官能团结构和氢键的红外光谱表征[J].石油炼制与化工,2022,53(3):99-103.XIAO Shengyu,LI Maolin,SUN Yudong,et al.Infrared spectroscopic characterization of functional group structure and hydrogen bonding in asphaltene[J].Petroleum Processing and Petrochemicals,2022,53(3):99-103.(in Chinese)

    • [24] NODA I.Generalized 2-dimensional correlation method applicable to infrared,raman,and other types of spectroscopy[J].Advanced Materials,1993,47(9):1329-1336.

    • [25] GONG K,HOU L,WU P Y.Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering[J].Advanced Materials,2022,34:2201065.

    • [26] IGARASHI T,HOSHI M,NAKAMURA K.,et al.Direct Observation of bound water on cotton surfaces by atomic force microscopy and atomic force microscopy-infrared spectroscopy[J].The Journal of physical chemistry C,2020,124(7):4196-4201.

    • [27] STRIKOVSKY A G,ZHARKOV V V,Infra-red spectroscopy study of equilibrium association of urethane groups in poly(ether urethane)s[J].Polymer,1993,34(16):3397-3401.

    • [28] 胡永茂,李汝恒,何鋆,等.聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究[J].应用光学,2014,35(4):663-669.HU Yongmao,LI Ruheng,HE Yun,et al.Preparation of parylenen-N ultrathin films and their applications in organic light emitting diodes[J].Journal of Applied Optics,2014,35(4):663-669.(in Chinese)

    • [29] DI W S,WANG X,ZHOU Y Y,et al.Fluorination increases hydrophobicity at the macroscopic level but not at the microscopic level[J].Chinese Physics Letters,2022,39(3):038701.

    • [30] 汪国庆,姚兰芳,沈军,等.聚对二甲苯防潮薄膜的研究[J].同济大学学报(自然科学版),2005(10):61-65.WANG Guoqing,YAO Lanfang,SHEN Jun,et al.Parylene used for moisture-proof films[J].Journal of Tongji University(Natural Science Edition),2005(10):61-65.(in Chinese)

    • [31] 吉祥波,唐贤臣,鲜晓斌,等.聚氯代对二甲苯薄膜热氧老化性能研究[J].塑料工业,2008(5):46-49.JI Xiangbo,TANG Xianchen,XIAN Xiaobing,et al.Study of thermal aging property of parylene C film[J].China Plastics Industry,2008(5):46-49.(in Chinese)

    • [32] 舒忠虎,鲍江涌,陈标,等.基于磁控溅射–氟化改性的新型 ZnO/SiO2 复合超疏水涂层防冰性能研究[J].表面技术,2022,51(8):452-459.SHU Zhonghu,BAO Jiangyong,CHEN Biao.Research on anti-ice performance of a novel ZnO/SiO2 composite superhydrophobic coating modified by magnetron sputtering and fluoridation[J].Surface Technology,2022,51(8):452-459.(in Chinese)

    • [33] 鲍春辉,徐杰,刘哲.低场核磁共振技术在稻谷水分测定中的应用[J].现代农业装备,2022,43(4):46-55.BAO Chunhui,XU Jie,LIU Zhe.Application of low field nuclear magnetic resonance technology in rice moisture determination[J].Modern Agricultural Equipment,2022,43(4):46-55.(in Chinese)

    • [34] DENG G H,SHEN Y,CHEN H,et al.Ordered to disordered transformation of enhanced water structure on hydrophobic surfaces in concentrated alcohol-water solutions[J].Journal of Physical Chemistry Letters,2019,10(24):7922-7928.

    • [35] KIM S H,KIM M,LEE J H,et al.Moisture barrier films containing plasma polymer fluorocarbon/inorganic multilayers fabricated via continuous roll-to-roll sputtering[J].Plasma Processes and Polymers,2018,15(7):1700221.

    • [36] WANG X,YE Q,LIU J,et al.Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups[J].Journal of Colloid and Interface Science,2010,351(1):261-266.

    • [37] 栗培龙,马云飞,宿金菲,等.橡胶沥青表面能影响因素分析[J].中国科技论文,2022,17(4):388-393.LI Peilong,MA Yunfei,SU Jinfei,et al.Analysis of influencing factors of rubber-asphalt surface free energy[J].China Science Paper,2022,17(4):388-393.(in Chinese)

    • [38] FOWKES F M.Attractive forces at interfaces[J].Industrial and Engineering Chemistry,1964,56(12):40-52.

    • [39] DROZDOV A D,CHRISTIANSEN J D,GUPTA R K,et al.Model for anomalous moisture diffusion through a polymer–clay nanocomposite[J].Journal of Polymer Science Part B-Polymer Physics,2003,41(5):476-92.

    • [40] SHEN C H,SPRINGER G S.Moisture absorption and desorption of composite materials[J].Journal of Composite Materials,1976,10:2-10.

    • [41] 庄婷婷.有机高分子吸湿材料的研究进展[J].塑料工业,2018,46(5):30-33.ZHUANG Tingting.Research progress in moisture absorbing polymers[J].China Plastics Industry,2018,46(5):30-33.(in Chinese)

    • [42] KIM J K,HU C G,WOO R S C,et al.Moisture barrier characteristics of organoclay–epoxy nanocomposites[J].Composites Science and Technology,2004,65(5):805-813.

  • 参考文献

    • [1] HIRVIKORPI T,VäHä-NISSI M,MUSTONEN T,et al.Atomic layer deposited aluminum oxide barrier coatings for packaging materials[J].Thin Solid Films,2010,518(10):2654-2658.

    • [2] 薛鑫宇,尹正生,蒋永锋,等.碳钢表面防腐超疏水 TiO2/PDMS 涂层的制备及性能[J].中国表面工程,2021,34(4):53-59.XUE Xinyu,YIN Zhengsheng,JIANG Yongfeng,et al.Preparation and properties of TiO2/PDMS anticorrosion superhydrophobic coating on carbon steel[J].China Surface Engineering,2021,34(4):53-59.(in Chinese)

    • [3] KOPANATI G N,SEETHAMRAJU S,RAMAMURTHY P C,et al.Water vapor barrier material by covalent self-assembly for organic device encapsulation[J].Industrial & Engineering Chemistry Research,2014,53(46):17894-17900.

    • [4] ANDRINGA A M,PERROTTA A,DE PEUTER K,et al.Low-temperature plasma-assisted atomic layer deposition of silicon nitride moisture permeation barrier layers[J].ACS Applied Materials & Interfaces,2015,7(40):22525-22532.

    • [5] ZHANG Z,SONG R,LI G,et al.Improving barrier properties of pet by depositing a layer of DLC films on surface[J].Advances in Materials Science and Engineering,2013,2013:1-6.

    • [6] XIE J,WANG Z,ZHAO Q,et al.Scale-up fabrication of biodegradable poly(butylene adipate-co terephthalate)/organophilic-clay nanocomposite films for potential packaging applications[J].ACS Omega,2018,3(1):1187-1196.

    • [7] PERROTTA A,GARCIA S J,MICHELS J J,et al.Analysis of nanoporosity in moisture permeation barrier layers by electrochemical impedance spectroscopy[J].ACS Applied Materials & Interfaces,2015,7(29):15968-15977.

    • [8] DAMERON A A,DAVIDSON S D,BURTON B B,et al.Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition[J].Journal of Physical Chemistry C,2008,112(12):4573-4580.

    • [9] HOFFMANN L,THEIRICH D,PACK S,et al.Gas diffusion barriers prepared by spatial atmospheric pressure plasma enhanced ALD[J].ACS Applied Materials & Interfaces,2017,9(4):4171-4176.

    • [10] TESHIMA K,SUGIMURA H,INOUE Y,et al.Gas barrier performance of surface-modified silica films with grafted organosilane molecules[J].Langmuir,2003,19(20):8331-8334.

    • [11] 丁雪佳,薛海蛟,李洪波,等.硬质聚氨酯泡沫塑料研究进展[J].化工进展,2009,28(2):278-282.DING Xuejia,XUE Haijiao,LI Hongbo,et al.Review of rigid polyurethane foam plastic[J].Chemical Industry and Engineering Progress,2009,28(2):278-282.(in Chinese)

    • [12] 杨春柏.硬质聚氨酯泡沫塑料研究进展[J].中国塑料,2009,23(2):12-15.YANG Chunbai.Research progress in rigid polyurethane foam[J].China Plastics,2009,23(2):12-15.(in Chinese)

    • [13] 马丽红.硬质聚氨酯泡沫塑料研究进展[J].石化技术,2016,23(6):24-25,36.MA Lihong.Research progress of rigid polyurethane foam[J].Petrochemical Technology,2016,23(6):24-25,36.(in Chinese)

    • [14] ZHENG Z,CUI Z,SI J,et al.Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating[J].ACS Omega,2019,4(4):6382-6391.

    • [15] 吴彪,谢金华,陈艳平.Parylene 薄膜及其在防潮保护中的应用[J].科技与创新,2019(1):142-143,146.WU Biao,XIE Jinhua,CHEN Yanping.Parylene film and its application in moisture-proof protection[J].Science and Technology & Innovation,2019(1):142-143,146.(in Chinese)

    • [16] 韩辉升,张飞.聚对二甲苯薄膜制备工艺及其在橡胶制品上的应用[J].高分子通报,2014(12):99-103.HAN Huisheng,ZHANG Fei.Preparation technology of poly(p-xylene)film and its application in rubber products[J].Polymer Bulletin,2014(12):99-103.(in Chinese)

    • [17] LI X,ZHANG L,FENG Y,et al.Solid-liquid triboelectrification control and antistatic materials design based on interface wettability control[J].Advanced Functional Materials,2019,29(35):1903587.

    • [18] LI B,DU T,YU B,et al.Caterpillar-inspired design and fabrication of a self-walking actuator with anisotropy,gradient,and instant response[J].Small,2015,11(28):3494-3501.

    • [19] 景泽坤.聚氯代对二甲苯/石墨烯多层阻水复合膜的制备及其性能研究[D].绵阳:西南科技大学,2021.JING Zekun.Preparation and properties of multilayer parylene C/graphene water vapor barrier composite films[D].Mianyang:Southwest University of Science and Technology,2021.(in Chinese)

    • [20] 张官铭,张坤,陈晨,等.硬质聚氨酯泡沫的制备及表征[J].浙江理工大学学报(自然科学版),2022,47(5):687-695.ZHANG Guanming,ZHANG Kun,CEHN Chen,et al.Preparation and characterization of rigid polyurethane foam[J].Journal of Zhejiang Sci-Tech University(Natural Sciences Edition),2022,47(5):687-695.(in Chinese)

    • [21] 魏定邦,李晓民,何孝万,等.基于衰减全反射红外光谱技术的水在沥青中扩散过程研究[J].建筑材料学报,2019,22(1):120-126.WEI Dingbang,LI Xiaomin,HE Xiaowan,et al.Study on water diffusion in asphalt based om FTIR-ATR[J].Journal of Building Materials,2019,22(1):120-126.(in Chinese)

    • [22] 刘伟,王莉丽,刘连利,等.石英玻璃中羟基含量测定的红外光谱法研究[J].渤海大学学报(自然科学版),2008,29(4):332-335.LIU Wei,WANG Lili,LIU Lianli,et al.Study on infrared spectroscopy for determination of hydroxyl content in quartz glass[J].Journal of Bohai University(Natural Science Edition),2019,29(4):332-335.(in Chinese)

    • [23] 肖胜玉,李茂林,孙昱东.沥青质中官能团结构和氢键的红外光谱表征[J].石油炼制与化工,2022,53(3):99-103.XIAO Shengyu,LI Maolin,SUN Yudong,et al.Infrared spectroscopic characterization of functional group structure and hydrogen bonding in asphaltene[J].Petroleum Processing and Petrochemicals,2022,53(3):99-103.(in Chinese)

    • [24] NODA I.Generalized 2-dimensional correlation method applicable to infrared,raman,and other types of spectroscopy[J].Advanced Materials,1993,47(9):1329-1336.

    • [25] GONG K,HOU L,WU P Y.Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering[J].Advanced Materials,2022,34:2201065.

    • [26] IGARASHI T,HOSHI M,NAKAMURA K.,et al.Direct Observation of bound water on cotton surfaces by atomic force microscopy and atomic force microscopy-infrared spectroscopy[J].The Journal of physical chemistry C,2020,124(7):4196-4201.

    • [27] STRIKOVSKY A G,ZHARKOV V V,Infra-red spectroscopy study of equilibrium association of urethane groups in poly(ether urethane)s[J].Polymer,1993,34(16):3397-3401.

    • [28] 胡永茂,李汝恒,何鋆,等.聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究[J].应用光学,2014,35(4):663-669.HU Yongmao,LI Ruheng,HE Yun,et al.Preparation of parylenen-N ultrathin films and their applications in organic light emitting diodes[J].Journal of Applied Optics,2014,35(4):663-669.(in Chinese)

    • [29] DI W S,WANG X,ZHOU Y Y,et al.Fluorination increases hydrophobicity at the macroscopic level but not at the microscopic level[J].Chinese Physics Letters,2022,39(3):038701.

    • [30] 汪国庆,姚兰芳,沈军,等.聚对二甲苯防潮薄膜的研究[J].同济大学学报(自然科学版),2005(10):61-65.WANG Guoqing,YAO Lanfang,SHEN Jun,et al.Parylene used for moisture-proof films[J].Journal of Tongji University(Natural Science Edition),2005(10):61-65.(in Chinese)

    • [31] 吉祥波,唐贤臣,鲜晓斌,等.聚氯代对二甲苯薄膜热氧老化性能研究[J].塑料工业,2008(5):46-49.JI Xiangbo,TANG Xianchen,XIAN Xiaobing,et al.Study of thermal aging property of parylene C film[J].China Plastics Industry,2008(5):46-49.(in Chinese)

    • [32] 舒忠虎,鲍江涌,陈标,等.基于磁控溅射–氟化改性的新型 ZnO/SiO2 复合超疏水涂层防冰性能研究[J].表面技术,2022,51(8):452-459.SHU Zhonghu,BAO Jiangyong,CHEN Biao.Research on anti-ice performance of a novel ZnO/SiO2 composite superhydrophobic coating modified by magnetron sputtering and fluoridation[J].Surface Technology,2022,51(8):452-459.(in Chinese)

    • [33] 鲍春辉,徐杰,刘哲.低场核磁共振技术在稻谷水分测定中的应用[J].现代农业装备,2022,43(4):46-55.BAO Chunhui,XU Jie,LIU Zhe.Application of low field nuclear magnetic resonance technology in rice moisture determination[J].Modern Agricultural Equipment,2022,43(4):46-55.(in Chinese)

    • [34] DENG G H,SHEN Y,CHEN H,et al.Ordered to disordered transformation of enhanced water structure on hydrophobic surfaces in concentrated alcohol-water solutions[J].Journal of Physical Chemistry Letters,2019,10(24):7922-7928.

    • [35] KIM S H,KIM M,LEE J H,et al.Moisture barrier films containing plasma polymer fluorocarbon/inorganic multilayers fabricated via continuous roll-to-roll sputtering[J].Plasma Processes and Polymers,2018,15(7):1700221.

    • [36] WANG X,YE Q,LIU J,et al.Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups[J].Journal of Colloid and Interface Science,2010,351(1):261-266.

    • [37] 栗培龙,马云飞,宿金菲,等.橡胶沥青表面能影响因素分析[J].中国科技论文,2022,17(4):388-393.LI Peilong,MA Yunfei,SU Jinfei,et al.Analysis of influencing factors of rubber-asphalt surface free energy[J].China Science Paper,2022,17(4):388-393.(in Chinese)

    • [38] FOWKES F M.Attractive forces at interfaces[J].Industrial and Engineering Chemistry,1964,56(12):40-52.

    • [39] DROZDOV A D,CHRISTIANSEN J D,GUPTA R K,et al.Model for anomalous moisture diffusion through a polymer–clay nanocomposite[J].Journal of Polymer Science Part B-Polymer Physics,2003,41(5):476-92.

    • [40] SHEN C H,SPRINGER G S.Moisture absorption and desorption of composite materials[J].Journal of Composite Materials,1976,10:2-10.

    • [41] 庄婷婷.有机高分子吸湿材料的研究进展[J].塑料工业,2018,46(5):30-33.ZHUANG Tingting.Research progress in moisture absorbing polymers[J].China Plastics Industry,2018,46(5):30-33.(in Chinese)

    • [42] KIM J K,HU C G,WOO R S C,et al.Moisture barrier characteristics of organoclay–epoxy nanocomposites[J].Composites Science and Technology,2004,65(5):805-813.

  • 手机扫一扫看