en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何强,男,1976年出生,博士,教授。主要研究方向为航空橡胶密封件、材料表面超疏水防除冰、电推动系统等。发明专利授权31项,发表学术论文162篇。获得省部级科技成果一等奖2项,省部级科技成果二等奖4项,省部级科技成果三等奖2项。E-mail:aystar@163.com

中图分类号:F767;TQ333;V261

DOI:10.11933/j.issn.1007−9289.20220409001

参考文献 1
SURESH KUMAR N,PADMA SUVARNA R,CHANDRA BABU NAIDU K,et al.A review on biological and biomimetic materials and their applications[J].Applied Physics A,2020,126(6):1-18.
参考文献 2
YONG J,CHEN F,YANG Q,et al.Superoleophobic surfaces[J].Chemical Society Reviews,2017,46(14):4168-4217.
参考文献 3
SETHI S K,MANIK G.Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications:A review[J].Polymerplastics Technology and Engineering,2018,57(18):1932-1952.
参考文献 4
ZHENG W,TENG L,LAI Y,et al.Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J].Chemical Engineering Journal,2022,427:130922.
参考文献 5
何文博,欧军飞.超疏水材料应用于文物表面封护研究进展[J].中国表面工程,2022,35(1):72-85.HE Wenbo,OU Junfei.Research progress superhydrophobic sealing materials used in cultural relics protection[J].China Surface Engineering,2022,35(1):72-85.(in Chinese)
参考文献 6
CAO L,JONES A K,SIKKA V K,et al.Anti-icing superhydrophobic coatings[J].Langmuir,2009,25(21):12444-12448.
参考文献 7
LIAO X,SUN D,CAO S,et al.Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride)porous fibers for highly efficient oil/water separation[J].Journal of Hazardous Materials,2021,416:125926.
参考文献 8
LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.
参考文献 9
SU F,YAO K.Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J].ACS Applied Materials & Interfaces,2014,6(11):8762-8770.
参考文献 10
WEI W,LÜ X,JIANG D,et al.A novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor[J].Dalton Transactions,2014,43(25):9456-9467.
参考文献 11
WANG S,YAO X F,YANG H,et al.A new leakage measurement method for damaged seal material[J].Measurement Science and Technology,2018,29(7):075203.
参考文献 12
YANG H,YAO X F,YAN H,et al.Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J].Composite Structures,2018,187:116-121.
参考文献 13
辛长征,迟长龙,邓照西.在线撒粉法抗静电涤纶保暖热熔絮片的研制[J].河南工程学院学报:自然科学版,2012,24(1):12-15.XIN Changzheng,CHI Changlong,DENF Zhaoxi.The research on preparation of antistatic warmth fetention heat-bonded polyester[J].Journal of Henan Institute of Engineering:Natural Science,2012,24(1):12-15.(in Chinese)
参考文献 14
夏柱国,曹喆,张德波,等.3 种灭螺药物枯水期喷洒法和撒粉法灭螺效果[J].中国血吸虫病防治杂志,2014,26(4):461-462.XIA Zhuguo,CAO Zhe,ZHANG Debo,et al.Snail control effects of three snail control drugs by spraying and dusting during dry season[J].Chinese Journal of Schistosomiasis Control,2014,26(4):461-462.(in Chinese)
参考文献 15
COSENTINO GARCIA MIGUEL A,SILVA F C,DA SILVA G,et al.A short review about aerospace materials characterization-bonding agents and thermal insulation[J].Propellants,Explosives,Pyrotechnics,2020,45(8):1175-1184.
参考文献 16
SAMUEL J J J,RAMADOSS R,GUNASEKARAN K N,et al.Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application[J].Materials Today:Proceedings,2021,47:4438-4443.
参考文献 17
JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic grapheme-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.
参考文献 18
JIN H,BING W,TIAN L,et al.Combined effects of color and elastic modulus on antifouling performance:A study of graphene oxide/silicone rubber composite membranes[J].Materials,2019,12(16):2608.
参考文献 19
胡云浩,石晓凯,马小凡,等.硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J].复合材料学报,2022,39(4):1638-1647.HU Yunhao,SHI Xiaokai,MA Xiaofan,et al.Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J].Journal of Composite Materials,2022,39(4):1638-1647.(in Chinese)
参考文献 20
胡云浩,于良,马小凡,等.硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能[J].青岛科技大学学报(自然科学版),2021,42(3):80-84.HU Yunhao,YU Liang,MA Xiaofan,et al.Preparation and durability of silicone rubber/polyacrylamide @ titanium dioxide superhydrophobic materials[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),201,42(3):80-84.(in Chinese)
参考文献 21
WANG G,ZHOU W,ZHOU J,et al.Superhydrophobic silicone rubber surface prepared by direct replication[J].Surface Engineering,2021,37(3):278-287.
参考文献 22
李回归,薛朝华,贾顺田.炭黑/PDMS 光热超疏水涂层的制备及防冰除冰性能[J].精细化工,2021,38(5):934-940.LI huigui,XUE chaohua,JIA shuntian.Preparation and deicing performance of carbon black/PDMS photothermal superhydrophobic coating[J].Fine Chemicals,2021,38(5):934-940.(in Chinese).
参考文献 23
LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.
参考文献 24
HAO W,XU J,LI R,et al.Developing superhydrophobic rock wool for high-viscosity oil/water separation[J].Chemical Engineering Journal,2019,368:837-846.
参考文献 25
SHEN L,HU H,WANG S,et al.Preparation of super hydrophobic mMoS2/PDMS coating for fabrics[J].Reactive and Functional Polymers,2019,143:104315.
参考文献 26
PAN Z,GUAN Y,LIU Y,et al.Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation[J].Separation and Purification Technology,2021,261:118273.
目录contents

    摘要

    当前在橡胶基体上构建超疏水表面的方法大多较为复杂,不易制备,研究一种简单方法是十分必要的。以高温硫化硅橡胶(HTV)为基体,把基体打磨后在其表面覆盖一层聚二甲基硅氧烷(PDMS),采用表面撒粉法将二氧化硅(SiO2)粉末均匀撒在未固化 PDMS 上,固化后制得 HTV / PDMS-SiO2超疏水表面。采用扫描电子显微镜、三维形貌及接触角测量仪对硅橡胶超疏水涂层的微观形貌和疏水特性进行分析。结果表明:HTV / PDMS-SiO2超疏水表面构建出许多微纳突起粗糙结构,表面粗糙度 Sa 达到 35.695 μm;HTV / PDMS-SiO2超疏水表面的静态接触角平均值达 154.5°,相较于原始硅橡胶平均静态接触角 112.4°提升了 37.5%;液滴体积一定时,液滴接触到超疏水表面后的铺展直径和第一次弹起高度随着滴落高度的增大而增大;液滴滴落高度一定时,液滴铺展直径和初次弹起高度与液滴体积成正比。利用 PDMS 固化过程结合撒粉工艺构建超疏水微纳结构,可为硅橡胶超疏水表面研究提供一种简单、低成本方案。

    Abstract

    Most current methods for constructing superhydrophobic surfaces on rubber substrates are too complex to carry out; therefore, it is essential to investigate a simple method. High-temperature vulcanized silicone rubber (HTV) and polydimethylsiloxane (PDMS), which have the advantage of low surface energy, combined with the hydrophobic properties of silicon dioxide (SiO2), were selected to prepare superhydrophobic coatings on silicone rubber surfaces in this paper. The specific steps are as follows. The rubber matrix was prepared first. The HTV rubber and vulcanizing agent were added in an open refiner until the vulcanizing agent was uniformly mixed in the HTV rubber. The rubber was then vulcanized using a fully automatic plate vulcanizer, where the vulcanization temperature was 175 °C and the time was 10 min. The vulcanized rubber was cooled at room temperature for 24 h, and then polished with a metallographic polishing machine. The rubber was polished in one direction using the same sandpaper and the machine was never moved. After polishing, the rubber was placed in a beaker with alcohol and cleaned using an ultrasonic cleaner. Since the rubber matrix had been accomplished, a mixture of 3 g PDMS and 0.3 g curing agent was added into the beaker containing the rubber matrix for PDMS coating. After curing at room temperature for 20 min, the silica powder was evenly spread on the surface of the PDMS using a sieve. Then the beaker was placed in a drying oven and cured at 80 °C for 2 h. After curing, the prepared superhydrophobic silicone rubber was removed from the oven, and excess silica powder was removed using nitrogen gas to prevent excess silica powder from affecting the hydrophobicity of the prepared coating. The hydrophobicity of the prepared superhydrophobic surfaces was assessed. First, the contact angles of the original silicone rubber samples and the HTV / PDMS-SiO2 superhydrophobic silicone rubber were tested using a contact angle measuring instrument. Next, the surface microstructures of the HTV / PDMS-SiO2 superhydrophobic silicone rubber samples and the PDMS-SiO2 superhydrophobic coating were analyzed by observing their cross-sections using scanning electron microscopy and 3D morphology. Finally, the HTV / PDMS-SiO2 superhydrophobic silicone rubber was subjected to water drop bounce and self-cleaning tests to verify its superhydrophobic performance. The results showed that the average static contact angle of the HTV / PDMS-SiO2 superhydrophobic surface reached 154.5°, which was 37.5% higher than the average static contact angle of 112.4° for pure silicone rubber. The prepared HTV / PDMS-SiO2 superhydrophobic surface had a rough structure with many micro-nano bumps and a surface roughness Sa of 35.695 µm. The droplet spreading diameter and first bounce height when the droplet touched the superhydrophobic surface increased with increasing droplet height when the droplet volume was constant. When the droplet height was constant, the droplet spreading diameter and the initial bounce height were proportional to the droplet volume. In this study, an HTV / PDMS-SiO2 superhydrophobic coating was constructed using a powder coating method, which has the disadvantages of low strength and poor wear resistance. Thus, the constructed coating is not suitable for high-strength engineering, and its superhydrophobic performance cannot be guaranteed during long-term use. It has been found that superhydrophobic coatings can be constructed by constructing micro-nano-protrusions on a surface with low surface energy material. The PDMS curing process combined with the powdering process to construct superhydrophobic micro-nano structures provides a simple and low-cost solution for the study of superhydrophobic surfaces on silicone rubber. If the durability of the coating can be improved, it will be of great significance for the wider application of superhydrophobic silicone rubber surfaces.

  • 0 前言

  • 水黾在水面上自由行走,而不会落入水中;荷叶上水珠自然滚落,并带走表面的灰尘,荷叶表面总是清洁干净的,自然界中的这些现象引起人们的注意,通过观察研究,人们发现了超疏水表面[1-3]。超疏水技术应用前景广阔,如输电线路防覆冰[4]、文物保护[5]、飞机涂料[6]、油水分离[7]以及自清洁[8] 等领域,广泛地应用着超疏水原理。在超疏水涂层制备方面方法多样,如气相沉积法[9]、溶胶凝胶法[10]、蚀刻法[11]、模板法[12]等。撒粉法工艺操作简单,成本极低,广泛应用于绿色工程、农业生产、产品加工等方面。辛长征等[13]采用撒粉法将 PES 热熔粉和纳米级竹炭粉按比例施加在纶纤网上,通过比较其强度、抗静电和透气性能,得出最佳配比,最终实现了抗静电涤纶保暖热熔絮片的生产。夏柱国等[14]通过对比撒粉法和喷洒法施加灭螺药物的灭螺效果,最终得出撒粉法的灭螺效果更加明显。本文正是采用这一简便有效的撒粉法工艺制作出一种硅橡胶超疏水涂层。

  • 橡胶在生活中有着非常广泛的应用,在机械工程、电子通信、航空航天等领域,扮演着一种很重要的角色[15-16]。其中硅橡胶凭借良好的耐高温性能、耐低温性能、耐候性能、力学性能、耐油及化学试剂性能而在生产生活中占有重要地位。其中,高温硫化硅橡胶因其低表面能的特点,在超疏水领域应用十分广泛[17-18]。例如:胡云浩等[19]利用硫化硅橡胶溶胀过程可逆的特性,改进溶胶凝胶法,使氧化锌纳米花在橡胶表面原位生长,制得超疏水表面,且表现出优异的机械稳定性。马小凡等[20]针对人工合成的超疏水材料机械稳定性差、复杂工艺性的问题,通过简单的溶胶-凝胶法在硅橡胶表面原位生长二氧化钛,以制备高耐磨、柔性超疏水材料。 WANG 等[21]采用压缩成形和简单复制的工艺制备硅橡胶超疏水表面,表现出优异的斥水性、低附着力及自清洁性。试验证实,该超疏水硅橡胶的接触角可达到 158.5±0.5°,滚动角可达到 8.9± 0.1°,并且对于盐酸溶液、氢氧化钠溶液及氯化钠溶液等酸碱盐也具有排斥性,在硅橡胶超疏水表面也能够反弹,并且与其表面接触时间与下落高度不成反比。

  • 聚二甲基硅氧烷(PDMS)是一种疏水类的有机硅物料,在超疏水领域也有广泛应用。例如:李回归等[22]通过在基材表面喷涂环氧树脂作为黏合剂,然后喷涂炭黑纳米粒子、PDMS 及十七氟癸基三乙氧基硅烷(PFDTES)的共混液制备了一种炭黑 / PDMS 光热超疏水涂层,且涂层呈现优异的超疏水性能。借用 PDMS 制备超疏水涂层的方法有许多,如通过旋涂法在 PDMS 和正己烷混合物表面嵌入蜡烛烟灰颗粒[23]来制备超疏水涂层;HAO 等[24] 按一定比例分散 SiO2 粒子和 PDMS / TEOS 在正己烷中,然后使用浸涂法,浸泡改性岩棉来制备超疏水涂层。SHEN 等[25]利用一种低成本、环保的浸渍UV 固化方法,使用 3-甲基溴化铵在油水分离织物表面制备具有超疏水性能的二硫化钼 / PDMS (V-PDMS)涂层。

  • PAN 等[26]将方糖作为模板,在模转移过程中将少量石墨烯嵌入在 PDMS 海绵骨架表面,制备出石墨烯 / PDMS 油水分离结构。结果表明,石墨烯 / PDMS 海绵具有高疏水性,表面嵌入石墨烯之后更显著地提高了 PDMS 海绵的机械耐久性和弹性性能。相较于以上用 PDMS 制备超疏水涂层的方法,本文采用撒粉的方法,直接在 PDMS 未完全固化时撒上 SiO2 粉末,在 PDMS 固化过程中 SiO2粉末嵌入其中,在保证硅橡胶表面涂层疏水性能的前提下,方法更加简单易行。

  • 本文利用硅橡胶和 SiO2 的疏水性能,借助 PDMS 作为中介,采用简单的撒粉法制备了一种低成本的橡胶超疏水涂层,即利用 PDMS 的固化过程,将二氧化硅粒子嵌入在 PDMS 之中,PDMS-SiO2涂层完全覆盖于硅橡胶表面,最终制得具有优异的超疏水性能和自清洁性能的HTV / PDMS-SiO2硅橡胶超疏水表面。

  • 1 试验准备

  • 1.1 试验材料

  • SiO2 粉末,型号:HB-193f,湖北省宜昌市汇富硅材料有限公司(中国);高温硫化硅橡胶(HTV),型号:NE-5150,东爵有机硅集团有限公司;PDMS 和固化剂,道康宁(DowCorning Corporation);无水乙醇(C2H6O),富宇化工有限公司;石墨粉(C),南宫市盈泰金属材料有限公司;筛网(150 目),九峰筛网;砂纸,型号:80 c。

  • 1.2 试验仪器及主要设备

  • LN-50T 全自动平板硫化机(东莞利纳工业(机械)有限公司);开炼机,广东利拿实业有限公司;SEM450 型场发射扫描电子显微镜,美国 NOVANANO 公司;ST-400M 型三维表面形貌测试仪,美国 NANOVEA 公司;HKCA-15 型接触角测试仪,中国;HX-6E 高速摄影机,日本 MEMRECAM 公司;PG-1 型金相抛光机,申佑达实业(上海)有限公司。

  • 1.3 试样制备

  • 试验使用 50 g 高温硫化硅橡胶和 1.6 g 硫化剂 (DCP)在开炼机上混炼均匀,然后在全自动平板硫化机上进行硫化,硫化时间 10 min,硫化温度 175 °C。从高温硫化硅橡胶片上裁剪出 2 个尺寸为 10 mm×4 mm×2 mm(长×宽×高)的样品,分别记为 1 号样品和 2 号样品。把 1 号样品使用金相抛光机打磨 1 min(打磨时不要移动试样,让试样沿着一个方向打磨,打磨时使用的砂纸一样),把打磨后的试样在超声波清洗器中超声清洗 10 min。

  • 把 3 g 的 PDMS 和 0.3 g 的固化剂倒入烧杯中,反复搅动使其混合均匀,把混合均匀的试剂倒在 1 号样品中心让其自然流平,20 min 后,使用筛网把 SiO2 粉末均匀撒在 1 号试样表面,接着把试样放到烘干箱中 2 h,温度 80 °C。将试样从烘干机取出后,使用氮气吹走样品上多余的 SiO2 粉末,避免过少 SiO2 粉末导致疏水结构的不完整性,最终制备得结构均匀的 HTV / PDMS-SiO2 超疏水硅橡胶模型。按同样的方法制备 3 组试样。图1 和图2 所示为试样的制备流程和试样模型。如图2b,在经固化剂固化之后,HTV / PDMS-SiO2 超疏水硅橡胶模型表面有一层 PDMS-SiO2 涂层,涂层的存在使得 HTV / PDMS-SiO2 具有超疏水性能。

  • 图1 试样制备流程

  • Fig.1 Sample preparation process

  • 图2 试样模型

  • Fig.2 Sample model

  • 1.4 性能测试及表征

  • 静态接触角测试:使用接触角测定仪测量未处理硅橡胶、HTV / PDMS-SiO2 试样的表面接触角。在测量静态接触角时,分别测量试样表面 10 个不同部位,测量接触角所使用的去离子水体积为 4 μL。

  • 试样表面三维形貌测试:使用干涉式三维表面形貌仪对未处理硅橡胶试样、HTV / PDMS-SiO2 超疏水硅橡胶试样的表面进行三维微观结构观察。试验过程中在试样表面选取 3.0 mm×3.0 mm 的方形区域进行测量观察。

  • 自清洁试验:将石墨粉均匀撒在试样表面,模拟试样表面的污染物,对未处理硅橡胶试样和 HTV / PDMS-SiO2超疏水硅橡胶试样表面进行自清洁试验,将试样倾斜10°放入培养皿中,使用滴管在试样上方5 cm 处垂直滴去离子水,滴液体积约为10 μL,观察对比未处理硅橡胶试样和 HTV / PDMS-SiO2 超疏水硅橡胶试样表面上液滴在石墨粉上的滚落轨迹情况。

  • SEM 分析:通过扫描电镜从微米尺度上,对未处理硅橡胶试样和 HTV / PDMS-SiO2超疏水硅橡胶试样进行面扫描,观察试样表面微观结构。同时对 HTV / PDMS-SiO2 超疏水硅橡胶试样的横截面进行分析,观察 PDMS-SiO2 超疏水涂层形貌。

  • 表面常温(25 °C)水滴弹跳试验:试验使用高速相机对制备出的 HTV / PDMS-SiO2超疏水硅橡胶试样进行水滴弹跳的过程拍摄,使用两种不同颜色的针头进行试验(针口直径不一样)。首先使用红色针头(液滴体积约 10 μL)在 5 个不同高度垂直滴下去离子水,然后再使用黄色针头(液滴体积约 5 μL),仍在 5 个不同高度垂直滴下去离子水,进行弹跳试验。观察液滴在 HTV / PDMS-SiO2 超疏水硅橡胶试样表面的弹跳过程,分析其超疏水性能。

  • 2 结果与分析

  • 2.1 接触角测量对比分析

  • 图3 显示了不同试样的接触角测试,其中图3a 依次为超疏水表面、疏水表面、亲水表面示意图。可以看出,超疏水表面具有斥水性,导致其表面接触角较大,而疏水表面存在轻微亲水特性,导致其表面接触角相较于超疏水表面略小,亲水表面的接触角则是小于 90 °。图3b 是接触角示意图,θ 为试样表面的静态接触角数值。图3c 分别为原始硅橡胶、HTV / PDMS-SiO2 超疏水硅橡胶的接触角测量平均值,每种试样测量三组数值,其中原始硅橡胶静态接触角测量平均值为 112.4 °,达到疏水性能但未达到超疏水。而 HTV / PDMS-SiO2超疏水硅橡胶接触角平均值为 154.5 °,最高值达到 157.7 °,达到了超疏水性能。由此可见,在 HTV / PDMS 表面洒了一层 SiO2粉末之后,HTV / PDMS-SiO2 超疏水硅橡胶的疏水性能大大提高,PDMS-SiO2 涂层极大地提高了硅橡胶的疏水性能,使 HTV / PDMS-SiO2达到了超疏水材料对静态接触角的要求,这表明 PDMS-SiO2 涂层赋予 HTV / PDMS-SiO2 超疏水性能,在一定程度上提高了该材料的疏水性。

  • 图3 接触角示意图及原始硅橡胶和疏水硅橡胶接触角测试

  • Fig.3 Schematic diagram of contact angle and contact angle test of pristine silicone rubber and hydrophobic silicone rubber contact angle test

  • 2.2 PDMS-SiO2 超疏水涂层表面分析

  • 图4a 给出 SiO2 粒子扫描电镜照片及粒子在高倍下的形貌,图4b 为 HTV / PDMS-SiO2 超疏水硅橡胶疏水模型,图4c 为 HTV / PDMS-SiO2 超疏水硅橡胶表面扫描电镜,图4d 为 HTV / PDMS-SiO2 试样截面图。可以看出,图4a 所示 SiO2 粉末整体呈现团聚现象,在右上方高倍扫描电镜下单个 SiO2 粒子实际是呈球形结构。图4b 给出超疏水硅橡胶疏水模型图,硅橡胶的涂层表面 SiO2 粒子嵌入在 PDMS,24 h 之后,硅橡胶表面的 PDMS 固化,与 SiO2共同形成一层高为h的PDMS-SiO2涂层。因此, HTV / PDMS-SiO2 试样超疏水表面存在着一个个的微观突起结构,即 SiO2 粒子,这些 SiO2 粒子之间存在着间隙,满足了超疏水表面制备的条件之一,即微纳结构的粗糙表面。图4b 中 PDMS-SiO2 涂层整体厚度为 h,SiO2 粒子及 PDMS 本身为低表面能物质,具有憎水性,表面张力较小,因此 PDMS-SiO2 涂层构成的微观结构在一定程度上强化了 HTV / PDMS-SiO2 超疏水硅橡胶的超疏水性能。图4c 为 HTV / PDMS-SiO2 超疏水硅橡胶表面形貌,观察试样表面,SiO2 分布整体较为均匀,放大倍数发现一些 SiO2 粒子的存在(见方框)。通过测量图4d 扫描电镜中的涂层厚度,可得出 PDMS-SiO2 涂层的厚度达到 150.2 μm,牢牢地附着在硅橡胶表面。

  • 图4 PDMS-SiO2 超疏水涂层

  • Fig.4 Pdms-SiO2 superhydrophobic coating

  • 图5a~5d 分别为原始硅橡胶模型图、 HTV / PDMS-SiO2 超疏水硅橡胶模型图、原始硅橡胶表面三维形貌图以及 HTV / PDMS-SiO2超疏水硅橡胶表面三维形貌图。从图5a、5c 可以看出,原始硅橡胶表面是比较平整的,只存在细微小孔,其三维算数平均高度 Sa 仅为 0.729 μm,均方根高度 Sp 为 1.830 μm,表面粗糙度较小。由图5b、5d 可以看出,HTV / PDMS-SiO2 超疏水硅橡胶表面附着一层 PDMS-SiO2 涂层,涂层表面整体表现为凹凸不平,其表面粗糙度 Sa 为 35.695 μm,Sp 为 142.851 μm。可以看出,HTV / PDMS-SiO2 试样表面形成一层类似荷叶形态的微纳突起结构,提高了 HTV / PDMS-SiO2 超疏水表面粗糙度,SiO2 粒子的加入构成了超疏水表面的粗糙结构,导致试样的均方根高度和表面粗糙度均大幅提高。 HTV / PDMS-SiO2 超疏水硅橡胶表面与原始硅橡胶相比,试样表面相貌变化明显,表面参数也大幅上升,由此可以推断出,PDMS-SiO2 涂层在硅橡胶表面形成 HTV / PDMS-SiO2硅橡胶超疏水表面的粗糙结构,提高了 HTV / PDMS-SiO2 超疏水硅橡胶表面的疏水性能,使其达到超疏水。这些微纳突起更是提高了其表面粗糙度,进而赋予涂层超疏水性能。

  • 图5 试样表面粗糙结构

  • Fig.5 Sample surface rough structure

  • 2.3 HTV / PDMS-SiO2 超疏水表面弹跳试验

  • 对 HTV / PDMS-SiO2超疏水硅橡胶试样表面进行弹跳试验进一步验证其超疏水性能。图6a、6b 分别显示了体积为 5 μL、10 μL 的去离子水从 4、9、 14、19、24 mm 的 5 种不同高度垂直滴落,液滴在超疏水表面上的铺展直径用 D 表示。观察发现,当液滴的体积一定时,液滴滴落在超疏水表面上能够达到的最大铺展直径随着液滴下落高度的增加而增加。这是由于液滴的下落高度越大,液滴内所含的势能越大,液滴下落过程中,液滴所含势能转换为液滴下落时的动能,在液滴垂直下落过程中,动能随着势能的减小而增大,液滴滴落至超疏水表面一瞬间,势能消失,瞬时动能最大。滴落在涂层表面瞬时,一部分能量转化为表面能,一部分仍以动能的形式实现再次弹跳,当弹跳次数逐渐增多时,弹跳高度逐渐减小,当动能全部转化为表面能,液滴不再弹跳。因此,液滴滴落的初始高度间接影响着表面能的大小,进而影响着疏水性能,液滴的铺展直径也会随滴落高度的提高而变大。通过对比图6a、 6b,在相同下落高度下,不同体积的液滴滴落至试样表面第一次接触时所达到的最大铺展直径随液滴体积的增加而增大。

  • 图6c、6d 分别是体积为 5 μL、10 μL 的去离子水从 5 种不同高度落下的弹跳高度图。对比图6c、 6d,当液滴的体积不同时,液滴在相同高度下落后第一次弹起的最大高度是不同的,滴落高度一定时,当液体体积越大时,第一次弹跳高度 H 也就越高。对于相同体积的液滴来说,当液滴的下落高度从4 mm 增加到 24 mm 时,液滴第一次下落弹起的最大高度也随之上升。

  • 图6 不同体积水滴从不同下落高度的弹跳表现

  • Fig.6 Bouncing performance of water droplets of different volumes falling from different heights

  • 图7a 是不同体积的水滴从不同高度落下的弹跳高度柱状图,图7b 是不同体积的水滴从不同高度落下的铺展直径柱状图。从 7a、7b 两图中可以更加直观地看出,不论液滴体积为 5 μL 还是 10 μL,垂直滴落至超疏水表面后液滴第一次弹起高度 H 和水滴铺展直径 D,都随着下落高度的增加呈现上升趋势。并且,在相同高度滴落,液滴体积为 10 μL 的第一次弹起高度H和水滴铺展直径D均都高于液滴体积 5 μL 滴落时的 HD。由此可以看出,水滴的体积及下落高度对水滴铺展直径和弹跳高度均有一定程度的影响,并且整体呈现线性增长,即液滴体积和下落高度越大,水滴在超疏水表面的第一次弹起高度及铺展直径也随之增高。

  • 图7 不同体积液滴疏水表现

  • Fig.7 Hydrophobic behavior of droplet with different volume

  • 通过常温下对超疏水硅橡胶表面进行水滴弹跳试验,发现不同体积的水滴从不同的高度下落,撞击到超疏水硅橡胶表面都会发生多次弹跳,并且涂层表面没有破损,证明了 HTV / PDMS-SiO2 表面具有较好的超疏水性能。

  • 2.4 自清洁测试

  • 自清洁是验证橡胶超疏水性能的重要特征试验之一。图8a、8b 是自清洁试验示意图。将试样倾斜 15°放置在培养皿中,用胶头滴管吸取去离子水,从试样一端正上方垂直滴下,观察液滴在试样表面的滚动过程。如图8a 所示,未处理硅橡胶表面由于疏水性能差,水滴在滚落过程中浸润一部分污染物,在试验表面上的滚动痕迹并不清晰,表面污染物在试样上残留较多。如图8b 所示,在超疏水表面上由于其表面存在微纳突起,疏水性能好,水滴从高处受重力作用滚落时,可以粘附表面的污染物,在试样表面上留下一道较为清晰的滚落痕迹,进而可达到自清洁的目的。在具体试验过程中,首先在试样表面均匀撒上石墨粉,作为污染物,使用滴管不断滴出水滴。

  • 图8c显示了在硅橡胶表面滴加2滴去离子水的现象,硅橡胶表面仍存在亲水性,液滴无法成功地将石墨粉粘附带离,无法达到自清洁效果。图8d、 8e分别显示了在HTV / PDMS-SiO2超疏水硅橡胶表面滴 1 滴和 2 滴去离子水的结果,从图8d 可以清楚地看出,当滴水滴仅有 1 滴的时候, HTV / PDMS-SiO2 超疏水硅橡胶试样表面留下了一道清晰的痕迹,但仍有少量细微的石墨粉残留。随着水滴的不断滴落,滴加 2 滴时试样表面的水滴滚落痕迹愈发地清晰,滚落路径也更加洁净,水滴滑过的区域几乎不再存在污染物。

  • 图8 自清洁测试

  • Fig.8 Self-cleaning test

  • 由此可以得出,HTV / PDMS-SiO2 试样的疏水性是远远超过未处理硅橡胶的。PDMS-SiO2 涂层的增加可以明显地提高硅橡胶的疏水性能,水滴可以轻松地将试样表面的石墨粉带走,从而达到自清洁的效果。

  • 3 结论

  • 针对目前在橡胶基体表面构建超疏水涂层的方法大多较为复杂、成本高、对环境容易照成污染的问题。利用 PDMS 固化过程结合撒粉工艺构建超疏水微纳结构,为硅橡胶表面快速、低价、无污染超疏水表面构建提供了一种新的思路。通过这种方法制备的 HTV / PDMS-SiO2超疏水表面的静态接触角平均值达 154.5°,具有良好的弹跳性能和自清洁性能,可提高硅橡胶超疏水表面复杂工况的适应性能。

  • 参考文献

    • [1] SURESH KUMAR N,PADMA SUVARNA R,CHANDRA BABU NAIDU K,et al.A review on biological and biomimetic materials and their applications[J].Applied Physics A,2020,126(6):1-18.

    • [2] YONG J,CHEN F,YANG Q,et al.Superoleophobic surfaces[J].Chemical Society Reviews,2017,46(14):4168-4217.

    • [3] SETHI S K,MANIK G.Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications:A review[J].Polymerplastics Technology and Engineering,2018,57(18):1932-1952.

    • [4] ZHENG W,TENG L,LAI Y,et al.Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J].Chemical Engineering Journal,2022,427:130922.

    • [5] 何文博,欧军飞.超疏水材料应用于文物表面封护研究进展[J].中国表面工程,2022,35(1):72-85.HE Wenbo,OU Junfei.Research progress superhydrophobic sealing materials used in cultural relics protection[J].China Surface Engineering,2022,35(1):72-85.(in Chinese)

    • [6] CAO L,JONES A K,SIKKA V K,et al.Anti-icing superhydrophobic coatings[J].Langmuir,2009,25(21):12444-12448.

    • [7] LIAO X,SUN D,CAO S,et al.Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride)porous fibers for highly efficient oil/water separation[J].Journal of Hazardous Materials,2021,416:125926.

    • [8] LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [9] SU F,YAO K.Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J].ACS Applied Materials & Interfaces,2014,6(11):8762-8770.

    • [10] WEI W,LÜ X,JIANG D,et al.A novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor[J].Dalton Transactions,2014,43(25):9456-9467.

    • [11] WANG S,YAO X F,YANG H,et al.A new leakage measurement method for damaged seal material[J].Measurement Science and Technology,2018,29(7):075203.

    • [12] YANG H,YAO X F,YAN H,et al.Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J].Composite Structures,2018,187:116-121.

    • [13] 辛长征,迟长龙,邓照西.在线撒粉法抗静电涤纶保暖热熔絮片的研制[J].河南工程学院学报:自然科学版,2012,24(1):12-15.XIN Changzheng,CHI Changlong,DENF Zhaoxi.The research on preparation of antistatic warmth fetention heat-bonded polyester[J].Journal of Henan Institute of Engineering:Natural Science,2012,24(1):12-15.(in Chinese)

    • [14] 夏柱国,曹喆,张德波,等.3 种灭螺药物枯水期喷洒法和撒粉法灭螺效果[J].中国血吸虫病防治杂志,2014,26(4):461-462.XIA Zhuguo,CAO Zhe,ZHANG Debo,et al.Snail control effects of three snail control drugs by spraying and dusting during dry season[J].Chinese Journal of Schistosomiasis Control,2014,26(4):461-462.(in Chinese)

    • [15] COSENTINO GARCIA MIGUEL A,SILVA F C,DA SILVA G,et al.A short review about aerospace materials characterization-bonding agents and thermal insulation[J].Propellants,Explosives,Pyrotechnics,2020,45(8):1175-1184.

    • [16] SAMUEL J J J,RAMADOSS R,GUNASEKARAN K N,et al.Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application[J].Materials Today:Proceedings,2021,47:4438-4443.

    • [17] JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic grapheme-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.

    • [18] JIN H,BING W,TIAN L,et al.Combined effects of color and elastic modulus on antifouling performance:A study of graphene oxide/silicone rubber composite membranes[J].Materials,2019,12(16):2608.

    • [19] 胡云浩,石晓凯,马小凡,等.硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J].复合材料学报,2022,39(4):1638-1647.HU Yunhao,SHI Xiaokai,MA Xiaofan,et al.Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J].Journal of Composite Materials,2022,39(4):1638-1647.(in Chinese)

    • [20] 胡云浩,于良,马小凡,等.硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能[J].青岛科技大学学报(自然科学版),2021,42(3):80-84.HU Yunhao,YU Liang,MA Xiaofan,et al.Preparation and durability of silicone rubber/polyacrylamide @ titanium dioxide superhydrophobic materials[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),201,42(3):80-84.(in Chinese)

    • [21] WANG G,ZHOU W,ZHOU J,et al.Superhydrophobic silicone rubber surface prepared by direct replication[J].Surface Engineering,2021,37(3):278-287.

    • [22] 李回归,薛朝华,贾顺田.炭黑/PDMS 光热超疏水涂层的制备及防冰除冰性能[J].精细化工,2021,38(5):934-940.LI huigui,XUE chaohua,JIA shuntian.Preparation and deicing performance of carbon black/PDMS photothermal superhydrophobic coating[J].Fine Chemicals,2021,38(5):934-940.(in Chinese).

    • [23] LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [24] HAO W,XU J,LI R,et al.Developing superhydrophobic rock wool for high-viscosity oil/water separation[J].Chemical Engineering Journal,2019,368:837-846.

    • [25] SHEN L,HU H,WANG S,et al.Preparation of super hydrophobic mMoS2/PDMS coating for fabrics[J].Reactive and Functional Polymers,2019,143:104315.

    • [26] PAN Z,GUAN Y,LIU Y,et al.Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation[J].Separation and Purification Technology,2021,261:118273.

  • 参考文献

    • [1] SURESH KUMAR N,PADMA SUVARNA R,CHANDRA BABU NAIDU K,et al.A review on biological and biomimetic materials and their applications[J].Applied Physics A,2020,126(6):1-18.

    • [2] YONG J,CHEN F,YANG Q,et al.Superoleophobic surfaces[J].Chemical Society Reviews,2017,46(14):4168-4217.

    • [3] SETHI S K,MANIK G.Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications:A review[J].Polymerplastics Technology and Engineering,2018,57(18):1932-1952.

    • [4] ZHENG W,TENG L,LAI Y,et al.Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing[J].Chemical Engineering Journal,2022,427:130922.

    • [5] 何文博,欧军飞.超疏水材料应用于文物表面封护研究进展[J].中国表面工程,2022,35(1):72-85.HE Wenbo,OU Junfei.Research progress superhydrophobic sealing materials used in cultural relics protection[J].China Surface Engineering,2022,35(1):72-85.(in Chinese)

    • [6] CAO L,JONES A K,SIKKA V K,et al.Anti-icing superhydrophobic coatings[J].Langmuir,2009,25(21):12444-12448.

    • [7] LIAO X,SUN D,CAO S,et al.Freely switchable super-hydrophobicity and super-hydrophilicity of sponge-like poly(vinylidene fluoride)porous fibers for highly efficient oil/water separation[J].Journal of Hazardous Materials,2021,416:125926.

    • [8] LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [9] SU F,YAO K.Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J].ACS Applied Materials & Interfaces,2014,6(11):8762-8770.

    • [10] WEI W,LÜ X,JIANG D,et al.A novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor[J].Dalton Transactions,2014,43(25):9456-9467.

    • [11] WANG S,YAO X F,YANG H,et al.A new leakage measurement method for damaged seal material[J].Measurement Science and Technology,2018,29(7):075203.

    • [12] YANG H,YAO X F,YAN H,et al.Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J].Composite Structures,2018,187:116-121.

    • [13] 辛长征,迟长龙,邓照西.在线撒粉法抗静电涤纶保暖热熔絮片的研制[J].河南工程学院学报:自然科学版,2012,24(1):12-15.XIN Changzheng,CHI Changlong,DENF Zhaoxi.The research on preparation of antistatic warmth fetention heat-bonded polyester[J].Journal of Henan Institute of Engineering:Natural Science,2012,24(1):12-15.(in Chinese)

    • [14] 夏柱国,曹喆,张德波,等.3 种灭螺药物枯水期喷洒法和撒粉法灭螺效果[J].中国血吸虫病防治杂志,2014,26(4):461-462.XIA Zhuguo,CAO Zhe,ZHANG Debo,et al.Snail control effects of three snail control drugs by spraying and dusting during dry season[J].Chinese Journal of Schistosomiasis Control,2014,26(4):461-462.(in Chinese)

    • [15] COSENTINO GARCIA MIGUEL A,SILVA F C,DA SILVA G,et al.A short review about aerospace materials characterization-bonding agents and thermal insulation[J].Propellants,Explosives,Pyrotechnics,2020,45(8):1175-1184.

    • [16] SAMUEL J J J,RAMADOSS R,GUNASEKARAN K N,et al.Studies on mechanical properties and characterization of carbon fiber reinforced hybrid composite for aero space application[J].Materials Today:Proceedings,2021,47:4438-4443.

    • [17] JIN H,ZHANG T,BING W,et al.Antifouling performance and mechanism of elastic grapheme-silicone rubber composite membranes[J].Journal of Materials Chemistry B,2019,7(3):488-497.

    • [18] JIN H,BING W,TIAN L,et al.Combined effects of color and elastic modulus on antifouling performance:A study of graphene oxide/silicone rubber composite membranes[J].Materials,2019,12(16):2608.

    • [19] 胡云浩,石晓凯,马小凡,等.硅橡胶表面原位生长ZnO纳米花构筑稳固超疏水表面[J].复合材料学报,2022,39(4):1638-1647.HU Yunhao,SHI Xiaokai,MA Xiaofan,et al.Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber[J].Journal of Composite Materials,2022,39(4):1638-1647.(in Chinese)

    • [20] 胡云浩,于良,马小凡,等.硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能[J].青岛科技大学学报(自然科学版),2021,42(3):80-84.HU Yunhao,YU Liang,MA Xiaofan,et al.Preparation and durability of silicone rubber/polyacrylamide @ titanium dioxide superhydrophobic materials[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),201,42(3):80-84.(in Chinese)

    • [21] WANG G,ZHOU W,ZHOU J,et al.Superhydrophobic silicone rubber surface prepared by direct replication[J].Surface Engineering,2021,37(3):278-287.

    • [22] 李回归,薛朝华,贾顺田.炭黑/PDMS 光热超疏水涂层的制备及防冰除冰性能[J].精细化工,2021,38(5):934-940.LI huigui,XUE chaohua,JIA shuntian.Preparation and deicing performance of carbon black/PDMS photothermal superhydrophobic coating[J].Fine Chemicals,2021,38(5):934-940.(in Chinese).

    • [23] LU Y,SATHASIVAM S,SONG J,et al.Robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.

    • [24] HAO W,XU J,LI R,et al.Developing superhydrophobic rock wool for high-viscosity oil/water separation[J].Chemical Engineering Journal,2019,368:837-846.

    • [25] SHEN L,HU H,WANG S,et al.Preparation of super hydrophobic mMoS2/PDMS coating for fabrics[J].Reactive and Functional Polymers,2019,143:104315.

    • [26] PAN Z,GUAN Y,LIU Y,et al.Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation[J].Separation and Purification Technology,2021,261:118273.

  • 手机扫一扫看