en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高亚丽,女,1978年出生,博士,副教授,硕士研究生导师。主要研究方向为镁合金表面激光改性处理。E-mail:dehuigyl@126.com

中图分类号:TG456

DOI:10.11933/j.issn.1007−9289.20220722001

参考文献 1
ZENG Z R,SALEHI M,KOPP A,et al.Recent progress and perspectives in additive manufacturing of magnesium alloys[J].Journal of Magnesium and Alloys,2022,10(6):1511-1541.
参考文献 2
樊振中,陈军洲,陆政,等.镁合金的研究现状与发展趋势[J].铸造,2020,69(10):1016-1029.FAN Zhenzhong,CHEN Junzhou,LU Zhen,et al.Research status and development trend of magnesium alloys[J].Foundry,2020,69(10):1016-1029.(in Chinese)
参考文献 3
唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007(2):69-72.TANG Quanbo,HUANG Shaodong,WU Taibin.Application analysis of magnesium alloys in weapon components[J].Ordnance Material Science and Engineering,2007(2):69-72.(in Chinese)
参考文献 4
訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004(1):229-232.ZI Bingtao,WANG Hui.Magnesium alloy and its applications in industry[J].Chinese Journal of Rare Metals,2004(1):229-232.(in Chinese)
参考文献 5
MOHAMMADREZA D,HAMID R B R,ABBAS S,et al.Surface modification of magnesium alloys using thermal and solid-state cold spray processes:Challenges and latest progresses[J].Journal of Magnesium and Alloys,2022,10(8):2025-2061.
参考文献 6
ZHANG P,ZUO Y,NIE G C.The enhanced properties of anodic films on AZ91D magnesium alloy by addition of oxide nanoparticles[J].Journal of Alloys and Compounds.2020,834:155041-155053.
参考文献 7
AYUSHI T,SWAROOP G.KANDASUBRAMANIAN B.Electroless nickel fabrication on surface modified magnesium substrates[J].Defence Technology,2019,15(4):636-644.
参考文献 8
MAO Y,LI Z G,FENG K,et al.Corrosion behavior of carbon film coated magnesium alloy with electroless plating nickel interlayer[J].Journal of Materials Processing Technology,2015,219:42.
参考文献 9
KUMARADHAS P,SIVAPRAGASH M.Comparison of corrosion behaviour of heat treated,ZrO2 and ZrN PVD coated AZ91D Mg alloy[J].Materials Today:Proceedings,2022,56(1):527-532.
参考文献 10
ABDUL R S,RITA M,PRVAN K K,et al.Superhydrophobic self-cleaning carbon nanofiber CVD coating for corrosion protection of AISI 1020 steel and AZ31 magnesium alloys[J].Surface and Coatings Technology,2020,404:126421.
参考文献 11
WEI X,LIU P D,MA S J,et al.Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation[J].Corrosion Science,2020,173:108729.
参考文献 12
JIA X J,SONG J F,ZHAO L B,et al.The corrosion behaviour of MAO coated AZ80 magnesium alloy with surface indentation of different sizes[J].Engineering Failure Analysis,2022,136:106185.
参考文献 13
RIDVAN K,EBRU E S,YASAR T,et al.Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy[J].Surfaces and Interfaces,2021,22:100894.
参考文献 14
SANU M S,GEJO G,SAJNA M S,et al.Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings:A comprehensive review[J].Applied Surface Science Advances,2021,6:100173.
参考文献 15
何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)
参考文献 16
ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.
参考文献 17
李达.镁合金激光合金化与激光熔覆的研究[D].北京:北京工业大学,2008.LI Da.An investigation of laser alloying and laser cladding on magnesium alloys[D].Beijing:Beijing University of Technology,2008.(in Chinese)
参考文献 18
王建宏,曹亚峰.Al 含量对 Ti-C-Al 体系激光熔覆过程的影响[J].热加工工艺,2016,45(8):187-189.WANG Jianhong,CAO Yafeng.Effect of Al content on laser cladding process of Ti-C-Al system[J].Hot Working Technology,2016,45(8):187-189.(in Chinese)
参考文献 19
ISMAIL N,ATIQAHA,JALARA,et al.A systematic literature review:The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints[J].Journal of Manufacturing Processes,2022,83:68-85.
参考文献 20
ALI R S,QU J,ZHOU M C et al.Recent progress on the surface finishing of metals and alloys to achieve superhydrophobic surfaces:A critical review[J].Transactions of the IMF,2021,99(2):61-72.
参考文献 21
孟庆贺.Al,Ni 对 Zr-Cu 合金在几种基板表面润湿性的影响[D].长春:吉林大学,2013.MENG Qinghe.Effect of Al and Ni on the wetting of several substrates by Zr-Cu based alloys[D].Changchun:Jilin University,2013.(in Chinese)
参考文献 22
AINHOA R,PILAR R,MARÍA D E R,et al.Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding[J].Results in Physics,2019,13:102160.
参考文献 23
YANG L Q,LI Zhiyong,ZHANG Yingqiao,et al.In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D[J].Surface and Coatings Technology,2020,383:125249.
参考文献 24
王继娜,徐开东.镁合金表面激光熔覆 Al/TiB2 复合强化层及其性能[J].机械工程材料,2013,37(8):45-49.WANG Jina,XU Kaidong.Combined strengthened layer of Al/TiB2 on magnesium alloy surface by laser cladding and its properties[J].Materials for Mechanical Engineering,2013,37(8):45-49.(in Chinese)
参考文献 25
姚军.AZ91D 镁合金激光熔覆与重熔层组织特征及其性能研究[D].长春:吉林大学,2007.YAO Jun.Study on microstructure characterization and properties of laser cladding and remelting on surface of AZ91D magnesium alloy[D].Changchun:Jilin University,2007.(in Chinese)
参考文献 26
HITCHCOCK S J,CARROLL N T,NICHOLAS M G.Some effects of substrate roughness on wettability[J].Journal of Materials Science,1981,16(3):714-732.
参考文献 27
陈其亮,王江锋.镁合金表面预处理工艺:CN1986160[P].2007-06-27.CHEN Qiliang,WANG Jiangfeng.Surface pretreatment process of magnesium alloy:CN1986160[P].2007-06-27.(in Chinese)
参考文献 28
刘祥.激光熔覆 Al+Al2O3涂层对提高AZ91D镁合金表面性能的研究[D].衡阳:南华大学,2014.LIU Xiang.Studying about laser cladding Al +Al2O3 coating at improving the surface performance of AZ91D magnesium alloy[D].Hengyang:University of South China,2014.(in Chinese)
参考文献 29
宋武林,朱蓓蒂,张杰,等.激光熔覆层热膨胀系数对其开裂敏感性的影响[J].激光技术,1998(1):35-37.SONG Wulin,ZHU Beidi,ZHANG Jie,et al.Effects of expansion coefficient of laser cladding layer on cracking sensitivity [J].Laser Technology,1998(1):35-37.(in Chinese)
参考文献 30
李晓锡,李志勇,朱润东,等.熔覆材料与工艺参数对镁合金激光熔覆层缺陷的影响[J].焊接技术,2014,43(11):5-8,98.LI Xiaoxo.LI Zhiyong,ZHU Rundong,et al.Effect of cladding materials and process parameters on defects of laser cladding coatings of magnesium alloy[J].Welding Technology,2014,43(11):5-8,98.(in Chinese)
参考文献 31
LEI Y W,SUN R L,TANG Y,et al.Experimental and thermodynamic investigations into the microstructure of laser clad Al-Si coatings on AZ91D alloys[J].Surface and Coatings Technology,2012,207:400-405.
参考文献 32
GAO Y L,WANG C S,LIN Q,et al.Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy[J].Surface and Coatings Technology,2006,201(6):2701-2706.
参考文献 33
GAO Y L,XIONG D S,WANG C S,et al.Influences of laser powers on microstructure and properties of the coatings on the AZ91HP magnesium alloy[J].Acta Metallurgica Sinica(English Letters),2009 22(3):167-173.
参考文献 34
接勐,高亚丽.激光熔覆 Al-Si 涂层硬度和耐磨性研究[J].应用激光,2015,35(6):629-633.JIE Meng,GAO Yali.Study on hardness and wear resistance of laser cladding Al-Si coating[J].Applied Laser,2015,35(6):629-633.(in Chinese)
参考文献 35
接勐,高亚丽.激光功率对 Al-Si 涂层凝固组织的影响 [J].应用激光,2015,35(5):541-545.JIE Meng,GAO Yali.Influence of laser powers on solidification of Al-Si coating[J].Applied Laser,2015,35(5):541-545.(in Chinese)
参考文献 36
王鑫,潘希德,牛强,等.AZ33M 镁合金激光熔覆 Al-Si 涂层的组织与性能[J].金属热处理,2021,46(5):202-206.WANG Xin,PAN Xide,NIU Qiang,et al.Microstructure and properties of laser clad Al-Si coating onAZ33M magnesium alloy[J].Heat Treat of Metals,2021,46(5):202-206.(in Chinese)
参考文献 37
ZHANG X L,ZHANG K M,ZOU J X.Microstructures and properties in surface layers of Mg-6Zn-1Ca magnesium alloy laser-clad with Al-Si powders[J].Transactions of Nonferrous Metals Society of China,2018,28(1):96-102.
参考文献 38
ROLINK G,WEISHEIT A,BIERMANN T,et al.Investigations of laser clad,thermal sprayed and laser remelted AlSi20-coatings on magnesium alloy AZ31B under constant and cycling thermal load[J].Surface and Coatings Technology,2014,259(C):751-758.
参考文献 39
CHEN E L,ZHANG K M,ZOU J X.Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders[J].Applied Surface Science,2016,367(11-18):0169-4332.
参考文献 40
ANDRZEJ D,RENATA M,LUDWIK B.The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon[J].Materials Characterization,2016,118:505-513.
参考文献 41
高亚丽,杨淼,张海波,等.激光功率对 Al-Cu 合金熔覆层组织和性能的影响[J].应用激光,2011,31(2):107-111.GAO Yali,YANG Miao,ZHANG Haibo,et al.Influence of laser power on microstructure and property of the Al-Cu alloy coating[J].Applied Laser,2011,31(2):107-111.(in Chinese)
参考文献 42
GAO Y L,WANG C S,PANG H J,et al.Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy[J].Applied Surface Science,2007,253:4917-4922.
参考文献 43
刘奋军,姬妍,孟庆森,等.镁合金表面激光熔敷+搅拌摩擦加工 Al-Cu 涂层的显微组织与性能[J].中国有色金属学报,2017,27(10):1981-1987.LIU Fenjun,JI Yan,MENG Qingsen,et al.Microstructure and properties of Al-Cu coating on magnesium alloys prepared by laser cladding+friction stir processing[J].The Chinese Journal of Nonferrous Metals,2017,27(10):1981-1987.(in Chinese)
参考文献 44
武飞宇.镁合金表面激光高速沉积耐磨耐蚀涂层的组织性能研究[D].北京:北京工业大学,2020.WU Feiyu.Microstructure properties and corrosionresistance of coatings prepared by high Speedlaser cladding on Mg alloy[D].Beijing:Beijing University of Technology,2020.(in Chinese)
参考文献 45
高亚丽.AZ91HP 镁合金激光表面改性研究[D].大连:大连理工大学,2006.GAO Yali.Laser surface modification of AZ91HP Magnesium alloy[D].Dalian:Dalian University of Technology,2006.(in Chinese)
参考文献 46
QIAN J Q,ZHANG J X,LI S Q,et al.Study on laser cladding NiAl/Al2O3 coating on magnesium alloy[J].Rare Metal.Mat.Eng.,2013,42(3):466.
参考文献 47
ARTHANARI S,LI Y H,LU N,et al.Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J].Journal of Alloys and Compounds,2020,848:156598.
参考文献 48
AO S S,WANG T,HUANG Y,et al.The wear properties of TiC/Al-based composite coating applied by laser cladding[J].Metals,2018,8(11):975.
参考文献 49
孙琪.AZ91D 镁合金表面激光熔覆 Al/TiC/Y2O3复合涂层的组织与性能研究[D].太原:中北大学,2017.SUN Qi.Microstructure and properties of laser cladding Al/TiC/Y2O3 composite coating on AZ91D magnesium alloy[D].Taiyuan:North University of China,2017.(in Chinese)
参考文献 50
刘奋军,宁祥,白艳霞,等.AZ31 镁合金表面激光熔覆 Al-TiC 复合涂层微观组织与腐蚀性能[J/OL].复合材料学报:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.LIU Fenjun,NING Xiang,BAI Yanxia,et.al.Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J/OL].Acta Materiae Compositae Sinica:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.(in Chinese)
参考文献 51
刘盛耀.镁合金表面激光熔覆 Al+WC+La2O3 复合涂层的组织与性能研究[D].太原:中北大学,2017.LIU Shengyao.Microstructure and properties of laser cladding Al+WC+La2O3 composite coating on magnesium alloy surface[D].Taiyuan:North University of China,2017.(in Chinese)
参考文献 52
GUO Yu,ZHANG Yingqiao,LI Zhiyong,et al.Microstructure and properties of in-situ synthesized ZrC-Al3Zr reinforced composite coating on AZ91D magnesium alloy by laser cladding [J].Surface and Coatings Technology,2018,334:471.
参考文献 53
YANG L Q,LI Z Y,ZHANG Y Q.Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy[J].Applied Surface Science,2018,435:1187-1198.
参考文献 54
靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coating on AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)
参考文献 55
崔洪芝,姜迪.高熵合金涂层研究进展[J].金属学报,2022,58(1):17-27.CUI Hongzhi,JIANG Di.Research progress of high-entropy alloy coatings[J].Acta Metall Sin,2022,58(1):17-27.(in Chinese)
参考文献 56
崔忠圻,覃耀春.金属学与热处理[M].2 版.北京:机械工业出版社,2011.CUI Zhongqi,QIN Yaochun.metallography and heat treatment[M].2nd ed.BeiJing:China Machine Press,2011.(in Chinese)
参考文献 57
秦宝龙.镁合金激光熔覆Al合金+稀土氧化物复合涂层的制备与性能研究[D].吉林:东北电力大学,2022.QIN Baolong.Preparation and properties of laser cladding Al alloy+rare earth oxide composite coatings on magnesium alloys[D].Jilin:Northeast Electric Power University,2017.(in Chinese)
参考文献 58
ZHU Rundong LI Zhiyong,LI Xiaoxi,et al.Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J].Applied Surface Science,2015,353:405-413.
参考文献 59
孙琪,李志勇,朱润东,等.La2O3对AZ91D镁合金表面激光熔覆 Al-Cu 涂层的影响[J].中国机械工程,2017,28(13):1633-1637.SUN Qi,LI Zhiyong,ZHU Rundong,et al.Effects of La2O3 on AZ91D magnesium alloy laser cladding layers by Al-Cu powders[J].Chin J Mech Eng-En,2017,28(13):1633-1637.(in Chinese)
参考文献 60
CHEN H,ZHANG K,YAO C W,et.al.Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings[J].Applied Surface Science,2015,330:393-404.
参考文献 61
冯辉,崔泽琴,王文先,等.镁合金表面激光熔覆 Al-Si 基纳米SiC复合涂层的组织及性能[J].应用激光,2012,32(1):13-17.FENG Hui,CUI Zeqin,WANG Wenxian,et al.Microstructure and property of magnesium alloy by laser cladding with Al-Si-based nano-SiC composite coating[J].Appllied Laser,2012,32(1):13-17.(in Chinese)
参考文献 62
王鑫.镁合金表面激光制备 Al-Si 基纳米Si3N4强化层的研究[D].太原:太原理工大学,2013.WANG Xin.Study of laser producing Al-Si-based nano-Si3N4 strengthen layer magnesium alloy surface[D].Taiyuan:Tai Yuan University of Technology,2013.(in Chinese)
参考文献 63
SUNDARASELVAN S,SENTHILKUMAR N,TAMIZHARASAN T,et al.Surface modification of AZ61 magnesium alloy with nano TiO2/Al2O3 using laser cladding technique[J].Materials Today:Proceedings,2020,21(1):717-721.
参考文献 64
张涛.镁合金表面激光熔覆Zr基非晶复合涂层的组织与性能研究[D].太原:中北大学,2019.ZHANG Tao.Microstructure and properties of laser cladding Zr-based amorphous composite coating on magnesium alloy[D].Taiyuan:North University of China,2019.(in Chinese)
参考文献 65
GE W,LI B,AXINTE E,et al.Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts[J].The Journal of The Minerals,Metals & Materials Society,2017,69(4):776-783.
参考文献 66
刘雪.医用镁合金表面激光熔覆Zr60Ti6Cu19Fe5Al10非晶涂层[D].南京:南京理工大学,2012.LIU Xue.Laser Cladding of Zr60Ti6Cu19Fe5Al10 amorphous alloy on medical AZ31B magnesium alloy [D].Nanjing:Nanjing University of Science and Technology,2012.(in Chinese)
参考文献 67
TAN C L,ZHU H M,KUANG T C,et al.Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition[J].Journal of Alloys and Compounds,2017,690:108-115.
参考文献 68
WANG C S,CHEN Y Z,LI T,et al.Composition design and laser cladding of Ni-Zr-Al alloy coating on the magnesium surface[J].Applied Surface Science,2009,256:1609-1613.
参考文献 69
WANG C S,LI T,YAO B,et al.Laser cladding of eutectic-based Ti-Ni-Al alloy coating on magnesium surface[J].Surface and Coatings Technology,2010,205(1):189-194.
参考文献 70
YUE T M,ZHANG H.Laser cladding of FeCoNiCrAlCuxSi0.5 highentropy alloys on AZ31 Mg alloy substrates[J].Materials Research Innovations,2014,18:624-628
参考文献 71
YUE T M,XIE H,LIN X,et al.Solidifi cation behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J].Journal of Alloys and Compounds,2014,587:588-593.
参考文献 72
MENG G H,YUE T M,LIN X,et al.Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J].Optics & Laser Technology,2015,70:119-127.
参考文献 73
WEN X,CUI X f,JIN G,et al.A novel Ni2MnCuSnAl0.1 multi-principal element alloy coating to enhance the wear resistance and corrosion resistance of Mg-Li alloy [J].Optics & Laser Technology,2021,142:107243.
参考文献 74
JIANG L P,CUI X F JIN G,et al.Synthesis and microstructure properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding[J].Applied Surface Science,2022,575:151645.
参考文献 75
PEI X L,LI Z Y,ZHANG Y Q,et al.A gradient Al/Ni-Cr-Al layer formed by direct current pulse metal inert gas welding combined laser cladding on AZ91D magnesium alloy[J].Vacuum,2019,165:86-95.
参考文献 76
靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coatingon AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)
参考文献 77
孙金娥,刘杰.医用镁合金激光熔覆羟基磷灰石涂层的生物活性分析[J].中国金属通报,2019(11):162-163.SUN Jine,LIU Jie.Bioactivity analysis of hydroxyapatite coating on medical magnesium alloy by laser cladding[J].China Metal Bulletin,2019(11):162-163.(in Chinese)
参考文献 78
高亚丽,马广超,张海波,等.医用镁合金激光熔覆羟基磷灰石涂层生物相容性研究[J].应用激光,2014,34(6):528-532.GAO Yali,MA Guangchao,ZHANG Haibo,et al.Study on the biocompatibility of laser cladding HA coating on medical Mg alloy[J].Applied Laser,2014,34(6):528-532.(in Chinese)
参考文献 79
APURBA D,PAMU D.A comprehensive review on electrical properties of hydroxyapatite based ceramic composites[J].Materials Science and Engineering:2019,101:539-563.
参考文献 80
RAHMAN M,LI Y C,WEN C E.HA coating on Mg alloys for biomedical applications:A review[J].Journal of Magnesium and Alloys,2020,8(3):929-943.
参考文献 81
FOROOZMEHR E,ALEMOHAMMAD H,XIANG W,et al.Laser-assisted surface patterning of magnesium with silver nanoparticles:synthesis,characterization and modelling[J].Journal of Physics D:Applied Physics,2011,44:495305.
目录contents

    摘要

    作为最轻的金属结构材料之一的镁合金,其较差的耐磨蚀性和低硬度限制了在工业中更为广阔的应用。激光熔覆涂层因具有稀释度小、组织致密、涂层与基体结合好等优点,可显著提高镁合金表面硬度和耐磨蚀性,获得密切关注,然而此方面缺乏系统的综述研究。以镁合金涂层材料的设计原则为出发点,首次从二元合金涂层、复合性增强涂层、非晶态合金涂层、高熵合金涂层、功能梯度涂层以及医用材料涂层 6 个方面,综述镁合金表面激光熔覆涂层材料设计体系,并分析每种涂层材料体系的性能特点。对镁合金在激光熔覆领域应用亟待解决的问题及未来发展方向进行展望,提出未来应结合超声振动技术、电磁搅拌技术、高频微锻造技术和等离子喷涂技术等辅助技术,协同高通量材料计算模拟,开发用于镁合金激光熔覆的新型高性能合金,为镁合金表面激光熔覆的涂层设计提供参考。

    Abstract

    As one of the lightest metallic materials, Mg alloy has excellent properties including high specific stiffness and strength, and good shock absorption; thus, it is widely used in the aerospace, electronics, and automotive industries. However, the poor abrasion resistance and low hardness limit the long-term use of these alloys in industry. Laser cladding technology has been widely used in the surface treatment of Mg alloys due to its high energy density and rapid prototyping of complex structural parts, which significantly improves the surface hardness and abrasion resistance of Mg alloys, and has gained close attention from scholars at home and abroad. However, there is a lack of systematic review in this aspect, so this paper reviews the research status of laser cladding on Mg alloy surface considering the design principles and the design system of coating materials.To generate a defect-free coating with excellent performance, researchers generally follow the design principles of coating materials when selecting Mg alloy surface cladding materials: (1) Similar melting point; (2) Better wettability; (3) Similar thermal expansion coefficient. At present, the laser cladding material system for Mg alloy surfaces is divided into binary alloy coating, compound reinforced coating, amorphous alloy coating, high entropy alloy coating, functional gradient coating, and medical material coating. The binary alloy coatings mainly include Al-Si and Al-Cu. Because of the simple fabrication process of the cladding materials, the properties of the cladding layer are improved to a certain extent. However, due to less strengthening and limited degree of improvement, researchers also introduced some strengthening phases to obtain some composite strengthening coatings with better performance. Composite reinforced coatings include metal-ceramic composite coatings, metal-rare earth composite coatings, and metal-nanocomposite coatings. This kind of coating is based on metal elements, and different reinforcing phases are added to meet different needs. The amorphous alloy has unique advantages in corrosion resistance because of its special crystal structure; but also because of its own special crystal structure, the formation of amorphous alloy coating on the cladding process has extremely high requirements, so coating formation is uncertain. As a new design concept of alloy, high-entropy alloy has excellent properties. However, its compatibility with Mg alloy is poor, and few researchers have studied laser cladding high entropy alloy of Mg alloy. Thus, to solve the problems such as the large melting point difference, some scholars adopted functional gradient coating to achieve the metallurgical combination of coating and Mg alloy, reduce the stress between coating and Mg alloy, and reduce the generation of cracks and other defects. In addition to the industrial applications mentioned above, researchers also investigated the application of Mg alloys in the medical field as a biological implant material. Laser cladding technology, as a new surface modification technology, can significantly improve the surface properties of magnesium alloy. By controlling laser power, scanning speed, spot diameter, and powder mixing ratio, magnesium alloy has high hardness, excellent corrosion resistance, and wear resistance. However, with the continuous expansion of the application range of Mg alloy materials, the requirements for Mg alloy are higher and higher; a single laser cladding technology cannot meet such needs. Regarding genome project “material”, we can subsequently combine ultrasonic vibration, electromagnetic stirring technology, high-frequency auxiliary technologies such as micro forging technology and plasma spraying technology, collaborative simulation calculation, and high flux materials to develop a new high-performance alloy laser cladding for Mg alloy matrix, speed up the time from manufacture to application of discovery, and accelerate the development process.

  • 0 前言

  • 镁密度为 1.74g / cm3,大约为铝合金的 2 / 3,比钛合金小 65%。且在金属元素中,其储量仅次于铁、铝元素,位居第三,是目前地球上储量最丰富的轻质金属结构材料之一[1],被誉为“21 世纪最具发展前途的绿色工程结构材料”。因镁合金比强度和比刚度优于铝、钢铁材料,具有良好的可加工性和铸造性,被广泛应用于汽车制造和舰船化工行业,例如离合器外壳、发动机缸体、门框、转向架等零件[2]。镁合金还具有优异的流动性与电磁抗干扰能力,能够更好地降低噪声和保护信号,因此在航空航天和 3C 领域广泛应用[3-4]。图1 显示了镁合金在工业领域的应用情况,这些镁合金制造的器件大大降低了生产成本,更提高了设备的轻便性。然而,镁合金较低的硬度、耐腐蚀性差、塑性变形差及熔点低等缺点,严重限制了其在工业中的进一步应用。

  • 在不破坏材料原有优异性能的情况下,目前常利用表面改性技术来提高金属表面性能,主要包括热喷涂[5]、阳极氧化处理[6]、化学镀[7-8]、物理气相沉积(PVD)[9]、化学气相沉积(CVD)[10]、高能离子注入[11]、微弧氧化(MAO)[12-13]和溶胶-凝胶技术[14]等。然而由于表面改性层薄、与基体结合不牢固、对环境污染严重等问题,这些技术的应用受到限制。随着近年来表面技术的发展,激光表面处理技术因其具有高能量密度、热影响区小等特点,被广泛应用于钛、钢、铜、铝和镁等各种金属表面处理,其中主要包括激光重熔、激光熔融注射、激光熔覆等。激光熔覆技术由于能够实现复杂结构零件的快速成型,且具有涂层与基体结合紧密、材料浪费少、零件结构设计自由以及热影响区小和污染小等优点[15-16],特别适合当今零件结构日趋复杂化、大型化的工业制造领域。激光熔覆技术是通过预置材料或同步送粉的方式(图2),将外部材料添加至基体经激光辐射后形成的熔池中,并使二者共同快速凝固形成熔覆层,是一种较为理想的表面改性技术。因此目前以镁合金为基体的激光熔覆技术已发展成为研究热点。通过阅读相关文献,发现目前激光熔覆常用镁合金按牌号分为 AZ 系列(Mg-Al-Zn),WE 系列(Mg-RE)和 LA 系列(Mg-Li-Al),表1 总结了激光熔覆常用镁合金的化学成分。

  • 图1 镁合金在工业领域的应用

  • Fig.1 Application of magnesium alloy in industrial field

  • 本文结合近 10 年研究现状,总结了镁合金激光熔覆涂层材料设计原则,从涂层材料体系选择方面介绍了相关的研究,最后对镁合金表面激光熔覆进行了展望。

  • 图2 激光熔覆示意图

  • Fig.2 Schematic diagram of laser cladding

  • 表1 激光熔覆常用镁合金的化学成分(质量分数)

  • Table1 Chemical composition of magnesium alloy commonly used in laser cladding (mass fraction)

  • 1 涂层材料设计原则

  • 涂层材料是否和基体具有良好的匹配关系,是激光熔覆技术的关键。为提高熔覆层质量,熔覆材料要满足以下原则。

  • 1.1 熔点相近

  • 在选择涂层材料时,应首先考虑粉末的熔点是否与基体金属相近。一般情况下,若涂层材料熔点过高,涂层难以熔化,会直接导致涂层表面出现不连续熔珠现象,或因基体过度熔化导致涂层稀释率过大,严重影响涂层性能;而若涂层材料熔点过低,涂层则会过度熔化,因此产生空隙,或因基体表面未能很好熔化,涂层和基体难以结合。因而在激光熔覆中,应首选与基体金属熔点相近的涂层材料。由于镁合金熔点较低(650℃),进行激光熔覆时容易出现基体塌陷而涂层材料未熔的情况,进而影响熔覆层性能。

  • 有关研究[17]曾探索性地在镁合金上激光熔覆了熔点高、耐腐蚀性强的 Ni-Cr-B-Si (1 100~1 200℃)涂层。结果发现,低功率加工的涂层中含有大量未熔化的涂层固体颗粒;而在较大的激光功率下,镁合金发生强烈蒸发,涂层中留下蒸发孔洞,甚至出现了基体塌陷(如图3)。进行性能研究发现,表面层下的金属 Ni 与强负电性的 Mg 元素形成强烈的腐蚀电偶,反而加快了腐蚀速率。故镁合金激光熔覆时一般选择熔点相近的材料(如 Al 合金)作为熔覆材料,优先确保熔覆材料与基体形成良好的冶金结合。

  • 图3 大功率下涂层横截面形貌[17]

  • Fig.3 Cross-sectional morphology of coating under high power[17]

  • 在后续研究中发现低熔点元素的含量会影响熔覆材料的反应温度。2016 年,王建宏等[18]研究了 Al 含量对镁合金激光熔覆 Ti-C-Al 体系的影响。图4 为不同铝含量试样的界面温度-时间曲线,由此看出,提高熔覆粉末中的 Al 含量可有效延缓反应温度和速度。通过试验发现随 Al 含量的增加,涂层孔隙率减小,晶粒不断细化,力学性能明显提高。且当 Al 含量为 30%时,涂层与基体良好过渡,形成冶金结合。但 Al 合金力学性能相对较差,作为涂层材料,提高镁合金的硬度和耐磨性幅度有限,因此需进一步开发其他熔点相近的合金材料或相关工艺。

  • 图4 不同铝含量试样的温度-时间曲线[18]

  • Fig.4 Temperature-time curves of samples with different aluminum contents[18]

  • 1.2 润湿性较好

  • 除了减少塌陷和孔洞的产生,激光熔覆过程还需防范应力集中产生的裂纹,因此须使涂层均匀地铺展在基体表面,保证涂层具有较好的润湿性。润湿性分为非反应润湿和反应润湿两大类[19]。在激光熔覆体系中,涂层材料会和基体发生化学反应,存在相互扩散、相互溶解等传质过程,属于反应润湿。1804 年,Young 在假设固体光滑、刚性均匀时的前提下提出润湿平衡杨氏方程[20],如图5 所示。

  • sinθe=γSG-γSLγLG

  • 式中,γSG 为为固-气界面表面张力,γSL 为固-液界面表面张力,γLG 为液-气界面表面张力,θe 为达到平衡时的接触角,用来表征材料的润湿程度。

  • 涂层材料的润湿铺展性能受许多因素的影响,主要和涂层材料成分、基体表面粗糙度、温度有关。

  • 图5 杨氏平衡示意图

  • Fig.5 Schematic diagram of Young's equilibrium

  • (1)涂层材料成分

  • 对于不同涂层材料 / 基体而言,二者张力显然不同,这必然影响涂层对基体的润湿性。此外,材料长期暴露在空气中容易被氧化,形成表面张力很低的氧化薄膜,影响润湿性能,涂层易出现球状物。因此,在激光熔覆前需要对材料进行去氧化处理或添加活性成分,提高润湿性能。据文献[21]报道, Al 元素可以加大合金和基板的惰性程度,以此促进前驱膜的加宽。前驱膜的形成起到先驱的作用,使得合金相当于在已经润湿的表面上铺展,从而极大提高了润湿性。研究者利用 Al 这一特性,采用 Al+硬质相、Al+稀土以及 Al+陶瓷相等涂层系列,提高涂层和基体界面润湿性[22-24]。此外,除了采用 Al 提高润湿性外,还有研究采用其他成分提高润湿性,如姚军[25]在研究 AZ91D 镁合金激光熔覆 Al+Al2O3 涂层的性能时,在 Al+Al2O3粉末中加入了 Mg-Y 粉末作为改性剂,改性后 Al+Al2O3 的润湿角小了多于 50°,润湿性提高。

  • (2)基体表面粗糙度

  • 杨氏方程一般针对的是理想表面,但实际基体表面是存在一定粗糙度的。HITCHCOCK 等[26]在研究中发现,随着基板表面粗糙度的增加,在基板上的最终润湿接触角减小,其润湿性提高。故在激光熔覆试验开展前,通常使用低目数砂纸对镁合金表面进行打磨,增加表面粗糙度,从而提高基体润湿性和吸光率。陈其亮等[27]将机械和化学清理两种预处理方法相结合对镁合金基体进行处理,结果发现经过处理后的表面形貌更好,组织结构得到改变,镀覆层的附着力得到提高。

  • (3)温度

  • 熔覆过程中熔池的表面张力受温度的影响。温度越高,表面张力越低,润湿性越好。此外温度升高会促进熔覆材料与基体的元素扩散,加速二者间的反应,也可提高润湿性。刘祥[28]采用不同功率在 AZ91D 镁合金上熔覆 Al+2%Al2O3时,发现功率为 1.7 kW 的试样比 1.5 kW 的试样的球化现象有所降低,这主要由激光功率增加导致熔池温度升高,表面张力降低,润湿性得到提升。

  • 1.3 热膨胀系数相近

  • 裂纹的产生不仅受因润湿而结合的表面张力影响,而且与涂层材料和基体两者间的热膨胀系数有很大关系。根据文献[29]可知,热应力是影响熔覆层开裂的主要因素,而其判定公式为:

  • σ=EΔαΔT1-γ

  • 式中,σ 为热应力;E 为熔覆层的弹性模量;Δα 为涂层材料与基体材料热膨胀系数之差;ΔT 为激光熔覆涂层温度与室温之差; γ 为熔覆层的泊松比。

  • 由上式可以看出,涂层材料和基体的热膨胀系数差值是影响热应力的主要原因之一,也是产生涂层裂纹的主要因素。李晓锡等[30]在镁合金上制备了 Cu-Ni 涂层和 Al-Cu 涂层,并分析了缺陷的形成机理。相同参数下,对比熔覆层宏观形貌和内部缺陷,发现 Cu-Ni 涂层比 Al-Cu 涂层表面粗糙,且内部结构缺陷多。因为 Cu-Ni 混合粉的热膨胀系数(和 Al-Cu 混合粉相比)与基体的相差更大,熔池冷却时产生更大的热应力,在热应力的作用下基体与熔覆层接合处形成了更多的裂纹。因此为了减少涂层裂纹缺陷,采用与镁合金热膨胀系数和热导率相近的熔覆材料。

  • 综上所述,为避免基体烧损塌陷、涂层裂纹等缺陷,选择镁合金熔覆材料应以低熔点、热膨胀系数相近的材料为主,同时添加高性能材料,为提高其润湿性,还可加入稀土元素等活性物质。此外,在进行激光熔覆试验前,做好基体材料的预处理,避免出现反应不充分、涂层组织分布不均匀的现象。最后,激光熔覆过程中注意激光参数以及熔覆工艺的优化。

  • 2 涂层材料体系

  • 在激光熔覆过程中,涂层材料的设计对熔覆层的微观结构和表面质量有重要影响。一般来说,除满足上述设计原则外,涂层材料还需要考虑自身的性能优势。目前,镁合金表面激光熔覆材料已从单一的金属或陶瓷发展到多合金或多陶瓷。此外,具有良好硬度和韧性的复合性增强涂层材料以及其他功能涂层也得到了广泛应用。镁合金激光熔覆涂层材料体系一般可分为以下几类 (图6)。

  • 图6 涂层材料体系

  • Fig.6 Coating material system

  • 2.1 二元合金涂层

  • Al 的熔点为 660℃,与 Mg 的熔点较为接近,具有良好的耐蚀性和较好的冶金结合性能。根据平衡 Al-Mg相图可知,Al 与 Mg 可以形成 Mg17Al12 等硬质相,且在共晶温度(437℃)下能形成有限固溶体,能有效提高合金硬度和强度,所以目前在镁合金表面激光熔覆 Al 基合金提高耐磨、耐蚀性的研究报道较多。其中二元合金涂层主要以 Al-Si 和 Al-Cu 两类为主。

  • 2.1.1 Al-Si 合金涂层

  • Al-Si 共晶粉末具有良好的铸造性能,熔点为 650℃,热膨胀系数为 24×10−6 /℃,与镁合金熔点和热膨胀系数(25×10−6 /℃)相近,二者具有良好的物化相容性,可以生成多种金属化合物提高涂层性能,因此许多研究者致力于在镁基体上制备更高性能的 Al-Si 涂层。图7 为镁合金激光熔覆 Al-Si 合金制备过程中采用Thermo-Calc 软件计算的相含量与涂层温度的函数,可以看出涂层顶部和底部的相关相组分因其成分不同而有明显差异。结合图8 及 Al-Mg-Si 合金相图分析可知涂层的结晶过程如下[31]

  • (1)涂层顶部:液体→液体+Mg2Si→Mg2Si+ Al12Mg17→Mg2Si +Al12Mg17+ Al3Mg2

  • (2)涂层底部:液体→液体+Mg2Si→液体+ Mg2Si + α-Mg → Mg2Si + α-Mg +共晶(α-Mg + Al12Mg17)。

  • 图7 计算得到的相含量与涂层温度的函数[31]

  • Fig.7 Calculated phase fractions as a function of temperature for the coating[31]

  • 本课题组早期研究采用矩形光斑在 AZ91HP 镁合金表面制备 Al-Si 共晶合金涂层,探讨了激光功率对组织以及耐磨性、耐腐蚀性的的影响[32-35]。结果发现,在 2.5 kW 功率下,涂层表现出较好的耐蚀性,功率为 3 kW 和 3.5 kW 的涂层具有较高的显微硬度和较好的耐磨性,而当激光功率为 4 kW 时,靠近基体的熔覆层,由于涂层中 Mg 的稀释率较高,涂层呈现 α-Mg 形态,进一步验证了熔覆层凝固过程中反应方案的准确性。

  • 王鑫、ZHANG 和ROLINK等[36-38]多名学者在不同镁合金表面也熔覆了 Al-Si 涂层,并探究了激光扫描速度、激光功率以及工艺角度对 Al-Si 熔覆层的影响。结果发现以适当参数和工艺进行激光熔覆时,耐氯化物 Mg17Al12、硬化相 Mg2Si 和 Al3Mg2 的含量最高,此时熔覆层硬度、耐腐蚀性达到最佳,显著优于基体,多方面验证了 Al-Si 涂层的优异性。

  • 与 Mg-Al(AZ 系列)合金相比,Mg-Gd-Y-Zr 合金是镁-稀土系列合金,基体中的稀土元素一方面可以提高熔池中元素的流动性,提高整体性能,另一方面和熔覆材料形成新的增强相,具有较好的耐腐蚀性。CHEN 等[39]在 Mg-Gd-Y-Zr 镁合金上添加了 Al-Si 粉末。通过试验结果发现,当激光以低速 2 mm / s 移动时,获得了最佳的耐腐蚀性和最高的硬度。通过分析激光熔覆过程中合金表层微观结构演变过程(图8)发现,当激光低速运动时,熔池可以长时间保持液态,Gd 和 Y 扩散到上表层,形成更多的 Al2(Gd,Y)粒子,且晶粒细小、分散均匀,因此耐腐蚀性最强、硬度最高。稀土元素对熔覆过程的影响为熔覆材料的选择提供了思路。

  • 图8 激光熔覆过程中合金表层微观结构演变示意图[39]

  • Fig.8 Microstructure evolution of alloy surface during laser cladding[39]

  • 随着对镁合金激光熔覆 Al-Si 粉末的深入研究,有学者认为 Al-Si 粉末在制备过程中容易氧化和混合不均匀,会影响涂层性能。ANDRZEJ 等[40]以 AlSi20 板替代 Al-Si 粉末,在镁金属锭上进行激光熔覆,同样获得了性能较为优异的熔覆层。但因板材传热较差且流动性较差,导致涂层与基体结合不明显,耐氯化物(如 Mg17Al12)含量较少。因此为获得综合性能优异的涂层,熔覆材料建议采用流动性好、传热性优异的粉末状材料。

  • 2.1.2 Al-Cu 合金涂层

  • Al-Cu 合金与镁合金具有较好的物化相容性,在激光熔覆技术中与镁合金能够形成良好的冶金结合界面,且可以显著提高镁合金表面的耐蚀性。课题组曾采用预置涂层法,在 AZ91HP 镁合金表面激光熔覆了 Al-Cu 合金,获得了与镁合金结合良好的熔覆层[41-42],且熔覆层组织致密,含有均匀分布的硬质相 AlCu4 和 Mg12Al17。因此,涂层的耐磨性比基体提高了 9 倍,硬度提高为基体的 4 倍。同时由于形成了致密的 Al2O3 氧化膜,熔覆层的耐腐蚀性能明显提高,在 NaCl 溶液中腐蚀电位提高 348 mV,腐蚀电流降低约 2 个数量级。

  • 然而激光熔覆试样表面容易出现粗糙度大、成型不美观等缺陷,且熔覆层内部亦会伴有气孔或微裂纹,刘奋军等[43]通过采用搅拌摩擦加工等辅助技术弥补了此缺点,首先利用半导体激光器在 AZ31B 镁合金表面上熔覆了 Al-Cu 合金粉末,而后采用二维搅拌摩擦焊机对熔覆层进行单道次搅拌摩擦加工 (FSP),使得涂层组织均匀细化,表面平整光滑。图9 分别为激光熔覆 Al-Cu 涂层和激光熔覆 Al-Cu 涂层后经 FSP 的显微组织图。可以发现涂层经 FSP 之后,涂层晶粒在搅拌头下压力的作用下发生强烈的挤压变形而变得均匀细小和致密化。这大大减少了组成电偶腐蚀的 α-Mg 和 Al12Mg17 等金属间化合物的有效接触面积,使得涂层的自腐蚀电位较激光熔覆层提升 32.1%,耐腐蚀性显著提高。

  • 图9 Al-Cu 涂层的显微组织[43]

  • Fig.9 Microstructure of Al-Cu coating [43]

  • Al 基二元合金涂层在熔覆过程中产生了耐氯化物 Mg12Al17 和其他硬质相,在一定程度上提高了镁合金的耐腐蚀性和硬度,且涂层材料和基体良好的物化相容性,使得激光熔覆工艺设计及操作过程简单,但因涂层中强化相含量少且力学性能一般,故材料整体性能提升幅度有限,适用于镁合金承受较低载荷工况下应用。为进一步扩大镁合金在重载荷、强腐蚀环境中使用,在此基础上,研究者向其中添加增强相和耐腐蚀相,以期获得更加优异的性能。

  • 2.2 复合性增强涂层

  • 复合性增强涂层是以金属元素为基本成分,通过添加陶瓷相、稀土元素或纳米材料等增强相组合在一起。其中,金属元素不仅保证了熔覆层的延展性,同时作为过渡相,降低因增强相与基体之间的物理和化学性质差异而引起的界面应力,将涂层与基体紧密结合。

  • 2.2.1 金属-陶瓷复合涂层

  • 此类涂层是由金属合金和陶瓷粉末组成的复合涂层。陶瓷相作为一种增强相,可以提高涂层的力学和摩擦学性能,主要包括高熔点氧化物(如 Al2O3)、碳化物(如 TiC、SiC、WC 等)、氮化物(如 TiN、BN、Si3N 等)以及硼化物(如 TiB2、ZrB2、 CrB2 等)。其中常用陶瓷相的密度、热膨胀系数及弹性模量等性能如表2 所示。激光熔覆制备金属基陶瓷复合涂层一般可分为两种途径:外加法和原位合成法。

  • 表2 常用陶瓷颗粒的性能

  • Table2 Some properties of commonly used ceramic particles

  • 2.2.1.1 外加法

  • 外加法是将陶瓷粉末同合金粉末混合预置在基材的表面,或者形成送粉材料,利用激光加热熔化预置涂层或喷涂粉末,使陶瓷颗粒进入金属基体表面形成金属基复合涂层。

  • TiN 和 Al2O3 分别为典型的 NaCl 型面心立方 (FCC)晶体结构和菱形晶系,具有高硬度及良好耐蚀性的特性。但较高的热膨胀系数,不利于镁合金表面的激光熔覆,故通常通过添加低熔点物质或过渡层解决此问题。武飞宇[44]为获得高硬度、耐磨性和耐腐蚀性优异的涂层,通过添加低熔点粉末,在AZ91D 镁合金表面高速激光熔覆 AlSi12 和 TiN 的混合粉末。当 TiN 含量为 23%时,熔覆层的显微硬度、耐磨性和耐腐蚀性取得了最佳效果。相较于未添加 TiN 陶瓷相的熔覆层,TiN 含量为 23%的熔覆层硬度(210 HV0.2)提高了 50 HV0.2,摩擦因数(0.45) 降低 0.15。而本课题组在前期研究[45]发现通过添加低熔点 Al-Si 作为过渡层,同样在镁合金表面制备组织致密的 Al2O3 涂层,且没有裂纹和孔洞存在。相对基体而言,熔凝区的硬度提高了 10 倍,摩擦体积降低了三个数量级,性能得到大幅度提升。在此基础上,QIAN 等[46]采用 NiAl 作为激光熔覆前等离子喷涂 Al2O3 涂层的过渡层,同样获得了结合良好的优异涂层。这为高熔点、高热膨胀系数熔覆材料的制备提供更为有效的方法。

  • 相对前两种陶瓷相,碳化物熔点和热膨胀系数较低,且具有高硬度、高强度等优异特性,可以满足复杂的腐蚀环境,因此研究较多。ARTHANARI 等[47]利用2.0 kW横流CO2激光器在Mg-Gd-Y-Zn-Zr 合金表面熔覆了 Al+5%SiC 粉末。熔覆层中存在的 Si 和 SiC 硬质陶瓷颗粒,增加了涂层硬度。值得注意的是,涂层最表面硬度值略低于内表面,这可能是由激光处理过程中产生的高温导致碳燃烧,使部分碳从上表面损失。此外熔覆层腐蚀电流密度值降低,耐蚀性增强。本文还通过建立有限元模型进行仿真,进一步验证了试验结果。

  • TiC 具有高熔点(3 160℃)、高硬度(1 668.8 HV)等特性,常被用作激光熔覆钛、钢等金属基体的增强相,以提高耐磨性。受此启发,AO 等[48]在 AZ31B 镁合金上激光熔覆不同比例的 Al-TiC 粉末。结果发现,适当的 TiC 含量可以提高熔覆层的耐磨性,但 TiC 含量过高时,TiC 陶瓷颗粒发生团聚,强烈影响涂层的耐磨性。同年孙琪[49]在 AZ91D 镁合金上激光熔覆不同比例(9∶1、6∶1、3∶1)的 Al-TiC 粉末,结果发现 Al-TiC 含量为 9∶1 时熔覆层性能最佳。但有人提出 TiC 不是提高镁合金表面性能的主要因素,刘奋军等[50]认为随 TiC 含量增加,反而促进了 TiC 和 α-Mg 之间的电化学反应,降低了腐蚀性能。而真正提高腐蚀性能的相是 Al12Mg17。在实验中,Al-20TiC 试样因其具有最多的 Al12Mg17相而耐腐蚀性能最优,且相的连续网络状分布更加均匀(图10)。

  • 图10 Al-TiC 复合涂层结合界面(a)~(c)及微观组织(d)~(f)[50]

  • Fig.10 Bonding interface (a) - (c) and microstructure (d) - (f) of Al-Tic composite coating [50]

  • 近几年,随着陶瓷相的广泛应用,WC 粉末广泛应用于钢、铜等金属的激光表面改性技术中,并取得了优异的性能。刘盛耀[51]则在 AZ91D 镁合金表面上熔覆了不同比例的 Al、WC 混合粉末,在优化工艺后的参数下获得了表面光滑平整、无塌陷现象的熔覆层。在高能量激光的作用下,部分 WC 分解与 Mg、Al 元素反应得到 Al4C3、Al4W、 MgAl2C、Al18Mg3W2 等新相,这些新相细化了晶粒,改善了组织;部分未分解的 WC 以弥散相形式分布在熔覆层中,提高了熔覆层的显微硬度。其中当 WC 含量为 15 wt.%时,熔覆层的显微硬度和耐腐蚀性最佳。

  • 2.2.1.2 原位合成法

  • 原位合成法是指陶瓷相在制备复合涂层过程中通过原位反应生成。与直接添加相相比,原位陶瓷相具有颗粒尺寸小、结合力强、界面润湿性改善等优点。

  • GUO 等[52]通过在 AZ91D 镁合金上熔覆 Al、Zr 和 B4C 混合粉末,制备了 ZrC-Al3Zr 原位增强复合涂层。如图11 所示,10、20 和 30 wt.%(Zr+B4C) 涂层中均生成了颗粒状的 ZrC 增强相,而只有 20 wt.%和 30 wt.%两种涂层中出现了棒状的 Al3Zr 增强相。并且通过对比性能发现,当 Zr+B4C 含量为 30 wt.%时,涂层在 Al3Zr 和 ZrC 两种增强相的作用下,性能最佳,硬度达到最大值(346 HV),是基体硬度的 5 倍。各熔覆层的耐磨性和耐蚀性均优于 AZ91D 基体,且摩擦因数随(Zr+B4C)含量的增加而降低。

  • 图11 Al+(Zr+B4C)粉末中不同(Zr+B4C)含量的激光熔覆层的 X 射线衍射图[52]

  • Fig.11 X-ray diffraction patterns of laser cladding layers with different (Zr+B4C) contents in Al+ (Zr+B4C) powder: (a) 10 wt.%, (b) 20 wt.%, (c) 30 wt.%[52]

  • YANG 等[53]通过在 AZ91D 镁合金上激光熔覆 Al、Ti、B4C 混合粉末,通过原位反应获得了含有 Al3Ti 和 TiC 陶瓷相的熔覆层,硬度达到 348 HV,比镁合金基体高 5~6 倍。此外,含有 10 wt.%的 (Ti+B4C)的涂层比其他涂层和基材具有更高的耐腐蚀性和耐磨性。靳坤等[54]将四元合金 Al-Ti-Ni / C (涂层 A)和 Al 单质(涂层 B)分别熔覆在 AZ91D 镁合金表面,两种涂层的硬度和耐腐蚀性均有显著提高。相比涂层 B,涂层 A 生成了均匀分布于涂层中的增强相 Al3Ti,因此硬度提高 41%。

  • 与原位生成法相比,外加法要严格控制陶瓷相的尺寸与含量。但无论是外加法还是原位合成法,金属-陶瓷复合涂层可以显著提高镁合金的耐磨性,磨损体积仅为镁合金的 1 / 8~1 / 3。陶瓷相提高涂层耐磨性的机理可归纳为:镁合金与陶瓷相的性质不同,对摩擦副作用下的应力响应也不同,镁合金的晶体结构为密排六方结构,滑移系只有 3 个。因此,当其与摩擦副作用时,极易发生塑性变形,而高硬度陶瓷相则未发生塑性变形,而是将应力传递到了陶瓷相与镁合金的结合区,缓解应力集中,对摩擦副起到有力的支撑作用。但由于金属-陶瓷粉末与镁合金性质差别较大,陶瓷相与镁合金的界面结合较弱,且熔覆层的脆性较大,极易产生裂纹,影响熔覆层的综合性能[55-56]。未来可以通过提高基体材料的屈服强度,提高镁合金与熔覆层的结合强度并调整陶瓷相的微观分布状态来进一步提高涂层综合性能。

  • 2.2.2 金属-稀土复合涂层

  • 稀土元素具有较大的原子半径和较低的电负性,且化学性质活泼,容易与其他元素发生反应。除此之外,在材料中添加稀土元素还可以起到细化晶粒、净化组织及变质作用[57]。因此,研究人员在实验过程中选择了多种稀土元素对涂层的影响,比如重稀土元素 Y 和轻稀土元素 Gd、La 等,并通过添加不同含量的稀土元素选择了性能较好的配比。

  • 稀土 Y 是表面活性元素,在镁中具有较高的固溶度(12.49%),可以降低临界形核功,增加结晶核心,以此提高涂层耐腐蚀性。ZHU 等[58]在 AZ91D 镁合金上熔覆不同含量(0%、0.4%、0.8%、1.2% 和2.0%)Y2O3的Al-Cu涂层。结果表明,含1.2%Y2O3 的涂层性能最佳,其中硬度高达 376 HV,大约是 AZ91D 镁合金基体的 6 倍。同时,在熔覆层中添加 Y2O3 增加了腐蚀电位,降低了腐蚀电流密度,耐腐蚀性大幅提高。主要是因为稀土氧化物可以作为腐蚀产物扩散的屏障,提高耐腐蚀性;此外,稀土氧化物还能阻止水分子渗透到腐蚀边界,阻止气体向外扩散,防止基体材料的腐蚀反应。

  • 但 La 元素对镁合金腐蚀行为的影响机制与 Y 元素不尽相同。因La在Mg中的极限固溶度很低(约为 0.74%),Al 优先与 La 生成 LaAl3等高电位化合物,且提高了涂层致密性。孙琪等[59]则在 AZ91D 镁合金表面制备了不同 La2O3 含量的 Al-Cu 涂层,研究 La 元素对熔覆层性能的影响。加入 La2O3后,熔覆层生成的新强化相 LaAl3和 Mg17La2,使熔覆层的摩擦因数减小。同时,La 与其他元素反应生成新化合物,增加形核质点并细化晶粒,并且组织均匀分布,使得熔覆层硬度明显高于基体的显微硬度。但当 La2O3含量超过 2.0%时,硬度反而降低,分析原因,过多的稀土氧化物降低了熔池的流动性,使得对流速度减慢,气泡不易排出,最终导致熔覆层质量下降。

  • CHEN 等[60]研究 Gd 元素对激光熔覆镁合金涂层组织和性能的影响。采用激光熔覆法和送丝法在铸造镁合金上制备 Mg-7.5Al-xGd(x=0、2.5、5.0 和 7.5 wt.%)涂层。结果表明,7.5 wt.%Gd 的激光熔覆涂层在室温和高温下均具有最高的显微硬度、极限拉伸强度和屈服强度。分析主要原因,Gd 促进了立方 AlGd 相的形成,抑制共晶 MgAl 相的沉淀,进而阻止了沿晶界的共晶相的微小液化,使其能够在高温变形环境下保持高性能。

  • 稀土元素的加入,一方面增加了形核率,并吸附于晶界阻止晶粒的生长,加强对基体的保护作用,降低腐蚀速率,提高涂层的硬度(大约是镁合金的 5-6 倍);另一方面,稀土元素极易与其他元素发生反应生成新相,降低腐蚀速率,并且可以使熔覆层组织均匀分布,进一步提升熔覆层性能。

  • 2.2.3 金属-纳米复合涂层

  • 当粉末粒度降到纳米级范围时,因其本身具有小尺寸效应、表面与界面效应和量子尺寸效应,故纳米材料具备了其他材料难以获得的优异性能。

  • 冯辉等[61]在 AZ31B 镁合金表面制备了与基体结合良好的 Al-Si+纳米 SiC 涂层。通过对比结果发现,添加纳米 SiC 的熔覆层出现了大量的八个花瓣的花瓣状结构或十字结构的黑色相,并且晶粒细化,因此硬度和耐腐蚀性能比未添加纳米 SiC 的熔覆层有所提高。王鑫[62]则通过激光熔覆、液氮下激光熔覆和激光重熔等离子喷涂技术在 AZ31B 制备了 Al-Si 基纳米 Si3N4强化层,最后也获得了优于基体的涂层。

  • SUNDARASELVAN 等[63]采用纳米 TiO2 / Al2O3 材料对 AZ61 镁合金进行激光表面改性,结果表明,添加纳米材料的涂层性能均有提高。其中 15%的纳米 Al2O3 涂层性能最优,摩擦因数仅为基体的一半。将样品置于浓度为 4.8%~5.3%的 NaCl 溶液中,发现改性涂层生成白锈的时间长于基体,因此耐腐蚀性获得提高。

  • 2.3 非晶态合金涂层

  • 非晶态合金(又称金属玻璃)的原子排列状态呈现短程有序和长程无序排列的特点,相比于传统晶态合金,非晶合金缺少微观结构上结晶缺陷(如晶界、位错和空位等),因而具有优异的耐腐蚀性和耐磨性,为镁合金表面制备高质量的保护涂层提供新的思路。

  • Zr 基非晶合金因其玻璃形成能力高,已成为非晶领域研究热点之一。张涛[64]使用 DF4000-100 光纤耦合半导体激光器在 AZ91D 镁合金表面激光熔覆 Zr 基(Zr65Al7.5Ni10Cu17.5)非晶涂层,研究了纯锆粉与氢化锆粉对熔覆层性能的影响。通过 X 射线衍射仪试验分析,两种熔覆层均在 30°~40°出现了宽化的漫散射峰(即非晶相);此外两种熔覆层的硬度和耐腐蚀性均有显著提高,但纯锆粉末制备的涂层相对氢化锆粉末制备的涂层结晶程度更高,涂层耐腐蚀性更好。据文献[65]报道,非晶合金之所以在部分晶化后腐蚀性能得到了改善,是因为非晶与晶化的界面促进了合金中能形成钝化膜的元素的扩散,在基体遭受腐蚀侵蚀的时候更快地形成了更匀致的钝化膜。微合金化元素对激光熔覆制备 Zr-Al-Ni-Cu 非晶具有较大影响。镁合金当作为生物体植入材料时,对耐腐蚀性要求很高。因此刘雪[66] 根据 MAROS 等指出的非晶生物材料设计标准,通过添加耐腐蚀性较强的 Ti、Cu 等元素,在医用镁合金上制备了 Zr60Ti6Cu19Fe5Al10非晶涂层。结果显示,在激光功率为 2.25 kW 和扫描速率为 250 mm / min 的参数下,涂层非晶含量最高,熔覆层性能最佳。涂层在多种金属间化合物的增强作用以及块状非晶相的弥散增强作用下,耐磨性、耐腐蚀性和硬度显著提高。

  • 非晶合金的形成机理须要抑制晶体的形核和生长,需要较高的冷却速度,因此 TAN 等[67]在低温水冷条件下制备了 Al 基非晶-纳米晶复合涂层。结果表明,熔覆层在硬质相(如 S-Al2CuMg、AlMg4Zn11、 τ-Mg32(Al,Zn)49)和一些非晶态复合相引起的第二相强化机制的共同影响下,熔覆层截面的平均显微硬度提升了 6 倍,耐磨损性显著提高。此外,在进行电化学试验时,非晶相缓解了镁合金的晶界腐蚀,耐腐蚀性较基体提高了约 96%。

  • WANG 等[68]还采用团簇线判据,设计了与镁合金熔点相近且耐腐蚀性能最优的 Ni-Zr-Al 合金粉末,并在 AZ91HP 镁合金上进行激光熔覆。图12 为 Ni60.16Zr33.84Al6.0 合金涂层的 X 射线衍射图。由于激光加工具有冷却速率快的优点,且基体具有稀释作用,涂层中生成了非晶相和两种三元金属间化合物,使得涂层呈现了高硬度(900 HV)、耐磨性和耐腐蚀性优异的特点。与他们采用同种原则设计的 Ti-Ni-Al 合金粉末[69]相比,因其有非晶相生成,涂层性能较后者略高。同时与其余 Zr 基非晶合金相比, Ni-Zr-Al 合金不仅具有高的强度、硬度、耐磨性、耐蚀性及良好的延展性,而且与镁合金具有良好的物化相容性,是镁合金理想的表面改性材料。

  • 图12 Ni60.16Zr33.84Al6.0 合金涂层的 X 射线衍射图[68]

  • Fig.12 X-ray diffraction of Ni60.16ZR33.84Al6.0 alloy coating[68]

  • 非晶合金涂层因其本身长程无序而短程有序的特殊晶体结构,在耐腐蚀性方面有着得天独厚的优势。比如,相对镁合金而言,非晶合金涂层的腐蚀电流密度可以降低两个数量级,耐腐蚀性提高 60%~96%;同样在硬度和耐摩擦方面也有显著提升,硬度提高了 6~9 倍,且磨损体积是镁合金的 1 / 6 左右。但也正是因为特殊的晶体结构,非晶合金涂层的形成需要苛刻的条件,比如需要极大的冷却速率,达到抑制形核、长大,从而保持无序结构。这使得熔覆成形具有不确定性,因此后续可以从多种非晶的不同形成条件上进行研究。

  • 2.4 高熵合金涂层

  • 高熵合金(High-entropy alloy,HEA)是一种新的合金设计概念——多主元素,由 5 种以上等摩尔或近等摩尔比的金属元素组成。它们具有简单的固溶体结构,基本上是 BCC 或 FCC 相;此外,因其具有良好的耐磨性、耐腐蚀性、抗氧化性、低导电性、低导热性和低热膨胀系数,已应用于钢等熔点相对较高的激光熔覆涂层中。但目前,在镁合金表面进行激光熔覆高熵合金研究较少,主要因为两者物化差异显著。从近 10 年国内外研究结果看,只有西安航空学院的孟广慧、哈尔滨工程大学的温鑫以及香港理工大学的 YUE 三位研究者进行了镁合金激光熔覆高熵合金研究。

  • 为了克服高熵合金粉末和镁基体之间熔点的巨大差异,2013 年,YUE 等[70]尝试采用预置粉末法和激光重熔在镁合金表面制备了 FeCoNiCrAlCuxSi0.5 涂层,克服了 Mg 基板过热的问题,且熔覆层仅由 BCC 和 FCC 简单固溶相组成,具有高硬度和高耐蚀性。2014 年,YUE 等[71]又采取多层熔覆的方法,除部分 Cu 元素扩散到 Mg 熔体之外,没有发生严重的稀释问题,确保了涂层的优异耐腐蚀性。2015 年, MENG等[72]也采用多层熔覆的方法在AZ91D镁合金上制备了 AlCoCrCuFeNi 颗粒增强涂层。结果发现,激光熔覆 AlCoCrCuFeNi 涂层两层后可显著降低 Mg 对涂层的稀释作用,三层后可完全抑制 Mg 对涂层的稀释作用。因此判断通过多层熔覆或解决镁基体过热等方法可以实现高熵涂层与镁合金的冶金结合。

  • 为解决高熵合金熔点高的问题,WEN 等[73]还设计了一种含低熔点元素(Sn-232℃)的新型多主元素合金,以此减轻 Mg 合金基体的蒸发稀释;并以 Sn 粉作为过渡层,进一步提高涂层与基体的结合程度。其采用无超声(Ⅰ)和超声(Ⅱ)辅助激光熔覆技术(如图13 所示),在 Mg-Li 合金表面上激光熔覆了 NiMnCuSnAl 多主元素合金。两种技术下得到含有 BCC 固溶体的 Ni2MnCuSnAl0.1 涂层,如图14 所示,平均显微硬度、耐磨性均优于基体近 10 倍,并且两种涂层的腐蚀电位相比 Mg-Li 合金也低出两三个数量级,表现出了极为优秀的表面性能。但涂层Ⅱ在超声辅助加工的基础上,各项性能均略优于无超声辅助加工的涂层Ⅰ,主要因为在超声的辅助下,诱导组织均匀分布,提高了涂层的性能指标。

  • 图13 激光熔覆示意图[73]

  • Fig.13 Diagram of laser cladding[73]

  • 图14 Ni2MnCuSnAl0.1涂层与 Mg-Li 合金的性能比较[73]

  • Fig.14 Comparison of properties between Ni2MnCuSnAl0.1 coating and Mg-Li alloy[73]

  • 高熵合金作为一种新的合金设计理念,自身具有优异的表面性能,从而广泛应用于许多合金的表面改性技术中。但因其与镁合金物化相容性较差,目前存在一定的局限性,后续研究中一方面可以通过添加低熔点元素寻找一种新型的低熔点高熵合金,另一方面可以通过添加过渡层或其他工艺来实现两者的结合。

  • 2.5 功能梯度涂层

  • 在熔覆过程中,镁合金和熔覆材料熔点差异较大,难免出现涂层和镁合金结合不理想、高稀释率或基体挥发等问题。而功能梯度涂层则采用中间涂层,实现镁合金与具有优异力学性能熔覆材料之间的紧密结合。该涂层的微观结构呈梯度变化,减小了因涂层与镁合金之间的巨大差异引起的内应力,降低了涂层的裂纹敏感性。

  • JIANG 等[74]以 Al-Cu 为中间层,在 Mg-Li 合金上制备了性能优异的 Ni-Ti-Cu / Cu-Al 功能级涂层, Mg-Li 合金的耐蚀性和耐磨性大大提高。图15 显示了上层和中间层的冶金过程。其中,表层和中间层的磨损量分别比基体降低了 98.04%和 82.41%。腐蚀电位分别比基板(-1 553 mV)高出了 1 311 mV 和 562 mV。腐蚀电流密度比基板低两三个数量级。

  • PEI 等[75]为解决单一热源难以在镁合金表面制备厚涂层或者高性能涂层,采用焊接技术与激光熔覆技术结合的方法,在 AZ91D 镁合金表面制备了一种梯度改性层。首先在 AZ91D 镁合金表面利 DC-PMIG 焊接方法熔覆了足够厚度(2.25 mm)的 Al-Si 中间层。然后采用脉冲 YAG 激光在中间层上熔覆 Ni-Cr-Al 粉末,同样形成具有更高硬度和更好耐蚀性的顶部熔覆层。

  • 靳坤等[76]同样采用梯度涂层方法,首先在已去除氧化膜的镁合金基体表面均匀涂覆 Al 粉,利用激光器对镁合金表面预涂的 Al 粉末进行激光熔覆,在镁基体表面制得 Al 过渡层。之后用激光器对二次预涂的 Al+Ti+Ni / C 混合粉末进行激光熔覆。与单层相比,由于过渡层的存在,有效阻止了镁基体对顶部覆盖层的稀释,因此梯度涂层的硬度和耐腐蚀性得到进一步提高。

  • 总结过渡层的使用,可以发现为使过渡层与熔覆层获得良好的冶金结合,两者之间应该具有良好的润湿性,因此过渡层应具有与熔覆层和基体间相同的元素,以此达到基体和熔覆层之间的层层过渡。这不但可以降低熔覆过程的稀释率,解决镁合金与熔覆材料熔点相差悬殊的问题,而且可以获得与镁合金结合良好的优异涂层。但在熔覆材料的铺置过程中容易造成粉末分布不均匀,从而使得熔覆层出现气泡或裂纹现象。因此在下一步的工作中可以探索新的工艺方法来解决此问题。

  • 图15 上层和中间层的冶金过程[74]

  • Fig.15 Metallurgical process of the top-layer and the interlayer[74]

  • 2.6 医用材料涂层

  • 镁合金密度和弹性模量与人体骨组织接近,可显著降低应力遮挡效应,有利于骨组织的愈合,作为一种可降解植入器械的候选材料,在医学领域展现出极大的应用前景。相对于传统的钛合金和钴基合金植入器械,镁合金植入器械可以在受损骨组织完成修复后降解吸收掉,无需二次手术取出,能够显著减少患者痛苦和治疗成本。但是,镁及其合金在体内的腐蚀降解速度过快、力学强度不佳等问题制约了镁合金在医学领域的推广应用。因此,基于人体生物环境,寻找医用镁合金耐腐蚀涂层是当前研究的热点。

  • 羟基磷灰石(Hydroxyapatite,HA),化学式为 Ca10(PO46(OH)2,是一种与人体硬组织具有相似成分的磷酸钙类生物活性陶瓷,被认为最有潜力的人体种植体替代材料,并且降低了医用镁合金在人体内的降解速率,提高了人工置换关节的长期疗效[77-80]

  • 本课题组[78]利用激光熔覆技术在镁合金表面制备了与镁合金基体形成良好冶金结合的羟基磷灰石生物陶瓷涂层,并对涂层的血液相容性和细胞相容性进行了分析。在进行血液相容性实验时发现,涂层是由亲水性化合物 HA、β-TCP 相组成,整体呈现亲水性,因而对血浆蛋白的吸附量较少,抗凝血性远远优于镁合金。此外,通过体外细胞培养法,将成骨细胞接种在 HA 生物陶瓷涂层表面。随着时间的推移,在涂层中钙、磷的作用下,骨原细胞逐步进入涂层材料,并且生长良好,成群聚集,表现了良好的细胞相容性。由此得出激光熔覆后的 HA 涂层的生物活性得到了明显提升。

  • 此外还有学者在医用镁合金上熔覆了其他材料的涂层,也表现出了较好的生物活性和耐腐蚀性。

  • FOROOZMEHR 等[81]引入激光辅助在纯镁上微沉积银纳米颗粒来增强其表面性质。由于银的生物活性,涂层厚度均匀,生物相容性更好。遗憾的是,在银膜上发现了一些裂纹,限制了其在生物医学里的应用。刘雪[66]利用激光熔覆技术在医用镁合金上制备了 Zr60Ti6Cu19Fe5Al10非晶涂层。在模拟体液浸泡腐蚀试验的初始阶段,由于涂层表面并非完全非晶,激光熔覆样品较未处理样品失重快。但后期在非晶相的隔离作用下,激光熔覆样品失重速度降低。同时随着浸泡时间的延长,磷灰石层在激光熔覆样品表面的沉积速度样明显高于未处理镁合金,表明熔覆后样品具有良好的生物活性和生物相容性。

  • 在医用镁合金表面熔覆涂层发现了一些局限性,包括涂层周围的应力集中开裂和耐腐蚀性差等行为。为了改善涂层开裂,可以采用某些工艺(如挤压变形)来减少次生相在基体中引起的微电效应,或通过减小晶粒尺寸降低内应力。因此,为了实现镁合金的医学应用,需要研究人员和医生之间展开密切合作,以最大限度地减少或完全消除这些限制。

  • 3 结论与展望

  • 镁合金较低硬度、耐磨性和耐蚀性制约其广泛应用,激光熔覆技术可赋予镁合金优异的表面性能,扩大镁合金应用领域,受到广泛关注,在几十年的发展进程中,学者们在镁合金激光熔覆方面做了大量的工作,采用了二元合金涂层、复合性增强涂层、非晶态合金涂层、高熵合金涂层、功能梯度涂层以及医用材料涂层等涂层系列,通过适当控制激光功率、扫描速度、光斑直径和混粉比例等工艺参数,使镁合金获得了高硬度、优异的耐腐蚀性和耐磨性。

  • 镁合金熔点低易蒸发、熔覆时稀释率高等一些值得关注的问题,未来在“材料基因组”计划的大背景下,镁合金激光熔覆将从以下方面开展:

  • (1)多技术结合。目前采用单一的激光熔覆技术,涂层易产生缺陷。但随着社会的快速发展,超声振动技术、电磁搅拌技术、高频微锻造技术和等离子喷涂技术等辅助技术与熔覆技术结合,可以起到细化晶粒、组织均匀分布等作用。所以未来应多技术结合,优化工艺,以此提高涂层性能。

  • (2)多学科融合。结合分子动力学等新兴学科,从微观层次分析镁合金熔覆过程中优异涂层产生的机理,便于寻找更优的新型材料,以顺应当今复杂的航空航天领域和绿色发展的理念。

  • (3)数值模拟辅助。利用有限元软件对熔覆过程进行模拟研究,通过利用不同算法对温度场、热应力、流场特征等模拟结果的分析,以此获得最佳激光参数以及分析涂层组织形成过程,加快材料从发现、制造到应用的研发过程的速度,降低成本。

  • (4)高性能合金开发。高熵非晶合金涂层兼具耐磨、耐蚀的性能特点,具有很广的应用前景,且在其他一些材料的基体上激光熔覆已获得优异的性能,所以应开展多层次跨尺度材料设计,开发一种用于镁合金基体激光熔覆的新型高性能合金,或寻找优异的梯度层材料,利用功能梯度涂层以获得更高的冶金结合。

  • 参考文献

    • [1] ZENG Z R,SALEHI M,KOPP A,et al.Recent progress and perspectives in additive manufacturing of magnesium alloys[J].Journal of Magnesium and Alloys,2022,10(6):1511-1541.

    • [2] 樊振中,陈军洲,陆政,等.镁合金的研究现状与发展趋势[J].铸造,2020,69(10):1016-1029.FAN Zhenzhong,CHEN Junzhou,LU Zhen,et al.Research status and development trend of magnesium alloys[J].Foundry,2020,69(10):1016-1029.(in Chinese)

    • [3] 唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007(2):69-72.TANG Quanbo,HUANG Shaodong,WU Taibin.Application analysis of magnesium alloys in weapon components[J].Ordnance Material Science and Engineering,2007(2):69-72.(in Chinese)

    • [4] 訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004(1):229-232.ZI Bingtao,WANG Hui.Magnesium alloy and its applications in industry[J].Chinese Journal of Rare Metals,2004(1):229-232.(in Chinese)

    • [5] MOHAMMADREZA D,HAMID R B R,ABBAS S,et al.Surface modification of magnesium alloys using thermal and solid-state cold spray processes:Challenges and latest progresses[J].Journal of Magnesium and Alloys,2022,10(8):2025-2061.

    • [6] ZHANG P,ZUO Y,NIE G C.The enhanced properties of anodic films on AZ91D magnesium alloy by addition of oxide nanoparticles[J].Journal of Alloys and Compounds.2020,834:155041-155053.

    • [7] AYUSHI T,SWAROOP G.KANDASUBRAMANIAN B.Electroless nickel fabrication on surface modified magnesium substrates[J].Defence Technology,2019,15(4):636-644.

    • [8] MAO Y,LI Z G,FENG K,et al.Corrosion behavior of carbon film coated magnesium alloy with electroless plating nickel interlayer[J].Journal of Materials Processing Technology,2015,219:42.

    • [9] KUMARADHAS P,SIVAPRAGASH M.Comparison of corrosion behaviour of heat treated,ZrO2 and ZrN PVD coated AZ91D Mg alloy[J].Materials Today:Proceedings,2022,56(1):527-532.

    • [10] ABDUL R S,RITA M,PRVAN K K,et al.Superhydrophobic self-cleaning carbon nanofiber CVD coating for corrosion protection of AISI 1020 steel and AZ31 magnesium alloys[J].Surface and Coatings Technology,2020,404:126421.

    • [11] WEI X,LIU P D,MA S J,et al.Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation[J].Corrosion Science,2020,173:108729.

    • [12] JIA X J,SONG J F,ZHAO L B,et al.The corrosion behaviour of MAO coated AZ80 magnesium alloy with surface indentation of different sizes[J].Engineering Failure Analysis,2022,136:106185.

    • [13] RIDVAN K,EBRU E S,YASAR T,et al.Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy[J].Surfaces and Interfaces,2021,22:100894.

    • [14] SANU M S,GEJO G,SAJNA M S,et al.Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings:A comprehensive review[J].Applied Surface Science Advances,2021,6:100173.

    • [15] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [16] ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.

    • [17] 李达.镁合金激光合金化与激光熔覆的研究[D].北京:北京工业大学,2008.LI Da.An investigation of laser alloying and laser cladding on magnesium alloys[D].Beijing:Beijing University of Technology,2008.(in Chinese)

    • [18] 王建宏,曹亚峰.Al 含量对 Ti-C-Al 体系激光熔覆过程的影响[J].热加工工艺,2016,45(8):187-189.WANG Jianhong,CAO Yafeng.Effect of Al content on laser cladding process of Ti-C-Al system[J].Hot Working Technology,2016,45(8):187-189.(in Chinese)

    • [19] ISMAIL N,ATIQAHA,JALARA,et al.A systematic literature review:The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints[J].Journal of Manufacturing Processes,2022,83:68-85.

    • [20] ALI R S,QU J,ZHOU M C et al.Recent progress on the surface finishing of metals and alloys to achieve superhydrophobic surfaces:A critical review[J].Transactions of the IMF,2021,99(2):61-72.

    • [21] 孟庆贺.Al,Ni 对 Zr-Cu 合金在几种基板表面润湿性的影响[D].长春:吉林大学,2013.MENG Qinghe.Effect of Al and Ni on the wetting of several substrates by Zr-Cu based alloys[D].Changchun:Jilin University,2013.(in Chinese)

    • [22] AINHOA R,PILAR R,MARÍA D E R,et al.Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding[J].Results in Physics,2019,13:102160.

    • [23] YANG L Q,LI Zhiyong,ZHANG Yingqiao,et al.In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D[J].Surface and Coatings Technology,2020,383:125249.

    • [24] 王继娜,徐开东.镁合金表面激光熔覆 Al/TiB2 复合强化层及其性能[J].机械工程材料,2013,37(8):45-49.WANG Jina,XU Kaidong.Combined strengthened layer of Al/TiB2 on magnesium alloy surface by laser cladding and its properties[J].Materials for Mechanical Engineering,2013,37(8):45-49.(in Chinese)

    • [25] 姚军.AZ91D 镁合金激光熔覆与重熔层组织特征及其性能研究[D].长春:吉林大学,2007.YAO Jun.Study on microstructure characterization and properties of laser cladding and remelting on surface of AZ91D magnesium alloy[D].Changchun:Jilin University,2007.(in Chinese)

    • [26] HITCHCOCK S J,CARROLL N T,NICHOLAS M G.Some effects of substrate roughness on wettability[J].Journal of Materials Science,1981,16(3):714-732.

    • [27] 陈其亮,王江锋.镁合金表面预处理工艺:CN1986160[P].2007-06-27.CHEN Qiliang,WANG Jiangfeng.Surface pretreatment process of magnesium alloy:CN1986160[P].2007-06-27.(in Chinese)

    • [28] 刘祥.激光熔覆 Al+Al2O3涂层对提高AZ91D镁合金表面性能的研究[D].衡阳:南华大学,2014.LIU Xiang.Studying about laser cladding Al +Al2O3 coating at improving the surface performance of AZ91D magnesium alloy[D].Hengyang:University of South China,2014.(in Chinese)

    • [29] 宋武林,朱蓓蒂,张杰,等.激光熔覆层热膨胀系数对其开裂敏感性的影响[J].激光技术,1998(1):35-37.SONG Wulin,ZHU Beidi,ZHANG Jie,et al.Effects of expansion coefficient of laser cladding layer on cracking sensitivity [J].Laser Technology,1998(1):35-37.(in Chinese)

    • [30] 李晓锡,李志勇,朱润东,等.熔覆材料与工艺参数对镁合金激光熔覆层缺陷的影响[J].焊接技术,2014,43(11):5-8,98.LI Xiaoxo.LI Zhiyong,ZHU Rundong,et al.Effect of cladding materials and process parameters on defects of laser cladding coatings of magnesium alloy[J].Welding Technology,2014,43(11):5-8,98.(in Chinese)

    • [31] LEI Y W,SUN R L,TANG Y,et al.Experimental and thermodynamic investigations into the microstructure of laser clad Al-Si coatings on AZ91D alloys[J].Surface and Coatings Technology,2012,207:400-405.

    • [32] GAO Y L,WANG C S,LIN Q,et al.Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy[J].Surface and Coatings Technology,2006,201(6):2701-2706.

    • [33] GAO Y L,XIONG D S,WANG C S,et al.Influences of laser powers on microstructure and properties of the coatings on the AZ91HP magnesium alloy[J].Acta Metallurgica Sinica(English Letters),2009 22(3):167-173.

    • [34] 接勐,高亚丽.激光熔覆 Al-Si 涂层硬度和耐磨性研究[J].应用激光,2015,35(6):629-633.JIE Meng,GAO Yali.Study on hardness and wear resistance of laser cladding Al-Si coating[J].Applied Laser,2015,35(6):629-633.(in Chinese)

    • [35] 接勐,高亚丽.激光功率对 Al-Si 涂层凝固组织的影响 [J].应用激光,2015,35(5):541-545.JIE Meng,GAO Yali.Influence of laser powers on solidification of Al-Si coating[J].Applied Laser,2015,35(5):541-545.(in Chinese)

    • [36] 王鑫,潘希德,牛强,等.AZ33M 镁合金激光熔覆 Al-Si 涂层的组织与性能[J].金属热处理,2021,46(5):202-206.WANG Xin,PAN Xide,NIU Qiang,et al.Microstructure and properties of laser clad Al-Si coating onAZ33M magnesium alloy[J].Heat Treat of Metals,2021,46(5):202-206.(in Chinese)

    • [37] ZHANG X L,ZHANG K M,ZOU J X.Microstructures and properties in surface layers of Mg-6Zn-1Ca magnesium alloy laser-clad with Al-Si powders[J].Transactions of Nonferrous Metals Society of China,2018,28(1):96-102.

    • [38] ROLINK G,WEISHEIT A,BIERMANN T,et al.Investigations of laser clad,thermal sprayed and laser remelted AlSi20-coatings on magnesium alloy AZ31B under constant and cycling thermal load[J].Surface and Coatings Technology,2014,259(C):751-758.

    • [39] CHEN E L,ZHANG K M,ZOU J X.Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders[J].Applied Surface Science,2016,367(11-18):0169-4332.

    • [40] ANDRZEJ D,RENATA M,LUDWIK B.The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon[J].Materials Characterization,2016,118:505-513.

    • [41] 高亚丽,杨淼,张海波,等.激光功率对 Al-Cu 合金熔覆层组织和性能的影响[J].应用激光,2011,31(2):107-111.GAO Yali,YANG Miao,ZHANG Haibo,et al.Influence of laser power on microstructure and property of the Al-Cu alloy coating[J].Applied Laser,2011,31(2):107-111.(in Chinese)

    • [42] GAO Y L,WANG C S,PANG H J,et al.Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy[J].Applied Surface Science,2007,253:4917-4922.

    • [43] 刘奋军,姬妍,孟庆森,等.镁合金表面激光熔敷+搅拌摩擦加工 Al-Cu 涂层的显微组织与性能[J].中国有色金属学报,2017,27(10):1981-1987.LIU Fenjun,JI Yan,MENG Qingsen,et al.Microstructure and properties of Al-Cu coating on magnesium alloys prepared by laser cladding+friction stir processing[J].The Chinese Journal of Nonferrous Metals,2017,27(10):1981-1987.(in Chinese)

    • [44] 武飞宇.镁合金表面激光高速沉积耐磨耐蚀涂层的组织性能研究[D].北京:北京工业大学,2020.WU Feiyu.Microstructure properties and corrosionresistance of coatings prepared by high Speedlaser cladding on Mg alloy[D].Beijing:Beijing University of Technology,2020.(in Chinese)

    • [45] 高亚丽.AZ91HP 镁合金激光表面改性研究[D].大连:大连理工大学,2006.GAO Yali.Laser surface modification of AZ91HP Magnesium alloy[D].Dalian:Dalian University of Technology,2006.(in Chinese)

    • [46] QIAN J Q,ZHANG J X,LI S Q,et al.Study on laser cladding NiAl/Al2O3 coating on magnesium alloy[J].Rare Metal.Mat.Eng.,2013,42(3):466.

    • [47] ARTHANARI S,LI Y H,LU N,et al.Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J].Journal of Alloys and Compounds,2020,848:156598.

    • [48] AO S S,WANG T,HUANG Y,et al.The wear properties of TiC/Al-based composite coating applied by laser cladding[J].Metals,2018,8(11):975.

    • [49] 孙琪.AZ91D 镁合金表面激光熔覆 Al/TiC/Y2O3复合涂层的组织与性能研究[D].太原:中北大学,2017.SUN Qi.Microstructure and properties of laser cladding Al/TiC/Y2O3 composite coating on AZ91D magnesium alloy[D].Taiyuan:North University of China,2017.(in Chinese)

    • [50] 刘奋军,宁祥,白艳霞,等.AZ31 镁合金表面激光熔覆 Al-TiC 复合涂层微观组织与腐蚀性能[J/OL].复合材料学报:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.LIU Fenjun,NING Xiang,BAI Yanxia,et.al.Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J/OL].Acta Materiae Compositae Sinica:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.(in Chinese)

    • [51] 刘盛耀.镁合金表面激光熔覆 Al+WC+La2O3 复合涂层的组织与性能研究[D].太原:中北大学,2017.LIU Shengyao.Microstructure and properties of laser cladding Al+WC+La2O3 composite coating on magnesium alloy surface[D].Taiyuan:North University of China,2017.(in Chinese)

    • [52] GUO Yu,ZHANG Yingqiao,LI Zhiyong,et al.Microstructure and properties of in-situ synthesized ZrC-Al3Zr reinforced composite coating on AZ91D magnesium alloy by laser cladding [J].Surface and Coatings Technology,2018,334:471.

    • [53] YANG L Q,LI Z Y,ZHANG Y Q.Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy[J].Applied Surface Science,2018,435:1187-1198.

    • [54] 靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coating on AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)

    • [55] 崔洪芝,姜迪.高熵合金涂层研究进展[J].金属学报,2022,58(1):17-27.CUI Hongzhi,JIANG Di.Research progress of high-entropy alloy coatings[J].Acta Metall Sin,2022,58(1):17-27.(in Chinese)

    • [56] 崔忠圻,覃耀春.金属学与热处理[M].2 版.北京:机械工业出版社,2011.CUI Zhongqi,QIN Yaochun.metallography and heat treatment[M].2nd ed.BeiJing:China Machine Press,2011.(in Chinese)

    • [57] 秦宝龙.镁合金激光熔覆Al合金+稀土氧化物复合涂层的制备与性能研究[D].吉林:东北电力大学,2022.QIN Baolong.Preparation and properties of laser cladding Al alloy+rare earth oxide composite coatings on magnesium alloys[D].Jilin:Northeast Electric Power University,2017.(in Chinese)

    • [58] ZHU Rundong LI Zhiyong,LI Xiaoxi,et al.Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J].Applied Surface Science,2015,353:405-413.

    • [59] 孙琪,李志勇,朱润东,等.La2O3对AZ91D镁合金表面激光熔覆 Al-Cu 涂层的影响[J].中国机械工程,2017,28(13):1633-1637.SUN Qi,LI Zhiyong,ZHU Rundong,et al.Effects of La2O3 on AZ91D magnesium alloy laser cladding layers by Al-Cu powders[J].Chin J Mech Eng-En,2017,28(13):1633-1637.(in Chinese)

    • [60] CHEN H,ZHANG K,YAO C W,et.al.Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings[J].Applied Surface Science,2015,330:393-404.

    • [61] 冯辉,崔泽琴,王文先,等.镁合金表面激光熔覆 Al-Si 基纳米SiC复合涂层的组织及性能[J].应用激光,2012,32(1):13-17.FENG Hui,CUI Zeqin,WANG Wenxian,et al.Microstructure and property of magnesium alloy by laser cladding with Al-Si-based nano-SiC composite coating[J].Appllied Laser,2012,32(1):13-17.(in Chinese)

    • [62] 王鑫.镁合金表面激光制备 Al-Si 基纳米Si3N4强化层的研究[D].太原:太原理工大学,2013.WANG Xin.Study of laser producing Al-Si-based nano-Si3N4 strengthen layer magnesium alloy surface[D].Taiyuan:Tai Yuan University of Technology,2013.(in Chinese)

    • [63] SUNDARASELVAN S,SENTHILKUMAR N,TAMIZHARASAN T,et al.Surface modification of AZ61 magnesium alloy with nano TiO2/Al2O3 using laser cladding technique[J].Materials Today:Proceedings,2020,21(1):717-721.

    • [64] 张涛.镁合金表面激光熔覆Zr基非晶复合涂层的组织与性能研究[D].太原:中北大学,2019.ZHANG Tao.Microstructure and properties of laser cladding Zr-based amorphous composite coating on magnesium alloy[D].Taiyuan:North University of China,2019.(in Chinese)

    • [65] GE W,LI B,AXINTE E,et al.Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts[J].The Journal of The Minerals,Metals & Materials Society,2017,69(4):776-783.

    • [66] 刘雪.医用镁合金表面激光熔覆Zr60Ti6Cu19Fe5Al10非晶涂层[D].南京:南京理工大学,2012.LIU Xue.Laser Cladding of Zr60Ti6Cu19Fe5Al10 amorphous alloy on medical AZ31B magnesium alloy [D].Nanjing:Nanjing University of Science and Technology,2012.(in Chinese)

    • [67] TAN C L,ZHU H M,KUANG T C,et al.Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition[J].Journal of Alloys and Compounds,2017,690:108-115.

    • [68] WANG C S,CHEN Y Z,LI T,et al.Composition design and laser cladding of Ni-Zr-Al alloy coating on the magnesium surface[J].Applied Surface Science,2009,256:1609-1613.

    • [69] WANG C S,LI T,YAO B,et al.Laser cladding of eutectic-based Ti-Ni-Al alloy coating on magnesium surface[J].Surface and Coatings Technology,2010,205(1):189-194.

    • [70] YUE T M,ZHANG H.Laser cladding of FeCoNiCrAlCuxSi0.5 highentropy alloys on AZ31 Mg alloy substrates[J].Materials Research Innovations,2014,18:624-628

    • [71] YUE T M,XIE H,LIN X,et al.Solidifi cation behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J].Journal of Alloys and Compounds,2014,587:588-593.

    • [72] MENG G H,YUE T M,LIN X,et al.Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J].Optics & Laser Technology,2015,70:119-127.

    • [73] WEN X,CUI X f,JIN G,et al.A novel Ni2MnCuSnAl0.1 multi-principal element alloy coating to enhance the wear resistance and corrosion resistance of Mg-Li alloy [J].Optics & Laser Technology,2021,142:107243.

    • [74] JIANG L P,CUI X F JIN G,et al.Synthesis and microstructure properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding[J].Applied Surface Science,2022,575:151645.

    • [75] PEI X L,LI Z Y,ZHANG Y Q,et al.A gradient Al/Ni-Cr-Al layer formed by direct current pulse metal inert gas welding combined laser cladding on AZ91D magnesium alloy[J].Vacuum,2019,165:86-95.

    • [76] 靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coatingon AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)

    • [77] 孙金娥,刘杰.医用镁合金激光熔覆羟基磷灰石涂层的生物活性分析[J].中国金属通报,2019(11):162-163.SUN Jine,LIU Jie.Bioactivity analysis of hydroxyapatite coating on medical magnesium alloy by laser cladding[J].China Metal Bulletin,2019(11):162-163.(in Chinese)

    • [78] 高亚丽,马广超,张海波,等.医用镁合金激光熔覆羟基磷灰石涂层生物相容性研究[J].应用激光,2014,34(6):528-532.GAO Yali,MA Guangchao,ZHANG Haibo,et al.Study on the biocompatibility of laser cladding HA coating on medical Mg alloy[J].Applied Laser,2014,34(6):528-532.(in Chinese)

    • [79] APURBA D,PAMU D.A comprehensive review on electrical properties of hydroxyapatite based ceramic composites[J].Materials Science and Engineering:2019,101:539-563.

    • [80] RAHMAN M,LI Y C,WEN C E.HA coating on Mg alloys for biomedical applications:A review[J].Journal of Magnesium and Alloys,2020,8(3):929-943.

    • [81] FOROOZMEHR E,ALEMOHAMMAD H,XIANG W,et al.Laser-assisted surface patterning of magnesium with silver nanoparticles:synthesis,characterization and modelling[J].Journal of Physics D:Applied Physics,2011,44:495305.

  • 参考文献

    • [1] ZENG Z R,SALEHI M,KOPP A,et al.Recent progress and perspectives in additive manufacturing of magnesium alloys[J].Journal of Magnesium and Alloys,2022,10(6):1511-1541.

    • [2] 樊振中,陈军洲,陆政,等.镁合金的研究现状与发展趋势[J].铸造,2020,69(10):1016-1029.FAN Zhenzhong,CHEN Junzhou,LU Zhen,et al.Research status and development trend of magnesium alloys[J].Foundry,2020,69(10):1016-1029.(in Chinese)

    • [3] 唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007(2):69-72.TANG Quanbo,HUANG Shaodong,WU Taibin.Application analysis of magnesium alloys in weapon components[J].Ordnance Material Science and Engineering,2007(2):69-72.(in Chinese)

    • [4] 訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004(1):229-232.ZI Bingtao,WANG Hui.Magnesium alloy and its applications in industry[J].Chinese Journal of Rare Metals,2004(1):229-232.(in Chinese)

    • [5] MOHAMMADREZA D,HAMID R B R,ABBAS S,et al.Surface modification of magnesium alloys using thermal and solid-state cold spray processes:Challenges and latest progresses[J].Journal of Magnesium and Alloys,2022,10(8):2025-2061.

    • [6] ZHANG P,ZUO Y,NIE G C.The enhanced properties of anodic films on AZ91D magnesium alloy by addition of oxide nanoparticles[J].Journal of Alloys and Compounds.2020,834:155041-155053.

    • [7] AYUSHI T,SWAROOP G.KANDASUBRAMANIAN B.Electroless nickel fabrication on surface modified magnesium substrates[J].Defence Technology,2019,15(4):636-644.

    • [8] MAO Y,LI Z G,FENG K,et al.Corrosion behavior of carbon film coated magnesium alloy with electroless plating nickel interlayer[J].Journal of Materials Processing Technology,2015,219:42.

    • [9] KUMARADHAS P,SIVAPRAGASH M.Comparison of corrosion behaviour of heat treated,ZrO2 and ZrN PVD coated AZ91D Mg alloy[J].Materials Today:Proceedings,2022,56(1):527-532.

    • [10] ABDUL R S,RITA M,PRVAN K K,et al.Superhydrophobic self-cleaning carbon nanofiber CVD coating for corrosion protection of AISI 1020 steel and AZ31 magnesium alloys[J].Surface and Coatings Technology,2020,404:126421.

    • [11] WEI X,LIU P D,MA S J,et al.Improvement on corrosion resistance and biocompability of ZK60 magnesium alloy by carboxyl ion implantation[J].Corrosion Science,2020,173:108729.

    • [12] JIA X J,SONG J F,ZHAO L B,et al.The corrosion behaviour of MAO coated AZ80 magnesium alloy with surface indentation of different sizes[J].Engineering Failure Analysis,2022,136:106185.

    • [13] RIDVAN K,EBRU E S,YASAR T,et al.Investigation of wear behavior of graphite additive composite coatings deposited by micro arc oxidation-hydrothermal treatment on AZ91 Mg alloy[J].Surfaces and Interfaces,2021,22:100894.

    • [14] SANU M S,GEJO G,SAJNA M S,et al.Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings:A comprehensive review[J].Applied Surface Science Advances,2021,6:100173.

    • [15] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [16] ZHU L D,XUE P S,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138:106915.

    • [17] 李达.镁合金激光合金化与激光熔覆的研究[D].北京:北京工业大学,2008.LI Da.An investigation of laser alloying and laser cladding on magnesium alloys[D].Beijing:Beijing University of Technology,2008.(in Chinese)

    • [18] 王建宏,曹亚峰.Al 含量对 Ti-C-Al 体系激光熔覆过程的影响[J].热加工工艺,2016,45(8):187-189.WANG Jianhong,CAO Yafeng.Effect of Al content on laser cladding process of Ti-C-Al system[J].Hot Working Technology,2016,45(8):187-189.(in Chinese)

    • [19] ISMAIL N,ATIQAHA,JALARA,et al.A systematic literature review:The effects of surface roughness on the wettability and formation of intermetallic compound layers in lead-free solder joints[J].Journal of Manufacturing Processes,2022,83:68-85.

    • [20] ALI R S,QU J,ZHOU M C et al.Recent progress on the surface finishing of metals and alloys to achieve superhydrophobic surfaces:A critical review[J].Transactions of the IMF,2021,99(2):61-72.

    • [21] 孟庆贺.Al,Ni 对 Zr-Cu 合金在几种基板表面润湿性的影响[D].长春:吉林大学,2013.MENG Qinghe.Effect of Al and Ni on the wetting of several substrates by Zr-Cu based alloys[D].Changchun:Jilin University,2013.(in Chinese)

    • [22] AINHOA R,PILAR R,MARÍA D E R,et al.Characterisation and mechanical properties of Al/SiC metal matrix composite coatings formed on ZE41 magnesium alloys by laser cladding[J].Results in Physics,2019,13:102160.

    • [23] YANG L Q,LI Zhiyong,ZHANG Yingqiao,et al.In-situ TiC-Al3Ti reinforced Al-Mg composites with Y2O3 addition formed by laser cladding on AZ91D[J].Surface and Coatings Technology,2020,383:125249.

    • [24] 王继娜,徐开东.镁合金表面激光熔覆 Al/TiB2 复合强化层及其性能[J].机械工程材料,2013,37(8):45-49.WANG Jina,XU Kaidong.Combined strengthened layer of Al/TiB2 on magnesium alloy surface by laser cladding and its properties[J].Materials for Mechanical Engineering,2013,37(8):45-49.(in Chinese)

    • [25] 姚军.AZ91D 镁合金激光熔覆与重熔层组织特征及其性能研究[D].长春:吉林大学,2007.YAO Jun.Study on microstructure characterization and properties of laser cladding and remelting on surface of AZ91D magnesium alloy[D].Changchun:Jilin University,2007.(in Chinese)

    • [26] HITCHCOCK S J,CARROLL N T,NICHOLAS M G.Some effects of substrate roughness on wettability[J].Journal of Materials Science,1981,16(3):714-732.

    • [27] 陈其亮,王江锋.镁合金表面预处理工艺:CN1986160[P].2007-06-27.CHEN Qiliang,WANG Jiangfeng.Surface pretreatment process of magnesium alloy:CN1986160[P].2007-06-27.(in Chinese)

    • [28] 刘祥.激光熔覆 Al+Al2O3涂层对提高AZ91D镁合金表面性能的研究[D].衡阳:南华大学,2014.LIU Xiang.Studying about laser cladding Al +Al2O3 coating at improving the surface performance of AZ91D magnesium alloy[D].Hengyang:University of South China,2014.(in Chinese)

    • [29] 宋武林,朱蓓蒂,张杰,等.激光熔覆层热膨胀系数对其开裂敏感性的影响[J].激光技术,1998(1):35-37.SONG Wulin,ZHU Beidi,ZHANG Jie,et al.Effects of expansion coefficient of laser cladding layer on cracking sensitivity [J].Laser Technology,1998(1):35-37.(in Chinese)

    • [30] 李晓锡,李志勇,朱润东,等.熔覆材料与工艺参数对镁合金激光熔覆层缺陷的影响[J].焊接技术,2014,43(11):5-8,98.LI Xiaoxo.LI Zhiyong,ZHU Rundong,et al.Effect of cladding materials and process parameters on defects of laser cladding coatings of magnesium alloy[J].Welding Technology,2014,43(11):5-8,98.(in Chinese)

    • [31] LEI Y W,SUN R L,TANG Y,et al.Experimental and thermodynamic investigations into the microstructure of laser clad Al-Si coatings on AZ91D alloys[J].Surface and Coatings Technology,2012,207:400-405.

    • [32] GAO Y L,WANG C S,LIN Q,et al.Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy[J].Surface and Coatings Technology,2006,201(6):2701-2706.

    • [33] GAO Y L,XIONG D S,WANG C S,et al.Influences of laser powers on microstructure and properties of the coatings on the AZ91HP magnesium alloy[J].Acta Metallurgica Sinica(English Letters),2009 22(3):167-173.

    • [34] 接勐,高亚丽.激光熔覆 Al-Si 涂层硬度和耐磨性研究[J].应用激光,2015,35(6):629-633.JIE Meng,GAO Yali.Study on hardness and wear resistance of laser cladding Al-Si coating[J].Applied Laser,2015,35(6):629-633.(in Chinese)

    • [35] 接勐,高亚丽.激光功率对 Al-Si 涂层凝固组织的影响 [J].应用激光,2015,35(5):541-545.JIE Meng,GAO Yali.Influence of laser powers on solidification of Al-Si coating[J].Applied Laser,2015,35(5):541-545.(in Chinese)

    • [36] 王鑫,潘希德,牛强,等.AZ33M 镁合金激光熔覆 Al-Si 涂层的组织与性能[J].金属热处理,2021,46(5):202-206.WANG Xin,PAN Xide,NIU Qiang,et al.Microstructure and properties of laser clad Al-Si coating onAZ33M magnesium alloy[J].Heat Treat of Metals,2021,46(5):202-206.(in Chinese)

    • [37] ZHANG X L,ZHANG K M,ZOU J X.Microstructures and properties in surface layers of Mg-6Zn-1Ca magnesium alloy laser-clad with Al-Si powders[J].Transactions of Nonferrous Metals Society of China,2018,28(1):96-102.

    • [38] ROLINK G,WEISHEIT A,BIERMANN T,et al.Investigations of laser clad,thermal sprayed and laser remelted AlSi20-coatings on magnesium alloy AZ31B under constant and cycling thermal load[J].Surface and Coatings Technology,2014,259(C):751-758.

    • [39] CHEN E L,ZHANG K M,ZOU J X.Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders[J].Applied Surface Science,2016,367(11-18):0169-4332.

    • [40] ANDRZEJ D,RENATA M,LUDWIK B.The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon[J].Materials Characterization,2016,118:505-513.

    • [41] 高亚丽,杨淼,张海波,等.激光功率对 Al-Cu 合金熔覆层组织和性能的影响[J].应用激光,2011,31(2):107-111.GAO Yali,YANG Miao,ZHANG Haibo,et al.Influence of laser power on microstructure and property of the Al-Cu alloy coating[J].Applied Laser,2011,31(2):107-111.(in Chinese)

    • [42] GAO Y L,WANG C S,PANG H J,et al.Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy[J].Applied Surface Science,2007,253:4917-4922.

    • [43] 刘奋军,姬妍,孟庆森,等.镁合金表面激光熔敷+搅拌摩擦加工 Al-Cu 涂层的显微组织与性能[J].中国有色金属学报,2017,27(10):1981-1987.LIU Fenjun,JI Yan,MENG Qingsen,et al.Microstructure and properties of Al-Cu coating on magnesium alloys prepared by laser cladding+friction stir processing[J].The Chinese Journal of Nonferrous Metals,2017,27(10):1981-1987.(in Chinese)

    • [44] 武飞宇.镁合金表面激光高速沉积耐磨耐蚀涂层的组织性能研究[D].北京:北京工业大学,2020.WU Feiyu.Microstructure properties and corrosionresistance of coatings prepared by high Speedlaser cladding on Mg alloy[D].Beijing:Beijing University of Technology,2020.(in Chinese)

    • [45] 高亚丽.AZ91HP 镁合金激光表面改性研究[D].大连:大连理工大学,2006.GAO Yali.Laser surface modification of AZ91HP Magnesium alloy[D].Dalian:Dalian University of Technology,2006.(in Chinese)

    • [46] QIAN J Q,ZHANG J X,LI S Q,et al.Study on laser cladding NiAl/Al2O3 coating on magnesium alloy[J].Rare Metal.Mat.Eng.,2013,42(3):466.

    • [47] ARTHANARI S,LI Y H,LU N,et al.Microstructural evolution and properties analysis of laser surface melted and Al/SiC cladded magnesium-rare earth alloys[J].Journal of Alloys and Compounds,2020,848:156598.

    • [48] AO S S,WANG T,HUANG Y,et al.The wear properties of TiC/Al-based composite coating applied by laser cladding[J].Metals,2018,8(11):975.

    • [49] 孙琪.AZ91D 镁合金表面激光熔覆 Al/TiC/Y2O3复合涂层的组织与性能研究[D].太原:中北大学,2017.SUN Qi.Microstructure and properties of laser cladding Al/TiC/Y2O3 composite coating on AZ91D magnesium alloy[D].Taiyuan:North University of China,2017.(in Chinese)

    • [50] 刘奋军,宁祥,白艳霞,等.AZ31 镁合金表面激光熔覆 Al-TiC 复合涂层微观组织与腐蚀性能[J/OL].复合材料学报:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.LIU Fenjun,NING Xiang,BAI Yanxia,et.al.Microstructure and corrosion properties of the laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J/OL].Acta Materiae Compositae Sinica:1-10 [2022-07-03].https://dol.org/10.13801/j.cnki.fhclxb.20220410.002.(in Chinese)

    • [51] 刘盛耀.镁合金表面激光熔覆 Al+WC+La2O3 复合涂层的组织与性能研究[D].太原:中北大学,2017.LIU Shengyao.Microstructure and properties of laser cladding Al+WC+La2O3 composite coating on magnesium alloy surface[D].Taiyuan:North University of China,2017.(in Chinese)

    • [52] GUO Yu,ZHANG Yingqiao,LI Zhiyong,et al.Microstructure and properties of in-situ synthesized ZrC-Al3Zr reinforced composite coating on AZ91D magnesium alloy by laser cladding [J].Surface and Coatings Technology,2018,334:471.

    • [53] YANG L Q,LI Z Y,ZHANG Y Q.Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy[J].Applied Surface Science,2018,435:1187-1198.

    • [54] 靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coating on AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)

    • [55] 崔洪芝,姜迪.高熵合金涂层研究进展[J].金属学报,2022,58(1):17-27.CUI Hongzhi,JIANG Di.Research progress of high-entropy alloy coatings[J].Acta Metall Sin,2022,58(1):17-27.(in Chinese)

    • [56] 崔忠圻,覃耀春.金属学与热处理[M].2 版.北京:机械工业出版社,2011.CUI Zhongqi,QIN Yaochun.metallography and heat treatment[M].2nd ed.BeiJing:China Machine Press,2011.(in Chinese)

    • [57] 秦宝龙.镁合金激光熔覆Al合金+稀土氧化物复合涂层的制备与性能研究[D].吉林:东北电力大学,2022.QIN Baolong.Preparation and properties of laser cladding Al alloy+rare earth oxide composite coatings on magnesium alloys[D].Jilin:Northeast Electric Power University,2017.(in Chinese)

    • [58] ZHU Rundong LI Zhiyong,LI Xiaoxi,et al.Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition[J].Applied Surface Science,2015,353:405-413.

    • [59] 孙琪,李志勇,朱润东,等.La2O3对AZ91D镁合金表面激光熔覆 Al-Cu 涂层的影响[J].中国机械工程,2017,28(13):1633-1637.SUN Qi,LI Zhiyong,ZHU Rundong,et al.Effects of La2O3 on AZ91D magnesium alloy laser cladding layers by Al-Cu powders[J].Chin J Mech Eng-En,2017,28(13):1633-1637.(in Chinese)

    • [60] CHEN H,ZHANG K,YAO C W,et.al.Effect of Al2Gd on microstructure and properties of laser clad Mg-Al-Gd coatings[J].Applied Surface Science,2015,330:393-404.

    • [61] 冯辉,崔泽琴,王文先,等.镁合金表面激光熔覆 Al-Si 基纳米SiC复合涂层的组织及性能[J].应用激光,2012,32(1):13-17.FENG Hui,CUI Zeqin,WANG Wenxian,et al.Microstructure and property of magnesium alloy by laser cladding with Al-Si-based nano-SiC composite coating[J].Appllied Laser,2012,32(1):13-17.(in Chinese)

    • [62] 王鑫.镁合金表面激光制备 Al-Si 基纳米Si3N4强化层的研究[D].太原:太原理工大学,2013.WANG Xin.Study of laser producing Al-Si-based nano-Si3N4 strengthen layer magnesium alloy surface[D].Taiyuan:Tai Yuan University of Technology,2013.(in Chinese)

    • [63] SUNDARASELVAN S,SENTHILKUMAR N,TAMIZHARASAN T,et al.Surface modification of AZ61 magnesium alloy with nano TiO2/Al2O3 using laser cladding technique[J].Materials Today:Proceedings,2020,21(1):717-721.

    • [64] 张涛.镁合金表面激光熔覆Zr基非晶复合涂层的组织与性能研究[D].太原:中北大学,2019.ZHANG Tao.Microstructure and properties of laser cladding Zr-based amorphous composite coating on magnesium alloy[D].Taiyuan:North University of China,2019.(in Chinese)

    • [65] GE W,LI B,AXINTE E,et al.Crystallization and corrosion resistance in different aqueous solutions of Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts[J].The Journal of The Minerals,Metals & Materials Society,2017,69(4):776-783.

    • [66] 刘雪.医用镁合金表面激光熔覆Zr60Ti6Cu19Fe5Al10非晶涂层[D].南京:南京理工大学,2012.LIU Xue.Laser Cladding of Zr60Ti6Cu19Fe5Al10 amorphous alloy on medical AZ31B magnesium alloy [D].Nanjing:Nanjing University of Science and Technology,2012.(in Chinese)

    • [67] TAN C L,ZHU H M,KUANG T C,et al.Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition[J].Journal of Alloys and Compounds,2017,690:108-115.

    • [68] WANG C S,CHEN Y Z,LI T,et al.Composition design and laser cladding of Ni-Zr-Al alloy coating on the magnesium surface[J].Applied Surface Science,2009,256:1609-1613.

    • [69] WANG C S,LI T,YAO B,et al.Laser cladding of eutectic-based Ti-Ni-Al alloy coating on magnesium surface[J].Surface and Coatings Technology,2010,205(1):189-194.

    • [70] YUE T M,ZHANG H.Laser cladding of FeCoNiCrAlCuxSi0.5 highentropy alloys on AZ31 Mg alloy substrates[J].Materials Research Innovations,2014,18:624-628

    • [71] YUE T M,XIE H,LIN X,et al.Solidifi cation behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J].Journal of Alloys and Compounds,2014,587:588-593.

    • [72] MENG G H,YUE T M,LIN X,et al.Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J].Optics & Laser Technology,2015,70:119-127.

    • [73] WEN X,CUI X f,JIN G,et al.A novel Ni2MnCuSnAl0.1 multi-principal element alloy coating to enhance the wear resistance and corrosion resistance of Mg-Li alloy [J].Optics & Laser Technology,2021,142:107243.

    • [74] JIANG L P,CUI X F JIN G,et al.Synthesis and microstructure properties characterization of Ni-Ti-Cu/Cu-Al functionally graded coating on Mg-Li alloy by laser cladding[J].Applied Surface Science,2022,575:151645.

    • [75] PEI X L,LI Z Y,ZHANG Y Q,et al.A gradient Al/Ni-Cr-Al layer formed by direct current pulse metal inert gas welding combined laser cladding on AZ91D magnesium alloy[J].Vacuum,2019,165:86-95.

    • [76] 靳坤,张英乔,张涛,等.AZ91D 镁合金表面激光熔覆 Al-Ti-Ni/C 涂层的电化学腐蚀行为[J].电焊机,2019,49(10):83-87.JIN Kun,ZHANG Yingqiao,ZHANG Tao,et al.Electrochemical corrosion behavior of laser cladding Al-Ti-Ni/C coatingon AZ91D magnesium alloy[J].Electric Welding Machine,2019,49(10):83-87.(in Chinese)

    • [77] 孙金娥,刘杰.医用镁合金激光熔覆羟基磷灰石涂层的生物活性分析[J].中国金属通报,2019(11):162-163.SUN Jine,LIU Jie.Bioactivity analysis of hydroxyapatite coating on medical magnesium alloy by laser cladding[J].China Metal Bulletin,2019(11):162-163.(in Chinese)

    • [78] 高亚丽,马广超,张海波,等.医用镁合金激光熔覆羟基磷灰石涂层生物相容性研究[J].应用激光,2014,34(6):528-532.GAO Yali,MA Guangchao,ZHANG Haibo,et al.Study on the biocompatibility of laser cladding HA coating on medical Mg alloy[J].Applied Laser,2014,34(6):528-532.(in Chinese)

    • [79] APURBA D,PAMU D.A comprehensive review on electrical properties of hydroxyapatite based ceramic composites[J].Materials Science and Engineering:2019,101:539-563.

    • [80] RAHMAN M,LI Y C,WEN C E.HA coating on Mg alloys for biomedical applications:A review[J].Journal of Magnesium and Alloys,2020,8(3):929-943.

    • [81] FOROOZMEHR E,ALEMOHAMMAD H,XIANG W,et al.Laser-assisted surface patterning of magnesium with silver nanoparticles:synthesis,characterization and modelling[J].Journal of Physics D:Applied Physics,2011,44:495305.

  • 手机扫一扫看