en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈惟惟,女,1998年出生,硕士研究生。主要研究方向为摩擦学及表面工程。E-mail:1157916008@qq.com

通讯作者:

钱善华,男,1980年出生,博士,教授。主要研究方向为摩擦学及仿生设计。E-mail:qianjnwx@126.com

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220504001

参考文献 1
时晓嫚,刘国柱,李昕跃.乙酸乙酯溶胀处理在医用硅胶导管亲水改性中的研究与应用[J].化工新型材料,2016,44(7):234-236.SHI Xiaoman,LIU Guozhu,LI Xinyue.Research and application of ethyl acetate swelling treatment in hydrophilic modification of medical silica gel catheter[J].New Chemical Materials,2016,44(7):234-236.(in Chinese)
参考文献 2
张承焱.硅橡胶在生物医学领域的应用[J].有机硅材料,2002,16(6):14-17.ZHANG Chengyan.Application of silicone rubber in biomedical field[J].Organosilicon Material,2002,16(6):14-17.(in Chinese)
参考文献 3
张素文,郈秀菊,孟建文,等.医用硅橡胶导管的表面改性及其亲水性和抗菌性研究[J].橡胶工业,2019,66(8):611-614.ZHANG Suwen,HOU Xiuju,MENG Jianwen,et al.Study on surface modification,hydrophilicity and antibacterial properties of medical silicone rubber catheter[J].Rubber Industry,2019,66(8):611-614.(in Chinese)
参考文献 4
孙小淏.医用硅橡胶表面亲水性改性[D].西安:西安科技大学,2014.SUN Xiaohao.Hydrophilic modification of medical silicone rubber surface[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)
参考文献 5
刘会平,南庆贤,马长伟.Mozzarella 干酪生产工艺的优化[J].中国乳品工业,2003,31(3):3-6.LIU Huiping,NAN Qingxian,MA Changwei.Optimization of Mozzarella cheese production process[J].China Dairy Industry,2003,31(3):3-6.(in Chinese)
参考文献 6
刘斌.探讨DHS和PFN在老年股骨粗隆间骨折中的治疗选择和临床疗效[J].中外医学研究,2012,10(36):10-11.LIU Bin.To explore the treatment options and clinical effects of DHS and PFN in the treatment of femoral intertrochanteric fracture in the elderly[J].Chinese and Foreign Medical Research,2012,10(36):10-11.(in Chinese)
参考文献 7
毛津淑,常津,陈贻瑞,等.介入医学导管表面修饰的研究进展[J].北京生物医学工程,1998,17(4):237-242.MAO Jinshu,CHANG Jin,CHEN Yirui,et al.Research progress in surface modification of interventional medical catheter[J].Beijing Biomedical Engineering,1998,17(4):237-242.(in Chinese)
参考文献 8
向青云,熊婷,车国勇,等.硅橡胶的表面亲疏水改性研究进展[J].有机硅材料,2017,31(S1):197-201.XIANG Qingyun,XIONG Ting,CHE Guoyong,et al.Research progress in surface hydrophobic modification of silicone rubber[J].Organosilicon Material,2017,31(S1):197-201.(in Chinese)
参考文献 9
王小红.加成型硅橡胶的制备及表面接枝NVP亲水改性研究[D].南京:东南大学,2018.WANG Xiaohong.Preparation of addition silicone rubber and hydrophilic modification of surface grafted NVP[D].Nanjing:Southeast University,2018.(in Chinese)
参考文献 10
AKDOGAN E,SIRIN H T.Plasma surface modification strategies for the preparation of antibacterial biomaterials:A review of the recent literature[J].Materials Science & Engineering C-Materials For Biological Applications,2021,131:112474.
参考文献 11
GUO M,MENG F K,LI G P,et al.Effective antibacterial glass fiber membrane prepared by plasma-enhanced chemical grafting [J].ACS Omega,2019,4(15):16591-16596.
参考文献 12
RUMRILL S M,AGARWAL V,LAU K K S.Conformal growth of ultrathin hydrophilic coatings on hydrophobic surfaces using initiated chemical vapor deposition[J].Langmuir,2021,37(25):7751-7759.
参考文献 13
AMERIAN M,SAMETI M,SEYEDJAFARI E.Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment[J].Journal of Biomedical Materials Research Part A,2019,107(12):2806-2813.
参考文献 14
费正东,赖尚涛,钟明强.常压等离子体表面亲水化改性聚丙烯薄膜[J].塑料,2011,40(3):61-63.FEI Zhengdong,LAI Shangtao,ZHONG Mingqiang.Hydrophilic modification of polypropylene film on the surface of atmospheric pressure plasma[J] Plastic,2011,40(3):61-63.(in Chinese)
参考文献 15
王岩,石艳,卢咏来.医用硅橡胶亲水改性研究进展[J].弹性体,2021,31(1):64-70.WANG Yan,SHI Yan,LU Yonglai.Research progress in hydrophilic modification of medical silicone rubber[J].Elastomer,2021,31(1):64-70.(in Chinese)
参考文献 16
杨玲玲.抗菌亲水硅橡胶的制备及性能研究[D].北京:北京化工大学,2018.YANG Lingling.Preparation and properties of antibacterial hydrophilic silicone rubber[D].Beijing:Beijing University of Chemical Technology,2018.(in Chinese)
参考文献 17
MAZUMDER M A J.Polydimethylsiloxane substrates with surfaces decorated by immobilized hyaluronic acids of different molecular weight for biomedical applications[J].Arabian Journal for Science and Engineering,2017,42(1):271-280.
参考文献 18
姚海楠,高长青,丁雪佳,等.表面接枝PHAMA对硅橡胶亲水性能的影响[J].橡胶工业,2019,66(6):418-421.YAO Hainan,GAO Changqing,DING Xuejia,et al.Effect of surface grafting PHAMA on hydrophilic properties of silicone rubber[J].Rubber Industry,2019,66(6):418-421.(in Chinese)
参考文献 19
LIU J J,QU S X,SUO Z G,et al.Functional hydrogel coatings[J].National Science Review,2021,8(2):nwaa254.
参考文献 20
YANG W,WANG H T,LI T F,et al.Mechanics—An endless frontier[J].Science China—Physics Mechanics & Astronomy,2019,62(1):014601.
参考文献 21
JANG H,CHOI H,JEONG H,et al.Thermally crosslinked biocompatible hydrophilic polyvinylpyrrolidone coatings on polypropylene with enhanced mechanical and adhesion properties[J].Macromolecular Research,2018,26(2):151-156.
参考文献 22
FU M J,LIANG Y J,LV X,et al.Recent advances in hydrogel-based anti-infective coatings[J].Journal of Materials Science & Technology,2021,85:169-183.
参考文献 23
YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.
参考文献 24
TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.
参考文献 25
YU Y,YUK H,PARADA G A,et al.Multifunctional “hydrogel skins” on diverse polymers[J].Advanced Materials.2019,31(7):1807101.
参考文献 26
TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.
参考文献 27
ZHOU S S,QIAN S H,WANG W,et al.Fabrication of a hydrophilic low-friction poly(hydroxyethyl methacrylate)coating on silicon rubber[J].Langmuir,2021,37(45):13493-13500.
参考文献 28
全国橡胶与橡胶制品标准化技术委员会.GB/T 7764— 2017 橡胶鉴定红外光谱法[S].北京:中国标准出版社,2017.National Technical Committee for standardization of rubber and rubber products.GB/T 7764—2017 Rubber Identification Infrared Spectroscopy[S].Beijing:China Standards Press,2017.(in Chinese)
参考文献 29
王建平,张峻,赵娟.N-异丙基丙烯酰胺水凝胶的红外光谱[J].光谱学与光谱分析,2016,36(S1):111-112.WANG Jianping,ZHANG Jun,ZHAO Juan.Infrared spectrum of N-isopropylacrylamide hydrogel[J].Spectroscopy and Spectral Analysis,2016,36(S1):111-112.(in Chinese)
参考文献 30
孙永军,梁建军,郑怀礼,等.紫外光引发阳离子聚丙烯酰胺的红外光谱研究[J].光谱学与光谱分析,2014,34(5):1234-1239.SUN Yongjun,LIANG Jianjun,ZHENG Huaili,et al.Infrared spectroscopic study of cationic polyacrylamide initiated by ultraviolet light[J].Spectroscopy and Spectral Analysis,2014,34(5):1234-1239.(in Chinese)
参考文献 31
陈和生,邵景昌.聚丙烯酰胺的红外光谱分析[J].分析仪器,2011(3):36-40.CHEN Hesheng,SHAO Jingchang.Infrared spectrum analysis of polyacrylamide[J].Analysis Instrument,2011(3):36-40.(in Chinese)
参考文献 32
DUSUNCELI N,SANPOREAN C G,DROZDOV A D,et al.Mechanical and microstructural characterization of poly(N-isopropylacrylamide)hydrogels and its nanocomposites[J].Proceedings of The Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications,2021,235(5):1021-1035.
参考文献 33
MA X,DING G,ZHANG Y M,et al.Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying condition[J].Energy Conversion and Management,2007,18(3):88-92.
参考文献 34
刘艳,徐立霞,李昕跃.医用高分子材料表面润滑性的研究状况[J].大连大学学报,2012(6):46-51.LIU Yan,XU Lixia,LI Xinyue.Research status of surface lubricity of medical polymer materials[J].Journal of Dalian University,2012(6):46-51.(in Chinese)
参考文献 35
王国刚,赵悦菊,张金玲,等.硅橡胶表面润湿特性对积污行为影响的研究进展[J].中国表面工程,2012,25(2):15-20.WANG Guogang,ZHAO Yueju,ZHANG Jinling,et al.Research progress on the influence of surface wetting characteristics of silicone rubber on fouling behavior[J].China Surface Engineering,2012,25(2):15-20.(in Chinese)
参考文献 36
李华静,梁耀东,孙喜荣,等.甲醇汽油对橡胶的溶胀性[J].石油化工,2016,45(10):1236-1242.LI Huajing,LIANG Yaodong,SUN Xirong,et al.Swelling property of methanol gasoline to rubber[J].Petrochemical Industry,2016,45(10):1236-1242.(in Chinese)
参考文献 37
WEI Q B,LIU X Q,YUE Q Y.Mussel-inspired one-step fabrication of ultralow-friction coatings on diverse biomaterial surfaces[J].Langmuir,2019,35(24):8068-8075.
参考文献 38
BELL M S,BORHAN A.A volume-corrected wenzel Model[J].ACS Omega,2020,5(15):8875-8884.
参考文献 39
KUZMINSKA A,BUTRUK-RASZEJA B A,STEFANOWSKA A,et al.Polyvinylpyrrolidone(PVP)hydrogel coating for cylindrical polyurethane scaffolds[J].Colloids and Surfaces B-Biointerfaces,2020,192:111066.
参考文献 40
王曦梓,韩英,赵微微,等.医用聚电解质润滑涂层[J].清华大学学报(自然科学版),2020,60(8):630-638.WANG Zixi,HAN Ying,ZHAO Weiwei,et al.Medical polyelectrolyte lubricating coating[J].Journal of Tsinghua University(Natural Science Edition),2020,60(8):630-638.(in Chinese)
目录contents

    摘要

    硅橡胶的疏水特性致使其在体内的减阻性能较差,亟须开展其表面亲水性能和润滑性能均良好的工艺研究。以聚二甲基硅氧烷(PDMS)为基材,以丙烯酰胺(AAm)为反应单体,通过紫外光固化工艺在 PDMS 表面制备 5 种不同浓度的聚丙烯酰胺(PAAm)涂层,对涂层的表面成分、表面粗糙度、厚度、亲水性能及润滑性能进行表征,讨论 AAm 浓度对涂层性能的影响。结果表明:AAm 浓度对涂层厚度和粗糙度有显著影响,即随着 AAm 浓度的提升,涂层厚度和粗糙度均呈上升趋势; AAm 浓度也改善涂层的亲水性能和润滑性能,即与基材 PDMS(110°)相比,含 20 wt.% AAm 的涂层接触角低至 18.24°,降低到基材的 16.6%;含 8 wt.% AAm 的涂层摩擦因数低至 0.039,与基材 PDMS 相比降低 98.2%。提出一种硅橡胶表面构建牢固涂层的简单且高效的方法,可为软材料表面改性提供较好的借鉴。

    Abstract

    Silicone rubber is a hydrophobic polymer material that is non-toxic, odorless, and nonirritating to human tissues; hence, it is less likely to be rejected by the body. It is widely used in medical catheters owing to its good physiological inertia and biocompatibility. However, the hydrophobic characteristics of silicone rubber make its drag-reduction properties much poorer in vivo, resulting in a relatively low compatibility with human tissues. To improve the surface properties of silicone rubber in a water environment, new methods are need to improve the hydrophilic and lubricating properties of its surface. Existing strategies to obtain this type of surface, such as plasma treatment, chemical grafting, and hydrogel coating, have certain disadvantages. For instance, the effects of the plasma treatment method are unstable and hydrophobic recovery can occur. Hydrophilic surface modification by grafting is a complicated process, and the grafted polymer is easily damaged when subjected to wear, shear, or other mechanical loads. Although hydrogel coatings have the advantages of low friction, high wettability, and wear resistance, there are still disadvantages such as uncontrollable coating thickness and high surface roughness. Therefore, in this study, polydimethylsiloxane (PDMS) and acrylamide (AAm) were selected as the substrate and reaction monomer, respectively. Five types of polyacrylamide (PAAm) coatings with different concentrations were prepared on the PDMS surface using the UV curing process. The firm coating was prepared using a simple three-step method: pretreatment, curing, and cleaning. The surface composition and surface roughness of the coating were characterized by Fourier-transform infrared spectroscopy and white light interferometry, respectively. The coating thickness was measured using the step method. The coating thickness was measured using the step method. An adhesion test was conducted according to the grid method of the test standard ISO2409-2007 to characterize the bonding strength between the coating and substrate. The friction properties of the as-prepared coatings were characterized using a wear tester under the condition of water lubrication. The lubricating performance of the coating and the effects of the AAm concentration on the coating properties were also analyzed. The results showed that the AAm concentration had a significant effect on the thickness and roughness of the coating. As the AAm concentration increased, the corresponding thickness and roughness of the coatings increased. According to the Wenzel equation, the increased surface roughness of the hydrophilic material would also decrease the contact angle. Compared with the PDMS substrate (110°), the contact angle of the coating with 20 wt. % AAm reached as low as 18.24°, which decreased to 16.6% of the PDMS substrate. The hydrophilicity of the PDMS substrate surface significantly improved after the PAAm coating was prepared. In addition, the PAAm coating had a high bonding strength with the PDMS substrate and did not easily peel off. The AAm concentration also improved the lubricating properties of the coating. As the PAAm concentration increased, the friction factor of the coating first decreased and then slowly increased. The friction factor of the coating with 8 wt. % AAm reached as low as 0.039, which is 98.2% lower than that of the PDMS substrate. The proposed method to develop a strong coating on the silicone rubber surface is simple and efficient. It yields a coating with good hydrophilic and lubricating properties, thus providing better insights into the surface modification of similar soft materials.

  • 0 前言

  • 硅橡胶作为一种性能优异的高分子聚合物,无毒无味,对人体组织无刺激性,机体排异反应极少,具有良好的生理惰性和生物相容性,广泛应用于医疗器械等领域,尤其在体内医用导管方面的应用比例逐年提高[1-2]。虽然硅橡胶材料具有良好的理化性能,但因表面疏水性极强,导致其与人体内环境的亲和力较差[3-4]。在介入治疗中,若医用导管的表面润滑性不足,在进入或离开人体软组织过程中产生的摩擦不仅会给患者带来疼痛感,还会造成蛋白质、血小板以及细菌的黏附,引发伤口的感染和各种并发症。因此,制造出具有良好润滑性能的软管表面极为重要[5-7]

  • 为满足实际应用中对硅橡胶表面亲水性的要求,须要对其进行表面改性[8],即在硅橡胶表面引入亲水性好或生物相容性好的物质,覆盖原本疏水表面,达到亲水改性的效果[9]。目前,表面改性的实施方式有等离子处理、化学接枝和水凝胶涂层等[10-12]。等离子处理技术使硅橡胶表面产生活性基团,能够快速、高效地改善硅橡胶表面亲水性,具有效率高、效果显著等优势[13-14],但效果不稳定,存在一定的疏水恢复性[15-16]。表面接枝亲水化改性法是经过化学方法使硅橡胶表面产生极性基团,从而达到提高表面亲水性的目的[817],如通过紫外光辐射接枝方法将聚透明质酸甲基丙烯酸酯 (PHAMA)接枝到甲基乙烯基硅橡胶表面,改善了硅橡胶表面亲水性能[18]。然而,接枝步骤较为繁琐,接枝聚合物也比较脆弱,在其受到磨损、剪切或其他机械负荷时容易损坏。为解决这些问题,水凝胶涂层在表面改性方面得到了广泛运用[19]。水凝胶由水分子和亲水聚合物网络组成[20],具有低摩擦[21]、生物相容性好[22]等特点,作为表面涂层时可提高样品表面的亲水性能[23]。而表面引发法[24]作为一种简单有效方法,在水凝胶涂层制备中得到广泛运用。表面引发过程中,首先用疏水性光引发剂通过扩散或覆盖底漆层在目标基材表面,然后将水凝胶前体覆盖在处理过的基材表面上完成固化,使水凝胶涂层能够牢固地结合到基材上[25-26]。虽然上述制备的涂层具有低摩擦、高湿润性、耐磨性等优势,但仍存在一些缺陷,如涂层厚度不可控、表面粗糙度较高等[27]。因此对于表面改性仍需进一步研究。

  • 本文以丙烯酰胺(AAm)为反应单体,在聚二甲基硅氧烷(PDMS)表面通过紫外光固化的方式制备出亲水性涂层,并对涂层的表面成分、表面粗糙度、厚度、亲水性能、结合性能和润滑性能进行表征,讨论 AAm 浓度对涂层性能的影响,其研究结果将对软材料表面改性提供一定的借鉴。

  • 1 试验

  • 1.1 样品制备

  • 1.1.1 试验材料

  • 试验材料如下:二苯甲酮(BP),上海毕得医药科技有限公司;2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮(UV2959),上海麦克林生化科技有限公司; 无水乙醇,上述试剂均为分析纯。丙烯酰胺(AAm),化学纯,国药集团化学试剂有限公司;SYLGARD184(PDMS),道康宁。

  • 1.1.2 基材制备与溶液配制

  • 首先,将 PDMS 基础液与固化剂按 10∶1 质量比混合均匀,将充分搅拌后的混合溶液置于超声波中进行去气泡处理,将无气泡的混合溶液倒入直径 4.6 mm 的圆形模具中,并置于真空干燥箱 (DZF-6050,Blue Pard,中国)中在 65°下固化 4 h,最后从模具中去取出固化后的 PDMS。

  • 取 1 g BP 溶于 19 g 无水乙醇中,搅拌至 BP 完全溶解,获得预处理溶液。配置五组不同的涂层溶液,其中 AAm 单体的添加量分别为 4、8、12、16、 20 wt.%,每组溶液中UV2959的添加量均为1 wt.%。搅拌至完全溶解。

  • 1.1.3 丙烯酰胺涂层制备

  • 首先,将制备好的 PDMS 片放置在乙醇溶液中超声清洗 5 min 用于去除表面污渍,并将清洗干净后的样品浸泡在预处理溶液中 10 min,使BP 扩散在 PDMS 内部。然后,将预处理后的样品完全浸没在各配比涂层溶液中,并将其放置在 100 W / 365 nm 紫外灯下固化 60 min,使得 AAm 单体在光引发剂的位置上发生原位聚合。固化完成后,清洗去除未与基材发生交联的物质,清洗晾干。图1 为涂层制备示意图。

  • 图1 硅橡胶表面制备 PAAm 涂层示意图

  • Fig.1 Schematic diagram of PAAm coating prepared on silicone rubber surface

  • 1.2 涂层性能表征方法

  • 1.2.1 涂层的表面成分表征

  • 为确认 AAm 是否成功地聚合在 PDMS 表面,须要对样品表面的化学成分进行表征。通过傅里叶红外光谱仪(ALAPHA Ⅱ,布鲁克,德国)对样品表面进行红外光谱测试,以获得涂层样品表面的光谱图,进而表征涂层表面的基团成分。所采用的参数有:设置分辨率为 4 cm−1,样品扫描时间为 24 s,扫描范围为 500~4 000 cm−1。所有样品测试前经无水乙醇超声清洗并干燥。

  • 1.2.2 涂层的粗糙度与厚度表征

  • AAm 在 PDMS 表面聚合反应后生成微米级厚度的反应层来覆盖了原有的表面,从而实现了改变其表面性质的目的。采用白光干涉仪(MFP-D,Rtec,美国)表征涂层表面的粗糙度和涂层厚度,进而评定涂层质量。通过不同配比所制备的涂层表面特征的对比,研究 AAm 含量对所制备涂层质量的影响。涂层厚度是通过台阶法测得,即首先用白光干涉仪对涂层边缘点进行三维形貌测试,然后测量涂层表面与基材表面的高度差,即可得到涂层厚度。图2 为白光干涉仪所测得的涂层边缘表面形貌。

  • 图2 涂层边缘的表面形貌

  • Fig.2 Surface morphology of the coating edge

  • 1.2.3 涂层的亲水性能表征

  • 接触角是衡量材料的表面能高低的重要指标。本文以去离子水作为测试液体,使用接触角测量仪 (JC2000CS,中晨,中国)对制备好的涂层表面亲水性能进行表征,即控制每次测试液体的体积为 1 μL,待水滴留在测试样品表面约 20 s 稳定后,对所定格的图像进行接触角测量。每个样品随机取 12 个点进行测量,连续测量一周,取平均值作为最终结果。

  • 1.2.4 涂层的结合力表征

  • 涂层和基底之间的黏附力是剥离单位面积水凝胶涂层所需的能量,能够量化涂层的抗剥离能力[17]。本文采用 ISO2409 划格法对涂层进行附着力测试,即将制备有涂层的 PDMS 样品放置在有足够硬度的平板上,使用百格刀以均匀的压力在涂层表面划出百格,刀具需穿透至基材,然后用软毛刷轻轻地向后五次向前 5 次刷去表面碎屑,将 3M 胶带粘贴在网格部分后并迅速撕下,观察涂层脱落的情况,以此表征涂层的结合强度。

  • 1.2.5 涂层的润滑性能表征

  • 为研究涂层在水润滑条件下的摩擦行为,采用摩擦试验机(MFT-5000,Rtec,美国)对涂层的润滑性能进行表征。选用摩擦试验机的旋转模块,采用直径 12.7 mm 的硅胶软球型压头与 PDMS 盘作为摩擦副,对所制备的涂层进行摩擦试验。所采用的测试参数为:涂层样品与压头的偏心距为 10 mm,载荷大小为 0.5 N,旋转速度为 50 r / min,滑动速度约为 52 mm / s,旋转摩擦持续时间为 3 min。每组样品重复试验 3 次,每次均更换新的球与涂层盘,球 / 盘摩擦试验示意图如图3 所示。

  • 图3 球 / 盘摩擦试验示意图

  • Fig.3 Diagram of ball / disc friction test

  • 2 结果与讨论

  • 2.1 涂层的成分

  • 对基材 PDMS 及制备涂层后的样品进行红外光谱分析,结果如图4 所示。图中 795、1 019、1 074、 1 260、1 411 和 2 962 cm−1 出现的特征峰均属于 PDMS[28],而在 PDMS 表面制备涂层后,其表面的化学基团与原表面具有显著差异。制备涂层后在 3 365 和 3 195 cm−1 处分别出现了 NH 的反对称和对称伸缩振动峰,在 1 660 cm−1 处出现了 C=O 的伸缩振动峰,这些都是酰胺的伸缩振动吸收峰[29-31],而在 1 613 cm−1 为 C=C 的伸缩峰[32]。这与原始的 PDMS 表面的基团具有显著差异,表明 AAm 成功聚地合在 PDMS 表面。可以看出,随着丙烯酰胺浓度升高,NH、C=O、C=C 的伸缩峰都越来越明显,峰的强度增大。

  • 图4 表面制备涂层前后的红外光谱分析图

  • Fig.4 Infrared spectrum analysis of the surface before and after coating preparation

  • 2.2 涂层的表面性能

  • 图5a 为基材 PDMS 及 5 种涂层的表面形貌。发现 PDMS 基材表面相对平整,具有涂层的表面均出现了不同程度的粗糙结构。值得注意的是,是含 4 wt.% AAm 的涂层表面形貌和基材几乎没有差别,这可能是由于 AAm 浓度过低造成的。含 8 wt.% AAm 的涂层表面与 PDMS 基材具有显著差异,其表面呈现出较为均匀的粗糙结构,12、 16 和 20 wt.% AAm 的涂层表面也出现相似的粗糙结构。随着 AAm 含量的提高,涂层表面的粗糙结构愈加明显,初步表明涂层的粗糙度与 AAm 浓度呈正相关。

  • 图5 涂层表面光学干涉图像及涂层粗糙度随 AAm 浓度变化

  • Fig.5 Optical interference image of coating surface and variation of coating roughness with AAm concentration

  • 图5b 所示为 5 种涂层测得的粗糙度随 AAm 浓度的变化。随着 AAm 浓度的增加,涂层表面的粗糙度呈上升趋势,其中含 8~16 wt.% AAm 涂层粗糙度的增加尤为明显,表明在一定范围内较高 AAm 含量的涂层易产生较大粗糙的表面。

  • 由于含 4 wt.% AAm 的涂层表面和 PDMS 基材表面差异很小,在后续的厚度测量中难以测出涂层厚度变化。图6a 所示为其余 4 种 AAm 浓度下所制备涂层边缘的三维形貌。发现随着 AAm 浓度的增加,其涂层厚度也随之增加。图6b 示为 4 种涂层所测得的厚度随 AAm 浓度的变化。发现随着 AAm 浓度的增加,涂层厚度呈明显上升趋势。这可能是由于随着 AAm 浓度的提高,AAm 在光引发剂的位置上发生原位聚合的密度增大,对应的表面粗糙度和涂层厚度均随之增加。

  • 图6 涂层边缘三维形貌图片及涂层厚度随 AAm 浓度变化

  • Fig.6 Three-dimensional topography image of coating edge and variation of coating thickness with AAm concentration

  • 2.3 涂层的亲水性能

  • PDMS 基材是一种疏水性高分子材料,接触角约为 110°,制备涂层后表面亲水性得到显著提高,如图7 所示。发现含 4 wt.% AAm 的涂层测得的接触角最大,平均值为 100.51°和基材 PDMS 接近,呈疏水性。而其他 4 种涂层测得的接触角均小于 90°,分别为 53.53°、46.31°、39.23°和 35.29°,随着 AAm 浓度的增加,其接触角依次降低,均表现出良好的亲水性并且在去离子水中浸泡一周后测得的接触角也相对稳定。这是因为 AAm 涂层中含有大量的亲水基团,其中 AAm 单体侧链中含有亲水性的氨基,确保了涂层的亲水性能。并且随着 AAm 含量的增加,接触角越来越小,亲水性越来越好,这可能还与涂层表面的粗糙程度有关。

  • 2.4 涂层的结合力

  • 理想的涂层应该能够牢固的附着在基材表面,即具有较高的结合强度[21],图8 为含 12 wt.% AAm 的涂层结合强度测试结果。图8 中 A 为涂层原貌,用百格刀在样品表面划出格子后,样品表面在划痕周围出现了密集的白色颗粒物,如图8 中 B 所示。这是涂层和基材被刀具破坏而产生的碎屑。用软毛刷轻轻地刷去表面碎屑,将 3M 胶带粘贴在网格部分后并迅速撕下,结果如图8 中 C 所示。发现涂层样品经 3M 胶带测试后涂层表面划痕边缘完全平滑,没有任何的剥离。根据 ISO 2409—2007 标准可得,涂层附着力等级为 0 级,说明该涂层与基材之间具有良好的结合强度。经测试,制得的其他几种涂层附着力等级均为 0 级。

  • 图7 涂层接触角随 AAm 浓度变化及一周变化

  • Fig.7 Variation of coating contact angle with AAm concentration and one week

  • 图8 涂层结合强度测试结果

  • Fig.8 Coating bonding strength test results

  • 2.5 涂层的润滑性能

  • 亲水性材料可以在水环境中表面出良好的润滑性能[33],摩擦因数是衡量表面润滑性能的重要指标,通常摩擦因数越小,表面越润滑[34]。图9 为 5 种涂层在水环境下摩擦因数随时间变化关系。发现 PDMS 基材的摩擦因数较高,在水为润滑介质时摩擦因数为 2.16,摩擦过程中具有较大的摩擦阻力。与其他涂层相比,含 4 wt.% AAm 的涂层具有最大的摩擦因数,且随着摩擦时间的增加呈显著的增加趋势,这表明过低 AAm 浓度的涂层的润滑性能较差;而其他 4 种涂层的摩擦因数随时间的变化曲线呈先下降后逐渐平稳的趋势,且这 4 种涂层测得的摩擦因数均值均低于 0.10,其中含 8 wt.% AAm 的涂层的摩擦因数均值低至 0.039,表现出优异的润滑性能。同时,当 AAm 浓度达到 8 wt.%后,随着 AAm 浓度的升高,其摩擦因数也逐渐增加。

  • 图9 不同 AAm 含量的涂层摩擦因数随时间的变化曲线及摩擦因数随 AAm 浓度的变化

  • Fig.9 Variation curve of friction factor of coatings with different AAm content with time and friction factor with AAm concentration

  • 2.6 讨论

  • 从上述结果来看,本文所制备的 PAAm 涂层具有良好的亲水性和可控的粗糙度与厚度,并且在水环境中表现出良好的润滑性能。下面将对涂层的制备工艺、涂层表面性能、涂层低摩擦特性机理进行讨论。

  • 制备工艺方面,硅橡胶是硅氧交替连接形成主链的三维网络结构[35],分子孔隙大,允许小分子的物质渗入,且可以被有机溶剂溶胀[36]。本文所采用的涂层制备策略,即直接将硅橡胶浸没在含有 BP 的乙醇溶液中,使 BP 扩散在硅橡胶的网络结构中,类似与在硅橡胶内部种下了“标记点”,在固化过程中 AAm 单体会在“标记点”处发生聚合,PAAm 涂层直接从硅橡胶内部“生长”出来。硅橡胶与 PAAm 涂层在空间上具有重合的部分,避免了涂层仅仅是黏附在硅橡胶表面而造成的涂层附着强度差的缺陷。在理想情况下,涂层与基材将呈现一个整体的状态,涂层脱落只会发生在基体或涂层本身被破坏的情况。其次,该涂层制备工艺简单,只需预处理、固化、清洗三步即可获得牢固的涂层。

  • 涂层表面性能方面,作为涂层的反应单体,AAm 单体侧链中含有亲水性的氨基,本身具有良好的亲水性,从而确保了涂层的亲水性能。在单体溶液中调节单体的添加量可以在一定程度上调控涂层的表面粗糙度和厚度。随着单体浓度的升高,涂层的表面粗糙度和厚度也随之升高。这可能是因为单体在 PDMS 表面聚合密度提高的缘故。由图5a 能够观察到均匀的涂层表面形成了密集的团聚体,且团聚体随着单体浓度的升高而增大,可能是 PAAm 纳米聚集体生长成相对较大的颗粒所引起的,且浓度越高,颗粒越大[37],表现出较大的表面粗糙度与厚度。而在一定范围内,随着表面粗糙度的提高,在测量表面水接触角时,液滴在涂层表面就越分散,这表明涂层表面的亲水性能也随之提高。根据 Wenzel 方程[38]

  • cosθW=rcosθ0
    (1)
  • 式中,θW 为表观接触角,θ0 为材料光滑界面的本征接触角,r 为粗糙度因子。材料表面的表观接触角即测得的实际接触角与其表面粗糙度有关,提高亲水材料表面的粗糙度其接触角亦会随之降低。图5 显示,在一定范围内,涂层表面粗糙度和 AAm 浓度呈正相关,对应图7 为接触角随 AAm 浓度的变化关系,符合 Wenzel 模型。

  • 对于涂层的润滑性能,由于亲水表面在水环境中可以表现出良好的低摩擦性能[39-40],且制备的 PAAm 涂层均具有良好的亲水性,故相比于未修饰涂层的硅橡胶,PAAm 涂层均表面出较低的摩擦因数。对于未修饰的硅橡胶,由于摩擦副均为疏水性的硅橡胶材料,虽然摩擦副处在水环境中,但是水无法浸入摩擦副接触的区域。当软球在 PDMS 盘上滑动时液体也被向前推动,液滴始终无法浸入摩擦副接触部分来提高润滑性能,导致了未修饰涂层的 PDMS 具有较大的摩擦因数,水环境中 PDMS 的摩擦因数竟达到 2.16。而所制备的 PAAm 涂层,除单体浓度为 4 wt.%时,均表现出良好的亲水性能,水可以进入到球和盘之间形成有效的润滑层,使摩擦因数大幅降低[27]。当单体浓度为 8 wt.%时,涂层的摩擦因数最小,低至 0.039,比未修饰的 PDMS 降低了 98.2%,表现出优异的润滑性能,这可能是因为单体浓度升高,表面粗糙度随之增大。与 4 wt.% AAm 时制备的涂层相比,其他 4 种涂层接触角大幅降低,亲水性大幅度提高,其表面更容易形成水润滑层,从而使得润滑性能相应地提高。

  • 3 结论

  • (1)以 AAm 为反应单体,提出一种基于紫外光固化法的结合强度较高的亲水涂层制备方法,该方法具有工艺简单的特点。

  • (2)AAm 浓度对涂层的表面粗糙度、厚度、亲水性能和润滑性能有显著的影响,即随着 AAm 浓度的增加,对应涂层的表面粗糙度、厚度、亲水性能均得到提高;随着 AAm 的浓度增加,涂层润滑性能呈先降低后增加的变化趋势;含 8 wt.% AAm 的涂层摩擦因数低至 0.039,与基材 PDMS(2.16) 相比降低了 98.2%,则润滑性能更为显著。

  • (3)为硅橡胶表面亲水润滑涂层制备提供了一种简单有效的策略,能为类似软材料的表面改性提供较好的借鉴。

  • 参考文献

    • [1] 时晓嫚,刘国柱,李昕跃.乙酸乙酯溶胀处理在医用硅胶导管亲水改性中的研究与应用[J].化工新型材料,2016,44(7):234-236.SHI Xiaoman,LIU Guozhu,LI Xinyue.Research and application of ethyl acetate swelling treatment in hydrophilic modification of medical silica gel catheter[J].New Chemical Materials,2016,44(7):234-236.(in Chinese)

    • [2] 张承焱.硅橡胶在生物医学领域的应用[J].有机硅材料,2002,16(6):14-17.ZHANG Chengyan.Application of silicone rubber in biomedical field[J].Organosilicon Material,2002,16(6):14-17.(in Chinese)

    • [3] 张素文,郈秀菊,孟建文,等.医用硅橡胶导管的表面改性及其亲水性和抗菌性研究[J].橡胶工业,2019,66(8):611-614.ZHANG Suwen,HOU Xiuju,MENG Jianwen,et al.Study on surface modification,hydrophilicity and antibacterial properties of medical silicone rubber catheter[J].Rubber Industry,2019,66(8):611-614.(in Chinese)

    • [4] 孙小淏.医用硅橡胶表面亲水性改性[D].西安:西安科技大学,2014.SUN Xiaohao.Hydrophilic modification of medical silicone rubber surface[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)

    • [5] 刘会平,南庆贤,马长伟.Mozzarella 干酪生产工艺的优化[J].中国乳品工业,2003,31(3):3-6.LIU Huiping,NAN Qingxian,MA Changwei.Optimization of Mozzarella cheese production process[J].China Dairy Industry,2003,31(3):3-6.(in Chinese)

    • [6] 刘斌.探讨DHS和PFN在老年股骨粗隆间骨折中的治疗选择和临床疗效[J].中外医学研究,2012,10(36):10-11.LIU Bin.To explore the treatment options and clinical effects of DHS and PFN in the treatment of femoral intertrochanteric fracture in the elderly[J].Chinese and Foreign Medical Research,2012,10(36):10-11.(in Chinese)

    • [7] 毛津淑,常津,陈贻瑞,等.介入医学导管表面修饰的研究进展[J].北京生物医学工程,1998,17(4):237-242.MAO Jinshu,CHANG Jin,CHEN Yirui,et al.Research progress in surface modification of interventional medical catheter[J].Beijing Biomedical Engineering,1998,17(4):237-242.(in Chinese)

    • [8] 向青云,熊婷,车国勇,等.硅橡胶的表面亲疏水改性研究进展[J].有机硅材料,2017,31(S1):197-201.XIANG Qingyun,XIONG Ting,CHE Guoyong,et al.Research progress in surface hydrophobic modification of silicone rubber[J].Organosilicon Material,2017,31(S1):197-201.(in Chinese)

    • [9] 王小红.加成型硅橡胶的制备及表面接枝NVP亲水改性研究[D].南京:东南大学,2018.WANG Xiaohong.Preparation of addition silicone rubber and hydrophilic modification of surface grafted NVP[D].Nanjing:Southeast University,2018.(in Chinese)

    • [10] AKDOGAN E,SIRIN H T.Plasma surface modification strategies for the preparation of antibacterial biomaterials:A review of the recent literature[J].Materials Science & Engineering C-Materials For Biological Applications,2021,131:112474.

    • [11] GUO M,MENG F K,LI G P,et al.Effective antibacterial glass fiber membrane prepared by plasma-enhanced chemical grafting [J].ACS Omega,2019,4(15):16591-16596.

    • [12] RUMRILL S M,AGARWAL V,LAU K K S.Conformal growth of ultrathin hydrophilic coatings on hydrophobic surfaces using initiated chemical vapor deposition[J].Langmuir,2021,37(25):7751-7759.

    • [13] AMERIAN M,SAMETI M,SEYEDJAFARI E.Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment[J].Journal of Biomedical Materials Research Part A,2019,107(12):2806-2813.

    • [14] 费正东,赖尚涛,钟明强.常压等离子体表面亲水化改性聚丙烯薄膜[J].塑料,2011,40(3):61-63.FEI Zhengdong,LAI Shangtao,ZHONG Mingqiang.Hydrophilic modification of polypropylene film on the surface of atmospheric pressure plasma[J] Plastic,2011,40(3):61-63.(in Chinese)

    • [15] 王岩,石艳,卢咏来.医用硅橡胶亲水改性研究进展[J].弹性体,2021,31(1):64-70.WANG Yan,SHI Yan,LU Yonglai.Research progress in hydrophilic modification of medical silicone rubber[J].Elastomer,2021,31(1):64-70.(in Chinese)

    • [16] 杨玲玲.抗菌亲水硅橡胶的制备及性能研究[D].北京:北京化工大学,2018.YANG Lingling.Preparation and properties of antibacterial hydrophilic silicone rubber[D].Beijing:Beijing University of Chemical Technology,2018.(in Chinese)

    • [17] MAZUMDER M A J.Polydimethylsiloxane substrates with surfaces decorated by immobilized hyaluronic acids of different molecular weight for biomedical applications[J].Arabian Journal for Science and Engineering,2017,42(1):271-280.

    • [18] 姚海楠,高长青,丁雪佳,等.表面接枝PHAMA对硅橡胶亲水性能的影响[J].橡胶工业,2019,66(6):418-421.YAO Hainan,GAO Changqing,DING Xuejia,et al.Effect of surface grafting PHAMA on hydrophilic properties of silicone rubber[J].Rubber Industry,2019,66(6):418-421.(in Chinese)

    • [19] LIU J J,QU S X,SUO Z G,et al.Functional hydrogel coatings[J].National Science Review,2021,8(2):nwaa254.

    • [20] YANG W,WANG H T,LI T F,et al.Mechanics—An endless frontier[J].Science China—Physics Mechanics & Astronomy,2019,62(1):014601.

    • [21] JANG H,CHOI H,JEONG H,et al.Thermally crosslinked biocompatible hydrophilic polyvinylpyrrolidone coatings on polypropylene with enhanced mechanical and adhesion properties[J].Macromolecular Research,2018,26(2):151-156.

    • [22] FU M J,LIANG Y J,LV X,et al.Recent advances in hydrogel-based anti-infective coatings[J].Journal of Materials Science & Technology,2021,85:169-183.

    • [23] YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.

    • [24] TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.

    • [25] YU Y,YUK H,PARADA G A,et al.Multifunctional “hydrogel skins” on diverse polymers[J].Advanced Materials.2019,31(7):1807101.

    • [26] TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.

    • [27] ZHOU S S,QIAN S H,WANG W,et al.Fabrication of a hydrophilic low-friction poly(hydroxyethyl methacrylate)coating on silicon rubber[J].Langmuir,2021,37(45):13493-13500.

    • [28] 全国橡胶与橡胶制品标准化技术委员会.GB/T 7764— 2017 橡胶鉴定红外光谱法[S].北京:中国标准出版社,2017.National Technical Committee for standardization of rubber and rubber products.GB/T 7764—2017 Rubber Identification Infrared Spectroscopy[S].Beijing:China Standards Press,2017.(in Chinese)

    • [29] 王建平,张峻,赵娟.N-异丙基丙烯酰胺水凝胶的红外光谱[J].光谱学与光谱分析,2016,36(S1):111-112.WANG Jianping,ZHANG Jun,ZHAO Juan.Infrared spectrum of N-isopropylacrylamide hydrogel[J].Spectroscopy and Spectral Analysis,2016,36(S1):111-112.(in Chinese)

    • [30] 孙永军,梁建军,郑怀礼,等.紫外光引发阳离子聚丙烯酰胺的红外光谱研究[J].光谱学与光谱分析,2014,34(5):1234-1239.SUN Yongjun,LIANG Jianjun,ZHENG Huaili,et al.Infrared spectroscopic study of cationic polyacrylamide initiated by ultraviolet light[J].Spectroscopy and Spectral Analysis,2014,34(5):1234-1239.(in Chinese)

    • [31] 陈和生,邵景昌.聚丙烯酰胺的红外光谱分析[J].分析仪器,2011(3):36-40.CHEN Hesheng,SHAO Jingchang.Infrared spectrum analysis of polyacrylamide[J].Analysis Instrument,2011(3):36-40.(in Chinese)

    • [32] DUSUNCELI N,SANPOREAN C G,DROZDOV A D,et al.Mechanical and microstructural characterization of poly(N-isopropylacrylamide)hydrogels and its nanocomposites[J].Proceedings of The Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications,2021,235(5):1021-1035.

    • [33] MA X,DING G,ZHANG Y M,et al.Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying condition[J].Energy Conversion and Management,2007,18(3):88-92.

    • [34] 刘艳,徐立霞,李昕跃.医用高分子材料表面润滑性的研究状况[J].大连大学学报,2012(6):46-51.LIU Yan,XU Lixia,LI Xinyue.Research status of surface lubricity of medical polymer materials[J].Journal of Dalian University,2012(6):46-51.(in Chinese)

    • [35] 王国刚,赵悦菊,张金玲,等.硅橡胶表面润湿特性对积污行为影响的研究进展[J].中国表面工程,2012,25(2):15-20.WANG Guogang,ZHAO Yueju,ZHANG Jinling,et al.Research progress on the influence of surface wetting characteristics of silicone rubber on fouling behavior[J].China Surface Engineering,2012,25(2):15-20.(in Chinese)

    • [36] 李华静,梁耀东,孙喜荣,等.甲醇汽油对橡胶的溶胀性[J].石油化工,2016,45(10):1236-1242.LI Huajing,LIANG Yaodong,SUN Xirong,et al.Swelling property of methanol gasoline to rubber[J].Petrochemical Industry,2016,45(10):1236-1242.(in Chinese)

    • [37] WEI Q B,LIU X Q,YUE Q Y.Mussel-inspired one-step fabrication of ultralow-friction coatings on diverse biomaterial surfaces[J].Langmuir,2019,35(24):8068-8075.

    • [38] BELL M S,BORHAN A.A volume-corrected wenzel Model[J].ACS Omega,2020,5(15):8875-8884.

    • [39] KUZMINSKA A,BUTRUK-RASZEJA B A,STEFANOWSKA A,et al.Polyvinylpyrrolidone(PVP)hydrogel coating for cylindrical polyurethane scaffolds[J].Colloids and Surfaces B-Biointerfaces,2020,192:111066.

    • [40] 王曦梓,韩英,赵微微,等.医用聚电解质润滑涂层[J].清华大学学报(自然科学版),2020,60(8):630-638.WANG Zixi,HAN Ying,ZHAO Weiwei,et al.Medical polyelectrolyte lubricating coating[J].Journal of Tsinghua University(Natural Science Edition),2020,60(8):630-638.(in Chinese)

  • 参考文献

    • [1] 时晓嫚,刘国柱,李昕跃.乙酸乙酯溶胀处理在医用硅胶导管亲水改性中的研究与应用[J].化工新型材料,2016,44(7):234-236.SHI Xiaoman,LIU Guozhu,LI Xinyue.Research and application of ethyl acetate swelling treatment in hydrophilic modification of medical silica gel catheter[J].New Chemical Materials,2016,44(7):234-236.(in Chinese)

    • [2] 张承焱.硅橡胶在生物医学领域的应用[J].有机硅材料,2002,16(6):14-17.ZHANG Chengyan.Application of silicone rubber in biomedical field[J].Organosilicon Material,2002,16(6):14-17.(in Chinese)

    • [3] 张素文,郈秀菊,孟建文,等.医用硅橡胶导管的表面改性及其亲水性和抗菌性研究[J].橡胶工业,2019,66(8):611-614.ZHANG Suwen,HOU Xiuju,MENG Jianwen,et al.Study on surface modification,hydrophilicity and antibacterial properties of medical silicone rubber catheter[J].Rubber Industry,2019,66(8):611-614.(in Chinese)

    • [4] 孙小淏.医用硅橡胶表面亲水性改性[D].西安:西安科技大学,2014.SUN Xiaohao.Hydrophilic modification of medical silicone rubber surface[D].Xi’ an:Xi’ an University of Science and Technology,2014.(in Chinese)

    • [5] 刘会平,南庆贤,马长伟.Mozzarella 干酪生产工艺的优化[J].中国乳品工业,2003,31(3):3-6.LIU Huiping,NAN Qingxian,MA Changwei.Optimization of Mozzarella cheese production process[J].China Dairy Industry,2003,31(3):3-6.(in Chinese)

    • [6] 刘斌.探讨DHS和PFN在老年股骨粗隆间骨折中的治疗选择和临床疗效[J].中外医学研究,2012,10(36):10-11.LIU Bin.To explore the treatment options and clinical effects of DHS and PFN in the treatment of femoral intertrochanteric fracture in the elderly[J].Chinese and Foreign Medical Research,2012,10(36):10-11.(in Chinese)

    • [7] 毛津淑,常津,陈贻瑞,等.介入医学导管表面修饰的研究进展[J].北京生物医学工程,1998,17(4):237-242.MAO Jinshu,CHANG Jin,CHEN Yirui,et al.Research progress in surface modification of interventional medical catheter[J].Beijing Biomedical Engineering,1998,17(4):237-242.(in Chinese)

    • [8] 向青云,熊婷,车国勇,等.硅橡胶的表面亲疏水改性研究进展[J].有机硅材料,2017,31(S1):197-201.XIANG Qingyun,XIONG Ting,CHE Guoyong,et al.Research progress in surface hydrophobic modification of silicone rubber[J].Organosilicon Material,2017,31(S1):197-201.(in Chinese)

    • [9] 王小红.加成型硅橡胶的制备及表面接枝NVP亲水改性研究[D].南京:东南大学,2018.WANG Xiaohong.Preparation of addition silicone rubber and hydrophilic modification of surface grafted NVP[D].Nanjing:Southeast University,2018.(in Chinese)

    • [10] AKDOGAN E,SIRIN H T.Plasma surface modification strategies for the preparation of antibacterial biomaterials:A review of the recent literature[J].Materials Science & Engineering C-Materials For Biological Applications,2021,131:112474.

    • [11] GUO M,MENG F K,LI G P,et al.Effective antibacterial glass fiber membrane prepared by plasma-enhanced chemical grafting [J].ACS Omega,2019,4(15):16591-16596.

    • [12] RUMRILL S M,AGARWAL V,LAU K K S.Conformal growth of ultrathin hydrophilic coatings on hydrophobic surfaces using initiated chemical vapor deposition[J].Langmuir,2021,37(25):7751-7759.

    • [13] AMERIAN M,SAMETI M,SEYEDJAFARI E.Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment[J].Journal of Biomedical Materials Research Part A,2019,107(12):2806-2813.

    • [14] 费正东,赖尚涛,钟明强.常压等离子体表面亲水化改性聚丙烯薄膜[J].塑料,2011,40(3):61-63.FEI Zhengdong,LAI Shangtao,ZHONG Mingqiang.Hydrophilic modification of polypropylene film on the surface of atmospheric pressure plasma[J] Plastic,2011,40(3):61-63.(in Chinese)

    • [15] 王岩,石艳,卢咏来.医用硅橡胶亲水改性研究进展[J].弹性体,2021,31(1):64-70.WANG Yan,SHI Yan,LU Yonglai.Research progress in hydrophilic modification of medical silicone rubber[J].Elastomer,2021,31(1):64-70.(in Chinese)

    • [16] 杨玲玲.抗菌亲水硅橡胶的制备及性能研究[D].北京:北京化工大学,2018.YANG Lingling.Preparation and properties of antibacterial hydrophilic silicone rubber[D].Beijing:Beijing University of Chemical Technology,2018.(in Chinese)

    • [17] MAZUMDER M A J.Polydimethylsiloxane substrates with surfaces decorated by immobilized hyaluronic acids of different molecular weight for biomedical applications[J].Arabian Journal for Science and Engineering,2017,42(1):271-280.

    • [18] 姚海楠,高长青,丁雪佳,等.表面接枝PHAMA对硅橡胶亲水性能的影响[J].橡胶工业,2019,66(6):418-421.YAO Hainan,GAO Changqing,DING Xuejia,et al.Effect of surface grafting PHAMA on hydrophilic properties of silicone rubber[J].Rubber Industry,2019,66(6):418-421.(in Chinese)

    • [19] LIU J J,QU S X,SUO Z G,et al.Functional hydrogel coatings[J].National Science Review,2021,8(2):nwaa254.

    • [20] YANG W,WANG H T,LI T F,et al.Mechanics—An endless frontier[J].Science China—Physics Mechanics & Astronomy,2019,62(1):014601.

    • [21] JANG H,CHOI H,JEONG H,et al.Thermally crosslinked biocompatible hydrophilic polyvinylpyrrolidone coatings on polypropylene with enhanced mechanical and adhesion properties[J].Macromolecular Research,2018,26(2):151-156.

    • [22] FU M J,LIANG Y J,LV X,et al.Recent advances in hydrogel-based anti-infective coatings[J].Journal of Materials Science & Technology,2021,85:169-183.

    • [23] YANG J P,XUE B,ZHOU Y Y,et al.Spray-painted hydrogel coating for marine antifouling[J].Advanced Materials Technologies,2021,6(3):2000911.

    • [24] TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.

    • [25] YU Y,YUK H,PARADA G A,et al.Multifunctional “hydrogel skins” on diverse polymers[J].Advanced Materials.2019,31(7):1807101.

    • [26] TAKAHASHI R,SHIMANO K,OKAZAKI H,et al.Tough particle-based double network hydrogels for functional solid surface coatings[J].Advanced Materials Interfaces,2018,5(23):1801018.

    • [27] ZHOU S S,QIAN S H,WANG W,et al.Fabrication of a hydrophilic low-friction poly(hydroxyethyl methacrylate)coating on silicon rubber[J].Langmuir,2021,37(45):13493-13500.

    • [28] 全国橡胶与橡胶制品标准化技术委员会.GB/T 7764— 2017 橡胶鉴定红外光谱法[S].北京:中国标准出版社,2017.National Technical Committee for standardization of rubber and rubber products.GB/T 7764—2017 Rubber Identification Infrared Spectroscopy[S].Beijing:China Standards Press,2017.(in Chinese)

    • [29] 王建平,张峻,赵娟.N-异丙基丙烯酰胺水凝胶的红外光谱[J].光谱学与光谱分析,2016,36(S1):111-112.WANG Jianping,ZHANG Jun,ZHAO Juan.Infrared spectrum of N-isopropylacrylamide hydrogel[J].Spectroscopy and Spectral Analysis,2016,36(S1):111-112.(in Chinese)

    • [30] 孙永军,梁建军,郑怀礼,等.紫外光引发阳离子聚丙烯酰胺的红外光谱研究[J].光谱学与光谱分析,2014,34(5):1234-1239.SUN Yongjun,LIANG Jianjun,ZHENG Huaili,et al.Infrared spectroscopic study of cationic polyacrylamide initiated by ultraviolet light[J].Spectroscopy and Spectral Analysis,2014,34(5):1234-1239.(in Chinese)

    • [31] 陈和生,邵景昌.聚丙烯酰胺的红外光谱分析[J].分析仪器,2011(3):36-40.CHEN Hesheng,SHAO Jingchang.Infrared spectrum analysis of polyacrylamide[J].Analysis Instrument,2011(3):36-40.(in Chinese)

    • [32] DUSUNCELI N,SANPOREAN C G,DROZDOV A D,et al.Mechanical and microstructural characterization of poly(N-isopropylacrylamide)hydrogels and its nanocomposites[J].Proceedings of The Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications,2021,235(5):1021-1035.

    • [33] MA X,DING G,ZHANG Y M,et al.Effects of hydrophilic coating on air side heat transfer and friction characteristics of wavy fin and tube heat exchangers under dehumidifying condition[J].Energy Conversion and Management,2007,18(3):88-92.

    • [34] 刘艳,徐立霞,李昕跃.医用高分子材料表面润滑性的研究状况[J].大连大学学报,2012(6):46-51.LIU Yan,XU Lixia,LI Xinyue.Research status of surface lubricity of medical polymer materials[J].Journal of Dalian University,2012(6):46-51.(in Chinese)

    • [35] 王国刚,赵悦菊,张金玲,等.硅橡胶表面润湿特性对积污行为影响的研究进展[J].中国表面工程,2012,25(2):15-20.WANG Guogang,ZHAO Yueju,ZHANG Jinling,et al.Research progress on the influence of surface wetting characteristics of silicone rubber on fouling behavior[J].China Surface Engineering,2012,25(2):15-20.(in Chinese)

    • [36] 李华静,梁耀东,孙喜荣,等.甲醇汽油对橡胶的溶胀性[J].石油化工,2016,45(10):1236-1242.LI Huajing,LIANG Yaodong,SUN Xirong,et al.Swelling property of methanol gasoline to rubber[J].Petrochemical Industry,2016,45(10):1236-1242.(in Chinese)

    • [37] WEI Q B,LIU X Q,YUE Q Y.Mussel-inspired one-step fabrication of ultralow-friction coatings on diverse biomaterial surfaces[J].Langmuir,2019,35(24):8068-8075.

    • [38] BELL M S,BORHAN A.A volume-corrected wenzel Model[J].ACS Omega,2020,5(15):8875-8884.

    • [39] KUZMINSKA A,BUTRUK-RASZEJA B A,STEFANOWSKA A,et al.Polyvinylpyrrolidone(PVP)hydrogel coating for cylindrical polyurethane scaffolds[J].Colloids and Surfaces B-Biointerfaces,2020,192:111066.

    • [40] 王曦梓,韩英,赵微微,等.医用聚电解质润滑涂层[J].清华大学学报(自然科学版),2020,60(8):630-638.WANG Zixi,HAN Ying,ZHAO Weiwei,et al.Medical polyelectrolyte lubricating coating[J].Journal of Tsinghua University(Natural Science Edition),2020,60(8):630-638.(in Chinese)

  • 手机扫一扫看