en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李林祥,男,1998年出生,硕士研究生。主要研究方向为表面工程与再制造工程。E-mail:17853265213@163.com

通讯作者:

黄艳斐,女,1986年出生,硕士,助理研究员。主要研究方向为表面工程与再制造工程。E-mail:huangyanfei123@126.com

中图分类号:TB17;TN249

DOI:10.11933/j.issn.1007−9289.20220817001

参考文献 1
ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.
参考文献 2
KAWASEGI N,SUGIMORI H,MORIMOTO H,et al.Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J].Precision Engineering,2009,33(3):248-254.
参考文献 3
JIANG Y,LIU Y Y,LIU X,et.al.Organic solid-state lasers:A materials view and future development[J].Chemical Society Reviews,2020,49(16):5885-5944.
参考文献 4
SIDDIQUI A A,DUBEY A K.Recent trends in laser cladding and surface alloying[J].Optics and Laser Technology,2021,134:106619.
参考文献 5
FESHARAKI M N,SHOJA-RAZAVI R,MANSOURI H A,et al.Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods[J].Surface & Coatings Technology,2018,353:25-31.
参考文献 6
INOKOSHI M,SHIMIZUBATA M,NOZAKI K,et al.Impact of sandblasting on the flexural strength of highly translucent zirconia[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,115:104268.
参考文献 7
DAROONPARVAR M,KHAN M U F,SAADEH Y,et al.Modification of surface hardness,wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt% NaCl solution[J].Corrosion Science,2020,176:109029.
参考文献 8
QIAN B T,SHEN Z Q.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir,2005,21(20):9007-9009.
参考文献 9
CHEN C Y,YOSHIBA M,NAGOSHI T,et al.Pulse electroplating of ultra-fine grained Au films with high compressive strength[J].Electrochemistry Communications,2016,67:51-54.
参考文献 10
HADAD M,HOCKAUF M,MEYER L W,et al.Adhesion evaluation of multilayered based WC–Co–Cr thermally sprayed coatings[J].Surface and Coatings Technology,2008,202(18):4399-4405.
参考文献 11
王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Zhiyuan,XING Zhiguo,WANG Haidou,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)
参考文献 12
KRYUCHKOV M,BILOUSOV O,LEHMANN J,et al.Reverse and forward engineering of Drosophila corneal nanocoatings[J].Nature,2020,585(7825):383.
参考文献 13
LIU Y,ZHANG H,DAI S,et al.Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication[J].Tribology International,2022,173:107594.
参考文献 14
ABDEL-AAL H A.Surface structure and tribology of legless squamate reptiles[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,79:354-398.
参考文献 15
LU L,YAO W,XIE Y,et al.Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn.leaf[J].Surface and Coatings Technology,2021,405:126721.
参考文献 16
XIAO G,HE Y,HUANG Y,et al.Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J].IEEE Access,2019,7:107635-107647.
参考文献 17
BATHE R,SAI KRISHNA V,NIKUMB S K,et al.Laser surface texturing of gray cast iron for improving tribological behavior[J].Applied Physics A,2014,117(1):117-123.
参考文献 18
GACHOT C,ROSENKRANZ A,HSU S,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372:21-41.
参考文献 19
TIAN G,ZHANG Y,FENG X,et al.Focus on bioinspired textured surfaces toward fluid drag reduction:Recent progresses and challenges[J].Advanced Engineering Materials,2022,24(1):696.
参考文献 20
GREEN M.Recent progress in crystalline and polycrystalline silicon solar-cells[J].Solar Energy Materials,1991,23(2-4):111-116.
参考文献 21
BEKIR S Y,OMER K,ABDURRAHMAN Y T.Surface engineering towards self-cleaning applications:laser textured silicon surface[J].Procedia Engineering,2017,184:716-724.
参考文献 22
GAMALY E G.The physics of ultra-short laser interaction with solids at non-relativistic intensities[J].Physics Reports,2011,508(4):91-243.
参考文献 23
SHAIKH S,KEDIA S,SINGH D,et al.Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance[J].Journal of Laser Applications,2019,31(2):22011.
参考文献 24
SUGIOKA K,CHENG Y.Ultrafast lasers—reliable tools for advanced materials processing[J].Light:Science & Applications,2014,3(4):149.
参考文献 25
CHEN Z,YANG J,LIU H,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.
参考文献 26
RUDD J V,KORN G,KANE S,et al.Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier[J].Optics Letters,1993,18(23):2044-2046.
参考文献 27
DESBIENS J P,MASSON P.ArF excimer laser micromachining of pyrex,SiC and PZT for rapid prototyping of MEMS components[J].Sensors and Actuators A:Physical,2007,136(2):554-563.
参考文献 28
MISHRA S,YADAVA V.Laser beam micromachining(LBMM)— A review[J].Optics and Lasers in Engineering,2015,73:89-122.
参考文献 29
LIU X,DU D,MOUROU G.Laser ablation and micromachining with ultrashort laser pulses[J].Ieee Journal of Quantum Electronics,1997,33(10):1706-1716.
参考文献 30
ETSION I.State of the art in laser surface texturing[C]//5th China International Symposium on Tribology/1st International Tribology Symposium of IFToMM,Beijing,Sep 24-27,2008.Advanced Tribology,2009:761-762.
参考文献 31
ZHONG Y,ZHENG L,GAO Y,et al.Numerical simulation and experimental investigation of tribological performance on bionic hexagonal textured surface[J].Tribology International,2019,129:151-161.
参考文献 32
HAN Z,YIN W,ZHANG J,et al.Erosion-resistant surfaces inspired by tamarisk[J].Journal of Bionic Engineering,2013,10(4):479-487.
参考文献 33
ETSION I,SHER E.Improving fuel efficiency with laser surface textured piston rings[J].Tribology International,2009,42(4):542-547.
参考文献 34
SU W,ZHOU T,ZHANG P,et al.Effect of the orientation of laser stripes on the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,107:380-388.
参考文献 35
郑晓辉,宋皓,张庆,等.激光表面织构化对材料摩擦学性能影响的研究进展[J].材料导报,2017,31(17):68-74.ZHENG Xiaohui,SONG Hao,ZHANG Qing,et al.Effect of laser surface texturing on tribological properties of materials:A review[J].Materials Reports,2017,31(17):68-74.(in Chinese)
参考文献 36
SHAN H,ZHOU H,SUN N,et al.Study on adhesion resistance behavior of sample with striated non-smooth surface by laser processing technique[J].Journal of Materials Processing Technology,2008,199(1):221-229.
参考文献 37
WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,217(10):1656-1666.
参考文献 38
HUANG Q,SHI X,XUE Y,et al.Optimization of bionic textured parameter to improve the tribological performance of AISI 4140 self-lubricating composite through response surface methodology[J].Tribology International,2021,161:107104.
参考文献 39
SU W,ZHOU T,SUI Q,et al.Study on the relationship between intervals among laser stripes and the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,104:216-224.
参考文献 40
YAN D,QU N,LI H,et al.Significance of dimple parameters on the friction of sliding surfaces investigated by orthogonal experiments[J].Tribology Transactions,2010,53(5):703-712.
参考文献 41
EZHILMARAN V,VASA N J,KRISHNAN S,et al.Femtosecond pulsed Ti:sapphire laser-assisted surface texturing on piston ring and its tribology characterization[J].Journal of Tribology-Transactions of the Asme,2021,143(4):41801.
参考文献 42
BASHA D N,PADMANABHAM G,BATHE R.Tribological behavior of surface textured gray cast iron at different texture density by ultrafast laser[J].Materials Performance and Characterization,2019,8(6):1147-1158.
参考文献 43
WANG Z,ZHAO Q,WANG C,et al.Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing[J].Applied Physics A,2015,119(3):1155-1163.
参考文献 44
HUANG Q,SHI X,MA J.Tribological behavior of surface bionic rhombic-textured M50 steel containing SnAgCu and MXene-Nb2C under dry sliding conditions[J].Journal of Materials Engineering and Performance,2021,30(12):9390-9402.
参考文献 45
LU P,WOOD R J K,GEE M G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.
参考文献 46
LU P,WOOD R J K,GEE M G,et al.A novel surface texture shape for directional friction control[J].Tribology Letters,2018,66(1):51.
参考文献 47
MA J,LIU Y,YI P,et al.Anti-friction mechanism of sinusoidal texture with various intervals:The synergistic effect of dynamic pressure and tribofilm[J].Tribology International,2022,173:107635.
参考文献 48
SU Y,WANG Z,LU H,et al.Improved wear resistance of directed energy deposited Fe-Ni-Cr alloy via closed-loop controlling laser power[J].Journal of Manufacturing Processes,2022,75:802-813.
参考文献 49
LI H,ZHOU H,ZHANG D P,et al.Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture[J].Materials Chemistry and Physics,2022,277:125515.
参考文献 50
HOU Q,YANG X,CHENG J,et al.Optimization of performance parameters and mechanism of bionic texture on friction surface[J].Coatings,2020,10(2):171.
参考文献 51
WALSH M,LINDEMANN A.Turbulent boundary layer characteristics over streamwise grooves[J].AIAA Pap,1984,84:2185.
参考文献 52
XIAO G,HE Y,LIU S,et al.Laser processing of micro/nano biomimetic structures[J].Micro & Nano Letters,2021,16(6):327-335.
参考文献 53
GEIGER M,ROTH S,BECKER W.Influence of laser-produced microstructures on the tribological behaviour of ceramics[J].Surface & Coatings Technology,1998,100(1-3):17-22.
参考文献 54
ZHANG P,WU S,WEI H J,et al.The effect of femtosecond laser surface textured microdimples array on friction reduction under full oil lubrication conditions[J].Lasers in Engineering,2021,48(1-3):63-79.
参考文献 55
DUFILS J,FAVERJON F,HÉAU C,et al.Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties[J].Surface and Coatings Technology,2017,329:29-41.
参考文献 56
ADEYEMI K,SUN B,XUE W,et al.Friction and wear characteristics modification via laser surface textured grooves[J].Surface Engineering,2021,37(5):658-668.
参考文献 57
ENSIKAT H J,DITSCHE-KURU P,NEINHUIS C,et al.Superhydrophobicity in perfection:the outstanding properties of the lotus leaf[J].Beilstein Journal of Nanotechnology,2011,2(1):152-161.
参考文献 58
EXTRAND,C W,MOON,S I,Repellency of the lotus leaf:contact angles,drop retention,and sliding angles[J].Langmuir,2014,30(29):8791-8797.
参考文献 59
GAO X F,YAN X,JIANG L,et al.The drystyle antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J].Advanced Materials,2007,19(17):2213.
参考文献 60
GAO X,JIANG L.Water-repellent legs of water striders[J].Nature,2004,432(7013):36-36.
参考文献 61
BHUSHAN B,JUNG Y C,KOCH K.Micro-,nano-and hierarchical structures for superhydrophobicity,self-cleaning and low adhesion[J].Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2009,367(1894):1631-1672.
参考文献 62
BHUSHAN B,JUNG Y C.Wetting,adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces[J].Journal of Physics:Condensed Matter,2008,20(22):225010.
参考文献 63
BOHN H F,FEDERLE W.Insect aquaplaning:Nepenthes pitcher plants capture prey with the peristome,a fully wettable water-lubricated anisotropic surface[J].Proceedings of the National Academy of Sciences,2004,101(39):14138-14143.
参考文献 64
MIGUEL S,HEHN A,BOURGAUD F.Nepenthes:State of the art of an inspiring plant for biotechnologists[J].Journal of Biotechnology,2018,265:109-115.
参考文献 65
ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.
参考文献 66
LIU Y,LI X,JIN J,et al.Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J].Applied Surface Science,2017,400:498-505.
参考文献 67
吴思竹,李大宇,黄玖辉,等.飞秒激光制备仿生疏水微柱阵列应用于液滴操控[J].科学通报,2022,67:1958-1965.WU Sizhu,LI Dayu,HUANG Jiuhui,et al.Fabrication of bionic hydrophobic micropillar arrays by femtosecond lasers for droplet manipulation[J].Chin Sci Bull,2022,67:1958-1965.(in Chinese)
参考文献 68
LONG J,ZHONG M,FAN P,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(S2):S29107.
参考文献 69
SARBADA S,SHIN Y C.Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J].Applied Surface Science,2017,405:465-475.
参考文献 70
CAO Q,WANG Z,HE W,et al.Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing[J].Applied Surface Science,2021,557:149842.
参考文献 71
RAIMBAULT O,BENAYOUN S,ANSELME K,et al.The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response[J].Materials Science and Engineering:C,2016,69:311-320.
参考文献 72
CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.
参考文献 73
ANNALISA V,LEONARDO D V,CATERINA G,et al.Femtosecond laser fabrication of superhydrophobic metallic surfaces with anti-icing properties[C]//Conference on Laser-Based Micro-and Nanoprocessing XV,Electr Network,Mar 06-11,2021.Spie-Int Soc Optical Engineering,2021,16674.
参考文献 74
CUNHA A,ELIE A M,PLAWINSKI L,et al.Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J].Applied Surface Science,2016,360:485-493.
参考文献 75
IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:a comprehensive review[J].Surfaces and Interfaces,2020,21:100802.
参考文献 76
VOLPE A,GAUDIUSO C,DI VENERE L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.
参考文献 77
SHEN Y,WANG G,TAO J,et al.Anti-icing performance of superhydrophobic texture surfaces depending on reference environments[J].Advanced Materials Interfaces,2017,4(22):1700836.
参考文献 78
高淑蓉,焦丽丽,易孟超,等.疏水/超疏水表面防/除冰原理及其研究进展[J].空气动力学学报,2021,39(2):151-160.GAO Shurong,JIAO Lili,YI Mengchao,et al.Mechanism and research progress of anti/de-icing using hydrophobic/superhydrophobic surfaces[J].Acta Aerodynamica Sinica,2021,39(2):151-160.(in Chinese)
参考文献 79
蔡海龙,闫雪亮,王素梅,等.飞秒激光微通道加工研究进展[J].北京理工大学学报,2012,32(10):991-1003.CAI Hailong,YAN Xueliang,WANG Sumei,et al.Advances in femtosecond laser fabrication of microchannels[J].Transactions of Beijing Institute of Technology,2012,32(10):991-1003.(in Chinese)
参考文献 80
CHANG T L,TSAI T K,YANG H P,et al.Effect of ultra-fast laser texturing on surface wettability of microfluidic channels[J].Microelectronic Engineering,2012,98:684-688.
参考文献 81
YONG J,ZHAN Z,SINGH S C,et al.Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J].ACS Applied Polymer Materials,2019,1(11):2819-2825.
参考文献 82
TIAN X,VERHO T,RAS R H A.Moving superhydrophobic surfaces toward real-world applications[J].Science,2016,352(6282):142-143.
参考文献 83
YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.
参考文献 84
WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.
参考文献 85
CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.
参考文献 86
TUTEJA A,CHOI W,MA M L,et al.Designing superoleophobic surfaces[J].Science,2007,318(5856):1618-1622.
参考文献 87
LIU T,WEI H,LI J,et al.Wettability control of sapphire by surface texturing in combination with femtosecond laser irradiation and chemical etching[J].ChemistrySelect,2020,5(31):9555-9562.
参考文献 88
WU J,YIN K,XIAO S,et al.Laser fabrication of bioinspired gradient surfaces for wettability applications[J].Advanced Materials Interfaces,2021,8(5):2001610.
参考文献 89
DIVIN-MARIOTTI S,AMIEUX P,PASCALE-HAMRI A,et al.Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability[J].Applied Surface Science,2019,479:344-350.
参考文献 90
SINGH A K,KUMAR B S,JHA P,et al.Surface micro-structuring of type 304 stainless steel by femtosecond pulsed laser:effect on surface wettability and corrosion resistance[J].Applied Physics A,2018,124(12):846.
参考文献 91
YAN H,RASHID M R B A,KHEW S Y,et al.Wettability transition of laser textured brass surfaces inside different mediums[J].Applied Surface Science,2018,427:369-375.
参考文献 92
WANG B,WANG X,ZHENG H,et al.Femtosecond laser-induced surface wettability modification of polystyrene surface[J].Science China Physics,Mechanics & Astronomy,2016,59(12):124211.
参考文献 93
HUANG J,YANG S.Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser[J].Applied Surface Science,2022,579:152223.
参考文献 94
ELLEB R,ENGEL T,ANTONI F,et al.Study of femtosecond laser multi-scale textured steel surfaces on the wettability in relation to aging[J].Journal of Materials Science,2021,56(36):20169-20180.
参考文献 95
罗晓,刘伟建,张红军,等.超快激光制备金属表面可控微纳二级结构及其功能化[J].中国激光,2021,48(15):146-169.LUO Xiao,LIU Weijian,ZHANG Hongjun,et al.Ultrafast laser fabrication of controllable micro-nano secondary structures on metal surfaces and their functionalization[J].Chinese Journal of Lasers,2021,48(15):146-169.(in Chinese)
参考文献 96
MUTLAK F A H,AHMED A F,NAYEF U M,et al.Improvement of absorption light of laser texturing on silicon surface for optoelectronic application[J].Optik,2021,237:166755.
参考文献 97
LIU X,COXON P R,PETERS M,et al.Black silicon:fabrication methods,properties and solar energy applications[J].Energy & Environmental Science,2014,7(10):3223-3263.
参考文献 98
BORODAENKO Y,GURBATOV S,TUTOV M,et al.Direct femtosecond laser fabrication of chemically functionalized ultra-black textures on silicon for sensing applications[J].Nanomaterials,2021,11(2):401.
参考文献 99
WU C,CROUCH C H,ZHAO L,et al.Near-unity below-band-gap absorption by microstructured silicon[J].Applied Physics Letters,2001,78(13):1850-1852.
参考文献 100
吕晓仁,钟兵,黄艳斐,等.超快激光制备金属抗反射表面的研究进展[J].中国表面工程,2021,34(6):90-101.LÜ Xiaoren,ZHONG Bing,HUANG Yanfei,et al.Research progress of antireflective metal surfaces prepared by ultrafast laser[J].China Surface Engineering,2021,34(6):90-101.(in Chinese)
参考文献 101
VOROBYEV A Y,GUO C L.Femtosecond laser blackening of platinum[J].Journal of Applied Physics,2008,104(5),53516.
参考文献 102
STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.
参考文献 103
BINETTI V R,SCHIFFMAN J D,LEAFFER O D,et al.The natural transparency and piezoelectric response of the Greta oto butterfly wing[J].Integrative Biology,2009,1(4):324-329.
参考文献 104
STODDART P R,CADUSCH P J,COMINS J D,et al.Optical properties of chitin:surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings [J].Nantechnology,2006,17(3):680-686.
参考文献 105
STAVENGA D G,FOLETTI S,PALASANTZAS G,et al.Light on the moth-eye corneal nipple array of butterflies[J].Proceedings of the Royal Society B:Biological Sciences,2006,273(1587):661-667.
参考文献 106
PAPADOPOULOS A,SKOULAS E,STRATAKIS E,et al.Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J].Advanced Materials,2019,31(32):1901123.
参考文献 107
HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.
参考文献 108
JEEVAHAN J,CHANDRASEKARAN M,BRITTO J G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.
参考文献 109
SHI H,CUI Z,WANG W,et al.Blackening of magnesium alloy using femtosecond laser[J].Applied Optics,2015,54(25):7766-7772.
参考文献 110
LOU R,ZHANG G,LI G,et al.Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J].Micromachines,2020,11(1):20.
参考文献 111
AYDIN K,FERRY V E,BRIGGS R M,et al.Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J].Nature Communications,2011,2:517.
参考文献 112
OU Z,HUANG M,ZHAO F.The fluence threshold of femtosecond laser blackening of metals:the effect of laser-induced ripples[J].Optics & Laser Technology,2016,79:79-87.
参考文献 113
DAR M H,KULADEEP R,SAIKIRAN V,et al.Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range[J].Applied Surface Science,2016,371:479-487.
参考文献 114
CHEN T,WANG W,TAO T,et al.Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J].Applied Surface Science,2020,509:145182.
参考文献 115
LI X,LI M,LIU H.Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J].Chinese Optics Letters,2021,19(9):91404.
参考文献 116
ZHAO J H,LV Z H,LI C H,et al.Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J].IEEE Sensors Journal,2017,17(4):1000-1004.
参考文献 117
YU X Y,ZHAO J H,LI C H,et al.Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation[J].IEEE Transactions on Nanotechnology,2017,16(3):502-506.
参考文献 118
LI C H,WANG X P,ZHAO J H,et al.Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J].IEEE Sensors Journal,2018,18(9):3595-3601.
参考文献 119
HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.
参考文献 120
范培迅,钟敏霖.超快激光制备金属表面微纳米抗反射结构进展[J].红外与激光工程,2016,45(6):98-109.FAN Peixun,ZHONG Minlin.Progress on ultrafast laser fabricating metal surface micro-nanoantireflection structures[J].Infrared and Laser Engineering,2016,45(6):98-109.(in Chinese)
参考文献 121
ZHENG B,WANG W,JIANG G,et al.Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination[J].Applied Physics B,2016,122(6):180.
目录contents

    摘要

    织构化可使零件或设备表面实现降低磨损、改变润湿性并提高抗反射性的效果,在医疗、机械、航空和海洋等领域展现出强大活力。为提升织构效果,表面织构技术引入仿生设计,通过在材料表面加工出类似生物表层的微 / 纳结构以达到特种表面需求。超快激光织构化是目前较为先进且重要的一种织构加工技术,针对超快激光制备仿生织构表面进行系统总结十分必要。对激光加工原理,以及制备耐磨性、润湿性、抗反射性三类特种表面的研究现状进行综述,简述三类织构表面的作用原理、仿生设计与优化。结果表明,超快激光可在材料表面制备出低热源损伤、高表面性能的精细仿生织构,通过仿生自然界中的生物表面结构,织构表面能够实现降低表面摩擦因数,获得超亲 / 疏水表面以及优异的抗反射性能。但超快激光无法准确烧蚀出所需织构尺寸结构,需要对激光加工进一步研究,将设计与加工紧密联系,构建超快激光织构化体系,实现未来超快激光织构化生产应用。

    Abstract

    Ultrafast laser texturing is a new surface processing method that uses ultrashort pulse laser technologies such as picosecond and femtosecond lasers to prepare finer texture structures based on reducing heat source damage on the surface of materials. With the development and application of bionics, the surface structure features of animals and plants have been gradually applied to the surface of materials, and surface properties such as wear resistance, anticorrosion, defrosting, antireflection, and antifouling have been obtained. However, biomimetic textures are processed by long pulse lasers. The surface is significantly affected by heat, and the texture size cannot be refined. Therefore, ultrafast laser preparation of biomimetic textures has been adopted because it can realize refined design and processing of textures and greatly improve the reproduction accuracy of biomimetic textures. Moreover, it enhances the mechanical properties of the material surface and provides better surface quality. At present, biomimetic targets for the preparation of biomimetic textures using ultrafast lasers are gradually expanding from shark skins and lotus leaves to carapaces, moth eyes, feathers, and other biological structures with surface properties. The main texture types are micro-nano composites, array geometries, and random textures. Using ultrafast lasers, a series of biomimetic texture performance studies and optimizations have been performed to explore the ablation mechanisms of different materials. In this paper, the research progress of ultrafast laser biomimetic texture is reviewed in terms of the three properties of wear resistance, wetting, and antireflection, and the processing principle of ultrafast lasers is introduced. Ultrafast lasers enable energy deposition to occur at a solid density and ultrashort pulse width, change the interaction mechanism between the laser and matter, and effectively reduce thermal effects. The ablation thresholds of different materials are summarized in this paper. Through the study of biomimetic textures such as the composite micro-convex structure of lotus leaves, accompanying wave and convex structure of insects, and ridged-scale structure on the surface of reptiles and shark skin, it was found that the density of the texture surface and direction of friction convergence are important factors affecting the frictional behavior of textures. By controlling the texture parameters, ultrafast laser biomimetic textures can reduce the friction coefficient of most metals by 20–40%. Through superhydrophobic structures such as bionic rose petals and mosquito compound eyes, the contact angle of the material surface can reach a superhydrophobic state of more than 150°, which effectively improves the anticorrosion, microchannel, and antifrost performance. In general, micropillar arrays with small diameters, dense spacings, and large depths exhibit better hydrophobic effects. However, the influence of the laser on the material surface increases its chemical polarity, leading to hydrophilicity. However, with the adsorption of carbon atoms and organic matter, the nonpolar bonds on the material surface increase, resulting in a decrease in the free energy of the material surface and causing the occurrence of the wettability transition phenomenon. Therefore, the wettability of a laser-machined surface can be changed by controlling the free energy of the material surface. Femtosecond lasers can be used to fabricate micro- to nanostructures on silicon thin films, improving their light-harvesting capabilities. Changing the laser processing medium can further increase the texture density and significantly reduce the reflectivity. Additionally, other elements can be doped into the material surface under the action of pulsed radiation, thereby further improving the antireflection performance of materials. In summary, the technology of biomimetic texture preparation using ultrafast lasers is gradually being applied in many fields such as machinery, medical treatment, aviation, and infrared detection. Using ultrafast lasers to fabricate biomimetic textures to realize and optimize various functional surfaces has become a current research hotspot. Finally, this paper summarizes the basic principles of ultrafast laser processing and comprehensively discusses the sources of biomimetic designs for three types of textures, including wear resistance, wetting, and antireflection, as well as the design and processing methods of the parameters for the three types of textures in different application environments. The action mechanism and principle of ultrafast laser biomimetic texture are analyzed. Furthermore, the ultrafast laser processing of biomimetic texture is comprehensively described and the development direction of ultrafast laser biomimetic texture preparation is provided.

    关键词

    超快激光仿生织构耐磨润湿抗反射

  • 0 前言

  • 1966 年 HAMILTON 提出了采用织构表面以减少接触面摩擦的观点[1],2009 年又出现了利用飞秒激光器在刀具上加工微纹理来提高切削性能的研究[2]。随着激光技术的发展[3]以及超短脉冲(<1 ps) 激光可靠性的提高,激光织构应用的广度和深度得到进一步激发。超快激光凭借着较高的生产效率和精度,加工过程环保,不受加工零件材料和形状的影响,具有较高的重复性和可操作性[4-5]等优点,避免了喷砂[6]、喷涂[7]、刻蚀[8]、电镀[9]等传统技术存在的效率、环保及性能[10]等方面的问题,受到科研人员的广泛关注。超快激光技术逐渐成熟,皮秒、飞秒超短脉冲激光可靠性的提升,大大降低了对材料表面的破坏,使其加工精度和可靠性提高,表面织构的设计更加细致并逐渐向微、纳米靠近。随着织构研究的不断深入,织构的尺寸从微米到纳米,织构的形貌由单一的圆形、矩形、沟槽到复杂形状甚至多层复合微织构等[11],激光织构凭借其独有的方便性、有效性被广泛应用到管道运输、生物医疗、海洋船舶等多个领域。目前以皮秒、飞秒为代表的超快激光织构正在朝着集成化、智能化的方向发展,激光加工体系也在不断成熟。

  • 自然界中的某些生物具备优越的表面结构,而仿生学的发展与应用使材料表面可以具备类似生物甚至更好的表面性能。例如,根据果蝇抗反射的眼睛[12]、鱼类和蛇减阻耐磨的鳞片[13-14]和具有疏水性的紫荆叶[15]等,设计出了合理的仿生织构,并通过超快激光加工到金属、陶瓷、玻璃等材料上,使其材料表面具有相应的抗反射性能、耐磨性能以及疏水性能等。目前仿生织构已经广泛应用于金属学、机械工业、工业通信技术及设备、生物医学工程和材料科学等。

  • 基于超快激光的仿生织构化表面,表现出良好的耐磨性、润湿性和光学特性,并且进一步开发出许多潜在的应用。对于耐磨性来说,XIAO 等[16]发现鲨鱼皮凹槽结构能够减少壁面摩擦,证实了并非光滑表面摩擦效果更好、使用寿命更长,相反具有一定表面粗糙度的织构能更好地起到减阻减磨效果,并且 BATHE 通过对灰口铸铁材料的圆盘球磨损测试发现,飞秒激光织构化的磨损体积损失最少,磨损率最低[17]。此外,润湿性和抗反射机构也是目前的研究热点,材料表面的润湿性可以表现出多种用途,包括防冰、防腐、自清洁,改善医学植入物的生物相容性,刺激成骨细胞的分化,降低骨溶解风险,抑制甚至杀死细菌。而对于具有抗反射性能的织构表面,可以提高光响应的灵敏度,增强光的抗反射效果,是光电制品和军用隐身技术等的研究内容之一。并且光吸收能力是制约太阳能发展的一大难题,高度光吸收结构能够提高硅表面光吸收的工作效率,有助于进一步完善太阳能清洁能源的发展。利用超快激光技术在材料表面构建仿生织构,能够精确、可控的得到具有特定性能的织构形貌,从而获得具有亲疏水、自洁性、减阻性、耐磨性和生物相容性等优质特性表面[18-21]

  • 本文从超快激光加工技术出发,介绍短脉冲激光加工的原理,结合生物仿生学总结耐磨、润湿、抗反射三大类织构的仿生设计和结构优化,展望超快激光织构化的进一步发展,以期为超快激光制备织构表面奠定一定的理论基础。

  • 1 超快激光制备仿生织构的原理

  • 超短脉冲激光束能量比纳秒等长脉冲激光更强,可以直接激发电子,使晶格在吸收激光能量的同时保持较低温度[22]。利用超短脉冲激光加工的材料具有更小的碎片和热影响区域[23],因此可以获得质量更高的表面微、纳米结构(如图1 所示[24])。飞秒激光织构化的表面上不存在或存在非常小的复凝和飞溅颗粒[17],这也是与长脉冲激光织构表面相比,短脉冲激光织构表面粗糙度和摩擦因数低的原因。因此,通过超快激光构建的织构纹理具有更好的性能特征。

  • 图1 超短脉冲与纳秒脉冲激光在钢箔上钻孔后的形貌[24]

  • Fig.1 Morphology of steel foil drilled by ultrashort pulse and nanosecond pulse laser[24]

  • 超快激光加工是一种自上而下的非接触式减材加工方法,加工过程中材料不会产生变形和内应力,非加工区域的热影响较小,加工完成后表现出优异的力学特性。超快激光首先应用在非金属材料的加工,之后出现了超快激光在金属材料制备表面制备微纳织构的报道[25]。超快激光系统性能的提高极大推动了超快激光加工研究的发展,KUPER 和 STUKE 发现使用飞秒紫外准分子激光器几乎不会产生热影响区;之后啁啾脉冲放大(CPA)技术出现[26],可以在放大介质中发射高能飞秒脉冲,而不会对材料引起损伤或不良非线性效应,进一步加快了超快激光加工的基础研究[24]。超快激光的加工特点很好地适应了不同材料的高质量微加工,成为表面织构加工的一大助力。

  • 长脉冲加工过程中产生的热会影响材料的加工质量,图2 显示了脉冲激光束与物质的相互作用[27]。由图2 可知:激光作用在材料表面上会产生热影响区及热辐射,并且造成熔融物的飞溅与复凝,从而降低激光加工质量。超快激光加工可以显著降低加工过程的热影响。超短的脉冲时间改变了激光与物质的相互作用机制,脉冲的超短持续时间意味着可以忽略激光照射下熔融物体的流体动力运动,能量沉积发生在固体密度下,能够明显改善热效应的影响。热扩散的时间在纳秒到微秒的时间尺度上,而大多数材料的电子-声子耦合时间在皮秒到纳秒的范围内。当激光能量以比热传输和电子-声子耦合短得多的时间尺度沉积时,不会发生附带损害,即没有产生热影响[28]

  • 图2 脉冲激光束与物质相互作用示意图[27]

  • Fig.2 Schematic diagram of the interaction between a pulsed laser beam and matter[27]

  • 激光强度会随加工深度的增加而衰减,其中材料的吸收系数(α)是主要的控制因素。吸收系数取决于温度和波长,在恒定 α 下,激光强度随深度的衰减由比尔-朗伯定律给出:

  • I(z)=I0exp(-αz)
    (1)
  • 式中,I0 是考虑反射损耗后表面内部的强度。激光强度下降到界面处初始值的 1 / e 值的深度是已知的光学穿透或吸收深度 δ

  • δ=1/α
    (2)
  • 1997 年 LIU 等[29]提出烧蚀阈值理论,材料烧蚀发生在一定阈值以上,即保证材料被烧蚀而除去的最小能量。超短激光脉冲的激光强度高,并能提供精确的激光诱导击穿阈值,降低激光通量减少热影响区。而阈值通量(烧蚀阈值所对应的能量密度) 大小不仅取决于吸收机理、材料性能、微观结构、表面形态、缺陷的存在,还取决于波长、脉冲持续时间等激光参数。图3 展示了 Si-F,PZT-F,Pyrex-F, SiC-F 四种材料在不同通量下沟槽切面的光学显微镜视图[27]。可以看出在其他条件一定的情况下,增加激光通量可以增加刻蚀深度。通常来说阈值通量在 1~10 J / cm2 适用于金属,在 0.5~2.0 J / cm2 适用于无机绝缘材料,在 0.1~1 J / cm2 适用于有机材料。

  • 图3 四种材料在不同激光通量下的沟槽切面光学显微镜视图[27]

  • Fig.3 Optical microscope views of grooved sections at different laser fluences for four materials[27]

  • 另外,超快激光烧蚀机理与加工材料有关,目前,主要针对电解质、半导体和金属三种主要类型的材料进行了烧蚀机理分析。因为电解质、半导体和金属有不同的电子能带结构,所以三者表现出不同的烧蚀机制。电解质的超快激光烧蚀归因于多光子表面电离过程中的库伦爆炸,而半导体的烧蚀与金属类似[25]。当激光照射金属材料时,电子激发可以通过带内和带间跃迁发生,导带和价带电子都可以参加激光激发。在金属中,主要依赖自由电子吸收激光能量,能量随后转移到晶格上,晶格键的断裂和材料的膨胀随着能量的释放而发生,从而实现材料的去除。激光能量通过多光子非线性吸收,然后雪崩电离沉积成小体积,达到材料去除的目的。飞秒激光电子-声子耦合的值非常大,产生的高温可直接将固体蒸发[29]。皮秒和飞秒激光的脉冲宽度很小,电子没有时间将热量传递到晶格,所以几乎没有热传导,这大大降低了材料的热影响[25]。目前超快激光作用受体的研究主要以金属、合金以及硅材料为主,前两者常用于耐磨性和疏水性的研究;硅材料主要应用于太阳能研究,以及提高光电响应等领域。

  • 2 仿生耐磨织构

  • 通过超快激光加工的仿生耐磨织构,可以显著减少机械部件的摩擦磨损[30]。仿生学为耐磨织构的设计提供了思路。例如:沙漠蟒蛇的六边形鳞片结构可以减少运动时的摩擦[31];柽柳树表面的 V 型槽可有效抵挡风沙混合物的侵蚀,表现出优秀的抗冲蚀性能[32];在汽车内燃机活塞环上的织构能够显著降低环和气缸套之间的摩擦,从而降低汽车油耗[33]。但通过仿生提取设计的织构并不能直接应用并表现出最佳的适应效果,例如沟槽织构型耐磨织构通常具有方向各异性,垂直磨损方向和平行磨损方向的减磨效果是不同的[34-35]。还需要针对不同的材料设计飞秒激光器的参数,通过仿真与试验来调控织构的具体形貌,从而对织构的深度、形状、周期分布等进一步优化,继而满足材料服役环境和工业生产的需求。

  • 2.1 耐磨织构的设计与优化

  • 仿生是设计和制造织构最有效的方法之一,自然界中的生物进化出最合理的表面形状或结构,通过提取、复刻和优化等流程,将仿生织构设计于材料表面,可使其具有相应的表面性能。如图4a 所示鲨鱼皮上的凹槽结构能够有效减小壁面的摩擦,降低阻力,图4b 所示的甲虫表面突起和图4c 中蚂蚁头部的带状脊能够提高材料的表面润滑性能,降低磨损率[36-37]。生物通过进化出凹槽、凸起等非光滑的表面结构,大大降低了其运动中的摩擦和阻力,因此,通过仿生生物减阻耐磨表面为耐磨织构的研究提供了新的研究方向。

  • 获得符合要求的织构设计,需要对提取的织构进行一系列的仿真与试验,并结合实际应用,以获取最佳的设计参数与使用方案。ZHONG 等[31]通过研究沙漠蟒蛇皮肤在干燥环境下的耐磨效果,提取蟒蛇表皮的六边形鳞片结构,如图5 所示,通过模拟和试验的方法研究了 0°和 90°两个摩擦方向的摩擦性能,并对织构密度进行了研究,结果发现, 90°的摩擦方向有更好的摩擦行为,面密度为 25% 的六角形织构表面与光滑表面相比,其摩擦因数可降低 41%。柽柳树的树皮能够抵御风沙的侵袭, HAN 等[32]通过仿生柳树的树皮(如图6),探究了不同凹槽的耐冲蚀效果,发现 V 型凹槽的仿生表面表现出最佳的抗腐蚀性能,并且在离心风机叶片上制备仿生表面能够提高 28.97%的抗腐蚀性能。因此,通过仿生是获得优秀的耐磨织构的重要途径之一。

  • 图4 生物表面微观形貌[36-37]

  • Fig.4 Microscopic topography of biological surface[36-37]

  • 图5 沙蟒及其表皮结构[31]

  • Fig.5 Sand python epidermis[31]

  • 图6 柳树树皮结构[32]

  • Fig.6 Willow bark structure[32]

  • HUANG 等[38]以树蛙表面的六边形纹理为灵感,设计了六边形仿生织构,如图7 所示,并结合固体润滑剂(SnAgCu)来改善 AISI 4140 钢的摩擦学性能,研究了仿生织构参数对磨损轨迹和润滑膜形成机理的影响。结果表明:边长 730 μm、间距 360 μm、深度 490 μm 时,摩擦因数最小;具有仿生织构的 AISI 4140-SnAgCu 的平均摩擦因数降低了 20.82%,摩擦因数的波动度降低了 54.35%,磨损轨道深度降低了 65.65%。

  • 图7 AISI 4140 仿生自润滑材料加工工艺[38]

  • Fig.7 AISI 4140 bionic self-lubricating material processing technology[38]

  • 超快激光对于材料的耐磨性具有改善的作用,激光会使材料表面硬化,产生硬相和软相两种表面状态,进而影响材料表面耐磨性。SU 等[39]在制动片上仿生蜣螂表面的条纹结构,探究了激光条纹间隔与仿生激光织构表面的耐磨性关系,并对仿生样品进行了干式滑动磨损试验,图8 展示了织构化钢表面不同区域的磨损情况。结果表明:随着间隔距离从 2.5 mm 增加到 5.0 mm,样品的耐磨性起初呈上升趋势,此后呈下降趋势,间隔间距约 3.5 mm 的样本具有最佳的耐磨性。研究表明软相面积比例与仿生表面的耐磨性具有很强的相关性,当激光条纹之间的间隔距离大于 3.5 mm 时,软相损伤在提高磨损程度方面发挥了主导作用,随着距离的增加,磨损质量增加。然而,当间隔范围为 2.5 mm 至 3.5 mm 时,软相的有益效果逐渐反映出来。综上,硬相区会起到支撑的作用,并且起到抵抗磨损的效果;软相区可以捕捉因磨损掉落的磨屑,以减少三体摩擦。

  • 图8 织构化钢表面的磨损情况[39]

  • Fig.8 Abrasion of textured steel surfaces[39]

  • 影响织构摩擦行为的因素有很多。当施加不同的负载时,织构参数(面密度、深度和直径等) 的作用效果会有所改变,YAN 等[40]研究发现在低负载 / 低速和高负载 / 高速的条件下,织构面密度是影响摩擦的主要因素。EZHILMARAN 为了降低发动机活塞环上的摩擦因数,并最大限度地减少衬垫表面的磨损[41],对活塞环上的织构密度进行了研究,结果发现面密度为 16%和 27%的耐磨性较好;但对于灰口铸铁,织构密度为 55%的减磨效果最好[42]。沟槽织构是耐磨效果最好的织构之一,通常对于沟槽织构,其织构表面的平均摩擦因数随着沟槽间距的增加而先减小后增大[43]。因此在考虑设计织构参数的着重点上,既要以材料的目标负载为依据,也要针对不同材料、不同耐磨织构类型选择合适的面密度和深度等织构参数。

  • 在润滑条件下,超快激光织构可以产生较大的流体动压力从而实现减磨效果。而织构取向与收敛形状会影响流体动压力,进而影响到材料在润滑状态下的耐磨效果。对于沟槽织构来说,摩擦方向与沟槽夹角会影响磨损结果,图9a、9b 展示了织构取向对摩擦性能的影响,当夹角为 45° 分布时沟槽织构更具耐磨性,当织构与磨损方向之间的角度低于 45°时,耐磨性会随着角度的增加而增加[34]。HUANG 等[44]探究了 45°与 60°菱形织构与固体润滑剂耦合的减磨效果,结果发现单个织构的收敛形状也会影响动压力的作用效果,LU 等[45]通过高频采样,研究了织构的单个局部摩擦响应(图10b),分析了织构表面发散和收敛特征对润滑状态下的局部摩擦效应,其结果表明收敛形状的织构更有利于产生润滑增强效果,但当凹痕尺寸远大于接触宽度时,液体动压力很难建立。LU 等[46]研究了三角形倾斜底部凹痕在边界润滑条件下的瞬态摩擦性响应,证明了收敛斜率产生的流体动力升力效应不如实际接触长度的影响显著。

  • 图9 织构取向对低碳钢摩擦性能的影响[34]

  • Fig.9 Effect of texture orientation on friction properties of low carbon steel[34]

  • 图10 三角形织构及瞬态摩擦响应[45-46]

  • Fig.10 Transient friction response of the triangular texture[45-46]

  • 通过其他手段进行辅助加工是目前超快激光织构化的改进措施之一。MA 等[47]受贝类的启发,并结合鲨鱼表皮纹理,使用 MATLAB 软件提取贝壳轮廓,得到 Y 方向拟合的正弦曲线,如图11 所示,并在 40Cr 表面上构建了面积密度分别为 5%、10%、 15%、20%、25%和 30%的织构。通过研究发现:在 0.1 m / s 的速度和 35 N 的载荷下,织构密度为 25% 时,40Cr 表面的摩擦性能最佳,相应的摩擦因数则达到 0.141。SU 等[48]通过激光功率和熔池宽度的闭环控制增强了 Fe-Ni-Cr 合金磨损性能,在 Fe-Ni-Cr 合金的定向能量沉积(DED)技术制造过程中,通过 PID 算法调整激光功率,通过实时调整激光功率和控制熔池尺寸(MPS)来提高耐磨性。结果表明,在控制模式下可以获得优异的耐磨性,并实现晶粒细化。

  • 图11 织构轮廓提取[47]

  • Fig.11 Texture contour extraction[47]

  • 综上所述,仿生织构是目前耐磨结构的主要来源,其中凹槽(包括沟槽与多边形槽)效果最佳。超快激光制备仿生耐磨织构,一方面激光本身可以使材料表面硬化提高耐磨性,另一方面凹槽结构可以保存磨粒磨屑,防止材料表面产生二次擦伤。通过对仿生耐磨织构的进一步优化发现,普通沟槽的减磨效果随着沟槽间距的增加而先增大后减小,通常与织构面密度相关,密度过大会降低材料表面的强度,密度过小不易发挥织构优势,在选择合适的面密度后,在不影响织构宽度的情况下应尽量加深织构深度,以获取磨粒的最大化捕获。对于具有方向差异性的织构来说,要首先考虑沿织构收敛方向的耐磨设计。

  • 2.2 织构的耐磨原理

  • 过去十几年中,激光技术与仿生原理相结合,已逐渐被证明是提高金属抗磨性的新方法, LI 等[49]通过在 40Cr 合金钢表面构建仿生织构,仿生织构样品均表现出相变和晶粒增强的现象,这可以有效改善材料的疲劳行为,激光处理后,仿生织构区域的微观结构主要由致密细粒马氏体组成,如图12 所示。样品的显微硬度是未处理样品的 3 倍以上。另外,仿生织构能够显著阻碍裂纹的扩展,当裂纹在仿生织构边缘处传播时,会受仿生区晶粒的阻挡(图13a);当裂纹扩散入仿生区域时(图13b),由于晶粒细化和马氏体存在于仿生织构区域,裂纹扩展的驱动力逐渐耗尽,直到裂纹终止于仿生织构区域内。此外,仿生区域的存在也起到了抵抗塑性变形的主要支撑作用。

  • 图12 40Cr 合金钢仿生织构区的微观结构[49]

  • Fig.12 Microstructure of biomimetic textured region of 40Cr alloy steel[49]

  • 图13 40Cr 合金钢裂纹在织构区边缘与内部的传播示意图[49]

  • Fig.13 Schematic diagram of crack propagation in 40Cr alloy steel at the edge and inside of the texture zone[49]

  • 研究表明,凹坑型织构具有更好的耐磨效果,这是因为沟槽具有更好减阻和润滑效果[50],微槽织构的减磨作用机理有突出高度理论[51]、二次涡群理论和微轴承三种。当凹槽纵向排列时,黏性厚度的增加减小了近壁区域的速度梯度,降低了壁面的摩擦阻力。当凹槽横向排列时,会产生纵向涡流,纵向涡流充当上部流体的微型“轴承”,从而减少与壁面的摩擦。二次涡被认为是由涡流和顶部微槽的相互作用产生的。二次涡与流向涡流相互作用,使凹槽中的流体保持低速,减少了与上部速度的动量交换,从而降低了壁面的摩擦力[52]。对于湿摩擦以及混合摩擦环境,超快激光加工出的织构可作为润滑剂的储液槽。在压力的作用下将润滑剂挤出,达到二次润滑的目的。规则的微凹痕结构可以在油润滑的平行滑动表面之间产生流体动压,并充当微流体动压轴承。与未经处理的表面相比,微织构能够显著提高润滑油膜的厚度,并且随着织构密度的增加而增加[53]。ZHANG 等[54]通过控制激光加工速度分析了超快激光表面织构对柴油发电机摩擦的潜在影响,并通过仿真验证了球型凹坑的织构表面具有最高的流体动压力。烧蚀的微观结构可以作为储存磨损碎片颗粒的存储器,在摩擦中起到捕捉磨屑的作用[55-56],有效减少了三体摩擦带来的影响。超快激光加工过程中会发生淬火现象,能够显著改善表面的耐磨性,在激光束的作用下材料表面会形成氧化结构,且硬度会随着能量强度的增加而增加。另外在激光加工织构的过程中,材料表面会和加工介质产生反应形成化合物(以与氧气反应产生氧化物为主),这些化合物会也会改变材料表面的润湿性,进而提高材料表面的自润滑能力。

  • 3 仿生润湿性织构

  • 润湿性是固体基材最重要的表面特性之一,通过测量固体表面上小液滴的接触角(CA)和滑动角(SA)可以评估润湿行为,CA 是指液滴与固体界面的角度。当 CA<90°时,表面呈亲水态;当 CA>150°时,表现为超疏水状态。润湿能力由表面能和表面粗糙度决定,随着固体表面能和表面粗糙度的增加,液固之间的接触面积变小,接触角增大,即表现为疏水态,反之则表现为亲水态。许多动物或植物的表面具有特殊的润湿性能,能够实现对体表水分的控制,如图14a 所示荷叶上表面的超疏水性[57-58],图14b 所示具有防雾功能的蚊子眼睛[59],图14c 所示能够在水面行走的水黾[60]等。通过超快激光在材料表面制备特殊的表面结构也可以仿生出扩散或排斥液体的特殊表面,进而衍生出自清洁、防腐、微通道等特殊应用。

  • 图14 自然界中的疏水结构及微观形貌[57-60]

  • Fig.14 Hydrophobic structure and microscopic morphology in nature[57-60]

  • 3.1 润湿性织构设计与优化

  • 疏水性织构的代表是荷叶表面,通过仿生荷叶表面的微乳突结构可以在固体表面实现超疏水性能,如图15 为不同荷叶的微观形貌图。自然界中的超疏水植物的表面一般是粗糙的,且大多数至少有两个不同的尺度(微米与纳米复合结构),因此,双尺度上的表面粗糙度或细长柱是发展自清洁表面的最佳表面几何形状。BHUSHAN 等[61]提出了一种理想的超疏水分层表面,如图16 所示。对于半径大于或等于 1 mm 的液滴,圆柱的 H(高度)为 30 mm, D (直径)为 15 mm, P (节距)为 130 mm 为最优设计[62]

  • 图15 不同荷叶的 SEM 微观形貌[60]

  • Fig.15 SEM micromorphology of different lotus leaves[60]

  • 图16 理想的超疏水分层表面[61]

  • Fig.16 Ideal superhydrophobic layered surface[61]

  • 在自然界中润湿性表面结构还表现出其他行为,如图17 所示猪笼草唇上由特殊纹理构成的 “花蜜线”,可以将花蜜从唇内缘定向输送到表面[63-64];蜘蛛丝也可以将蛛丝上的水分定向凝集到丝结处形成小水滴[65],这种能够实现液体定向运输的结构在微通道中得到广泛应用。除此之外,根据生物表面的润湿性还衍生出一系列其他重要应用,如防腐、自清洁、防冰霜、油水分离等。例如,SHAIKH 等[23]在钛合金表面构建疏水织构,从而获得抗菌或杀菌的钛合金表面;通过仿生蚊子复眼的超疏水特性,依靠纳米尺度上的六边形突起,可以防止微尺度雾滴在表面的凝结,从而起到防雾的作用;LIU 等[66]通过仿生玫瑰花瓣、蝴蝶翅膀,并通过激光技术在 7075Al 基体上制备了圆形驼峰、方形突起和山脉状结构三种不同具备防冰性能的超疏水表面。这些特性的本质原因还是超疏水的表面结构以及激光加工后材料表面能的改变,影响了固液之间的接触形式,从而产生一系列疏水现象。

  • 润湿性作为近年来的研究热点,针对不同的材料和织构出现了大量相关的研究报告,其中又以超疏水为研究重点,表1 总结了超快激光在金属表面制备的不同织构的润湿性及其应用。可以看出织构以微槽、微柱为主。微柱间距、直径和高度对液滴的润湿性起关键作用,直径小、间隔密、深度大的微柱阵列疏水效果更好[67]

  • 图17 具有定向运输的生物结构[63-65]

  • Fig.17 Biological structures with directed transport capabilities[63-65]

  • 表1 超快激光在金属表面制备织构的润湿性

  • Table1 Wettability of textures fabricated on metal surfaces by ultrafast laser.

  • 由表1 可知,超快激光加工后,随时间推移一些材料的表面会由亲水性逐渐向疏水性转变,并最终保持疏水性。疏水性表面凭借稳定性好、应用范围广的优势,其研究相对成熟,其中防腐、自清洁、防冰霜和微流体装置等应用得到了长远发展。在工程应用中,电化学腐蚀是最常见的金属腐蚀类型,腐蚀条件是在电解质溶液中形成回路,而疏水界面的存在有效隔绝了电解液的接触,以类似钝化膜的形式缓解了材料的腐蚀进程。如图18 所示[75],疏水性结构阻挡了腐蚀性溶液流入固体表面,从而使金属表面不易受到腐蚀。

  • 自清洁与防冰性是疏水表面重要的应用之一,液滴在疏水表面上不易停留,随着液滴在疏水面上的滚动可以将表面杂质带走,从而实现自清洁的目的。对于除冰、霜来说,液滴带走杂质颗粒减少了冰核数量,从而延缓冰的形成。VOLPE 等[76]通过飞秒激光加工出了网格织构,在极低温的环境中,表现出动态抗冰性能,如图19b 所示,飞秒激光织构化表面随时间没有明显的结冰现象。这是因为高 CA 会增加液滴结冻时间,微、纳米结构的存在能够在液滴与表面之间形成更多的气穴,不但实现了对水的排斥,而且被困的空气可以减少固、液的接触,起到隔热作用,使冰成核变得更加困难。另外疏水表面也降低了固体和冰的接触面,从而使附着力降低防止了冰的聚集。像荷叶表面具有微、纳米复合结构的表面可以捕获更多空气,其防冰能力较好,SHEN 等[77]研究了多级微、纳米结构和单纳米结构,结果发现多层次的微、纳结构能诱导更多的气穴,产生更好的防冰效果。降低纳米柱结构的直径可以减小传热面积,增加液滴的结冻延迟时间[78]

  • 图18 疏水织构缓解腐蚀示意图[75]

  • Fig.18 Schematic diagram of hydrophobic texture for corrosion mitigation[75]

  • 图19 低温环境中铝金属原始表面与织构的动态结冰过程[76]

  • Fig.19 Dynamic icing process of original surface and texture of aluminum metal in low temperature environment[76]

  • 超快激光织构化可以制备具有亲水性的微液体通道,即微流体技术。微流体技术能够以非常高的精度控制极小量液体,是研究极小化化学和提高生物分析系统的集成度的重要技术[79]。CHANG 等[80] 通过飞秒激光在玻璃片上制备了具有多通道扫描的微流体装置(图20a),受微流体通道毛细管力和内壁表面亲水纳米结构(20b、20c)的影响,可以加快液体在微通道中的流速,提高化学、生物领域的工作效率。YONG 等[81]也通过飞秒激光在玻璃基板上加工出具有微纳米级的微凹槽,这种微纳米结构能够排斥水中的液体聚二甲基硅氧烷(PDMS),因此很容易在玻璃基板和 PDMS 层之间制备微通道。目前微流体技术主要应用于生物、化学等微量集成化操作中,以极少的试剂或样品,高分辨率和灵敏度以及更准确的流量控制来实现研究。相比化学刻蚀超快激光加工方便且可控性更高,是微流体技术的一大助力。

  • 图20 微流体通道结构及通道内 SEM 图像形貌[80]

  • Fig.20 Microfluidic channel structure and SEM image morphology in the channel[80]

  • 综上所述,从荷叶的疏水到蛛丝、猪笼草花蜜线的定向集水、运输,超快激光制备润湿性仿生表面已被应用于防冰霜、自清洁、提高涂层附着力和微通道等受润湿性影响的应用领域,其主要织构类型为凹槽、网格和柱状结构,其中仿荷叶的微、纳米复合结构能够表现出较强的疏水性,对于半径大于 1 mm 的液滴来说,微米级的柱状结构也可以表现出足够的疏水性能,小间距、小直径、高度高的微柱阵列疏水效果更好。V 型凹槽结构可以提高材料表面的亲水性。另外,对织构化后的材料表面可进行氟化等化学改性手段,以进一步提高材料的润湿性能。

  • 3.2 润湿性原理与润湿性的转变

  • 超疏水通常有微、纳米结构的表面织构和非极性化学表面两个基本特征。织构可以提供稀薄的空气层,减少固体表面与液体之间的相互吸引力,使表面呈现出疏水的效果[82]。润湿性研究的常见模型有 Young 方程[83]、Wenzel 模型[84]、Cassie-Baxter 模型[85]。Young 方程为:

  • cosθ=γsv-γslγlv
    (3)
  • 式中, θ 为同一材料光滑表面上的平衡接触角, γ 指界面张力,下标 s、l 和 v 分别指固相、液相和气相,该方程适用于表面光滑的理想表面。Wenzel 模型和 Cassie-Baxter 模型解释了表面粗糙度对液滴的接触角的影响,Wenzel 模型认识到表面粗糙度会增加实体的可用面积,从而修改了表面接触角:

  • cosθ=γsv-γs1γlv
    (4)
  • 式中, θ* 是织构表面上的表观接触角,r 是表面粗糙度,θ 为平衡接触角。Cassie-Baxter 模型假设粗糙表面的超疏水性是有液体液滴下方残留的微观空气带引起的,从而导致复合界面,其方程为:

  • cosθ*=-1+φs(1+cosθ)
    (5)
  • 式中φs 为固液接触分数[86-87]。液滴模型结构如图21 所示[88]

  • 图21 液滴在三种模型下的润湿行为[88]

  • Fig.21 Wetting behavior of droplets under three models[88]

  • 超快激光织构化会增加材料表面的化学极性,但随着时间的推移,织构表面的非极性键增加自由能降低,织构化表面的化学极性再次发生改变,从而出现润湿性转变的现象。 DIVINMARIOTTI S 等[89]发现在铝表面飞秒激光织构化后首先表现出亲水性,并在 3 d 后转变为疏水性。 SINGH 等[90]发现通过飞秒激光作用后的 304 不锈钢表面会立即显示出超亲水,而 50 d 后则表现为高度疏水。YAN 等[91]研究了混合微纳米织构黄铜表面润湿性的变化,通过将样品放置在空气,碳酸氢钠溶液,氯化钠溶液等不同介质中,探究样品环境对润湿性转变速率的影响,结果发现织构化的黄铜样本在异丙醇中浸泡 3 h 即可实现亲水到疏水的转变。

  • 对于低表面粗糙度的激光处理表面,发现极性(如 C-O,C=O 和 O-C=O 键)和非极性(如 C-C或 C-H 键)基团是导致润湿性变化的原因[92]。例如,通过超快激光处理的铅青铜具有较高的表面极性键含量和自由能,随着时间的推移,表面吸附了碳氢化合物增加了非极性键的含量,因此开始逐渐表现出超疏水性[93]。对疏水铜表面在空气中进行退火研究发现,所有样品均恢复到亲水性,经扫描电镜检查退火后的试样形貌并未发生改变,但经 XPS 分析,试样表面的碳含量显著降低[68],所以表面化学成分的变化或有机物的积累是润湿性转变的原因。ELLEB 等[94]也得出飞秒激光会使材料表面的碳含量减少进而表现出亲水性,而表面自发的氧化反应和碳氢化合物的积累降低了表面自由能,使亲水表面慢慢转变为疏水表面。所以,为了高效率的得到疏水结构,进一步缩短亲水性到疏水性的过渡时间,可以通过增加表面碳原子和其他有机物的含量的方法[92]。而对于如何保持表面结构的亲水性,通过 NaOH 和 H2O2 等化学处理和特殊保存可以延长亲水性的持续时间。

  • 4 仿生抗反射织构

  • 固体表面的抗反射性能在光伏技术、电子产品、航空航天和军事等领域具有重要价值,具有抗反射特性的材料可以消除或屏蔽噪声、电磁波的干扰,提高对特征电磁波的吸收、利用的效率和鉴定的准确度[95-96]。通过飞秒激光制备的微、纳米结构可以改善材料的抗反射性能,如图22 所示,在结晶硅膜上制备织构后产生了具有良好吸光抗反射的黑色硅[97-98]。WU 等[99]在硅表面制造微尖峰织构,将光吸收率从近紫外(0.25 μm)到近红外(2.5 μm)提高到大约 90%,并且在 1.06 和 1.31 μm 处显示产生光电流,这表明织构化可以提高对红外光的灵敏性。通过超快激光制备纳米、微米和复合织构,可以大大降低金属的反射率,并且随着波长的增加,具有微、纳米结构的金属表面的反射率比具有相对光滑结构的金属表面的反射率增加得更慢[100],实现了紫外-可见-红外超宽电磁波谱的抗反射[101]

  • 图22 具有抗反射织构的硅膜及表面微观形貌[97-98]

  • Fig.22 Silicon film with anti-reflective texture and its surface micro-morphology[97-98]

  • 4.1 抗反射织构设计与优化

  • 通过对不同波长的选择性吸收,物体会呈现出不同的颜色,而具有一定表面粗糙度的微纳米织构通过反射与折射可以将入射光全部捕捉或对特定波长进行捕捉到达着色的目的,自然界中大多数生物的生存依赖自身的防反射能力,如眼睛的夜视功能、翅膀的伪装功能和身体的保温性能等[102]。如图23 所示,蝴蝶翅膀、蝉翼和飞蛾眼睛等可以减少入射光的反射率。通过研究这些生物的表面微观结构,发现:蝴蝶翅膀表面具有平均间距为 100~140 nm,高度为 160~200 nm 的不规则微柱[103];蝉翅膀上具有间距为 200 nm,高度为 100~340 nm 的有序纳米柱阵列[104];飞蛾眼睛是具有间距在 180~240 nm,高度在 0~230 nm 的六边形微柱[105]

  • 图23 具有抗反射结构的生物及微观结构[103-105]

  • Fig.23 Organisms with anti-reflection structures and their microscopic knots[103-105]

  • 提取出具有抗反射的表面结构,并且通过超快激光加工复刻到材料表面,可以实现材料的抗反射性能,图24 所示为超快激光作用下硅胶板表面产生的微纳米结构,这种结构在可见光光谱中,对不同入射角度的反射率均小于 1%[106],在可见光和红外频率范围内表现出优秀的抗反射特性,因此具有复杂层次的织构能够提高光的捕获能力。

  • 图24 硅胶板表面激光脉冲点的 SEM 形貌[106]

  • Fig.24 SEM Morphology of Laser Pulse Spots on Silicon Plate Surface[106]

  • HUA 等[107]通过光线模拟追踪研究三角形金字塔结构对硅光吸收率的影响,发现硅的光吸收率主要受三个因素的影响,即形状、顶角和织构单元的密度,其中密度是最有效的因素,其次是顶角和形状。另外表面粗糙度也是影响抗反射性的重要因素[108]。随着表面粗糙度的增加,光吸收的有效面积随之增大。而飞秒激光可以在硅薄膜上制备微米到纳米级的表面粗糙度,当飞秒激光脉冲作用在硅表面,融化后又重新凝固,形成类似山丘的结构,提高了硅太阳能电池中的光捕获能力[101]。SHI 等[109] 在对镁合金的光吸收研究中发现,表面粗糙度并不是影响光吸收的主要因素,结构复杂的微凹槽比条纹结构吸光能力更强,其主要原因有三方面:微凹槽更复杂,入射光多次反射,最后转化为热量吸收; 飞秒激光加工过后,会产生松散的突起和微纳米颗粒,还有 MgO 上的微孔,可以作为光捕获结构; 光传播时,一些表面微观结构和突起(10~30 μm) 将充当衍射光栅,与入射光强耦合,从而达到抗反射的目的。

  • 对于金属材料来说,超快激光可以在金属表面诱导出更深的气孔以增加内部的反射过程,甚至可以制造出如图25a~25d[110]所示的气孔和条纹复合织构,在这些在气孔结构中,分布在孔壁上的纳米条纹可以有效地从各个方向收集入射光,两方面共同促进了气孔的光捕获效果。而纳米级结构可以产生强烈的表面等离子体共振吸收[111],纳米条纹的聚集可导致谐振带的扩大效应,形成宽带抗反射。通过叠加气孔的光捕获效应和纳米条纹的光阻抗匹配效应,实现了混合结构表面的超低反射率[100]

  • 图25 飞秒激光修饰的各种微、纳混合结构的 SEM 形貌[110]

  • Fig.25 SEM images of various micro and nano hybrid structures modified by femtosecond laser[110]

  • 为了获得更好的超快激光织构抗反射表面,研究者考虑多种加工因素的影响。OU 等[112]通过控制激光能量密度研究了不锈钢、黄铜和铝对可见光的抗反射情况,并且在适当的激光能量密度范围之内,可以实现 5%的低反射率。通过改变加工介质也能改善抗反射性能,DAR 分别在空气和水介质中通过超快激光在钛金属表面制备了周期性波纹织构,结果发现水介质中提高了超快激光加工的精度,与空气中相比其加工出的波纹织构密度可以提高 5 倍,大大降低了钛在 250~2 000 nm 的宽波长范围内的反射率[113]。激光去除硅表面的氧化物也可以实现对可见红外光的超宽带吸收,通过飞秒激光处理,目前已经实现了 2.5~10 μm 波长范围内反射率低于 5.0%,平均反射率为 4.3%的最佳的结果[114]。LI 等[115]在气流压力的辅助下通过飞秒激光在钛合金上制备了光吸收表面,并且在 250~2 300 nm 光谱范围内获得 2.31%的超低平均反射率。对于红外检测的超快激光织构来说,高耐热的红外吸收和低自由载流子浓度的材料表面是提高硅光电二极管真实红外检测的信噪比的关键[116]。YU 等[117]使用飞秒激光技术,制备过饱和金掺杂硅,并观察到高热稳定的红外吸收。LI 等[118]在氮气中用飞秒激光脉冲辐射后,在硅表面形成微波纹和微珠结构,同时氮原子通过激光烧蚀掺杂到黑硅中,掺杂后的硅在 1.1~2.5 μm 的带隙下表现出强烈的红外吸收。目前许多基于飞秒激光的硅掺杂研究,取得了理想结果。

  • 综上,超快激光仿生抗反射织构既能够实现对特定波长的吸收实现物体颜色的改变,也可以提高金属、金属化合物、硅等材料上对紫外-可见-红外超宽电磁波的吸收,拓展了光电响应、信号屏蔽、电磁保护等领域应用。目前,微纳米柱阵列以及柱孔复合织构是应用较广且效果较好的抗反射织构类型,当表面覆盖尺寸 30 μm 以下的织构形貌时,可达到抗反射效果。调节激光通量、扫描速度可以改变激光作用后的织构尺寸,可以采用改变加工环境或加工介质的方式实现目标要求,通过改变加工环境并在脉冲辐射的作用下,可以将其他元素掺杂到材料表面,从而进一步提高材料的抗反射性能。

  • 4.2 抗反射原理

  • 微米结构可以增加表面材料的吸光面积,实现对光的捕获,增加入射光在金属表面的反射次数,实现对光的捕获,其反射次数与微观结构的顶端夹角有很大关联,如图26 所示[119],当顶端夹角为 90°时,入射光会出现两次反射;当顶端夹角为 60°时,会出现三次反射;当顶端夹角为 30°时,入射光会在金属表面实现多次反射。入射光能量在多次反射与折射中消耗殆尽,从而实现对光的抗反射效果。因此,设计合理的微观结构可以实现光捕捉的最大化。

  • 图26 不同角度结构光入射二维示意图[119]

  • Fig.26 Two-dimensional schematic diagram of structured light incident at different angles[119]

  • 材料表面对入射光波的响应,是材料表面光电特性研究中的基础和关键科学问题之一,当电磁辐射的能量投射到材料表面时,会发生反射、吸收和透射。研究材料表面抗反射特性是为了减少材料表面对入射电磁波的反射,使透射到其表面的辐射能量被更多地吸收或透过[120]。图27 所示为光波通过不同特征结构表面传播的抗反射原理示意图。光线射入表面时,一部分光会被基材吸收,另一部分会被反射(图27a),但当入射表面存在特征尺寸大于入射光波长的微观结构时,反射光线将被再次或多次捕获增加了光程长度,光在微观结构内表面上的多重折射改变了光束的倾斜角度,从而进一步减少了表面反射,提高了对光的吸收(图27b)。表面存在与入射波长相同数量级的微结构,可以影响表面的反射率,从而改善光路,最终增强光的吸收率 (图27c)。当入射面具有微纳复合结构特性时,微纳结构表面不仅由于微观结构特性而产生光学耦合和光路增大,而且具有纳米结构特性产生的“蛾眼效应”。这些微纳复合结构特性可以有效地提高入射光的吸收,表现出显著的抗反射性能[121](图27d)

  • 图27 光波通过不同特征结构表面传播的抗反射原理示意图[121]

  • Fig.27 Schematic diagram of the principle of anti-reflection of light waves propagating through the surface of different feature structures[121]

  • 5 结论与展望

  • 超快激光能够实现织构的精细化设计与加工,大大提升了仿生织构的复刻精准度。超快激光仿生织构化结合了仿生学与超短脉冲激光技术,在材料表面制备具有耐磨、疏水和抗反射等性能的高精度、高质量的仿生织构,为各个领域提供了新的研究思路和加工方法。总结了耐磨、润湿和抗反射超快激光仿生织构表面的作用原理及优化,结果表明:

  • (1)超快激光仿生耐磨织构可以在摩擦过程中收集产生的磨屑并释放储存的润滑剂以降低磨损,使大部分金属表面的摩擦因数降低 20%~40%。

  • (2)超快激光织构化可以改变材料表面的自由能和表面粗糙度,进而影响液固之间的接触方式,实现 CA>150°的超疏水状态。

  • (3)依靠超快激光仿生技术可以制备特殊的微纳米复合织构,提高特定波长的抗反射率。

  • 超快激光仿生织构化是比较先进的表面改性技术,凭借短脉冲加工表面质量较高的特点,充分发挥了仿生织构在耐磨、超疏水、抗反射等领域的优势,在电子器械,医疗,航空等领域展现出新的活力。但目前仿生织构的设计与加工仍尚未完善,须要进一步研究:

  • (1)受工艺及激光器影响,激光加工无法一次成形,往往需要多次扫描,优化加工工艺、缩短加工时间是超快激光仿生织构化的研究方向之一。

  • (2)目前耐磨、润湿和抗反射三类仿生织构还存在若干研究问题。基于耐磨织构的服役环境需要对耐磨织构的使用状态进行寿命评估。对于润湿性织构,需要进一步研究润湿性的转变机理,延长润湿性织构的服役时间。对于抗反射织构需要进一步探究反射率与其结构参数的定性关系。

  • (3)仿生设计与超快激光制造技术之间匹配性较低,对于已有的仿生织构,无法直接得出激光加工参数,针对不同材料及设计要求,超快激光加工往往需要依靠经验设计和试错,导致最终设计误差较大,因此须进一步探究超快激光烧蚀机理,结合仿真模拟优化加工参数。

  • 参考文献

    • [1] ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.

    • [2] KAWASEGI N,SUGIMORI H,MORIMOTO H,et al.Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J].Precision Engineering,2009,33(3):248-254.

    • [3] JIANG Y,LIU Y Y,LIU X,et.al.Organic solid-state lasers:A materials view and future development[J].Chemical Society Reviews,2020,49(16):5885-5944.

    • [4] SIDDIQUI A A,DUBEY A K.Recent trends in laser cladding and surface alloying[J].Optics and Laser Technology,2021,134:106619.

    • [5] FESHARAKI M N,SHOJA-RAZAVI R,MANSOURI H A,et al.Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods[J].Surface & Coatings Technology,2018,353:25-31.

    • [6] INOKOSHI M,SHIMIZUBATA M,NOZAKI K,et al.Impact of sandblasting on the flexural strength of highly translucent zirconia[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,115:104268.

    • [7] DAROONPARVAR M,KHAN M U F,SAADEH Y,et al.Modification of surface hardness,wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt% NaCl solution[J].Corrosion Science,2020,176:109029.

    • [8] QIAN B T,SHEN Z Q.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir,2005,21(20):9007-9009.

    • [9] CHEN C Y,YOSHIBA M,NAGOSHI T,et al.Pulse electroplating of ultra-fine grained Au films with high compressive strength[J].Electrochemistry Communications,2016,67:51-54.

    • [10] HADAD M,HOCKAUF M,MEYER L W,et al.Adhesion evaluation of multilayered based WC–Co–Cr thermally sprayed coatings[J].Surface and Coatings Technology,2008,202(18):4399-4405.

    • [11] 王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Zhiyuan,XING Zhiguo,WANG Haidou,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)

    • [12] KRYUCHKOV M,BILOUSOV O,LEHMANN J,et al.Reverse and forward engineering of Drosophila corneal nanocoatings[J].Nature,2020,585(7825):383.

    • [13] LIU Y,ZHANG H,DAI S,et al.Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication[J].Tribology International,2022,173:107594.

    • [14] ABDEL-AAL H A.Surface structure and tribology of legless squamate reptiles[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,79:354-398.

    • [15] LU L,YAO W,XIE Y,et al.Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn.leaf[J].Surface and Coatings Technology,2021,405:126721.

    • [16] XIAO G,HE Y,HUANG Y,et al.Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J].IEEE Access,2019,7:107635-107647.

    • [17] BATHE R,SAI KRISHNA V,NIKUMB S K,et al.Laser surface texturing of gray cast iron for improving tribological behavior[J].Applied Physics A,2014,117(1):117-123.

    • [18] GACHOT C,ROSENKRANZ A,HSU S,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372:21-41.

    • [19] TIAN G,ZHANG Y,FENG X,et al.Focus on bioinspired textured surfaces toward fluid drag reduction:Recent progresses and challenges[J].Advanced Engineering Materials,2022,24(1):696.

    • [20] GREEN M.Recent progress in crystalline and polycrystalline silicon solar-cells[J].Solar Energy Materials,1991,23(2-4):111-116.

    • [21] BEKIR S Y,OMER K,ABDURRAHMAN Y T.Surface engineering towards self-cleaning applications:laser textured silicon surface[J].Procedia Engineering,2017,184:716-724.

    • [22] GAMALY E G.The physics of ultra-short laser interaction with solids at non-relativistic intensities[J].Physics Reports,2011,508(4):91-243.

    • [23] SHAIKH S,KEDIA S,SINGH D,et al.Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance[J].Journal of Laser Applications,2019,31(2):22011.

    • [24] SUGIOKA K,CHENG Y.Ultrafast lasers—reliable tools for advanced materials processing[J].Light:Science & Applications,2014,3(4):149.

    • [25] CHEN Z,YANG J,LIU H,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.

    • [26] RUDD J V,KORN G,KANE S,et al.Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier[J].Optics Letters,1993,18(23):2044-2046.

    • [27] DESBIENS J P,MASSON P.ArF excimer laser micromachining of pyrex,SiC and PZT for rapid prototyping of MEMS components[J].Sensors and Actuators A:Physical,2007,136(2):554-563.

    • [28] MISHRA S,YADAVA V.Laser beam micromachining(LBMM)— A review[J].Optics and Lasers in Engineering,2015,73:89-122.

    • [29] LIU X,DU D,MOUROU G.Laser ablation and micromachining with ultrashort laser pulses[J].Ieee Journal of Quantum Electronics,1997,33(10):1706-1716.

    • [30] ETSION I.State of the art in laser surface texturing[C]//5th China International Symposium on Tribology/1st International Tribology Symposium of IFToMM,Beijing,Sep 24-27,2008.Advanced Tribology,2009:761-762.

    • [31] ZHONG Y,ZHENG L,GAO Y,et al.Numerical simulation and experimental investigation of tribological performance on bionic hexagonal textured surface[J].Tribology International,2019,129:151-161.

    • [32] HAN Z,YIN W,ZHANG J,et al.Erosion-resistant surfaces inspired by tamarisk[J].Journal of Bionic Engineering,2013,10(4):479-487.

    • [33] ETSION I,SHER E.Improving fuel efficiency with laser surface textured piston rings[J].Tribology International,2009,42(4):542-547.

    • [34] SU W,ZHOU T,ZHANG P,et al.Effect of the orientation of laser stripes on the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,107:380-388.

    • [35] 郑晓辉,宋皓,张庆,等.激光表面织构化对材料摩擦学性能影响的研究进展[J].材料导报,2017,31(17):68-74.ZHENG Xiaohui,SONG Hao,ZHANG Qing,et al.Effect of laser surface texturing on tribological properties of materials:A review[J].Materials Reports,2017,31(17):68-74.(in Chinese)

    • [36] SHAN H,ZHOU H,SUN N,et al.Study on adhesion resistance behavior of sample with striated non-smooth surface by laser processing technique[J].Journal of Materials Processing Technology,2008,199(1):221-229.

    • [37] WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,217(10):1656-1666.

    • [38] HUANG Q,SHI X,XUE Y,et al.Optimization of bionic textured parameter to improve the tribological performance of AISI 4140 self-lubricating composite through response surface methodology[J].Tribology International,2021,161:107104.

    • [39] SU W,ZHOU T,SUI Q,et al.Study on the relationship between intervals among laser stripes and the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,104:216-224.

    • [40] YAN D,QU N,LI H,et al.Significance of dimple parameters on the friction of sliding surfaces investigated by orthogonal experiments[J].Tribology Transactions,2010,53(5):703-712.

    • [41] EZHILMARAN V,VASA N J,KRISHNAN S,et al.Femtosecond pulsed Ti:sapphire laser-assisted surface texturing on piston ring and its tribology characterization[J].Journal of Tribology-Transactions of the Asme,2021,143(4):41801.

    • [42] BASHA D N,PADMANABHAM G,BATHE R.Tribological behavior of surface textured gray cast iron at different texture density by ultrafast laser[J].Materials Performance and Characterization,2019,8(6):1147-1158.

    • [43] WANG Z,ZHAO Q,WANG C,et al.Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing[J].Applied Physics A,2015,119(3):1155-1163.

    • [44] HUANG Q,SHI X,MA J.Tribological behavior of surface bionic rhombic-textured M50 steel containing SnAgCu and MXene-Nb2C under dry sliding conditions[J].Journal of Materials Engineering and Performance,2021,30(12):9390-9402.

    • [45] LU P,WOOD R J K,GEE M G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.

    • [46] LU P,WOOD R J K,GEE M G,et al.A novel surface texture shape for directional friction control[J].Tribology Letters,2018,66(1):51.

    • [47] MA J,LIU Y,YI P,et al.Anti-friction mechanism of sinusoidal texture with various intervals:The synergistic effect of dynamic pressure and tribofilm[J].Tribology International,2022,173:107635.

    • [48] SU Y,WANG Z,LU H,et al.Improved wear resistance of directed energy deposited Fe-Ni-Cr alloy via closed-loop controlling laser power[J].Journal of Manufacturing Processes,2022,75:802-813.

    • [49] LI H,ZHOU H,ZHANG D P,et al.Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture[J].Materials Chemistry and Physics,2022,277:125515.

    • [50] HOU Q,YANG X,CHENG J,et al.Optimization of performance parameters and mechanism of bionic texture on friction surface[J].Coatings,2020,10(2):171.

    • [51] WALSH M,LINDEMANN A.Turbulent boundary layer characteristics over streamwise grooves[J].AIAA Pap,1984,84:2185.

    • [52] XIAO G,HE Y,LIU S,et al.Laser processing of micro/nano biomimetic structures[J].Micro & Nano Letters,2021,16(6):327-335.

    • [53] GEIGER M,ROTH S,BECKER W.Influence of laser-produced microstructures on the tribological behaviour of ceramics[J].Surface & Coatings Technology,1998,100(1-3):17-22.

    • [54] ZHANG P,WU S,WEI H J,et al.The effect of femtosecond laser surface textured microdimples array on friction reduction under full oil lubrication conditions[J].Lasers in Engineering,2021,48(1-3):63-79.

    • [55] DUFILS J,FAVERJON F,HÉAU C,et al.Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties[J].Surface and Coatings Technology,2017,329:29-41.

    • [56] ADEYEMI K,SUN B,XUE W,et al.Friction and wear characteristics modification via laser surface textured grooves[J].Surface Engineering,2021,37(5):658-668.

    • [57] ENSIKAT H J,DITSCHE-KURU P,NEINHUIS C,et al.Superhydrophobicity in perfection:the outstanding properties of the lotus leaf[J].Beilstein Journal of Nanotechnology,2011,2(1):152-161.

    • [58] EXTRAND,C W,MOON,S I,Repellency of the lotus leaf:contact angles,drop retention,and sliding angles[J].Langmuir,2014,30(29):8791-8797.

    • [59] GAO X F,YAN X,JIANG L,et al.The drystyle antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J].Advanced Materials,2007,19(17):2213.

    • [60] GAO X,JIANG L.Water-repellent legs of water striders[J].Nature,2004,432(7013):36-36.

    • [61] BHUSHAN B,JUNG Y C,KOCH K.Micro-,nano-and hierarchical structures for superhydrophobicity,self-cleaning and low adhesion[J].Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2009,367(1894):1631-1672.

    • [62] BHUSHAN B,JUNG Y C.Wetting,adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces[J].Journal of Physics:Condensed Matter,2008,20(22):225010.

    • [63] BOHN H F,FEDERLE W.Insect aquaplaning:Nepenthes pitcher plants capture prey with the peristome,a fully wettable water-lubricated anisotropic surface[J].Proceedings of the National Academy of Sciences,2004,101(39):14138-14143.

    • [64] MIGUEL S,HEHN A,BOURGAUD F.Nepenthes:State of the art of an inspiring plant for biotechnologists[J].Journal of Biotechnology,2018,265:109-115.

    • [65] ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.

    • [66] LIU Y,LI X,JIN J,et al.Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J].Applied Surface Science,2017,400:498-505.

    • [67] 吴思竹,李大宇,黄玖辉,等.飞秒激光制备仿生疏水微柱阵列应用于液滴操控[J].科学通报,2022,67:1958-1965.WU Sizhu,LI Dayu,HUANG Jiuhui,et al.Fabrication of bionic hydrophobic micropillar arrays by femtosecond lasers for droplet manipulation[J].Chin Sci Bull,2022,67:1958-1965.(in Chinese)

    • [68] LONG J,ZHONG M,FAN P,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(S2):S29107.

    • [69] SARBADA S,SHIN Y C.Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J].Applied Surface Science,2017,405:465-475.

    • [70] CAO Q,WANG Z,HE W,et al.Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing[J].Applied Surface Science,2021,557:149842.

    • [71] RAIMBAULT O,BENAYOUN S,ANSELME K,et al.The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response[J].Materials Science and Engineering:C,2016,69:311-320.

    • [72] CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.

    • [73] ANNALISA V,LEONARDO D V,CATERINA G,et al.Femtosecond laser fabrication of superhydrophobic metallic surfaces with anti-icing properties[C]//Conference on Laser-Based Micro-and Nanoprocessing XV,Electr Network,Mar 06-11,2021.Spie-Int Soc Optical Engineering,2021,16674.

    • [74] CUNHA A,ELIE A M,PLAWINSKI L,et al.Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J].Applied Surface Science,2016,360:485-493.

    • [75] IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:a comprehensive review[J].Surfaces and Interfaces,2020,21:100802.

    • [76] VOLPE A,GAUDIUSO C,DI VENERE L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.

    • [77] SHEN Y,WANG G,TAO J,et al.Anti-icing performance of superhydrophobic texture surfaces depending on reference environments[J].Advanced Materials Interfaces,2017,4(22):1700836.

    • [78] 高淑蓉,焦丽丽,易孟超,等.疏水/超疏水表面防/除冰原理及其研究进展[J].空气动力学学报,2021,39(2):151-160.GAO Shurong,JIAO Lili,YI Mengchao,et al.Mechanism and research progress of anti/de-icing using hydrophobic/superhydrophobic surfaces[J].Acta Aerodynamica Sinica,2021,39(2):151-160.(in Chinese)

    • [79] 蔡海龙,闫雪亮,王素梅,等.飞秒激光微通道加工研究进展[J].北京理工大学学报,2012,32(10):991-1003.CAI Hailong,YAN Xueliang,WANG Sumei,et al.Advances in femtosecond laser fabrication of microchannels[J].Transactions of Beijing Institute of Technology,2012,32(10):991-1003.(in Chinese)

    • [80] CHANG T L,TSAI T K,YANG H P,et al.Effect of ultra-fast laser texturing on surface wettability of microfluidic channels[J].Microelectronic Engineering,2012,98:684-688.

    • [81] YONG J,ZHAN Z,SINGH S C,et al.Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J].ACS Applied Polymer Materials,2019,1(11):2819-2825.

    • [82] TIAN X,VERHO T,RAS R H A.Moving superhydrophobic surfaces toward real-world applications[J].Science,2016,352(6282):142-143.

    • [83] YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [84] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.

    • [85] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [86] TUTEJA A,CHOI W,MA M L,et al.Designing superoleophobic surfaces[J].Science,2007,318(5856):1618-1622.

    • [87] LIU T,WEI H,LI J,et al.Wettability control of sapphire by surface texturing in combination with femtosecond laser irradiation and chemical etching[J].ChemistrySelect,2020,5(31):9555-9562.

    • [88] WU J,YIN K,XIAO S,et al.Laser fabrication of bioinspired gradient surfaces for wettability applications[J].Advanced Materials Interfaces,2021,8(5):2001610.

    • [89] DIVIN-MARIOTTI S,AMIEUX P,PASCALE-HAMRI A,et al.Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability[J].Applied Surface Science,2019,479:344-350.

    • [90] SINGH A K,KUMAR B S,JHA P,et al.Surface micro-structuring of type 304 stainless steel by femtosecond pulsed laser:effect on surface wettability and corrosion resistance[J].Applied Physics A,2018,124(12):846.

    • [91] YAN H,RASHID M R B A,KHEW S Y,et al.Wettability transition of laser textured brass surfaces inside different mediums[J].Applied Surface Science,2018,427:369-375.

    • [92] WANG B,WANG X,ZHENG H,et al.Femtosecond laser-induced surface wettability modification of polystyrene surface[J].Science China Physics,Mechanics & Astronomy,2016,59(12):124211.

    • [93] HUANG J,YANG S.Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser[J].Applied Surface Science,2022,579:152223.

    • [94] ELLEB R,ENGEL T,ANTONI F,et al.Study of femtosecond laser multi-scale textured steel surfaces on the wettability in relation to aging[J].Journal of Materials Science,2021,56(36):20169-20180.

    • [95] 罗晓,刘伟建,张红军,等.超快激光制备金属表面可控微纳二级结构及其功能化[J].中国激光,2021,48(15):146-169.LUO Xiao,LIU Weijian,ZHANG Hongjun,et al.Ultrafast laser fabrication of controllable micro-nano secondary structures on metal surfaces and their functionalization[J].Chinese Journal of Lasers,2021,48(15):146-169.(in Chinese)

    • [96] MUTLAK F A H,AHMED A F,NAYEF U M,et al.Improvement of absorption light of laser texturing on silicon surface for optoelectronic application[J].Optik,2021,237:166755.

    • [97] LIU X,COXON P R,PETERS M,et al.Black silicon:fabrication methods,properties and solar energy applications[J].Energy & Environmental Science,2014,7(10):3223-3263.

    • [98] BORODAENKO Y,GURBATOV S,TUTOV M,et al.Direct femtosecond laser fabrication of chemically functionalized ultra-black textures on silicon for sensing applications[J].Nanomaterials,2021,11(2):401.

    • [99] WU C,CROUCH C H,ZHAO L,et al.Near-unity below-band-gap absorption by microstructured silicon[J].Applied Physics Letters,2001,78(13):1850-1852.

    • [100] 吕晓仁,钟兵,黄艳斐,等.超快激光制备金属抗反射表面的研究进展[J].中国表面工程,2021,34(6):90-101.LÜ Xiaoren,ZHONG Bing,HUANG Yanfei,et al.Research progress of antireflective metal surfaces prepared by ultrafast laser[J].China Surface Engineering,2021,34(6):90-101.(in Chinese)

    • [101] VOROBYEV A Y,GUO C L.Femtosecond laser blackening of platinum[J].Journal of Applied Physics,2008,104(5),53516.

    • [102] STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.

    • [103] BINETTI V R,SCHIFFMAN J D,LEAFFER O D,et al.The natural transparency and piezoelectric response of the Greta oto butterfly wing[J].Integrative Biology,2009,1(4):324-329.

    • [104] STODDART P R,CADUSCH P J,COMINS J D,et al.Optical properties of chitin:surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings [J].Nantechnology,2006,17(3):680-686.

    • [105] STAVENGA D G,FOLETTI S,PALASANTZAS G,et al.Light on the moth-eye corneal nipple array of butterflies[J].Proceedings of the Royal Society B:Biological Sciences,2006,273(1587):661-667.

    • [106] PAPADOPOULOS A,SKOULAS E,STRATAKIS E,et al.Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J].Advanced Materials,2019,31(32):1901123.

    • [107] HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.

    • [108] JEEVAHAN J,CHANDRASEKARAN M,BRITTO J G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.

    • [109] SHI H,CUI Z,WANG W,et al.Blackening of magnesium alloy using femtosecond laser[J].Applied Optics,2015,54(25):7766-7772.

    • [110] LOU R,ZHANG G,LI G,et al.Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J].Micromachines,2020,11(1):20.

    • [111] AYDIN K,FERRY V E,BRIGGS R M,et al.Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J].Nature Communications,2011,2:517.

    • [112] OU Z,HUANG M,ZHAO F.The fluence threshold of femtosecond laser blackening of metals:the effect of laser-induced ripples[J].Optics & Laser Technology,2016,79:79-87.

    • [113] DAR M H,KULADEEP R,SAIKIRAN V,et al.Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range[J].Applied Surface Science,2016,371:479-487.

    • [114] CHEN T,WANG W,TAO T,et al.Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J].Applied Surface Science,2020,509:145182.

    • [115] LI X,LI M,LIU H.Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J].Chinese Optics Letters,2021,19(9):91404.

    • [116] ZHAO J H,LV Z H,LI C H,et al.Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J].IEEE Sensors Journal,2017,17(4):1000-1004.

    • [117] YU X Y,ZHAO J H,LI C H,et al.Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation[J].IEEE Transactions on Nanotechnology,2017,16(3):502-506.

    • [118] LI C H,WANG X P,ZHAO J H,et al.Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J].IEEE Sensors Journal,2018,18(9):3595-3601.

    • [119] HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.

    • [120] 范培迅,钟敏霖.超快激光制备金属表面微纳米抗反射结构进展[J].红外与激光工程,2016,45(6):98-109.FAN Peixun,ZHONG Minlin.Progress on ultrafast laser fabricating metal surface micro-nanoantireflection structures[J].Infrared and Laser Engineering,2016,45(6):98-109.(in Chinese)

    • [121] ZHENG B,WANG W,JIANG G,et al.Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination[J].Applied Physics B,2016,122(6):180.

  • 参考文献

    • [1] ARSLAN A,MASJUKI H H,KALAM M A,et al.Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance:A review[J].Critical Reviews in Solid State and Materials Sciences,2016,41(6):447-481.

    • [2] KAWASEGI N,SUGIMORI H,MORIMOTO H,et al.Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J].Precision Engineering,2009,33(3):248-254.

    • [3] JIANG Y,LIU Y Y,LIU X,et.al.Organic solid-state lasers:A materials view and future development[J].Chemical Society Reviews,2020,49(16):5885-5944.

    • [4] SIDDIQUI A A,DUBEY A K.Recent trends in laser cladding and surface alloying[J].Optics and Laser Technology,2021,134:106619.

    • [5] FESHARAKI M N,SHOJA-RAZAVI R,MANSOURI H A,et al.Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods[J].Surface & Coatings Technology,2018,353:25-31.

    • [6] INOKOSHI M,SHIMIZUBATA M,NOZAKI K,et al.Impact of sandblasting on the flexural strength of highly translucent zirconia[J].Journal of the Mechanical Behavior of Biomedical Materials,2021,115:104268.

    • [7] DAROONPARVAR M,KHAN M U F,SAADEH Y,et al.Modification of surface hardness,wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt% NaCl solution[J].Corrosion Science,2020,176:109029.

    • [8] QIAN B T,SHEN Z Q.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir,2005,21(20):9007-9009.

    • [9] CHEN C Y,YOSHIBA M,NAGOSHI T,et al.Pulse electroplating of ultra-fine grained Au films with high compressive strength[J].Electrochemistry Communications,2016,67:51-54.

    • [10] HADAD M,HOCKAUF M,MEYER L W,et al.Adhesion evaluation of multilayered based WC–Co–Cr thermally sprayed coatings[J].Surface and Coatings Technology,2008,202(18):4399-4405.

    • [11] 王志远,邢志国,王海斗,等.液滴在固体织构化表面上的润湿行为研究现状[J].机械工程学报,2022,58(1):124-144.WANG Zhiyuan,XING Zhiguo,WANG Haidou,et al.Research progress of droplet wetting behavior on solid textured surface[J].Journal of Mechanical Engineering,2022,58(1):124-144.(in Chinese)

    • [12] KRYUCHKOV M,BILOUSOV O,LEHMANN J,et al.Reverse and forward engineering of Drosophila corneal nanocoatings[J].Nature,2020,585(7825):383.

    • [13] LIU Y,ZHANG H,DAI S,et al.Designing a bioinspired scaly textured surface for improving the tribological behaviors of starved lubrication[J].Tribology International,2022,173:107594.

    • [14] ABDEL-AAL H A.Surface structure and tribology of legless squamate reptiles[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,79:354-398.

    • [15] LU L,YAO W,XIE Y,et al.Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn.leaf[J].Surface and Coatings Technology,2021,405:126721.

    • [16] XIAO G,HE Y,HUANG Y,et al.Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J].IEEE Access,2019,7:107635-107647.

    • [17] BATHE R,SAI KRISHNA V,NIKUMB S K,et al.Laser surface texturing of gray cast iron for improving tribological behavior[J].Applied Physics A,2014,117(1):117-123.

    • [18] GACHOT C,ROSENKRANZ A,HSU S,et al.A critical assessment of surface texturing for friction and wear improvement[J].Wear,2017,372:21-41.

    • [19] TIAN G,ZHANG Y,FENG X,et al.Focus on bioinspired textured surfaces toward fluid drag reduction:Recent progresses and challenges[J].Advanced Engineering Materials,2022,24(1):696.

    • [20] GREEN M.Recent progress in crystalline and polycrystalline silicon solar-cells[J].Solar Energy Materials,1991,23(2-4):111-116.

    • [21] BEKIR S Y,OMER K,ABDURRAHMAN Y T.Surface engineering towards self-cleaning applications:laser textured silicon surface[J].Procedia Engineering,2017,184:716-724.

    • [22] GAMALY E G.The physics of ultra-short laser interaction with solids at non-relativistic intensities[J].Physics Reports,2011,508(4):91-243.

    • [23] SHAIKH S,KEDIA S,SINGH D,et al.Surface texturing of Ti6Al4V alloy using femtosecond laser for superior antibacterial performance[J].Journal of Laser Applications,2019,31(2):22011.

    • [24] SUGIOKA K,CHENG Y.Ultrafast lasers—reliable tools for advanced materials processing[J].Light:Science & Applications,2014,3(4):149.

    • [25] CHEN Z,YANG J,LIU H,et al.A short review on functionalized metallic surfaces by ultrafast laser micromachining[J].International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.

    • [26] RUDD J V,KORN G,KANE S,et al.Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti:Al2O3 regenerative amplifier[J].Optics Letters,1993,18(23):2044-2046.

    • [27] DESBIENS J P,MASSON P.ArF excimer laser micromachining of pyrex,SiC and PZT for rapid prototyping of MEMS components[J].Sensors and Actuators A:Physical,2007,136(2):554-563.

    • [28] MISHRA S,YADAVA V.Laser beam micromachining(LBMM)— A review[J].Optics and Lasers in Engineering,2015,73:89-122.

    • [29] LIU X,DU D,MOUROU G.Laser ablation and micromachining with ultrashort laser pulses[J].Ieee Journal of Quantum Electronics,1997,33(10):1706-1716.

    • [30] ETSION I.State of the art in laser surface texturing[C]//5th China International Symposium on Tribology/1st International Tribology Symposium of IFToMM,Beijing,Sep 24-27,2008.Advanced Tribology,2009:761-762.

    • [31] ZHONG Y,ZHENG L,GAO Y,et al.Numerical simulation and experimental investigation of tribological performance on bionic hexagonal textured surface[J].Tribology International,2019,129:151-161.

    • [32] HAN Z,YIN W,ZHANG J,et al.Erosion-resistant surfaces inspired by tamarisk[J].Journal of Bionic Engineering,2013,10(4):479-487.

    • [33] ETSION I,SHER E.Improving fuel efficiency with laser surface textured piston rings[J].Tribology International,2009,42(4):542-547.

    • [34] SU W,ZHOU T,ZHANG P,et al.Effect of the orientation of laser stripes on the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,107:380-388.

    • [35] 郑晓辉,宋皓,张庆,等.激光表面织构化对材料摩擦学性能影响的研究进展[J].材料导报,2017,31(17):68-74.ZHENG Xiaohui,SONG Hao,ZHANG Qing,et al.Effect of laser surface texturing on tribological properties of materials:A review[J].Materials Reports,2017,31(17):68-74.(in Chinese)

    • [36] SHAN H,ZHOU H,SUN N,et al.Study on adhesion resistance behavior of sample with striated non-smooth surface by laser processing technique[J].Journal of Materials Processing Technology,2008,199(1):221-229.

    • [37] WEN L,WEAVER J C,LAUDER G V.Biomimetic shark skin:design,fabrication and hydrodynamic function[J].Journal of Experimental Biology,2014,217(10):1656-1666.

    • [38] HUANG Q,SHI X,XUE Y,et al.Optimization of bionic textured parameter to improve the tribological performance of AISI 4140 self-lubricating composite through response surface methodology[J].Tribology International,2021,161:107104.

    • [39] SU W,ZHOU T,SUI Q,et al.Study on the relationship between intervals among laser stripes and the abrasion resistance of biomimetic laser textured surfaces[J].Optics & Laser Technology,2018,104:216-224.

    • [40] YAN D,QU N,LI H,et al.Significance of dimple parameters on the friction of sliding surfaces investigated by orthogonal experiments[J].Tribology Transactions,2010,53(5):703-712.

    • [41] EZHILMARAN V,VASA N J,KRISHNAN S,et al.Femtosecond pulsed Ti:sapphire laser-assisted surface texturing on piston ring and its tribology characterization[J].Journal of Tribology-Transactions of the Asme,2021,143(4):41801.

    • [42] BASHA D N,PADMANABHAM G,BATHE R.Tribological behavior of surface textured gray cast iron at different texture density by ultrafast laser[J].Materials Performance and Characterization,2019,8(6):1147-1158.

    • [43] WANG Z,ZHAO Q,WANG C,et al.Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing[J].Applied Physics A,2015,119(3):1155-1163.

    • [44] HUANG Q,SHI X,MA J.Tribological behavior of surface bionic rhombic-textured M50 steel containing SnAgCu and MXene-Nb2C under dry sliding conditions[J].Journal of Materials Engineering and Performance,2021,30(12):9390-9402.

    • [45] LU P,WOOD R J K,GEE M G,et al.The use of anisotropic texturing for control of directional friction[J].Tribology International,2017,113:169-181.

    • [46] LU P,WOOD R J K,GEE M G,et al.A novel surface texture shape for directional friction control[J].Tribology Letters,2018,66(1):51.

    • [47] MA J,LIU Y,YI P,et al.Anti-friction mechanism of sinusoidal texture with various intervals:The synergistic effect of dynamic pressure and tribofilm[J].Tribology International,2022,173:107635.

    • [48] SU Y,WANG Z,LU H,et al.Improved wear resistance of directed energy deposited Fe-Ni-Cr alloy via closed-loop controlling laser power[J].Journal of Manufacturing Processes,2022,75:802-813.

    • [49] LI H,ZHOU H,ZHANG D P,et al.Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture[J].Materials Chemistry and Physics,2022,277:125515.

    • [50] HOU Q,YANG X,CHENG J,et al.Optimization of performance parameters and mechanism of bionic texture on friction surface[J].Coatings,2020,10(2):171.

    • [51] WALSH M,LINDEMANN A.Turbulent boundary layer characteristics over streamwise grooves[J].AIAA Pap,1984,84:2185.

    • [52] XIAO G,HE Y,LIU S,et al.Laser processing of micro/nano biomimetic structures[J].Micro & Nano Letters,2021,16(6):327-335.

    • [53] GEIGER M,ROTH S,BECKER W.Influence of laser-produced microstructures on the tribological behaviour of ceramics[J].Surface & Coatings Technology,1998,100(1-3):17-22.

    • [54] ZHANG P,WU S,WEI H J,et al.The effect of femtosecond laser surface textured microdimples array on friction reduction under full oil lubrication conditions[J].Lasers in Engineering,2021,48(1-3):63-79.

    • [55] DUFILS J,FAVERJON F,HÉAU C,et al.Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties[J].Surface and Coatings Technology,2017,329:29-41.

    • [56] ADEYEMI K,SUN B,XUE W,et al.Friction and wear characteristics modification via laser surface textured grooves[J].Surface Engineering,2021,37(5):658-668.

    • [57] ENSIKAT H J,DITSCHE-KURU P,NEINHUIS C,et al.Superhydrophobicity in perfection:the outstanding properties of the lotus leaf[J].Beilstein Journal of Nanotechnology,2011,2(1):152-161.

    • [58] EXTRAND,C W,MOON,S I,Repellency of the lotus leaf:contact angles,drop retention,and sliding angles[J].Langmuir,2014,30(29):8791-8797.

    • [59] GAO X F,YAN X,JIANG L,et al.The drystyle antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J].Advanced Materials,2007,19(17):2213.

    • [60] GAO X,JIANG L.Water-repellent legs of water striders[J].Nature,2004,432(7013):36-36.

    • [61] BHUSHAN B,JUNG Y C,KOCH K.Micro-,nano-and hierarchical structures for superhydrophobicity,self-cleaning and low adhesion[J].Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences,2009,367(1894):1631-1672.

    • [62] BHUSHAN B,JUNG Y C.Wetting,adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces[J].Journal of Physics:Condensed Matter,2008,20(22):225010.

    • [63] BOHN H F,FEDERLE W.Insect aquaplaning:Nepenthes pitcher plants capture prey with the peristome,a fully wettable water-lubricated anisotropic surface[J].Proceedings of the National Academy of Sciences,2004,101(39):14138-14143.

    • [64] MIGUEL S,HEHN A,BOURGAUD F.Nepenthes:State of the art of an inspiring plant for biotechnologists[J].Journal of Biotechnology,2018,265:109-115.

    • [65] ZHENG Y,BAI H,HUANG Z,et al.Directional water collection on wetted spider silk[J].Nature,2010,463(7281):640-643.

    • [66] LIU Y,LI X,JIN J,et al.Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model[J].Applied Surface Science,2017,400:498-505.

    • [67] 吴思竹,李大宇,黄玖辉,等.飞秒激光制备仿生疏水微柱阵列应用于液滴操控[J].科学通报,2022,67:1958-1965.WU Sizhu,LI Dayu,HUANG Jiuhui,et al.Fabrication of bionic hydrophobic micropillar arrays by femtosecond lasers for droplet manipulation[J].Chin Sci Bull,2022,67:1958-1965.(in Chinese)

    • [68] LONG J,ZHONG M,FAN P,et al.Wettability conversion of ultrafast laser structured copper surface[J].Journal of Laser Applications,2015,27(S2):S29107.

    • [69] SARBADA S,SHIN Y C.Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J].Applied Surface Science,2017,405:465-475.

    • [70] CAO Q,WANG Z,HE W,et al.Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing[J].Applied Surface Science,2021,557:149842.

    • [71] RAIMBAULT O,BENAYOUN S,ANSELME K,et al.The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response[J].Materials Science and Engineering:C,2016,69:311-320.

    • [72] CUNHA A,SERRO A P,OLIVEIRA V,et al.Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces[J].Applied Surface Science,2013,265:688-696.

    • [73] ANNALISA V,LEONARDO D V,CATERINA G,et al.Femtosecond laser fabrication of superhydrophobic metallic surfaces with anti-icing properties[C]//Conference on Laser-Based Micro-and Nanoprocessing XV,Electr Network,Mar 06-11,2021.Spie-Int Soc Optical Engineering,2021,16674.

    • [74] CUNHA A,ELIE A M,PLAWINSKI L,et al.Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J].Applied Surface Science,2016,360:485-493.

    • [75] IJAOLA A O,BAMIDELE E A,AKISIN C J,et al.Wettability transition for laser textured surfaces:a comprehensive review[J].Surfaces and Interfaces,2020,21:100802.

    • [76] VOLPE A,GAUDIUSO C,DI VENERE L,et al.Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties[J].Coatings,2020,10(6):587.

    • [77] SHEN Y,WANG G,TAO J,et al.Anti-icing performance of superhydrophobic texture surfaces depending on reference environments[J].Advanced Materials Interfaces,2017,4(22):1700836.

    • [78] 高淑蓉,焦丽丽,易孟超,等.疏水/超疏水表面防/除冰原理及其研究进展[J].空气动力学学报,2021,39(2):151-160.GAO Shurong,JIAO Lili,YI Mengchao,et al.Mechanism and research progress of anti/de-icing using hydrophobic/superhydrophobic surfaces[J].Acta Aerodynamica Sinica,2021,39(2):151-160.(in Chinese)

    • [79] 蔡海龙,闫雪亮,王素梅,等.飞秒激光微通道加工研究进展[J].北京理工大学学报,2012,32(10):991-1003.CAI Hailong,YAN Xueliang,WANG Sumei,et al.Advances in femtosecond laser fabrication of microchannels[J].Transactions of Beijing Institute of Technology,2012,32(10):991-1003.(in Chinese)

    • [80] CHANG T L,TSAI T K,YANG H P,et al.Effect of ultra-fast laser texturing on surface wettability of microfluidic channels[J].Microelectronic Engineering,2012,98:684-688.

    • [81] YONG J,ZHAN Z,SINGH S C,et al.Microfluidic channels fabrication based on underwater superpolymphobic microgrooves produced by femtosecond laser direct writing[J].ACS Applied Polymer Materials,2019,1(11):2819-2825.

    • [82] TIAN X,VERHO T,RAS R H A.Moving superhydrophobic surfaces toward real-world applications[J].Science,2016,352(6282):142-143.

    • [83] YOUNG T.III.An essay on the cohesion of fluids[J].Philosophical Transactions of the Royal Society of London,1805,95:65-87.

    • [84] WENZEL R N.Resistance of solid surfaces to wetting by water[J].Industrial & Engineering Chemistry,1936,28(8):988-994.

    • [85] CASSIE A B D,BAXTER S.Wettability of porous surfaces[J].Transactions of the Faraday Society,1944,40:546-551.

    • [86] TUTEJA A,CHOI W,MA M L,et al.Designing superoleophobic surfaces[J].Science,2007,318(5856):1618-1622.

    • [87] LIU T,WEI H,LI J,et al.Wettability control of sapphire by surface texturing in combination with femtosecond laser irradiation and chemical etching[J].ChemistrySelect,2020,5(31):9555-9562.

    • [88] WU J,YIN K,XIAO S,et al.Laser fabrication of bioinspired gradient surfaces for wettability applications[J].Advanced Materials Interfaces,2021,8(5):2001610.

    • [89] DIVIN-MARIOTTI S,AMIEUX P,PASCALE-HAMRI A,et al.Effects of micro-knurling and femtosecond laser micro texturing on aluminum long-term surface wettability[J].Applied Surface Science,2019,479:344-350.

    • [90] SINGH A K,KUMAR B S,JHA P,et al.Surface micro-structuring of type 304 stainless steel by femtosecond pulsed laser:effect on surface wettability and corrosion resistance[J].Applied Physics A,2018,124(12):846.

    • [91] YAN H,RASHID M R B A,KHEW S Y,et al.Wettability transition of laser textured brass surfaces inside different mediums[J].Applied Surface Science,2018,427:369-375.

    • [92] WANG B,WANG X,ZHENG H,et al.Femtosecond laser-induced surface wettability modification of polystyrene surface[J].Science China Physics,Mechanics & Astronomy,2016,59(12):124211.

    • [93] HUANG J,YANG S.Investigation on anisotropic tribological properties of superhydrophobic/superlipophilic lead bronze surface textured by femtosecond laser[J].Applied Surface Science,2022,579:152223.

    • [94] ELLEB R,ENGEL T,ANTONI F,et al.Study of femtosecond laser multi-scale textured steel surfaces on the wettability in relation to aging[J].Journal of Materials Science,2021,56(36):20169-20180.

    • [95] 罗晓,刘伟建,张红军,等.超快激光制备金属表面可控微纳二级结构及其功能化[J].中国激光,2021,48(15):146-169.LUO Xiao,LIU Weijian,ZHANG Hongjun,et al.Ultrafast laser fabrication of controllable micro-nano secondary structures on metal surfaces and their functionalization[J].Chinese Journal of Lasers,2021,48(15):146-169.(in Chinese)

    • [96] MUTLAK F A H,AHMED A F,NAYEF U M,et al.Improvement of absorption light of laser texturing on silicon surface for optoelectronic application[J].Optik,2021,237:166755.

    • [97] LIU X,COXON P R,PETERS M,et al.Black silicon:fabrication methods,properties and solar energy applications[J].Energy & Environmental Science,2014,7(10):3223-3263.

    • [98] BORODAENKO Y,GURBATOV S,TUTOV M,et al.Direct femtosecond laser fabrication of chemically functionalized ultra-black textures on silicon for sensing applications[J].Nanomaterials,2021,11(2):401.

    • [99] WU C,CROUCH C H,ZHAO L,et al.Near-unity below-band-gap absorption by microstructured silicon[J].Applied Physics Letters,2001,78(13):1850-1852.

    • [100] 吕晓仁,钟兵,黄艳斐,等.超快激光制备金属抗反射表面的研究进展[J].中国表面工程,2021,34(6):90-101.LÜ Xiaoren,ZHONG Bing,HUANG Yanfei,et al.Research progress of antireflective metal surfaces prepared by ultrafast laser[J].China Surface Engineering,2021,34(6):90-101.(in Chinese)

    • [101] VOROBYEV A Y,GUO C L.Femtosecond laser blackening of platinum[J].Journal of Applied Physics,2008,104(5),53516.

    • [102] STRATAKIS E,BONSE J,HEITZ J,et al.Laser engineering of biomimetic surfaces[J].Materials Science and Engineering:R:Reports,2020,141:100562.

    • [103] BINETTI V R,SCHIFFMAN J D,LEAFFER O D,et al.The natural transparency and piezoelectric response of the Greta oto butterfly wing[J].Integrative Biology,2009,1(4):324-329.

    • [104] STODDART P R,CADUSCH P J,COMINS J D,et al.Optical properties of chitin:surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings [J].Nantechnology,2006,17(3):680-686.

    • [105] STAVENGA D G,FOLETTI S,PALASANTZAS G,et al.Light on the moth-eye corneal nipple array of butterflies[J].Proceedings of the Royal Society B:Biological Sciences,2006,273(1587):661-667.

    • [106] PAPADOPOULOS A,SKOULAS E,STRATAKIS E,et al.Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J].Advanced Materials,2019,31(32):1901123.

    • [107] HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.

    • [108] JEEVAHAN J,CHANDRASEKARAN M,BRITTO J G,et al.Superhydrophobic surfaces:A review on fundamentals,applications,and challenges[J].Journal of Coatings Technology and Research,2018,15(2):231-250.

    • [109] SHI H,CUI Z,WANG W,et al.Blackening of magnesium alloy using femtosecond laser[J].Applied Optics,2015,54(25):7766-7772.

    • [110] LOU R,ZHANG G,LI G,et al.Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J].Micromachines,2020,11(1):20.

    • [111] AYDIN K,FERRY V E,BRIGGS R M,et al.Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J].Nature Communications,2011,2:517.

    • [112] OU Z,HUANG M,ZHAO F.The fluence threshold of femtosecond laser blackening of metals:the effect of laser-induced ripples[J].Optics & Laser Technology,2016,79:79-87.

    • [113] DAR M H,KULADEEP R,SAIKIRAN V,et al.Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range[J].Applied Surface Science,2016,371:479-487.

    • [114] CHEN T,WANG W,TAO T,et al.Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J].Applied Surface Science,2020,509:145182.

    • [115] LI X,LI M,LIU H.Enhanced optical absorption surface of titanium fabricated by a femtosecond laser assisted with airflow pressure[J].Chinese Optics Letters,2021,19(9):91404.

    • [116] ZHAO J H,LV Z H,LI C H,et al.Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J].IEEE Sensors Journal,2017,17(4):1000-1004.

    • [117] YU X Y,ZHAO J H,LI C H,et al.Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation[J].IEEE Transactions on Nanotechnology,2017,16(3):502-506.

    • [118] LI C H,WANG X P,ZHAO J H,et al.Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J].IEEE Sensors Journal,2018,18(9):3595-3601.

    • [119] HUA X S,ZHANG Y J,WANG H W.The effect of texture unit shape on silicon surface on the absorption properties[J].Solar Energy Materials and Solar Cells,2010,94(2):258-262.

    • [120] 范培迅,钟敏霖.超快激光制备金属表面微纳米抗反射结构进展[J].红外与激光工程,2016,45(6):98-109.FAN Peixun,ZHONG Minlin.Progress on ultrafast laser fabricating metal surface micro-nanoantireflection structures[J].Infrared and Laser Engineering,2016,45(6):98-109.(in Chinese)

    • [121] ZHENG B,WANG W,JIANG G,et al.Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination[J].Applied Physics B,2016,122(6):180.

  • 手机扫一扫看