en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

康丽,女,1999年出生,硕士研究生。主要研究方向为电磁发射枢轨摩擦副材料摩擦学性能。E-mail:klcxcus126.com

通讯作者:

姚萍屏,男,1969年出生,博士,教授,博士研究生导师。主要研究方向为高性能摩擦学材料和电磁发射摩擦学。E-mail:yaopingpingxx@sohu.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220822002

参考文献 1
马伟明,鲁军勇.电磁发射技术[J].国防科技大学学报,2016,38(6):1-5.MA Weiming,LU Junyong.Electromagnetic emission technology[J].Journal of National Defense University of science and technology,2016,38(6):1-5.(in Chinese)
参考文献 2
贺翔,曹群生.电磁发射技术研究进展和关键技术[J].中国电子科学研究院学报,2011,6(2):130-135.HE Xiang,CAO Qunsheng.Research progress and key technologies of electromagnetic launch technology[J].Journal of China Academy of Electronic Sciences,2011,6(2):130-135.(in Chinese)
参考文献 3
YU K X,ZHU H T,XIE X F,et al.Loss analysis of air-core pulsed alternator driving an ideal electromagnetic railgun[J].IEEE Transactions on Transportation Electrification,2021,7(3):1589-1599.
参考文献 4
YANG Y,DAI K,YIN Q,et al.In-bore dynamic measurement and mechanism analysis of multi-physics environment for electromagnetic railguns[J].IEEE Access,2021,9:16999-17010.
参考文献 5
LI S Z,LI J,XIA S G,et al.Phase division and critical point definition of electromagnetic railgun sliding contact state[J].IEEE Transactions on Plasma Science,2019,47(5):2399-2403.
参考文献 6
XIAO H C,YIN D M,LI B M.Electrodynamic response study on railgun launcher based on electromechanical coupling model[J].Defence Technology,2019,15(4):655-665.
参考文献 7
冯勇.电磁发射装置电枢轨道摩擦磨损研究[D].秦皇岛:燕山大学,2018.FENG Yong.Study on friction and wear of armature rail of electromagnetic launcher[D].Qinhuangdao:Yanshan University,2018.(in Chinese)
参考文献 8
GAO X,LIU F,FENG Y,et al.Wear characteristics of rail-armature under the action of interference fit and lorentz force[J].IEEE Transactions on Plasma Science,2020,48(6):2261-2265.
参考文献 9
ZHANG H H,LI S,GAO X,et al.Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns[J].IEEE Transactions on Plasma Science,2020,48(12):4342-4349.
参考文献 10
XIE H B,YANG H Y,YU J,et al.Research progress on advanced rail materials for electromagnetic railgun technology[J].Defence Technology,2021,17(2):429-439.
参考文献 11
BARBER J P,BAUER D P,JAMISON K,et al.A survey of armature transition mechanisms[J].IEEE Transactions on Magnetics,2003,39(1):47-51.
参考文献 12
STEFANI F,MERRILL R.Experiments to measure melt-wave erosion in railgun armatures[J].IEEE Transactions on Magnetics,2003,39(1):188-192.
参考文献 13
CAO B,GUO W,GE X,et al.Analysis of rail erosion damage during electromagnetic launch[J].IEEE Transactions on Plasma Science,2017,45(7):1263-1268.
参考文献 14
CHEN T,LONG X,DUTTA I,et al.Effect of current crowding on microstructural evolution at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2007,43(7):3278-3286.
参考文献 15
MOTES D,KEENA J,WOMACK K,et al.Thermal analysis of high-energy railgun tests[J].IEEE Transactions on Plasma Science,2011,40(1):124-130.
参考文献 16
MEGER R A,COOPER K,JONES H,et al.Analysis of rail surfaces from a multishot railgun[J].IEEE Transactions on Magnetics,2005,41(1):211-213.
参考文献 17
MACHADO B I,MURR L E,MARTINEZ E,et al.Materials characterization of railgun erosion phenomena[J].Materials Science and Engineering:A,2011,528(25-26):7552-7559.
参考文献 18
黄伟,杨黎明,史戈宁,等.电磁发射条件下CuCrZr合金材料轨道损伤行为研究[J].兵工学报,2020,41(5):858-864.HUANG Wei,YANG Liming,SHI Goning,et al.Study on rail damage behavior of CuCrZr alloy under electromagnetic emission[J].Journal of Ordnance Industry,2020,41(5):858-864.(in Chinese)
参考文献 19
XIA S G,HU Y Y,CHEN L X,et al.Experimental studies on melt erosion at rail-armature contact of rail launcher in current range of 10–20 kA/mm[J].IEEE Transactions on Plasma Science,2017,45(7):1667-1672.
参考文献 20
李郁兴,姚萍屏,李专,等.电磁发射CuCrZr轨道的沉积层特征与磨损机理[J].粉末冶金材料科学与工程,2022,27(4):409-418.LI Yuxing,YAO Pingping,LI Zhuan,et al.Deposition layer characteristics and wear mechanism of electromagnetic emission CuCrZr rail[J].Powder Metallurgy Materials Science and Engineering:2022,27(4):409-418.(in Chinese)
参考文献 21
DUTTA I,DELANEY L,CLEVELAND B,et al.Electric-current-induced liquid Al deposition,reaction,and flow on Cu rails at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2009,45(1):272-277.
参考文献 22
HSIEH P Y,PERSAD C,GHOSH G,et al.Mechanism of porosity formation in transfer films in electromagnetic launchers[J].IEEE Transactions on Magnetics,2009,45(1):319-321.
参考文献 23
PERSAD C,CASTRO Z.Railgun tribology:characterization and control of multishot wear debris[J].IEEE Transactions on Magnetics,2006,43(1):173-177.
参考文献 24
COOPER K P,JONES H N,MEGER R A.Analysis of railgun barrel material[J].IEEE Transactions on Magnetics,2006,43(1):120-125.
参考文献 25
李白,鲁军勇,谭赛,等.滑动电接触界面粗糙度对电枢熔化特性的影响[J].电工技术学报,2018,33(7):1607-1615.LI Bai,LU Junyong,TAN Sai,et al.Effect of sliding electrical contact interface roughness on armature melting characteristics[J] Journal of Electrotechnics,2018,33(7):1607-1615.(in Chinese)
参考文献 26
TANG L L,HE J J,Chen L X,et al.Study of some influencing factors of armature current distribution at current ramp-up stage in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1585-1591.
参考文献 27
黄伟,杨黎明,史戈宁,等.载流摩擦条件下CuCrZr合金表面组织演变规律[J].稀有金属,2020,44(7):687-696.HUANG Wei,YANG Liming,SHI Goning,et al.Evolution of surface microstructure of CuCrZr alloy under current carrying friction[J].Rare Metals,2020,44(7):687-696.(in Chinese)
参考文献 28
LI H,LEI B,LV Q A,et al.Analysis on thermal character of interface between rail and armature for electromagnetic railgun[J].IEEE Transactions on Plasma Science,2013,41(5):1426-1430.
参考文献 29
MATTHEW J,RICHARD W.Materials selection exercise for electromagnetic launcher rails[J].IEEE Transactions on Magnetics,2013,49(8):4831-4838.
参考文献 30
杜传通,雷彬,张倩,等.电磁轨道炮枢轨材料研究进展[J].飞航导弹,2017,9:88-93.DU Chuantong,LEI Bin,ZHANG Qian,et al.Research progress on the pivot rail material of electromagnetic rail gun[J].Flying Missile,2017,9:88-93.(in Chinese)
参考文献 31
GEE R M,PERSAD C.The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher[J].IEEE Transactions on Magnetics,2001,37(1):263-268.
参考文献 32
浦晓亮.模拟电磁发射条件下铜合金轨道损伤特征研究[D].济南:山东大学,2019.PU Xiaoliang.Research on damage characteristics of copper alloy rail under simulated electromagnetic emission[D].Jinan:Shandong University,2019.(in Chinese)
参考文献 33
WILD B,SCHUPPLER C,ALOUAHABI F,et al.The influence of the rail material on tmMultishot performance of the rapid fire railgun[J].IEEE Transactions on Plasma Science,2015,43(6):2095-2099.
参考文献 34
李鹤,李治源,雷彬,等.电磁轨道炮不同截面轨道的特性分析[J].火力与指挥控制,2014,39(4):45-48.LI He,LI Zhiyuan,LEI Bin,et al.Characteristic analysis of different cross section rails of electromagnetic rail gun[J].Fire and Command Control,2014,39(4):45-48.(in Chinese)
参考文献 35
JIN L W,LEI B,ZHANG Q,et al.Electromechanical performance of rails with different cross-sectional shapes in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1220-1224.
参考文献 36
POLAT H,TOSUN N,CEYLAN D,et al.Optimization of a convex rail design for electromagnetic launchers[J].IEEE Transactions on Plasma Science,2020,48(6):2266-2273.
参考文献 37
HINAJE M,NSTTER D.Influence of the projectiles’ material in a coilgun[J].European Journal of Physics,2006,27(5):1097.
参考文献 38
ZIELINSKI A E.Thermophysical evaluation of a novel aluminum alloy with application to an integrated launch package[J].IEEE Transactions on Magnetics,2003,39(1):332-336.
参考文献 39
卢铜钢.温度场下电磁轨道炮枢轨接触分析[D].秦皇岛:燕山大学,2020.LU Tonggang.Analysis of pivot rail contact of electromagnetic rail gun under temperature field[D].Qinhuangdao:Yanshan University,2020.(in Chinese)
参考文献 40
林庆华,栗保明.电磁轨道炮瞬态温度场的数值模拟[J].工程热物理学报,2017,38(1):149-154.LIN Qinghua,LI Baoming.Numerical simulation of transient temperature field of electromagnetic rail gun[J].Journal of Engineering Thermophysics,2017,38(1):149-154.(in Chinese)
参考文献 41
HRIC G R,ODENDAAL W G.Improving start-up contact distribution between railgun armature and rails[J].IEEE Transactions on Plasma Science,2016,44(7):1202-1207.
参考文献 42
LI C X,CHEN L X,WANG Z J,et al.Influence of armature movement velocity on the magnetic field distribution and current density distribution in railgun[J].IEEE Transactions on Plasma Science,2020,48(6):2308-2315.
参考文献 43
LI C X,XIA S G.Study on lubrication characteristics of metal liquid film based on electromagnetic elastic mechanics hydrodynamics multiphysics coupling model[J].Materials,2020,13(5):1056-1073.
参考文献 44
ZHANG Y D,RUAN J J,HU Y C,et al.Ablation and geometry change study of solid armature in a railgun[J].Chinese Physics B,2013,22(8):084102.
参考文献 45
LI B,MA W M,LU J Y,et al.Effects of supply current and armature structure on melting characteristics of armature surface in sliding electric contact[J].IEEE Transactions on Plasma Science,2018,47(1):721-728.
参考文献 46
ZHANG Q X,LI J,CAO R G.Simulation and test research of copper-aluminum sliding pair contact performance[J].IEEE Transactions on Plasma Science,2013,41(5):1503-1507.
参考文献 47
YAO J M,XIA S G,CHEN L X,et al.Analysis of hydrodynamic lubrication considering the selfacceleration of a liquid conducting film at rail-armature interface[J].IEEE Transactions on Plasma Science,2019,47(5):2256-2263.
参考文献 48
ZHU C Y,LI B.Analysis of sliding electric contact characteristics in augmented railgun based on the combination of contact resistance and sliding friction coefficient[J].Defence Technology,2020,16(4):747-752.
参考文献 49
ZHANG Q X,LI J,LI S Z,et al.Causes of damage at electromagnetic railgun’s initial position and corresponding improvement Measures[J].IEEE Transactions on Plasma Science,2019,47(8):4184-4188.
参考文献 50
WU J G,WAN G,CHENG N K,et al.Research on Armature’ s wearing and dynamic interior ballistic of a railgun[J].IEEE Transactions on Plasma Science,2017,45(7):1202-1207.
参考文献 51
GNEGY-Davidson C G,WETZ D A,WONG D.Impact of corroded copper rails on the performance of a miniature electromagnetic launcher[J].IEEE Transactions on Plasma Science,2017,45(7):1539-1544.
参考文献 52
宋增红,梁永民,刘维民,等.锂离子液体作为钢/铜、钢/铝摩擦副润滑剂的摩擦学性能[J].中国表面工程,2013,26(6):100-105.SONG Zenghong,LIANG Yongmin,LIU Weimin,et al.Tribological properties of lithium ion liquid as lubricant for steel/copper and steel/aluminum friction pairs[J].China Surface Engineering,2013,26(6):100-105.(in Chinese)
参考文献 53
ENGEL T G,RADA N M.Time-and frequency-domain characterization of railgun sliding contact noise[J].IEEE Transactions on Plasma Science,2017,45(7):1321-1326.
参考文献 54
雷彬,杜传通,吕庆敖,等.石墨烯涂层对电磁轨道炮性能影响的试验研究[J].高电压技术,2019,45(6):1929-1935.LEI bin,DU Chuantong,LÜ Qingao,et al Experimental study on the influence of graphene coating on the performance of electromagnetic rail gun[J].High Voltage Technology,2019,45(6):1929-1935.(in Chinese)
参考文献 55
吕庆敖,陈建伟,张华翔,等.电磁轨道炮锡合金涂层电枢/轨道温度场数值仿真[J].兵器装备工程学报,2019,40(4):10-14.LÜ Qingao,CHEN Jianwei,ZHANG Huaxiang,et al.Numerical simulation of temperature field of tin alloy coated armature/rail of electromagnetic rail gun[J].Journal of Weapon Equipment Engineering,2019,40(4):10-14.(in Chinese)
参考文献 56
ZHOU P F,LI B M.Numerical calculation of magnetic-thermal coupling and optimization analysis for velocity skin effect[J].IEEE Transactions on Plasma Science,2021,49(12):3994-4001.
参考文献 57
汤亮亮.电磁发射中枢轨接触界面金属液化层特性的实验与理论研究[D].武汉:华中科技大学,2015.TANG Liangliang.Experimental and theoretical studies on the characteristics of the liquefied metal layer at the contact interface of the electromagnetic launch center rail[D].Wuhan:Huazhong University of Science and Technology,2015.(in Chinese)
参考文献 58
TANG L L,HE J,CHEN L X,et al.Current concentration of large-caliber C-shaped armature in square railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1125-1130.
目录contents

    摘要

    电磁轨道发射是实现超高速电磁发射的优选方案,发射环境极其恶劣,轨道表面会产生一系列损伤。其中沉积层作为覆盖全轨道表面以及全发射过程的典型损伤形式,会显著影响运动电枢与固定轨道的接触特性。综述近年电磁轨道炮轨道表面熔凝沉积层的研究进展,阐述沉积层的形成机制及形成过程,归纳沉积层的特点,梳理影响沉积层形成的因素,探讨沉积层对于电磁发射行为的影响规律。电磁发射轨道表面沉积层具有多孔典型分布特性,其微观形貌及厚度随电枢发射在轨道长度方向和径向上有着明显的时空演化特性;沉积层的形成受到轨道材料及其结构设计、电枢材料及其电枢结构设计、电枢与轨道接触特性、表面处理以及发射电流参数等多种因素的影响。沉积层的存在一方面形成金属液化层,降低枢轨间摩擦因数,另一方面沉积在轨道表面,恶化枢轨接触状态。由于电磁发射轨道表面沉积层的形成条件极端苛刻,现有研究尚未能形成系统性和通用性的演化规律,在带沉积层轨道材料物性测试以及基于沉积层的枢轨接触特性的评价方面仍有待进一步深入研究。对沉积层未来的研究方向及提高电磁发射轨道性能具有一定参考意义。

    Abstract

    Electromagnetic launch technology, a key technology in the modern military, has powerful and long-range characteristics. As the preferred scheme, the electromagnetic rail launch can achieve ultrahigh-speed electromagnetic launching. During electromagnetic launching, extreme launching conditions such as high current (current density ≥ 100 GA / m2 ), ultrahigh launch speed (outlet speed ≥2 km / s), high temperature rise (temperature rise rate ≥105 K / s), and large strain (strain rate ≥ 104 s−1 ) cause the rail to be in a complex state of multifield coupling of strong electromagnetic-thermal forces, and damages such as grooving, gouging, ablation, transition, and deposition occur on the rail surface. The deposition is a typical type of damage that forms a layer covering the entire rail surface during the entire launch process. It significantly influences the contact characteristics between the moving armature and fixed rail and has received extensive attention. Research progress of the deposition layer on the rail surface of electromagnetic railguns is summarized in this paper. The organizational structure characteristics and distribution rules of the deposition layer are reviewed. The structural characteristics and distribution laws of the deposition layer, the factors that influence deposition layer formation, including the pivot rail material, structural design, contact characteristics of the pivot rail pair, and the launch environment, are summarized. The influence of the deposition layer on the electromagnetic emission behavior is discussed.The deposition layer formation is related to the temperature. The deposition layer on the surface of the electromagnetic emission rail exhibits typical porous distribution characteristics, and its microscopic morphology and thickness exhibit time–space evolution characteristics in the rail length direction and radial direction with the armature emission. Deposition layer formation is influenced by many factors, including the track material and its structural design, the armature material and its armature structural design, contact characteristics between the armature and track, surface treatment, emission current parameters, deposition layer thickness, surface roughness, and rail surface distribution. On the one hand, the deposition layer can reduce the friction coefficient between the armature and rail, facilitating the armature to slide at super-high speeds on the rail surface when the metal liquefaction layer is formed. On the other hand, the gap between the armature and rail changes after deposition on the rail surface, and the contact state between the armature and rail worsens, generating an electric arc between the armature and rail, and the deposition layer on the rail surface is ablated and carbonized. By clarifying the formation process, microscopic characteristics, and dynamic evolution characteristics of the mechanical properties of the deposition layer, the contact state between the armature and rail is determined to control the armature melting deposition behavior, reduce the probability of premature failure of the rail caused by the deposition layer, optimize the electromagnetic launch behavior, and increase the launch efficiency and rail life of the electromagnetic railgun. Because of the deposition layer, the formation conditions of the electromagnetic launch rail surface are extremely harsh, and a systematic and universal evolution law has not been developed yet. Tests on the physical properties of the rail material with the deposition layer and the evaluation of the pivot rail contact characteristics based on the deposition layer should be further investigated. This study provides a valuable reference for future research on the sedimentary layer and for improving the performance of electromagnetic launch rails.

    关键词

    沉积层轨道电磁轨道炮表面

  • 0 前言

  • 电磁发射技术是一项通过电磁力推进物体实现超高速精准连续发射的先进发射技术[1]。依据电磁发射技术原理制成的电磁轨道炮是具有射程远、威力大、武器系统生存能力强等特点的新概念武器[2],其工作原理如图1 所示,电流向其中一根轨道输入,流经电枢后从另一个轨道返回,形成回路。由于电流形成回路,在两根平行轨道间衍生感应磁场,产生了洛伦兹力,推动电枢实现发射速度大于 2 km / s 的超高速精准发射。

  • 图1 电磁轨道炮工作示意图

  • Fig.1 Working diagram of electromagnetic railgun

  • 研究人员针对电磁轨道炮在发射过程中涉及的发射技术[3]、测试技术[4],电磁轨道炮电枢 / 轨道(简称枢 / 轨)滑动电接触特性[5-6],轨道表面损伤、枢 / 轨间摩擦磨损性能[7-8]、枢 / 轨接触面温度场分布,以及仿真模拟[9]等问题开展了多维度研究,其中轨道表面状态的不断演化是研究的热点之一。

  • 在电磁轨道发射过程中,大电流(电流密度≥ 108 A / m2)、超高发射速度(出口速度≥2 km / s)、高温升(温升速率≥105 K / s)和强应变(应变速率 ≥104 s−1)等极端发射条件导致轨道处于复杂的强电磁热力多场耦合状态,轨道表面出现了如沟槽、刨削、烧蚀、转捩、沉积层等典型的损伤行为[10-12],如图2 所示。损伤随着电枢重复发射而在轨道表面累积和演变,使得轨道表面的形貌、组织结构、成分、缺陷、特性等沿轨道长度方向及径向发生演化,不仅使得枢 / 轨的接触状态发生改变,恶化电磁发射行为,影响电磁轨道炮的发射精准性,还可能导致轨道服役寿命的下降。

  • 相对于其他损伤而言,沉积层几乎覆盖整个轨道表面,并涉及整个发射过程,是电磁轨道炮发射过程中不可避免的一种损伤。本文总结了轨道表面沉积层在轨道长度方向和径向上所呈现的变化规律,从轨道表面沉积层形成的机制、影响沉积层形成的因素等方面展示沉积层研究进展,并基于现有研究成果和电磁轨道炮发射需求,提出沉积层研究的发展趋势。

  • 图2 轨道表面典型损伤状态[10]

  • Fig.2 Typical damage state of rail surface [10]

  • 1 沉积层形成机理

  • 电磁发射过程中,枢轨接触形式不断发生变化[13],如图3 所示,沉积层形成过程十分复杂。

  • 沉积层的形成与温度有关。焦耳热是主要热源[14-15],加之电枢在轨道表面高速滑动产生的摩擦热、枢轨间间隙加大滋生的电弧热,这些热量的累积使得轨道表面温度可达 1 000℃。高温使得电枢材料熔融软化,转移到轨道表面,遇到铜轨道迅速冷却凝固,沉积在轨道表面,形成沉积层。沉积层的形成主要是由于粘着磨损与电气磨损,表现在其微观行为上以及具有阶段性特点。

  • 图3 电枢与轨道的典型接触形式

  • Fig.3 Typical contact form between armature and rail

  • 沉积层形成的微观过程研究,MEGER 等[16]研究了 20 次发射后的轨道表面沉积层形貌特征,发现沉积层形貌呈现多元化,有波纹状,有薄片状。由于热量的传递,沉积层晶粒在沉积过程中会发生熔融、扩散、再结晶等行为,且形成内部缺陷。图4 展现了轨道表面沉积层在形成过程中产生的表层裂纹、金属飞溅、气孔等缺陷。MACHADO 等[17]将轨道划分成若干小段,进行了微观组织结构分析,发现铝电枢熔融沉积在铜轨道上形成了 Al / Cu 界面,每一次发射的新电枢都会与此界面发生复杂的熔融交互作用,在轨道受到高冲击力产生严重塑性变形时,该界面的晶粒会产生动态再结晶行为,晶粒尺寸减小,达到 50~500 nm。

  • 图4 轨道表面沉积层缺陷[16]

  • Fig.4 Defects of rail surface deposit[16]

  • 沉积层的形成具有阶段性的特点,体现在沉积层的微观形貌、厚度、缺陷、成分等方面。黄伟等[18]根据的电枢速度划分成起始段、加速段、高速段 3 个段,对历经 10 次发射的轨道进行拆解,分析沉积层形成过程,解释沉积层变薄的原因。结果表明,在电磁发射初期沉积层形成主要是焦耳热的作用,使得枢轨接触面材料熔化,造成熔点低的铝率先沉积在铜轨道表面;后期主要受到冲击力的影响,轨道表面产生了严重的塑性变形,沉积层厚度开始减薄;当电枢速度继续加快,在轨道表面的滞留时间减短时,铝来不及在轨道表面沉积,导致沉积量减少,沉积层厚度减薄。XIA 等[19]研究电流范围为 10~20 kA / mm 的轨道表面沉积层形成时,发现在电枢启动阶段,此时电流密度最大,沉积厚度最厚; 第二阶段,电流逐渐减小,沉积量逐渐减小,沉积层厚度减薄;第三阶段,电流很小,电枢速度极大,轨道表面没有明显的沉积层痕迹。李郁兴等[20]为涵盖整个发射过程将轨道均分,取其中四个区域进行分析:第一区域,电流及电枢速度小,轨道表面铜基体裸露,沉积层易从轨道表面剥落;第二区域,电流及电枢速度逐渐上升,沉积层覆盖较完全,有流水状组织生成,此区域沉积层厚度最厚;第三区域,沉积层表面较粗糙,厚度较薄;第四区域,沉积层表面较为光滑。图5 展现了沉积层形成过程中厚度、缺陷等随着电枢速度改变的演化。

  • 图5 轨道表面沉积层演变图

  • Fig.5 Evolution diagram of deposition layer on rail surface

  • 综上,学者们对于轨道表面沉积层形成的研究均是基于电枢发射速度或依据特征形貌对应轨道位置等分型方法进行的,对沉积层进行了宏观表面分析,金相、扫描电镜、透射等微观分析揭示了沉积层的形成过程,发现沉积层具有沿轨道长度方向以及轨道径向的时空演化特性。沉积层的存在会造成枢轨间的接触状态发生改变,影响后续发射行为,造成整个发射过程中轨道表面的复杂性。目前对于沉积层形成过程的研究尚未形成普适性的演变规律,对于多发状态下的沉积层组织演化、成分演化、缺陷演化、性能演化等研究还需进一步深入。

  • 2 沉积层的组织结构和分布规律

  • 发射后轨道表面沉积层呈现多孔多层、沉积层厚度具有沿轨道长度方向及径向的演变特性。

  • 2.1 沉积层典型结构

  • 沉积层内部并非致密的,DUTTA 等[21]对进行 1、3、8 次发射的轨道取样发现,沉积层内部分布有许多孔洞,通过元素分布证实多孔层是严重氧化的铝,孔洞形成是由于铝液与大气中的水发生水解反应产生的水蒸气,随着铝熔融冷却沉积,水蒸气困在沉积层中形成孔洞,反应如式(1)、(2)所示。随着电枢的不断发射,沉积层逐渐变成多孔多层富氧结构,如图6 所示。HSIEH 等[22]使用银铋电枢替代铝电枢进行发射试验,证明沉积层呈现多孔状态是由电枢熔融时夹带空气造成的。PERSAD 等[23] 通过轨道表面研究,表明孔隙的形成是由固液两相密度差导致的体积收缩以及氢气的析出造成的。随着发射次数的增加,沉积层内孔隙的分布以及结构也发生变化,由于电枢重复发射以及热量传导速率不断变化,沉积层呈现着明显两层或多层结构,且沉积层的层数要少于发射次数;孔洞数量的增加方向与热量的传导方向相反,孔洞多集中在沉积层表层,且表层孔洞尺寸相较于底部更小。

  • 2Al+3H2OAl2O3+3H2
    (1)
  • 2H2+O22H2O
    (2)
  • 图6 沉积层多孔多层结构[21]

  • Fig.6 Porous multilayer structure of deposition layer[21]

  • 综上所述,沉积层内部孔洞的形成与气体溢出 (如发射过程中夹杂着的空气中的水蒸气、反应生成的氢气、高温下产生的铝蒸汽),与固液两相密度差造成的体积收缩有关,其多层结构与电枢的重复发射以及热量的传导、累积有关。伴随着电枢重复发射,沉积层内部的孔洞尺寸以及数量、分布位置、沉积层层数沿轨道长度方向和径向有明显的演化特性。

  • 2.2 沉积层分布规律

  • 随着发射次数的增加,沉积层厚度展现出单次发射沿着轨道长度方向及多次发射沿轨道径向的演化特性。

  • 轨道径向上的沉积层厚度随着发射次数的增加而呈现显著变化。PERSAD 等[23]研究 1、3、7 次三种不同发射次数下的沉积层厚度变化,研究表明沉积层厚度在第 7 次发射后增幅较大;COOPER 等[24] 研究了 1、3、6、20 次四种不同发射次数下沉积层厚度变化,研究结果表明随着发射次数的增加,轨道同一位置处沉积层厚度也随之增加,且轨道下半部分沉积层厚度增长的速率要高于轨道上半部分。

  • 对不同发射次数的轨道沉积层同一位置的厚度及其微观结构径向演变图如图7 所示。

  • 图7 沉积层厚度及微观结构随发射次数演变图

  • Fig.7 Evolution of thickness and microstructure of deposition layer with emission times

  • 其次是多次发射后的轨道表面沉积层厚度及沿轨道长度方向演变的研究。随着电枢重复发射,李白等[25]发现枢轨接触面的粗糙度幅值越大,电枢融化速率越慢,沿轨道长度方向上轨道表面铝沉积量减少。TANG 等[26]研究了电流分布对轨道表面沉积层的影响,在试验过程中发现沉积层沿轨道长度方向上的分布呈现向轨道轴线中心收拢的状态,向着枢轨接触界面的中心处累积。黄伟等[27]在研究 10 次发射后的轨道表面组织结构变化规律发现,沉积层厚度沿着轨道长度方向呈现线性下降的趋势,在电枢速度大于 2 km / s 时,沉积层厚度几乎为零。

  • 总之,沿轨道径向上沉积层厚度随着发射次数的增加而呈现抛物线式变化,多次发射后沿轨道长度方向上的沉积层厚度变化规律与发射次数有关。

  • 3 影响沉积层形成的因素

  • 轨道表面沉积层的形成是极其复杂的,随着电枢的重复发射,残余热量、残余应力会在沉积层表层累积[28],沉积层表面粗糙度发生改变,进而改变沉积层在轨道表面的分布以及枢轨接触特性。沉积层的形成会受到轨道材料及表面处理、轨道结构、电枢材料、电枢结构、枢轨接触特性及电流等方面的影响。

  • 3.1 轨道材料及结构影响

  • 3.1.1 轨道材料

  • 基于轨道处于极端恶劣的发射环境,轨道材料需满足高强高导的性能。CAO 等[13]依据焦耳热能量守恒,得出使用密度大、比热容高的轨道材料,有利于减少轨道表面损伤。MATTHEW 等[29]采用 Ashby 方法,发现铜作为轨道材料的基体元素,可以实现综合性能最大化。因此,在电磁轨道炮发展历程中,铜基材料是较为理想的轨道材料[30]

  • 不同的铜基轨道材料配对铝电枢、沉积层表面形貌、表面粗糙度等会有差异。GEE 等[31]研究了 Be-Cu、 Cu-W、Cu-Cr、DS-Cu 四种不同的铜基材料配对 7075 铝合金电枢在启动位置处的表面形貌。Be-Cu、Cu-W 轨道表面的沉积层形貌呈现光滑连续的薄膜形态, Cu-Cr、DS-Cu 表面的沉积层呈现不连续的粒状块体和明显的分层结构。Be-Cu 由于导热性及导电性较差,在电枢启动位置处的轨道表面出现相对较严重的损伤累积,影响后半段沉积层的形成。浦晓亮[32]研究了 CuCrZr以及Be-Cu两种不同的轨道材料在不同发射速度下的轨道表面沉积层,试验表明 CuCrZr 轨道的沉积层较厚,沉积层内部孔洞及晶粒尺寸、数量较大,Be-Cu 轨道表面沉积层厚度较薄,表面烧蚀碳化程度更轻。 WILD 等[33]通过对不同轨道材料在不同发射能量下的轨道表面沉积层进行分析,得出在高能状态下,轨道材料对于轨道表面沉积层的影响不大。所以轨道基体材料不同、发射状态不同等均会影响历经发射后轨道表面的沉积层厚度、表面粗糙度及内部缺陷,进而影响后续发射沉积层在轨道表面的分布,改变枢轨接触状态,影响电磁轨道炮的发射行为。

  • 3.1.2 轨道结构

  • 轨道截面形状的差异会造成轨道力学性能差异以及轨道表面电流分布不同,从而改变沉积层在轨道表面的分布以及沉积层表面状态。李鹤等[34]通过对矩形、凸形、凹形三种不同截面形状的轨道(如图8 所示)进行建模、惯性矩计算、电流密度仿真,发现凸形截面的轨道表面电流密度分布均匀,与电枢接触面积较大,电枢的运动状态相对来说更稳定,枢轨接触状态良好,轨道表面沉积层烧蚀碳化的程度减轻,沉积层在轨道表面的分布更均匀。JIN[35] 与 POLAT[36]等也报道了关于矩形、凸截面与凹截面轨道发射行为的研究。表明在给定截面积的前提条件下,三种轨道的力学性能差别不大,但发射行为有明显差异,凸轨相比于其他截面形状的轨道来说拥有更大的接触面积、更均匀的电流分布以及接触面有着更少的材料转移,减少了电流集中带来的大面积铝沉积以及减轻轨道表面沉积层烧蚀程度,使得沉积层在轨道长度方向上的分布较均匀且表面不容易碳化,使得枢轨接触较稳定,保持优良的发射性能,所以凸形截面的轨道也是目前电磁轨道炮比较适用的。

  • 图8 不同截面形状的轨道[34]

  • Fig.8 Rails with different sectional shapes[34]

  • 总之,选用合适的轨道材料,对轨道结构进行合理的设计,可以使得枢轨在高温升、大载流、强应变这样一个极端服役条件下保持稳定接触,避免电流密度集中带来的局部高温导致的局部大面积铝沉积,使得轨道表面沉积层分布均匀,减轻沉积层表面氧化及碳化程度,保持电枢与轨道之间良好的接触稳定性,优化电磁发射行为。

  • 3.2 电枢材料与结构影响

  • 3.2.1 电枢材料

  • 电枢材料特性通常会影响电磁发射过程中电枢的熔融及沉积层的形成。HINAJE 等[37]通过对比铝与铜、银、镍、钨等不同材料电枢的性能,得出电枢材料一般选用电阻率低,密度低,ZIELINSKI 等[38]得出电枢材料需选用相对耐高温且在高温下能够保持较强的机械承载力的合金。基于对电枢材料研究的综合考虑,目前比较适用的电枢材料是 70 系铝合金和 60 系铝合金[39]。特别是在连续发射条件下,温度不断在枢轨接触面积累[40],形成如图9 所示的温度递增过程。由于铝的熔点比铜低,电枢率先熔融并且部分沉积在轨道表面,使得枢轨接触状态变成电枢-沉积层接触,枢轨接触状态愈加复杂。

  • 3.2.2 电枢结构

  • 电枢结构会影响电枢融化特性以及接触压力分布[41],从而改变沉积层在轨道表面的分布以及沉积层的表面状态。CHEN 等[14]提出电磁发射过程中,由于电流拥挤产生的局部焦耳热的影响,电枢融化通常从电枢尾部开始;LI 等[42-43]指出电枢的尾部更容易变形,电流更容易集中在电枢尾部边缘处。电枢尾部较容易变形,导致接触压力分布不均,进而导致沉积层厚度沿轨道长度方向上分布不均匀,影响沉积层表面粗糙度。为了改善沉积层在轨道表面的分布,枢轨保持良好的接触状态,ZHANG 等[44] 对四种不同形状的电枢进行低速试验,如图10 所示,发现电枢圆形的前缘和后缘设计可以提高枢轨接触面电流分布的均匀性,改善温度分布,从而使得沉积层分布更均匀;LI 等[45]研究了电枢结构对于电枢融化特性的影响,提出电枢尾部越长,电枢融化速率越慢,电枢尾部示意图如图11 所示。结果表明为保持枢轨之间的良好接触,电枢尾部夹角在合适的范围尽可能小,可在电磁发射后半段适当增加电枢尾部的长度,从而增加沉积层的厚度,使得沉积层在轨道表面的分布更加均匀。通过分析电枢融化特性的影响因素,掌握沉积层动态变化,可以达到改善枢轨接触状态,优化电磁发射的目的。

  • 图9 连续射击时的轨道温度变化图[40]

  • Fig.9 Rail temperature change during continuous firing[40]

  • 3.3 枢 / 轨配副接触状态影响

  • 3.3.1 枢 / 轨接触状态

  • 影响电枢与轨道间接触状态的因素有很多, ZHANG 等[46]通过开展铜轨道与铝电枢接触性能试验发现,接触压力以及电枢尾部长度会影响电枢与轨道的接触特性。沉积层的厚度及其在轨道表面的分布是反映枢轨之间接触是否良好、接触压力是否匹配及枢轨间距是否合适的直观表现。沉积层对于电枢与轨道之间接触特性的影响有两个方面:

  • 一是改变枢轨间的摩擦因数,影响枢轨接触面材料的耗损,使得枢轨接触状态愈加复杂,从而影响沉积层在轨道表面的分布状态。YAO 等[47]提出沉积在轨道表面的铝液可以降低枢轨接触面的摩擦因数;ZHU 等[48]通过建立数学计算模型,根据计算结果分析枢轨接触特性,发现电枢磨损后沉积在轨道表面会使得枢轨间的接触电阻及摩擦因素减小,导致接触状态不稳定,铝沉积量较大;当枢轨之间的接触状态恶化,发生失接触时,轨道表面表现为铝沉积量慢慢减少,且伴随着沉积层表面被烧蚀碳化。铝沉积过程中,铝液会降低枢轨间摩擦因数,沉积在轨道表面的铝沉积层增加枢轨间摩擦因数。学者们对于枢轨接触特性的研究均从计算模拟入手,用枢轨接触电阻及摩擦因数进行表征,阐述电枢轨接触特性,为电磁发射枢轨接触动态变化提供有效数据支撑,通过对数学演算公式与实际发射数据相迭代,有效揭示电磁发射过程中枢轨接触状态改变带来的沉积层分布问题。

  • 二是由于每一次发射都基于枢轨间不同的接触状态,造成发射过程中电枢与轨道间的间隙发生变化,导致接触状态恶化,沉积层在轨道表面的厚度分布不均匀,沉积层表面易被烧蚀碳化。 ZHANG 等[49]发现在轨道表面累积的电阻热会使得铝汽化,使得枢轨间隙增大,接触失稳,在轨道表面产生电弧从而沉积层表面碳化。WU 等[50]发现电枢的不对称磨损导致枢轨间接触状态不稳定,电枢磨损情况如图12 所示,导致历经多次发射后的轨道表面前半部分沉积层质量要多于轨道后半部分,且上下两条轨道表面对应位置沉积层分布不对称,可以通过适当的过盈量或者改善电枢结构来改善这个情况。

  • 图10 不同电枢形状示意图[44]

  • Fig.10 Schematic diagram of different armature shapes[44]

  • 图11 电枢不同尾部长度示意图[45]

  • Fig.11 Schematic diagram of different tail lengths of armature[45]

  • 图12 电枢随时间变化的磨损率曲线图[50]

  • Fig.12 Wear rate curve of armature with time[50]

  • 总之,枢轨间摩擦因数不同、间隙不一致,造成枢轨接触状态不稳定,会使得轨道表面沉积量不同,导致轨道表面的厚度分布不均匀,沉积层表面烧蚀碳化程度不同,影响沉积层表面形貌、微观结构及其物性,从而影响电磁发射行为。

  • 3.3.2 表面处理

  • 沉积层的沉积量以及表面碳化或氧化状态与轨道及电枢表面处理有关。GNEGY-DAVIDSON 等[51] 研究了轨道表面腐蚀对于 5 次发射后轨道表面损伤以及发射性能的影响,腐蚀前,历经发射的轨道表面有清晰的银白色铝沉积层,表面较光滑;腐蚀后的轨道表面沉积层较为粗糙,且呈现颗粒状,有明显的电弧烧蚀的痕迹,沉积量增大,如图13 所示。

  • 图13 轨道表面腐蚀前后沉积层对比图[51]

  • Fig.13 Comparison of deposition layers before and after rail surface corrosion[51]

  • 由于铜轨道配铝电枢时,铜的硬度比铝大,铝容易软化向铜轨道表面进行材料转移[52],可以通过在枢轨接触面间添加涂层,降低枢轨间的摩擦因数,减少电枢的损耗,从而减少沉积量。不同的涂层组合形式如图14 所示。ENGEL 等[53]研究了涂覆蒸馏水以及液态镓铟锡的铜轨道与电枢之间的滑动电接触性能,结果表明液态涂层可以降低枢轨间的摩擦因数,减少电枢磨损,从而减少沉积量;雷彬等[54] 发现石墨烯涂层电枢有利于降低电枢与轨道接触时的摩擦因数,提高枢轨接触面的导电性,减缓沉积层表面氧化程度;吕庆敖等[55]发现电枢表面涂覆一定厚度的锡合金能够降低界面温度及电流密度,减缓铝电枢的熔化,从而减少沉积量以及减轻沉积层表面高温氧化、烧蚀碳化程度;ZHOU 等[56]研究了涂有层状涂层材料的枢轨表面,研究表明,电枢与轨道均带有涂层时,可以明显降低电枢尾部的高温,减少电枢尾部熔化,提高电枢运动可靠性以及保持枢轨接触稳定性,进而减少沉积量以及减轻沉积层表面高温氧化,优化沉积层在轨道表面的分布状态。

  • 图14 电枢 / 轨道表面涂层的不同组合形式

  • Fig.14 Different forms and structures of armature / rail coating

  • 3.4 发射电流参数影响

  • 电磁发射的电流一般是脉冲电流,脉冲电流的幅值会改变发射过程中轨道表面产生的焦耳热,从而影响沉积量以及沉积层内部残余热量的累积。汤亮亮[57]选用 6061 电枢配对两米长黄铜轨道,做了 8 组不同电流幅值的实验,对发射后的轨道表面进行分析,发现电流幅值的增加会使得沉积层减薄的位置相对后移,导致电枢启动位置以及轨道下侧的沉积层较厚。特别是电枢启动位置,由于电流密度集中,温度迅速升高,沉积量较大,沉积层厚度变大,沉积层质量及厚度分布极其不均匀。随着电流幅值的增大,沉积层呈现从两端逐渐向轨道中段靠拢的动态演化。沉积层厚度及表面状态更能直观的表明枢轨接触面电流的分布情况,从而分析电流幅值的改变造成沉积层在轨道表面的分布情况,改善枢轨接触性能。LI 等[45]则通过模拟试验,证明电流波形越平,电枢融化量更少,最小金属液化层厚度越薄,即沉积在轨道表面的铝液越少,如图15 所示,对后续发射影响减少,低电流幅值有利于提高发射过程的稳定性。

  • 图15 两种电流下的融化速率及最小液化层厚度图[45]

  • Fig.15 Diagram of melting rate minimum liquefaction layer thickness under two currents[45]

  • 基于上述分析,电流的幅值及电流分布会影响电枢熔融速率,从而影响铝液的沉积状态。发射过程中,可以通过改变电源电流的波形、幅值等参数改善沉积层分布,优化电磁发射行为;通过提高电流上升时间,减小电流,改善电流分布[58],防止局部热量堆积造成沉积层表面状态恶化;控制电枢表面的融化速率,进而控制铝液的沉积过程。

  • 基于沉积层的形成受到诸多因素影响,通过从轨道材料、轨道结构设计、电枢材料、电枢结构设计以及接触状态、发射电流参数等方面进行归纳总结,达到通过掌握沉积层形成过程优化枢轨接触状态,优化电磁发射行为,预测轨道寿命的目的。

  • 4 结论与展望

  • 沉积层作为覆盖全轨道表面以及全发射过程的典型损伤形式,显著地反映了运动电枢与固定轨道的接触特性,研究得到以下结论:

  • (1)沉积层具有多孔多层的典型微观结构,形貌及厚度随电枢发射次数的增加,具有沿轨道长度方向、径向上明显的时空演化特性。

  • (2)沉积层的形成过程是微观、具有明显阶段性特征的,受到轨道材料、轨道结构设计、电枢特性、电枢结构设计、枢轨接触特性及电流的影响,成为反映电磁发射行为的重要指标之一。

  • (3)沉积层的存在一方面形成金属液化层,降低枢 / 轨间的摩擦因数,另一方面会改变枢 / 轨间隙,恶化枢 / 轨间接触特性。在电磁发射过程中,通过掌握沉积层演化特性,减少沉积,改善枢 / 轨间隙,优化接触状态,可以更好地提升电磁发射轨道性能及其寿命。

  • 目前轨道表面沉积层的研究已经取得一定进展,但仍然存在一些问题,针对这些问题提出以下三个方面的展望:

  • (1)沉积层研究基于实际发射后的轨道样品,由于实际工况极端恶劣及轨道拆解困难,多次发射后轨道表面状态具有复杂性及研究结果具有一定的偶然性,尚未能形成关于沉积层特征、微观结构等系统的、普适性的演化规律。可在实际发射过程中,通过直接获取轨道表面信息或者采用试验方法得到相似于铜表面铝沉积层的样件的方式,以此得到大量不同发射条件下的数据样本,使得现有规律更具有普适性。

  • (2)目前关于轨道表面沉积层的研究更多在于依据不同分型方法展开轨道表面沉积层浅层微观形貌、枢轨接触界面处的化学反应、不同发射条件下沉积状态等方面,对于沉积层的更细观的形貌、成分、缺陷、结构等演化规律及带沉积层轨道材料物性测试与演变方面未深入探索。应采用更加微观的研究手段,如透射、纳米压痕等,获取沉积层晶粒演变以及带沉积层轨道材料微尺度下的性能。

  • (3)基于沉积层对电磁发射行为判断的重要性,如何从沉积层出发,建立枢轨接触模型,形成基于沉积层的枢轨接触特性的评价标准,是目前应该考虑的研究方向。

  • 参考文献

    • [1] 马伟明,鲁军勇.电磁发射技术[J].国防科技大学学报,2016,38(6):1-5.MA Weiming,LU Junyong.Electromagnetic emission technology[J].Journal of National Defense University of science and technology,2016,38(6):1-5.(in Chinese)

    • [2] 贺翔,曹群生.电磁发射技术研究进展和关键技术[J].中国电子科学研究院学报,2011,6(2):130-135.HE Xiang,CAO Qunsheng.Research progress and key technologies of electromagnetic launch technology[J].Journal of China Academy of Electronic Sciences,2011,6(2):130-135.(in Chinese)

    • [3] YU K X,ZHU H T,XIE X F,et al.Loss analysis of air-core pulsed alternator driving an ideal electromagnetic railgun[J].IEEE Transactions on Transportation Electrification,2021,7(3):1589-1599.

    • [4] YANG Y,DAI K,YIN Q,et al.In-bore dynamic measurement and mechanism analysis of multi-physics environment for electromagnetic railguns[J].IEEE Access,2021,9:16999-17010.

    • [5] LI S Z,LI J,XIA S G,et al.Phase division and critical point definition of electromagnetic railgun sliding contact state[J].IEEE Transactions on Plasma Science,2019,47(5):2399-2403.

    • [6] XIAO H C,YIN D M,LI B M.Electrodynamic response study on railgun launcher based on electromechanical coupling model[J].Defence Technology,2019,15(4):655-665.

    • [7] 冯勇.电磁发射装置电枢轨道摩擦磨损研究[D].秦皇岛:燕山大学,2018.FENG Yong.Study on friction and wear of armature rail of electromagnetic launcher[D].Qinhuangdao:Yanshan University,2018.(in Chinese)

    • [8] GAO X,LIU F,FENG Y,et al.Wear characteristics of rail-armature under the action of interference fit and lorentz force[J].IEEE Transactions on Plasma Science,2020,48(6):2261-2265.

    • [9] ZHANG H H,LI S,GAO X,et al.Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns[J].IEEE Transactions on Plasma Science,2020,48(12):4342-4349.

    • [10] XIE H B,YANG H Y,YU J,et al.Research progress on advanced rail materials for electromagnetic railgun technology[J].Defence Technology,2021,17(2):429-439.

    • [11] BARBER J P,BAUER D P,JAMISON K,et al.A survey of armature transition mechanisms[J].IEEE Transactions on Magnetics,2003,39(1):47-51.

    • [12] STEFANI F,MERRILL R.Experiments to measure melt-wave erosion in railgun armatures[J].IEEE Transactions on Magnetics,2003,39(1):188-192.

    • [13] CAO B,GUO W,GE X,et al.Analysis of rail erosion damage during electromagnetic launch[J].IEEE Transactions on Plasma Science,2017,45(7):1263-1268.

    • [14] CHEN T,LONG X,DUTTA I,et al.Effect of current crowding on microstructural evolution at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2007,43(7):3278-3286.

    • [15] MOTES D,KEENA J,WOMACK K,et al.Thermal analysis of high-energy railgun tests[J].IEEE Transactions on Plasma Science,2011,40(1):124-130.

    • [16] MEGER R A,COOPER K,JONES H,et al.Analysis of rail surfaces from a multishot railgun[J].IEEE Transactions on Magnetics,2005,41(1):211-213.

    • [17] MACHADO B I,MURR L E,MARTINEZ E,et al.Materials characterization of railgun erosion phenomena[J].Materials Science and Engineering:A,2011,528(25-26):7552-7559.

    • [18] 黄伟,杨黎明,史戈宁,等.电磁发射条件下CuCrZr合金材料轨道损伤行为研究[J].兵工学报,2020,41(5):858-864.HUANG Wei,YANG Liming,SHI Goning,et al.Study on rail damage behavior of CuCrZr alloy under electromagnetic emission[J].Journal of Ordnance Industry,2020,41(5):858-864.(in Chinese)

    • [19] XIA S G,HU Y Y,CHEN L X,et al.Experimental studies on melt erosion at rail-armature contact of rail launcher in current range of 10–20 kA/mm[J].IEEE Transactions on Plasma Science,2017,45(7):1667-1672.

    • [20] 李郁兴,姚萍屏,李专,等.电磁发射CuCrZr轨道的沉积层特征与磨损机理[J].粉末冶金材料科学与工程,2022,27(4):409-418.LI Yuxing,YAO Pingping,LI Zhuan,et al.Deposition layer characteristics and wear mechanism of electromagnetic emission CuCrZr rail[J].Powder Metallurgy Materials Science and Engineering:2022,27(4):409-418.(in Chinese)

    • [21] DUTTA I,DELANEY L,CLEVELAND B,et al.Electric-current-induced liquid Al deposition,reaction,and flow on Cu rails at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2009,45(1):272-277.

    • [22] HSIEH P Y,PERSAD C,GHOSH G,et al.Mechanism of porosity formation in transfer films in electromagnetic launchers[J].IEEE Transactions on Magnetics,2009,45(1):319-321.

    • [23] PERSAD C,CASTRO Z.Railgun tribology:characterization and control of multishot wear debris[J].IEEE Transactions on Magnetics,2006,43(1):173-177.

    • [24] COOPER K P,JONES H N,MEGER R A.Analysis of railgun barrel material[J].IEEE Transactions on Magnetics,2006,43(1):120-125.

    • [25] 李白,鲁军勇,谭赛,等.滑动电接触界面粗糙度对电枢熔化特性的影响[J].电工技术学报,2018,33(7):1607-1615.LI Bai,LU Junyong,TAN Sai,et al.Effect of sliding electrical contact interface roughness on armature melting characteristics[J] Journal of Electrotechnics,2018,33(7):1607-1615.(in Chinese)

    • [26] TANG L L,HE J J,Chen L X,et al.Study of some influencing factors of armature current distribution at current ramp-up stage in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1585-1591.

    • [27] 黄伟,杨黎明,史戈宁,等.载流摩擦条件下CuCrZr合金表面组织演变规律[J].稀有金属,2020,44(7):687-696.HUANG Wei,YANG Liming,SHI Goning,et al.Evolution of surface microstructure of CuCrZr alloy under current carrying friction[J].Rare Metals,2020,44(7):687-696.(in Chinese)

    • [28] LI H,LEI B,LV Q A,et al.Analysis on thermal character of interface between rail and armature for electromagnetic railgun[J].IEEE Transactions on Plasma Science,2013,41(5):1426-1430.

    • [29] MATTHEW J,RICHARD W.Materials selection exercise for electromagnetic launcher rails[J].IEEE Transactions on Magnetics,2013,49(8):4831-4838.

    • [30] 杜传通,雷彬,张倩,等.电磁轨道炮枢轨材料研究进展[J].飞航导弹,2017,9:88-93.DU Chuantong,LEI Bin,ZHANG Qian,et al.Research progress on the pivot rail material of electromagnetic rail gun[J].Flying Missile,2017,9:88-93.(in Chinese)

    • [31] GEE R M,PERSAD C.The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher[J].IEEE Transactions on Magnetics,2001,37(1):263-268.

    • [32] 浦晓亮.模拟电磁发射条件下铜合金轨道损伤特征研究[D].济南:山东大学,2019.PU Xiaoliang.Research on damage characteristics of copper alloy rail under simulated electromagnetic emission[D].Jinan:Shandong University,2019.(in Chinese)

    • [33] WILD B,SCHUPPLER C,ALOUAHABI F,et al.The influence of the rail material on tmMultishot performance of the rapid fire railgun[J].IEEE Transactions on Plasma Science,2015,43(6):2095-2099.

    • [34] 李鹤,李治源,雷彬,等.电磁轨道炮不同截面轨道的特性分析[J].火力与指挥控制,2014,39(4):45-48.LI He,LI Zhiyuan,LEI Bin,et al.Characteristic analysis of different cross section rails of electromagnetic rail gun[J].Fire and Command Control,2014,39(4):45-48.(in Chinese)

    • [35] JIN L W,LEI B,ZHANG Q,et al.Electromechanical performance of rails with different cross-sectional shapes in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1220-1224.

    • [36] POLAT H,TOSUN N,CEYLAN D,et al.Optimization of a convex rail design for electromagnetic launchers[J].IEEE Transactions on Plasma Science,2020,48(6):2266-2273.

    • [37] HINAJE M,NSTTER D.Influence of the projectiles’ material in a coilgun[J].European Journal of Physics,2006,27(5):1097.

    • [38] ZIELINSKI A E.Thermophysical evaluation of a novel aluminum alloy with application to an integrated launch package[J].IEEE Transactions on Magnetics,2003,39(1):332-336.

    • [39] 卢铜钢.温度场下电磁轨道炮枢轨接触分析[D].秦皇岛:燕山大学,2020.LU Tonggang.Analysis of pivot rail contact of electromagnetic rail gun under temperature field[D].Qinhuangdao:Yanshan University,2020.(in Chinese)

    • [40] 林庆华,栗保明.电磁轨道炮瞬态温度场的数值模拟[J].工程热物理学报,2017,38(1):149-154.LIN Qinghua,LI Baoming.Numerical simulation of transient temperature field of electromagnetic rail gun[J].Journal of Engineering Thermophysics,2017,38(1):149-154.(in Chinese)

    • [41] HRIC G R,ODENDAAL W G.Improving start-up contact distribution between railgun armature and rails[J].IEEE Transactions on Plasma Science,2016,44(7):1202-1207.

    • [42] LI C X,CHEN L X,WANG Z J,et al.Influence of armature movement velocity on the magnetic field distribution and current density distribution in railgun[J].IEEE Transactions on Plasma Science,2020,48(6):2308-2315.

    • [43] LI C X,XIA S G.Study on lubrication characteristics of metal liquid film based on electromagnetic elastic mechanics hydrodynamics multiphysics coupling model[J].Materials,2020,13(5):1056-1073.

    • [44] ZHANG Y D,RUAN J J,HU Y C,et al.Ablation and geometry change study of solid armature in a railgun[J].Chinese Physics B,2013,22(8):084102.

    • [45] LI B,MA W M,LU J Y,et al.Effects of supply current and armature structure on melting characteristics of armature surface in sliding electric contact[J].IEEE Transactions on Plasma Science,2018,47(1):721-728.

    • [46] ZHANG Q X,LI J,CAO R G.Simulation and test research of copper-aluminum sliding pair contact performance[J].IEEE Transactions on Plasma Science,2013,41(5):1503-1507.

    • [47] YAO J M,XIA S G,CHEN L X,et al.Analysis of hydrodynamic lubrication considering the selfacceleration of a liquid conducting film at rail-armature interface[J].IEEE Transactions on Plasma Science,2019,47(5):2256-2263.

    • [48] ZHU C Y,LI B.Analysis of sliding electric contact characteristics in augmented railgun based on the combination of contact resistance and sliding friction coefficient[J].Defence Technology,2020,16(4):747-752.

    • [49] ZHANG Q X,LI J,LI S Z,et al.Causes of damage at electromagnetic railgun’s initial position and corresponding improvement Measures[J].IEEE Transactions on Plasma Science,2019,47(8):4184-4188.

    • [50] WU J G,WAN G,CHENG N K,et al.Research on Armature’ s wearing and dynamic interior ballistic of a railgun[J].IEEE Transactions on Plasma Science,2017,45(7):1202-1207.

    • [51] GNEGY-Davidson C G,WETZ D A,WONG D.Impact of corroded copper rails on the performance of a miniature electromagnetic launcher[J].IEEE Transactions on Plasma Science,2017,45(7):1539-1544.

    • [52] 宋增红,梁永民,刘维民,等.锂离子液体作为钢/铜、钢/铝摩擦副润滑剂的摩擦学性能[J].中国表面工程,2013,26(6):100-105.SONG Zenghong,LIANG Yongmin,LIU Weimin,et al.Tribological properties of lithium ion liquid as lubricant for steel/copper and steel/aluminum friction pairs[J].China Surface Engineering,2013,26(6):100-105.(in Chinese)

    • [53] ENGEL T G,RADA N M.Time-and frequency-domain characterization of railgun sliding contact noise[J].IEEE Transactions on Plasma Science,2017,45(7):1321-1326.

    • [54] 雷彬,杜传通,吕庆敖,等.石墨烯涂层对电磁轨道炮性能影响的试验研究[J].高电压技术,2019,45(6):1929-1935.LEI bin,DU Chuantong,LÜ Qingao,et al Experimental study on the influence of graphene coating on the performance of electromagnetic rail gun[J].High Voltage Technology,2019,45(6):1929-1935.(in Chinese)

    • [55] 吕庆敖,陈建伟,张华翔,等.电磁轨道炮锡合金涂层电枢/轨道温度场数值仿真[J].兵器装备工程学报,2019,40(4):10-14.LÜ Qingao,CHEN Jianwei,ZHANG Huaxiang,et al.Numerical simulation of temperature field of tin alloy coated armature/rail of electromagnetic rail gun[J].Journal of Weapon Equipment Engineering,2019,40(4):10-14.(in Chinese)

    • [56] ZHOU P F,LI B M.Numerical calculation of magnetic-thermal coupling and optimization analysis for velocity skin effect[J].IEEE Transactions on Plasma Science,2021,49(12):3994-4001.

    • [57] 汤亮亮.电磁发射中枢轨接触界面金属液化层特性的实验与理论研究[D].武汉:华中科技大学,2015.TANG Liangliang.Experimental and theoretical studies on the characteristics of the liquefied metal layer at the contact interface of the electromagnetic launch center rail[D].Wuhan:Huazhong University of Science and Technology,2015.(in Chinese)

    • [58] TANG L L,HE J,CHEN L X,et al.Current concentration of large-caliber C-shaped armature in square railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1125-1130.

  • 参考文献

    • [1] 马伟明,鲁军勇.电磁发射技术[J].国防科技大学学报,2016,38(6):1-5.MA Weiming,LU Junyong.Electromagnetic emission technology[J].Journal of National Defense University of science and technology,2016,38(6):1-5.(in Chinese)

    • [2] 贺翔,曹群生.电磁发射技术研究进展和关键技术[J].中国电子科学研究院学报,2011,6(2):130-135.HE Xiang,CAO Qunsheng.Research progress and key technologies of electromagnetic launch technology[J].Journal of China Academy of Electronic Sciences,2011,6(2):130-135.(in Chinese)

    • [3] YU K X,ZHU H T,XIE X F,et al.Loss analysis of air-core pulsed alternator driving an ideal electromagnetic railgun[J].IEEE Transactions on Transportation Electrification,2021,7(3):1589-1599.

    • [4] YANG Y,DAI K,YIN Q,et al.In-bore dynamic measurement and mechanism analysis of multi-physics environment for electromagnetic railguns[J].IEEE Access,2021,9:16999-17010.

    • [5] LI S Z,LI J,XIA S G,et al.Phase division and critical point definition of electromagnetic railgun sliding contact state[J].IEEE Transactions on Plasma Science,2019,47(5):2399-2403.

    • [6] XIAO H C,YIN D M,LI B M.Electrodynamic response study on railgun launcher based on electromechanical coupling model[J].Defence Technology,2019,15(4):655-665.

    • [7] 冯勇.电磁发射装置电枢轨道摩擦磨损研究[D].秦皇岛:燕山大学,2018.FENG Yong.Study on friction and wear of armature rail of electromagnetic launcher[D].Qinhuangdao:Yanshan University,2018.(in Chinese)

    • [8] GAO X,LIU F,FENG Y,et al.Wear characteristics of rail-armature under the action of interference fit and lorentz force[J].IEEE Transactions on Plasma Science,2020,48(6):2261-2265.

    • [9] ZHANG H H,LI S,GAO X,et al.Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns[J].IEEE Transactions on Plasma Science,2020,48(12):4342-4349.

    • [10] XIE H B,YANG H Y,YU J,et al.Research progress on advanced rail materials for electromagnetic railgun technology[J].Defence Technology,2021,17(2):429-439.

    • [11] BARBER J P,BAUER D P,JAMISON K,et al.A survey of armature transition mechanisms[J].IEEE Transactions on Magnetics,2003,39(1):47-51.

    • [12] STEFANI F,MERRILL R.Experiments to measure melt-wave erosion in railgun armatures[J].IEEE Transactions on Magnetics,2003,39(1):188-192.

    • [13] CAO B,GUO W,GE X,et al.Analysis of rail erosion damage during electromagnetic launch[J].IEEE Transactions on Plasma Science,2017,45(7):1263-1268.

    • [14] CHEN T,LONG X,DUTTA I,et al.Effect of current crowding on microstructural evolution at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2007,43(7):3278-3286.

    • [15] MOTES D,KEENA J,WOMACK K,et al.Thermal analysis of high-energy railgun tests[J].IEEE Transactions on Plasma Science,2011,40(1):124-130.

    • [16] MEGER R A,COOPER K,JONES H,et al.Analysis of rail surfaces from a multishot railgun[J].IEEE Transactions on Magnetics,2005,41(1):211-213.

    • [17] MACHADO B I,MURR L E,MARTINEZ E,et al.Materials characterization of railgun erosion phenomena[J].Materials Science and Engineering:A,2011,528(25-26):7552-7559.

    • [18] 黄伟,杨黎明,史戈宁,等.电磁发射条件下CuCrZr合金材料轨道损伤行为研究[J].兵工学报,2020,41(5):858-864.HUANG Wei,YANG Liming,SHI Goning,et al.Study on rail damage behavior of CuCrZr alloy under electromagnetic emission[J].Journal of Ordnance Industry,2020,41(5):858-864.(in Chinese)

    • [19] XIA S G,HU Y Y,CHEN L X,et al.Experimental studies on melt erosion at rail-armature contact of rail launcher in current range of 10–20 kA/mm[J].IEEE Transactions on Plasma Science,2017,45(7):1667-1672.

    • [20] 李郁兴,姚萍屏,李专,等.电磁发射CuCrZr轨道的沉积层特征与磨损机理[J].粉末冶金材料科学与工程,2022,27(4):409-418.LI Yuxing,YAO Pingping,LI Zhuan,et al.Deposition layer characteristics and wear mechanism of electromagnetic emission CuCrZr rail[J].Powder Metallurgy Materials Science and Engineering:2022,27(4):409-418.(in Chinese)

    • [21] DUTTA I,DELANEY L,CLEVELAND B,et al.Electric-current-induced liquid Al deposition,reaction,and flow on Cu rails at rail-armature contacts in railguns[J].IEEE Transactions on Magnetics,2009,45(1):272-277.

    • [22] HSIEH P Y,PERSAD C,GHOSH G,et al.Mechanism of porosity formation in transfer films in electromagnetic launchers[J].IEEE Transactions on Magnetics,2009,45(1):319-321.

    • [23] PERSAD C,CASTRO Z.Railgun tribology:characterization and control of multishot wear debris[J].IEEE Transactions on Magnetics,2006,43(1):173-177.

    • [24] COOPER K P,JONES H N,MEGER R A.Analysis of railgun barrel material[J].IEEE Transactions on Magnetics,2006,43(1):120-125.

    • [25] 李白,鲁军勇,谭赛,等.滑动电接触界面粗糙度对电枢熔化特性的影响[J].电工技术学报,2018,33(7):1607-1615.LI Bai,LU Junyong,TAN Sai,et al.Effect of sliding electrical contact interface roughness on armature melting characteristics[J] Journal of Electrotechnics,2018,33(7):1607-1615.(in Chinese)

    • [26] TANG L L,HE J J,Chen L X,et al.Study of some influencing factors of armature current distribution at current ramp-up stage in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1585-1591.

    • [27] 黄伟,杨黎明,史戈宁,等.载流摩擦条件下CuCrZr合金表面组织演变规律[J].稀有金属,2020,44(7):687-696.HUANG Wei,YANG Liming,SHI Goning,et al.Evolution of surface microstructure of CuCrZr alloy under current carrying friction[J].Rare Metals,2020,44(7):687-696.(in Chinese)

    • [28] LI H,LEI B,LV Q A,et al.Analysis on thermal character of interface between rail and armature for electromagnetic railgun[J].IEEE Transactions on Plasma Science,2013,41(5):1426-1430.

    • [29] MATTHEW J,RICHARD W.Materials selection exercise for electromagnetic launcher rails[J].IEEE Transactions on Magnetics,2013,49(8):4831-4838.

    • [30] 杜传通,雷彬,张倩,等.电磁轨道炮枢轨材料研究进展[J].飞航导弹,2017,9:88-93.DU Chuantong,LEI Bin,ZHANG Qian,et al.Research progress on the pivot rail material of electromagnetic rail gun[J].Flying Missile,2017,9:88-93.(in Chinese)

    • [31] GEE R M,PERSAD C.The response of different copper alloys as rail contacts at the breech of an electromagnetic launcher[J].IEEE Transactions on Magnetics,2001,37(1):263-268.

    • [32] 浦晓亮.模拟电磁发射条件下铜合金轨道损伤特征研究[D].济南:山东大学,2019.PU Xiaoliang.Research on damage characteristics of copper alloy rail under simulated electromagnetic emission[D].Jinan:Shandong University,2019.(in Chinese)

    • [33] WILD B,SCHUPPLER C,ALOUAHABI F,et al.The influence of the rail material on tmMultishot performance of the rapid fire railgun[J].IEEE Transactions on Plasma Science,2015,43(6):2095-2099.

    • [34] 李鹤,李治源,雷彬,等.电磁轨道炮不同截面轨道的特性分析[J].火力与指挥控制,2014,39(4):45-48.LI He,LI Zhiyuan,LEI Bin,et al.Characteristic analysis of different cross section rails of electromagnetic rail gun[J].Fire and Command Control,2014,39(4):45-48.(in Chinese)

    • [35] JIN L W,LEI B,ZHANG Q,et al.Electromechanical performance of rails with different cross-sectional shapes in railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1220-1224.

    • [36] POLAT H,TOSUN N,CEYLAN D,et al.Optimization of a convex rail design for electromagnetic launchers[J].IEEE Transactions on Plasma Science,2020,48(6):2266-2273.

    • [37] HINAJE M,NSTTER D.Influence of the projectiles’ material in a coilgun[J].European Journal of Physics,2006,27(5):1097.

    • [38] ZIELINSKI A E.Thermophysical evaluation of a novel aluminum alloy with application to an integrated launch package[J].IEEE Transactions on Magnetics,2003,39(1):332-336.

    • [39] 卢铜钢.温度场下电磁轨道炮枢轨接触分析[D].秦皇岛:燕山大学,2020.LU Tonggang.Analysis of pivot rail contact of electromagnetic rail gun under temperature field[D].Qinhuangdao:Yanshan University,2020.(in Chinese)

    • [40] 林庆华,栗保明.电磁轨道炮瞬态温度场的数值模拟[J].工程热物理学报,2017,38(1):149-154.LIN Qinghua,LI Baoming.Numerical simulation of transient temperature field of electromagnetic rail gun[J].Journal of Engineering Thermophysics,2017,38(1):149-154.(in Chinese)

    • [41] HRIC G R,ODENDAAL W G.Improving start-up contact distribution between railgun armature and rails[J].IEEE Transactions on Plasma Science,2016,44(7):1202-1207.

    • [42] LI C X,CHEN L X,WANG Z J,et al.Influence of armature movement velocity on the magnetic field distribution and current density distribution in railgun[J].IEEE Transactions on Plasma Science,2020,48(6):2308-2315.

    • [43] LI C X,XIA S G.Study on lubrication characteristics of metal liquid film based on electromagnetic elastic mechanics hydrodynamics multiphysics coupling model[J].Materials,2020,13(5):1056-1073.

    • [44] ZHANG Y D,RUAN J J,HU Y C,et al.Ablation and geometry change study of solid armature in a railgun[J].Chinese Physics B,2013,22(8):084102.

    • [45] LI B,MA W M,LU J Y,et al.Effects of supply current and armature structure on melting characteristics of armature surface in sliding electric contact[J].IEEE Transactions on Plasma Science,2018,47(1):721-728.

    • [46] ZHANG Q X,LI J,CAO R G.Simulation and test research of copper-aluminum sliding pair contact performance[J].IEEE Transactions on Plasma Science,2013,41(5):1503-1507.

    • [47] YAO J M,XIA S G,CHEN L X,et al.Analysis of hydrodynamic lubrication considering the selfacceleration of a liquid conducting film at rail-armature interface[J].IEEE Transactions on Plasma Science,2019,47(5):2256-2263.

    • [48] ZHU C Y,LI B.Analysis of sliding electric contact characteristics in augmented railgun based on the combination of contact resistance and sliding friction coefficient[J].Defence Technology,2020,16(4):747-752.

    • [49] ZHANG Q X,LI J,LI S Z,et al.Causes of damage at electromagnetic railgun’s initial position and corresponding improvement Measures[J].IEEE Transactions on Plasma Science,2019,47(8):4184-4188.

    • [50] WU J G,WAN G,CHENG N K,et al.Research on Armature’ s wearing and dynamic interior ballistic of a railgun[J].IEEE Transactions on Plasma Science,2017,45(7):1202-1207.

    • [51] GNEGY-Davidson C G,WETZ D A,WONG D.Impact of corroded copper rails on the performance of a miniature electromagnetic launcher[J].IEEE Transactions on Plasma Science,2017,45(7):1539-1544.

    • [52] 宋增红,梁永民,刘维民,等.锂离子液体作为钢/铜、钢/铝摩擦副润滑剂的摩擦学性能[J].中国表面工程,2013,26(6):100-105.SONG Zenghong,LIANG Yongmin,LIU Weimin,et al.Tribological properties of lithium ion liquid as lubricant for steel/copper and steel/aluminum friction pairs[J].China Surface Engineering,2013,26(6):100-105.(in Chinese)

    • [53] ENGEL T G,RADA N M.Time-and frequency-domain characterization of railgun sliding contact noise[J].IEEE Transactions on Plasma Science,2017,45(7):1321-1326.

    • [54] 雷彬,杜传通,吕庆敖,等.石墨烯涂层对电磁轨道炮性能影响的试验研究[J].高电压技术,2019,45(6):1929-1935.LEI bin,DU Chuantong,LÜ Qingao,et al Experimental study on the influence of graphene coating on the performance of electromagnetic rail gun[J].High Voltage Technology,2019,45(6):1929-1935.(in Chinese)

    • [55] 吕庆敖,陈建伟,张华翔,等.电磁轨道炮锡合金涂层电枢/轨道温度场数值仿真[J].兵器装备工程学报,2019,40(4):10-14.LÜ Qingao,CHEN Jianwei,ZHANG Huaxiang,et al.Numerical simulation of temperature field of tin alloy coated armature/rail of electromagnetic rail gun[J].Journal of Weapon Equipment Engineering,2019,40(4):10-14.(in Chinese)

    • [56] ZHOU P F,LI B M.Numerical calculation of magnetic-thermal coupling and optimization analysis for velocity skin effect[J].IEEE Transactions on Plasma Science,2021,49(12):3994-4001.

    • [57] 汤亮亮.电磁发射中枢轨接触界面金属液化层特性的实验与理论研究[D].武汉:华中科技大学,2015.TANG Liangliang.Experimental and theoretical studies on the characteristics of the liquefied metal layer at the contact interface of the electromagnetic launch center rail[D].Wuhan:Huazhong University of Science and Technology,2015.(in Chinese)

    • [58] TANG L L,HE J,CHEN L X,et al.Current concentration of large-caliber C-shaped armature in square railgun[J].IEEE Transactions on Plasma Science,2015,43(5):1125-1130.

  • 手机扫一扫看