en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王希龙,男,1997年出生,硕士研究生。主要研究方向为表面摩擦学。E-mail:njfu_wxl@njfu.edu.cn

通讯作者:

马晨波,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为表面摩擦学。E-mail:machenbo@njfu.edu.cn

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220406001

参考文献 1
温诗铸,等.摩擦学原理[M].北京:清华大学出版社,2012.WEN Shizhu.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)
参考文献 2
毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)
参考文献 3
徐阳阳,韩晓光,徐久军,等.激光表面织构微坑形貌及面积占有率对氮化气缸套摩擦学性能的影响[J].中国表面工程,2021,34(4):149-157.XU Yangyang,HAN Xiaoguang,XU Jiujun,et al.Effect of surface texture micro-pit morphology and area density on tribological properties of nitrided cylinder liner[J].China Surface Engineering,2021,34(4):149-157.(in Chinese)
参考文献 4
胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)
参考文献 5
陈文杰,孟祥铠,王玉明,等.机械密封织构化表面粗糙度效应的有限元模型与摩擦学特性分析[J].摩擦学学报,2019,39(5):523-531.CHEN Wenjie,MENG Xiangkai,WANG Yuming,et al.Finite element model and tribological properties analysis of textured mechanical seals considering roughness effect[J].Tribology,2019,39(5):523-531.(in Chinese)
参考文献 6
佟德辉,尹必峰,徐波,等.缸套表面分区差异织构的润滑摩擦性能研究[J].内燃机学报,2021,39(5):451-458.TONG Dehui,YIN Bifeng,XU Bo,et al.Research on tribological performance of the partition discriminating textured cylinder liner[J] Transactions of CSICE,2021,39(5):451-458.(in Chinese)
参考文献 7
张培耘,张彦虎,华希俊,等.微织构化表面润滑设计与发展分析[J].表面技术,2021,50(9):14-32.ZHANG Peiyun,ZHANG Yanhu,HUA Xijun,et al.Lubrication design and development analysis of micro-texturing surfaces[J].Surface Technology,2021,50(9):14-32.(in Chinese)
参考文献 8
李甜甜,孙耀宁,张丽,等.表面织构化对摩擦学性能影响的研究进展[J].机械工程材料,2020,44(5):44-48.LI Tiantian,SUN Yaoning,ZHANG Li,et al.Research progress on effect of surface texturing on tribological properties[J].Materials for Mechanical Engineering,2020,44(5):44-48.(in Chinese)
参考文献 9
赵立新,章宝玲,刘洋.基于表面织构技术改善摩擦学性能的研究进展[J].摩擦学学报,2022,42(1):202-224.ZHAO Lixin,ZHANG Baoling,LIU Yang.State of the art for improving tribological performance based on of surface texturing[J].Tribology,2022,42(1):202-224.(in Chinese)
参考文献 10
SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.
参考文献 11
赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HAO Dong,HAN Xiaoguang,CHEN Guangcong et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)
参考文献 12
GALDA L,PAWLUS P,SEP J.Dimples shape anddistribution effect on characteristics of stribeck curve[J].Tribology International,2009,42(10):1505-1512.
参考文献 13
章亦聪,朱玮,吴玉国,等.莱洛三角形微孔织构化端面密封性能数值模拟[J].工程设计学报,2020,27(1):103-110.ZHANG Yicong,ZHU Wei,WU Yuguo,et al.Numerical simulation of sealing performance of Reuleaux triangular microdimpled textured end face[J].Chinese Journal of Engineering Design,2020,27(1):103-110.(in Chinese)
参考文献 14
LI J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2021,73(2):373-380.
参考文献 15
于海武,袁思欢,孙造,等.微凹坑形状对试件表面摩擦特性的影响[J].华南理工大学学报(自然科学版),2011,39(1):106-110.YU Haiwu,YUAN Sihuan,SUN Zao,et al.Effect of micro-dimple shapes on tribological properties of specimen surfaces[J].Journal of South China University of Technology(Natural Science Edition),2011,39(1):106-110.(in Chinese)
参考文献 16
于如飞,陈渭.脂润滑条件下表面织构对滑动表面承载性能的影响[J].润滑与密封,2014,39(10):1-5.YU Rufei,CHEN Wei.Effect of surface texture on load carrying capacity of sliding surface under grease lubrication[J].Lubrication Engineering,2014,39(10):1-5.(in Chinese)
参考文献 17
王国荣,廖代胜,钟林,等.沟槽形表面织构对柱塞密封副摩擦性能的影响[J].表面技术,2019,48(12):165-173.WANG Guorong,LIAO Daisheng,ZHONG Lin,et al.Effect of groove-like surface texture on friction performance of plunger seal pair[J].Surface Technology,2019,48(12):165-173.(in Chinese)
参考文献 18
SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.
参考文献 19
SHEN C,KHONSARI M M.Texture shape optimization for seal-like parallel surfaces:Theory and experiment[J].Tribology Transsctions,2016,59(4):698-706.
参考文献 20
SHEN C,KHONSARI M M.Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J].Tribology International,2015,82(A):1-11.
参考文献 21
费建国,罗会信,左兵权,等.雷诺方程的数值计算方法概述[J].润滑与密封,2020,45(4):130-140.FEI Jianguo,LUO Huixin,ZUO Bingquan,et al.An overview of numerical methods for reynolds equation[J].Lubrication Engineering,2020,45(4):130-140.(in Chinese)
参考文献 22
李振涛,王赟磊,郝木明,等.下游泵送螺旋槽密封空化试验及性能分析[J].摩擦学学报,2017,37(6):743-755.LI Zhentao,WANG Yunlei,HAO Muming,et al.Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J].Tribology,2017,37(6):743-755.(in Chinese)
参考文献 23
ELROD H G.A Cavitation algorithm[J].Journal of Tribology,1981,103(3):350-354.
参考文献 24
ZHANG J Y,MENG Y G.Direct Observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces[J].Tribology Letters,2012,46(2):147-158.
参考文献 25
许雪梅.基于模拟退火算法改进遗传算法的织物智能配色[J].纺织学报,2021,42(7):123-128.XU Xuemei.Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm[J].Journal of Textile Research,2021,42(7):123-128.(in Chinese)
参考文献 26
JANKAUSKAS K,FARID S S.Multi-objective biopharma capacity planning under uncertainty using a flexible genetic algorithm approach[J].Computers & Chemical Engineering,2019,128:35-52.
参考文献 27
MALAKOTI-MOGHADAM M,ASKARZADEH A,RASHIDINEJAD M.Transmission and generation expansion planning of energy hub by an improved genetic algorithm[J].Eeergy Sources Part A-Recovery Utilization and Environmental Effects,2019,41(24):3112-3126.
目录contents

    摘要

    织构形状对摩擦副的润滑性能具有重要的影响,然而最优织构形状随工况参数的变化规律仍缺乏系统性研究。基于满足质量守恒的 JFO(Jakobsson-Floberg-Olsson)空化边界条件,通过求解雷诺方程,结合遗传算法并以油膜承载力最大为目标,建立并简化最优织构形状优化模型,对比分析不同工况下最佳微孔与最优织构的承载力情况,探讨最优织构形状的相关几何参数随摩擦副端面间距、滑动速度与空化压力等参数的变化规律。结果表明:不同工况条件下最优形状织构的承载性能均优于最佳微孔织构,尤其当摩擦副端面间距小、滑动速度大时,性能提升更为显著;简化的最优织构形状几何模型共计 3 设计变量,即液体流入侧两点 XaXg横坐标 X1X2 及织构深度 hg;随摩擦副端面间距增大,X1先减小后基本不变,X2逐渐减小,对应的最优织构深度与面积比增大,量纲一织构深度基本不变;随滑动速度增大,X1先缓慢增大后基本不变,X2 逐渐增大,对应的最优织构深度增大,面积比减小;随空化压力增大,X1先缓慢增大后缓慢减小,X2逐渐增大,对应的最优织构深度增大,面积比减小。研究最优织构形状参数、深度及面积比随工况参数的变化规律,可为织构形状的摩擦学设计提供理论指导。

    Abstract

    Texture shape has a significant influence on the lubrication performance of friction pairs. However, there is still a lack of systematic research on the variation in the optimal texture shape with the operating parameters. Therefore, based on the Jakobsson-Floberg-Olsson (JFO) cavitation boundary condition satisfying mass conservation, by solving the Reynolds equation, combining the genetic algorithm, and considering the maximum oil film load-carrying capacity as the goal, the optimization model of the optimal texture shape is simplified. Additionally, the load-carrying capacities of the optimal micropore and optimal texture under different working conditions are compared and analyzed. Moreover, the variation law of the geometric parameters of the optimal texture shape with the friction pair end-face distance, sliding speed, cavitation pressure, and other parameters are discussed. The results show that under the working condition of the low sliding speed of friction pairs and low cavitation pressure, the load-carrying capacities calculated via the Reynolds, Half-Sommerfeld, and JFO cavitation boundary conditions have insignificant differences. For simple calculations under this working condition, the Reynolds or Half-Sommerfeld cavitation boundary conditions can replace the JFO cavitation boundary conditions. However, under the working conditions of high sliding speed and high cavitation pressure, the JFO cavitation boundary conditions, considering mass conservation, should be used instead of the Half-Sommerfeld or Reynolds conditions. The most commonly used microporous texture was optimized to obtain the best microporous texture under different working conditions. Then, the load-carrying capacity of the optimal texture was compared with that of the optimal microporous texture. Under different working conditions, the load-carrying capacity of the optimal shaped texture was better than that of the optimal microporous texture, especially when the end-face spacing of the friction pair was small, the sliding speed was high, and the performance improvement was more significant. The fifteen variable design models were used to optimize the texture, and the optimal texture shape under different friction pair end-face spacings, sliding speeds, and cavitation pressures were obtained. An analysis of the optimal texture shape shows that the optimal texture is axisymmetric under different working conditions. Therefore, the original fourteen variables used to describe the texture shape can be calculated symmetrically and reduced to eight. When texture depth hg was added, there were nine design variables in total. Further calculations showed that the shape of the liquid outflow side of the optimal texture does not change with the working conditions, and only the liquid inflow side changes. Thus, the texture optimization model can be further simplified. There are three design variables in the simplified geometric model of the optimal texture shape: two points Xa, Xg abscissa X1, X2, and texture depth hg on the liquid inflow side. To verify the feasibility of the simplified model under different working conditions, the load-carrying capacities of the optimal texture obtained using the models with the three, nine, and fifteen design variables were compared. The results revealed that the load-carrying capacity of the optimal texture obtained using the models with various design variables showed insignificant change with a maximum less than 2%, proving the feasibility of the simplified model with the three design variables. With an increase in the distance between the end faces of the friction pairs, X1 first decreased and then remained unchanged, X2 gradually decreased, the corresponding optimal texture depth and area ratio increased, and the dimensionless texture depth remained unchanged. With the increase in sliding speed, X1 first increased slowly and then remained unchanged, X2 gradually increased, the corresponding optimal texture depth increased, and the area ratio decreased. With an increase in cavitation pressure, X1 first increased slowly and then decreased slowly, X2 gradually increased, the corresponding optimal texture depth increased, and the area ratio decreased. The results provide theoretical guidance for the tribological design of optimal texture shapes.

  • 0 前言

  • 摩擦副之间的相对运动必然会产生摩擦磨损,由摩擦磨损造成的机械零件失效约占全球机械零件失效的 80%[1]。因此,采取一定的措施降低机械设备的摩擦磨损,延长其工作寿命不可或缺。通过添加润滑介质、选择更耐磨的摩擦副材料与表面涂层技术等传统方法可以有效减小摩擦磨损,但对承载能力的提升有限。通过在摩擦副表面加工规则排列且具有合适参数图案的表面织构技术,在降低摩擦磨损、提高承载力方面具有优异的性能[2-3],在滑动轴承[4]、机械密封[5]与汽车发动机[6]等领域已有较为广泛的应用,近年来一直是研究的热点问题。

  • 表面织构的几何特征可以通过其形状、大小、深度和面积比等参数来描述[7-9],其中织构的形状对摩擦润滑性能有着很大的影响[10-11],许多学者采用数值模拟和试验研究等手段探索了不同形状织构的摩擦学特性。比较典型的如 GALDA 等[12]发现具有凹痕织构钢的表面,其摩擦因数要比无织构表面小得多,球形织构和长滴形凹坑织构比短滴形凹坑织构能更好地降低摩擦因数。章亦聪等[13]在动环表面上分别设置圆形、三角形、莱洛三角形三种表面织构,发现莱洛三角形织构化密封端面具有较大开启力。LI 等[14]在滚子轴承表面加工圆形、方形与交叉织构,发现交叉织构可以明显降低接触面上的温度。于海武等[15]在织构深度和面积比相同的情况下,对圆形、正方形和椭圆形凹坑织构的减摩效果进行对比,发现椭圆形凹坑织构表现出最优的减摩效果,正方形凹坑织构次之,圆形凹坑织构最差。于如飞等[16]在脂润滑条件下分析球形、等边三角形、椭球形、圆台型、等腰梯形和直角三角形 6 种表面织构在相同深度和面积比下的承载性能,发现等边三角形织构的承载能力最强。王国荣等[17]对比矩形沟槽、椭圆形沟槽、V 形沟槽和内凸阶梯沟槽 4 种织构的减摩效果,得出矩形沟槽承载能力最好,椭圆形沟槽和内凸阶梯型沟槽相差不大,V 形沟槽效果最差。SCARAGGI 等[18]在油润滑条件下对比了微孔织构与微凹槽织构在铝合金表面的摩擦性能,结果发现,凹坑织构的减摩效果明显优于凹槽织构。

  • 以上对织构形状影响的研究为织构的应用奠定了较好的基础,但均是先假定好特定的规则形状开展相关研究和进行对比分析,未能有效体现主动优化设计的思想。因而,如何从织构形状本身的构成出发,获取适合特定工况的最优织构形状还须进一步探索。SHEN 等[19-20]在这方面做了开创性的工作,通过将典型的微孔织构划分为不同区域演化得到任意织构形状,并以油膜承载力最大为目标采用序列二次规划优化算法求解获得最优织构形状。结果发现,对于单向滑动,最优织构形状具有平坦正面的 V 字形形状,相较于微孔形状,最优织构具有更为优良的摩擦学性能。但其研究仍处于织构形状优化设计的初步阶段,主要体现在:①采用 15 个参量描述织构形状,使得几何模型的建立、表征和求解过程较为复杂;②采用不符合质量守恒条件的 Half-Sommerfeld 空化边界条件,在某些工况条件下会存在结果与实际差距较大的情况;③缺乏工况条件下对织构形状变化影响的系统性研究。

  • 基于此,本文采用满足质量守恒的 JFO (Jakobsson-Floberg-Olsson)空化边界条件,以油膜承载力最大为目标,通过求解雷诺方程并结合遗传算法,研究织构形状优化模型的简化、最优织构形状的相关参数随摩擦副端面间距、滑动速度和空化压力等参数的变化规律等问题,为表面织构技术的进一步应用提供理论指导。

  • 1 模型的建立与分析

  • 1.1 几何模型

  • 参照 SHEN 等[20]的研究,所建立的织构模型如图1a 所示,它通过图1b 所示的常用微孔织构形状演化而来。

  • 图1 织构形状优化几何模型

  • Fig.1 Texture shape optimization geometric model

  • 微孔织构可由一系列中心位置与长度固定的水平线均匀划分,在 X 方向上任取水平线中心位置与长度,并连接相邻水平线即可构成任意织构,此时,任意织构形状可以用水平线长度(L1L2,···,Ln)和相应的中心位置(X1X2,···,Xn)来表征。将包含织构的方形单元作为计算域,其边界条件设置如图2 所示,摩擦副上壁面以速度 u 沿 X 方向移动,下壁面固定不动,在滑动方向(X,即流体进出口)设置周期性边界条件来考虑织构之间的相互作用,假设另一个方向(Y)的相互作用可以忽略,这个方向的边界设置为环境压力 p0 = 101.325 kPa。

  • 图2 边界条件设置

  • Fig.2 Boundary condition setting

  • 1.2 控制方程和目标函数

  • 采用雷诺方程分析织构单元内的压力分布 pxy),假设润滑液体为牛顿流体且不可压缩,则稳态雷诺方程[21]可表示为:

  • xh3px+yh3py=6uηhx
    (1)
  • 式中,p 为油膜压力(Pa);h 为油膜厚度(m);η 为流体黏度(Pa·s);u 为上壁面滑动速度(m / s)。摩擦副端面间的油膜厚度 h 由下式给出:

  • h=h0, h0+hg,
    (2)
  • 式中,h0 为摩擦副端面间距(m);hg 为织构深度(m)。为使式(1)量纲一化,定义以下量纲一项:

  • x-=xL,y-=yL,h-=hh0,p-=pp0,Λ=6uηLp0h02
    (3)
  • 式中, x-y-为量纲一直角坐标; h-为量纲一油膜厚度; p- 为量纲一润滑油膜压力;L 为方形单元长度 (m);p0 为环境压力,设置为 101 325 Pa;Λ 为受工况条件影响的特征数。将式(3)代入式(1)得到雷诺方程的量纲一形式:

  • x-h-3p-x-+y-h-3p-y-=Λh-x-
    (4)
  • 利用有限差分法对式(4)进行离散,得到一组线性代数方程并求解这些方程。根据给定的油膜轮廓和边界条件,一旦求出式(4),就可以确定压力分布。在求解 Reynolds 方程时,常用的空化边界条件包括 Half-Sommerfeld 边界、Reynolds 边界与 JFO 空化边界条件,如图3 所示。Half-Sommerfeld 空化边界条件在迭代求解空化压力时不对空化区域进行处理,而是将最终求出的压力分布中小于空化压力的压力值赋值为空化压力,此空化边界条件简单但精度较差,与实际情况差别较大。Reynolds 空化边界条件考虑了润滑油膜的破裂,在求解压力分布过程中将小于空化压力的压力值赋值空化压力值,但 Reynolds 边界条件在油膜破裂处与实际试验值吻合,但未能正确描述油膜再生成的位置,不满足质量守恒定律。JFO 空化边界对这一问题进行了改进,给出了油膜破裂位置与再生成位置的条件,满足质量守恒定律。

  • 图3 空化边界条件

  • Fig.3 Cavitation boundary condition

  • 很多研究者也已通过试验证明 JFO 空化边界条件更加符合实际情况,如李振涛等[22]搭建了空化可视化试验平台,探究不同空化边界条件下润滑油膜的空化特性,发现 JFO 空化边界条件计算出的结果与实际更加接近。本研究在求解雷诺方程时,考虑质量守恒的 JFO 空化边界条件,对预测表面织构的空化更接近实际情况。JFO 空化边界条件下求解雷诺方程须引入切换函数[23],即:

  • g(x)=0, p<pcav1, ppcav
    (5)
  • 式中,p 为油膜压力,pcav为设定的空化压力。

  • 将油膜承载力作为优化目标函数,给定计算域内量纲一压力初值为 1(即压力 p=p0),开关函数 g 初值为 1,通过超松弛迭代求解流体域量纲一压力分布后,对流体域内的量纲一压力积分即可得到量纲一承载力 D-,将计算所得的量纲一压力 p- 转化为油膜压力 p 计算油膜承载力,通过对整个流体域的压力 pxy)进行积分得到油膜承载力 D

  • D-=p-dx-dy-
    (6)
  • D=pdxdy
    (7)
  • 根据 SHEN[20]的研究,可以将织构区域划分为六个部分,即 n=7,则设计变量为 X1L1···X7L7hg 共计 15 个设计变量。其中 hg 为织构深度。

  • 优化问题现在可以表示为:整个织构形状在单元计算域内的约束下,找出最大化目标函数DX1L1···X7L7hg

  • 式(4)雷诺方程右端的量纲一特征数 Λ 描述了操作条件,反映了润滑油黏度、滑动速度及摩擦副端面间距等参数的综合变化情况,为了更清楚地反映前述各真实物理量的变化规律,本文分别单独考虑速度(润滑油黏度和速度具有相同的变化规律) 和摩擦副端面间距的变化;另外,由于润滑介质空化压力值较为重要但较难确定[24],其取值的变化是否会对仿真结果产生较大影响也是值得探讨的问题,所以在后续仿真中也将空化压力作为影响因素列入。

  • 1.3 求解方法

  • 考虑到上述优化问题是非线性和受约束的,采用遗传算法来确定最优织构形状。遗传算法的基本思想是利用概率优化方法自动获取和引导优化的搜索空间,自适应调整搜索方向和控制搜索过程,在不确定规则的情况下获得最优解[25-27]。与一些传统的优化方法相比,该算法具有良好的收敛性和鲁棒性,在要求一定计算精度的情况下,计算时间更短。与 SHEN 等[20]研究中的序列二次规划优化算法相比,该算法不依赖于初始值的设置,并且不容易陷入局部最优解。

  • 1.4 模型验证与分析

  • 为了验证优化方法的可行性,与 SHEN 等[20] 的研究进行了对比分析,具体仿真参数设置见文献[20]。图4 给出了本研究和 SHEN 等[20]研究获得的最优织构形状情况,其中图4a 是通过遗传算法找到使承载力最大的设计变量 X1L1···X7L7hg后,计算出润滑油膜厚度 h 的分布并绘制油膜厚度 h 分布的二维图得到的。同时,找到使承载力最大的设计变量 X1L1···X7L7hg后,即可输出设计变量值并计算、输出最大承载力与量纲一承载力。表1 为两者量纲一设计变量、量纲一承载力 D- 计算域内量纲一压力的积分值,以及织构面积比即织构面积与计算域面积之比(area ratio,AR)的数值对比情况。

  • 图4 最优织构形状对比

  • Fig.4 Optimal texture shapes contrast

  • 表1 量纲一设计变量值与相应的承载力

  • Table1 Dimensionless design variable value and corresponding load-carrying capacity

  • Note: X-1, L-1 ··· X-7, L-7 are the dimensionless design variables, h-g is the dimensionless texture depth, D- is the dimensionless load-carrying capacity, and AR is the area ratio.

  • 由图4 和表1 可知,本方法所得的最优织构形状与 SHEN[20]研究的织构形状相近,最优织构设计变量的量纲一参数吻合较好,验证了本研究方法的正确性。

  • 考虑到 SHEN 等 [20] 研究中采用的 HalfSommerfeld 空化边界条件并不满足质量守恒条件,在织构形状优化过程中的适用性还须深入探讨。为此,本文进一步分析最优织构形状在 Half-Sommerfeld、 Reynolds 和 JFO 三种常见空化边界条件下随摩擦副端面间距、滑动速度、空化压力等参数的变化情况。采用的仿真参数如表2 所示。图5 为最优织构形状对应的承载力在不同边界条件下随摩擦副端面间距、滑动速度和空化压力的变化情况。图5 可知,在摩擦副端面间距大、滑动速度低的工况下,采用三种空化边界条件计算的油膜承载力相差不大,此工况下为简便计算,可以使用 Reynolds 或 Half-Sommerfeld 空化边界条件代替 JFO 空化边界条件,但随滑动速度和空化压力的增大,三种空化边界条件下的承载力差距逐渐显著,Reynolds 与 Half-Sommerfeld 空化边界条件无法代替 JFO 条件,所以织构形状优化应采用考虑质量守恒的 JFO 空化边界条件,本文后续研究将在 JFO 条件下进行。

  • 表2 仿真参数设定

  • Table2 Simulation parameters setting

  • 图5 不同工况条件 Reynolds、Half-Sommerfeld 和 JFO 空化边界条件下承载力的对比

  • Fig.5 Comparison of load-carrying capacity under Reynolds, Half-Sommerfeld and JFO cavitation boundary conditions under different working conditions

  • 1.5 几何模型简化研究

  • 采用 15 变量设计模型对织构进行优化,得到不同摩擦副端面间距、滑动速度及空化压力下的最优织构形状设计变量的具体数值分别见表3~5,其中设计变量 X1L1 ···X7L7 的单位均为 mm,织构深度 hg 的单位为 μm。

  • 表3 不同摩擦副端面间距下最优织构设计变量值

  • Table3 Values of design variables for optimal texture under different end face spacing of friction pairs

  • Note: h0 is the end face spacing of friction pair, X1L1···X7L7 are the design variables, hg is the texture depth.

  • 表4 不同滑动速度下最优织构设计变量值

  • Table4 Values of design variables for optimal texture under different sliding speed

  • Note: u is the sliding speed, X1L1···X7L7 are the design variables, hg is the texture depth.

  • 表5 不同空化压力下最优织构设计变量值

  • Table5 Values of design variables for optimal texture under different cavitation pressure

  • Note: pcav is the cavitation pressure, X1L1···X7L7 are the design variables, hg is the texture depth.

  • 通过分析表3~5 的数值模拟结果和最优形状发现,设计变量 X1L1X2L2X3L3 分别与 X7L7X6L6X5L5 近似相等,即最优织构形状在不同工况下均呈现如图6 所示的形状分布,且以 Y=L / 2 为对称轴对称分布。因而其原有用于表述织构形状的 14 个变量可以对称计算,从而减少为 8 变量,加上织构深度 hg 后,总计 9 个设计变量;进一步计算得到的不同摩擦副端面间距、滑动速度及空化压力下的最优织构形状分别如表6~8 所示。

  • 通过对表6~8 的最优织构形状分析发现,最优织构形状的液体流出侧形状基本不随工况发生变化,即如图6 所示的Xa-Xb-Xc-Xd-Xe-Xf所形成的织构轮廓基本不变,仅有液体流入侧变化,即 Xa-Xg-Xf 形成的织构轮廓发生变化。

  • 图6 织构模型的表征

  • Fig.6 Characterization of texture model

  • 表6 不同摩擦副端面间距下最优织构形状

  • Table6 Optimal texture shape under different end face spacing of friction pairs

  • 表7 不同滑动速度下最优织构形状

  • Table7 Optimal texture shape under different sliding speeds

  • 表8 不同空化压力下最优织构形状

  • Table8 Optimal texture shape under different cavitation pressures

  • 固定点 XbXcXdXe 的位置,由于 XaXgXf纵坐标确定,只需将其横坐标及织构深度 hg 作为设计变量,在对称情况下 Xa的横坐标与 Xf的横坐标相同,所以简化后的几何模型仅用 2 个设计变量 X1XaXf 的横坐标)、X2Xg 的横坐标)的变化即可以揭示织构形状的变化规律,加上织构深度 hg后,总计 3 个设计变量。

  • 表9 给出不同工况条件下 15 设计变量、9 设计变量与 3 设计变量下最优织构承载力及 3 变量承载力较 15 变量承载力的变化率。可以看出,各数量设计变量下的最大承载力变化不大,最高不超过 2%,可以忽略不计。因而,3 设计变量下的简化是可行的,显然其模型更为简单,寻优更加高效。因而,后续的研究中均采用 3 设计变量,即 2 个表征织构形状的设计变量 X1X2 及织构深度 hg 的简化几何模型。

  • 表9 不同工况条件下 15 变量、9 变量与 3 变量承载力对比

  • Table9 Comparison of load-carrying capacity of 15 variables, 9 variables and 3 variables under different working conditions

  • Note: LCC15 is the LCC for 15 variables, LCC9 is the LCC for 9 variables, LCC3 is the LCC for 3 variables, ROC is the Rate of change.

  • 2 最优织构形状优化的有效性验证

  • 将常用的微孔织构进行优化得到不同工况下的最佳微孔织构,并将研究所得最优织构的承载力与最佳微孔织构的承载力进行对比。图7 所示为摩擦副端面间距 h0=2 μm,速度 u=0.6 m / s,空化压力 pcav=30 kPa 时,最佳微孔织构与最优织构的压力分布情况。图7a 可以看出,润滑油膜在最佳微孔织构左侧发散区发生空化,其最大压力分布在织构右侧边缘附近。织构的承载力取决于压力累积面积和该区域的最大压力。与最佳微孔织构相比,图7b 所示最优织构的左侧与右侧均存在高压区,其压力累积面积和最大压力之间有很好的平衡,且计算域内的最大压力大于最佳微孔织构,因而具有更高的承载性能。

  • 图8 所示为不同工况下最优织构与最佳微孔织构承载力的对比情况。由图8a 可知,最优织构与最佳微孔织构的承载力均随着摩擦副端面间距的增大而减小,造成这一现象的主要原因是随着摩擦副端面间距的增大,油膜厚度增大,计算域内的最大压力减小,从 h0=2 μm 至 h0=6 μm,最大压力从 2.22 MPa 减小至 0.36 MPa,因而承载力会减小;在承载性能方面,最优织构较最佳微孔织构承载力的提升随摩擦副端面间距增大而减小,从 h0=2 μm 至 h0=6 μm,承载力从提升 210%减小至 65%。图8b 可知,最优织构与最佳微孔织构的承载力均随着滑动速度的增大而增大,造成这一现象的主要原因是随着滑动速度的增加,计算域内的最大压力增大,最大压力从 u=0.1 m / s 的 0.485 MPa 增大至 u=2.0 m / s 时的 5.99 MPa;在承载性能方面,最优织构承载力较最佳微孔织构承载力的提升随滑动速度增大而增大,从 u=0.1 m / s 至 u=2.0 m / s,承载力提升从 84%增大至 292%。图8c 可知,最优织构与微孔织构的承载力随着空化压力的增大呈现缓慢降低趋势。图9 所示为最优织构在空化压力pcav=20 kPa 及 pcav=90 kPa 的压力分布情况,可以看出,最优织构的压力累积面积变化不大,但该区域内的最大压力减小,从 pcav=20 kPa 的 2.26 MPa 减小至 pcav=90 kPa 的 1.63 MPa,因而其承载力主要取决于该区域的最大压力。

  • 图7 最佳微孔织构与最优织构压力分布

  • Fig.7 Optimal micropore texture and optimal texture pressure distribution

  • 图8 不同工况下最优织构与最佳微孔织构承载性能对比

  • Fig.8 Comparison of optimum texture and optimum micropore texture load-carrying capacity under different working conditions

  • 图9 最优织构压力分布

  • Fig.9 Optimal texture pressure distribution

  • 图10 所示为最优织构的最大压力与承载力随空化压力的变化情况,由图可知,随设定的空化压力增大,计算域内的最大压力减小,承载力减小。分析流体域空化面积发现,随着设定的空化压力增大,流体域空化面积逐渐增大,但空化面积变化不大,空化率仅由pcav=20 kPa的0.64%增至pcav=90 kPa 的 1.68%,因而空化压力对最优织构的空化面积影响不大。最优织构承载力较最佳微孔织构承载力在不同空化压力下均提升了 200%以上。

  • 图10 最优织构的最大压力与承载力随空化压力的变化

  • Fig.10 Changes of maximum pressure and load-carrying capacity of optimal texture with cavitation pressure

  • 由此可知,优化后所得的最优织构承载性能均优于微孔织构的承载性能,且在摩擦副端面间距小、滑动速度大的工况下应用最优织构更具优势。

  • 3 织构形状参数、深度及面积比随工况条件的变化规律

  • 为系统研究工况参数对最优织构形状的影响,开展不同摩擦副端面间距、滑动速度和空化压力条件下织构形状表征参数 X1X2 以及织构深度 hg 的变化规律。另外,为进一步阐明织构形状的变化情况,还对最优织构的面积比进行了分析。

  • 3.1 随摩擦副端面间距的变化规律

  • 图11 所示为最优织构对应的形状表征参数 X1X2、织构深度 hg,以及织构面积比 AR 随摩擦副端面间距 h0的变化情况。由于 h0改变,为了能够更好地揭示织构深度hgh0的关系,对量纲一深度h-g 进行研究。

  • 图11 最优织构形状随摩擦副端面间距的变化规律

  • Fig.11 Variation law of optimal texture shape with the distance between end faces of friction pairs

  • 随着摩擦副端面间距的增大,如图11a 所示的形状表征参数 X1 先减小后基本不变,X2 逐渐减小; 11b 所示的最优织构深度 hg 增大,但其最优量纲一织构深度几乎不变,其值约为 1.7;如图11c 所示的织构面积比增大,从 h0=2 μm 时面积比 43.64%增大至 h0=6 μm 时面积比为 49.44%,这主要是因为织构形状变化最大的是织构的中心点位置,即点 Xg的横坐标 X2。在不同的端面间距下,存在最佳面积比。

  • 3.2 随滑动速度的变化规律

  • 图12 所示为最优织构对应的形状表征参数X1X2、织构深度hg,以及织构面积比随滑动速度变化的情况。

  • 图12 最优织构形状随滑动速度的变化规律

  • Fig.12 Variation law of optimal texture shape with sliding speed

  • 由图12a 可知,随着滑动速度的增大,形状表征参数 X1 先缓慢增大后基本不变,X2 逐渐增大;织构形状变化最大的是织构的中心点位置,即点 Xg 的横坐标 X2,由于 X1变化很小,随着 X2的增大,织构的面积比减小,如图12b 所示,从 u=0.1 m / s 时的 48.84%减小至 u=2.0 m / s 的 37.96%。由图12c 可知,织构深度 hg随着滑动速度的增大而增大,在不同的滑动速度下,存在最佳织构深度与最佳面积比。

  • 3.3 随空化压力的变化规律

  • 图13 所示为最优织构形状表征参数 X1X2、织构深度 hg,以及织构面积比随空化压力变化的情况。

  • 图13 最优织构形状随空化压力的变化规律

  • Fig.13 Variation of optimal texture shape with cavitation pressure

  • 由图13a 可知,随着空化压力的增大,形状表征参数 X1 先缓慢增大后缓慢减小,X2 逐渐增大,此时,由于 X1 变化很小,随着 X2 的增大,最优织构的面积比减小,如图13b 所示,从 pcav=20 kPa 时的 46.4%减小至 pcav=90 kPa 时的 32.84%。由图13c 可知,织构深度 hg 随着空化压力的增大而增大,在不同的空化压力下,存在最佳织构深度与面积比。

  • 4 结论

  • (1)不同工况参数下织构形状的优化应考虑采用满足质量守恒的 JFO 空化边界条件,而非 Reynolds 或 Half-Sommerfeld 条件。

  • (2)织构形状优化模型可进行简化,简化后使用较少设计变量即可揭示最优织构形状随工况参数的变化规律,大大降低了设计的工作量,且寻优更加高效。

  • (3)最优织构形状参数随工况参数的改变而发生变化,在不同工况参数下,最优织构形状相较于常用的微孔形状均能获得最佳承载性能。

  • 参考文献

    • [1] 温诗铸,等.摩擦学原理[M].北京:清华大学出版社,2012.WEN Shizhu.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [2] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [3] 徐阳阳,韩晓光,徐久军,等.激光表面织构微坑形貌及面积占有率对氮化气缸套摩擦学性能的影响[J].中国表面工程,2021,34(4):149-157.XU Yangyang,HAN Xiaoguang,XU Jiujun,et al.Effect of surface texture micro-pit morphology and area density on tribological properties of nitrided cylinder liner[J].China Surface Engineering,2021,34(4):149-157.(in Chinese)

    • [4] 胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)

    • [5] 陈文杰,孟祥铠,王玉明,等.机械密封织构化表面粗糙度效应的有限元模型与摩擦学特性分析[J].摩擦学学报,2019,39(5):523-531.CHEN Wenjie,MENG Xiangkai,WANG Yuming,et al.Finite element model and tribological properties analysis of textured mechanical seals considering roughness effect[J].Tribology,2019,39(5):523-531.(in Chinese)

    • [6] 佟德辉,尹必峰,徐波,等.缸套表面分区差异织构的润滑摩擦性能研究[J].内燃机学报,2021,39(5):451-458.TONG Dehui,YIN Bifeng,XU Bo,et al.Research on tribological performance of the partition discriminating textured cylinder liner[J] Transactions of CSICE,2021,39(5):451-458.(in Chinese)

    • [7] 张培耘,张彦虎,华希俊,等.微织构化表面润滑设计与发展分析[J].表面技术,2021,50(9):14-32.ZHANG Peiyun,ZHANG Yanhu,HUA Xijun,et al.Lubrication design and development analysis of micro-texturing surfaces[J].Surface Technology,2021,50(9):14-32.(in Chinese)

    • [8] 李甜甜,孙耀宁,张丽,等.表面织构化对摩擦学性能影响的研究进展[J].机械工程材料,2020,44(5):44-48.LI Tiantian,SUN Yaoning,ZHANG Li,et al.Research progress on effect of surface texturing on tribological properties[J].Materials for Mechanical Engineering,2020,44(5):44-48.(in Chinese)

    • [9] 赵立新,章宝玲,刘洋.基于表面织构技术改善摩擦学性能的研究进展[J].摩擦学学报,2022,42(1):202-224.ZHAO Lixin,ZHANG Baoling,LIU Yang.State of the art for improving tribological performance based on of surface texturing[J].Tribology,2022,42(1):202-224.(in Chinese)

    • [10] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [11] 赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HAO Dong,HAN Xiaoguang,CHEN Guangcong et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)

    • [12] GALDA L,PAWLUS P,SEP J.Dimples shape anddistribution effect on characteristics of stribeck curve[J].Tribology International,2009,42(10):1505-1512.

    • [13] 章亦聪,朱玮,吴玉国,等.莱洛三角形微孔织构化端面密封性能数值模拟[J].工程设计学报,2020,27(1):103-110.ZHANG Yicong,ZHU Wei,WU Yuguo,et al.Numerical simulation of sealing performance of Reuleaux triangular microdimpled textured end face[J].Chinese Journal of Engineering Design,2020,27(1):103-110.(in Chinese)

    • [14] LI J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2021,73(2):373-380.

    • [15] 于海武,袁思欢,孙造,等.微凹坑形状对试件表面摩擦特性的影响[J].华南理工大学学报(自然科学版),2011,39(1):106-110.YU Haiwu,YUAN Sihuan,SUN Zao,et al.Effect of micro-dimple shapes on tribological properties of specimen surfaces[J].Journal of South China University of Technology(Natural Science Edition),2011,39(1):106-110.(in Chinese)

    • [16] 于如飞,陈渭.脂润滑条件下表面织构对滑动表面承载性能的影响[J].润滑与密封,2014,39(10):1-5.YU Rufei,CHEN Wei.Effect of surface texture on load carrying capacity of sliding surface under grease lubrication[J].Lubrication Engineering,2014,39(10):1-5.(in Chinese)

    • [17] 王国荣,廖代胜,钟林,等.沟槽形表面织构对柱塞密封副摩擦性能的影响[J].表面技术,2019,48(12):165-173.WANG Guorong,LIAO Daisheng,ZHONG Lin,et al.Effect of groove-like surface texture on friction performance of plunger seal pair[J].Surface Technology,2019,48(12):165-173.(in Chinese)

    • [18] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [19] SHEN C,KHONSARI M M.Texture shape optimization for seal-like parallel surfaces:Theory and experiment[J].Tribology Transsctions,2016,59(4):698-706.

    • [20] SHEN C,KHONSARI M M.Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J].Tribology International,2015,82(A):1-11.

    • [21] 费建国,罗会信,左兵权,等.雷诺方程的数值计算方法概述[J].润滑与密封,2020,45(4):130-140.FEI Jianguo,LUO Huixin,ZUO Bingquan,et al.An overview of numerical methods for reynolds equation[J].Lubrication Engineering,2020,45(4):130-140.(in Chinese)

    • [22] 李振涛,王赟磊,郝木明,等.下游泵送螺旋槽密封空化试验及性能分析[J].摩擦学学报,2017,37(6):743-755.LI Zhentao,WANG Yunlei,HAO Muming,et al.Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J].Tribology,2017,37(6):743-755.(in Chinese)

    • [23] ELROD H G.A Cavitation algorithm[J].Journal of Tribology,1981,103(3):350-354.

    • [24] ZHANG J Y,MENG Y G.Direct Observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces[J].Tribology Letters,2012,46(2):147-158.

    • [25] 许雪梅.基于模拟退火算法改进遗传算法的织物智能配色[J].纺织学报,2021,42(7):123-128.XU Xuemei.Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm[J].Journal of Textile Research,2021,42(7):123-128.(in Chinese)

    • [26] JANKAUSKAS K,FARID S S.Multi-objective biopharma capacity planning under uncertainty using a flexible genetic algorithm approach[J].Computers & Chemical Engineering,2019,128:35-52.

    • [27] MALAKOTI-MOGHADAM M,ASKARZADEH A,RASHIDINEJAD M.Transmission and generation expansion planning of energy hub by an improved genetic algorithm[J].Eeergy Sources Part A-Recovery Utilization and Environmental Effects,2019,41(24):3112-3126.

  • 参考文献

    • [1] 温诗铸,等.摩擦学原理[M].北京:清华大学出版社,2012.WEN Shizhu.Principles of tribology[M].Beijing:Tsinghua University Press,2018.(in Chinese)

    • [2] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57.MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering,2020,33(6):47-57.(in Chinese)

    • [3] 徐阳阳,韩晓光,徐久军,等.激光表面织构微坑形貌及面积占有率对氮化气缸套摩擦学性能的影响[J].中国表面工程,2021,34(4):149-157.XU Yangyang,HAN Xiaoguang,XU Jiujun,et al.Effect of surface texture micro-pit morphology and area density on tribological properties of nitrided cylinder liner[J].China Surface Engineering,2021,34(4):149-157.(in Chinese)

    • [4] 胡宇,王优强,李云凯,等.具有复合型织构的水润滑轴承的摩擦学性能研究[J].表面技术,2021,50(11):233-242.HU Yu,WANG Youqiang,LI Yunkai,et al.Study on tribological properties of water-lubricated bearings with compound dimple[J].Surface Technology,2021,50(11):233-242.(in Chinese)

    • [5] 陈文杰,孟祥铠,王玉明,等.机械密封织构化表面粗糙度效应的有限元模型与摩擦学特性分析[J].摩擦学学报,2019,39(5):523-531.CHEN Wenjie,MENG Xiangkai,WANG Yuming,et al.Finite element model and tribological properties analysis of textured mechanical seals considering roughness effect[J].Tribology,2019,39(5):523-531.(in Chinese)

    • [6] 佟德辉,尹必峰,徐波,等.缸套表面分区差异织构的润滑摩擦性能研究[J].内燃机学报,2021,39(5):451-458.TONG Dehui,YIN Bifeng,XU Bo,et al.Research on tribological performance of the partition discriminating textured cylinder liner[J] Transactions of CSICE,2021,39(5):451-458.(in Chinese)

    • [7] 张培耘,张彦虎,华希俊,等.微织构化表面润滑设计与发展分析[J].表面技术,2021,50(9):14-32.ZHANG Peiyun,ZHANG Yanhu,HUA Xijun,et al.Lubrication design and development analysis of micro-texturing surfaces[J].Surface Technology,2021,50(9):14-32.(in Chinese)

    • [8] 李甜甜,孙耀宁,张丽,等.表面织构化对摩擦学性能影响的研究进展[J].机械工程材料,2020,44(5):44-48.LI Tiantian,SUN Yaoning,ZHANG Li,et al.Research progress on effect of surface texturing on tribological properties[J].Materials for Mechanical Engineering,2020,44(5):44-48.(in Chinese)

    • [9] 赵立新,章宝玲,刘洋.基于表面织构技术改善摩擦学性能的研究进展[J].摩擦学学报,2022,42(1):202-224.ZHAO Lixin,ZHANG Baoling,LIU Yang.State of the art for improving tribological performance based on of surface texturing[J].Tribology,2022,42(1):202-224.(in Chinese)

    • [10] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [11] 赫冬,韩晓光,陈广聪,等.CKS 活塞环表面微织构几何形貌及排布方式对摩擦学性能的影响[J].中国表面工程,2021,34(2):59-69.HAO Dong,HAN Xiaoguang,CHEN Guangcong et al.Effect of geometrical morphology and arrangement of micro-texture on friction property of CKS piston ring[J].China Surface Engineering,2021,34(2):59-69.(in Chinese)

    • [12] GALDA L,PAWLUS P,SEP J.Dimples shape anddistribution effect on characteristics of stribeck curve[J].Tribology International,2009,42(10):1505-1512.

    • [13] 章亦聪,朱玮,吴玉国,等.莱洛三角形微孔织构化端面密封性能数值模拟[J].工程设计学报,2020,27(1):103-110.ZHANG Yicong,ZHU Wei,WU Yuguo,et al.Numerical simulation of sealing performance of Reuleaux triangular microdimpled textured end face[J].Chinese Journal of Engineering Design,2020,27(1):103-110.(in Chinese)

    • [14] LI J N,HAN K,CHEN W G,et al.An improved TEHL analysis of textured roller bearings consider various texture parameters and slip[J].Industrial Lubrication and Tribology,2021,73(2):373-380.

    • [15] 于海武,袁思欢,孙造,等.微凹坑形状对试件表面摩擦特性的影响[J].华南理工大学学报(自然科学版),2011,39(1):106-110.YU Haiwu,YUAN Sihuan,SUN Zao,et al.Effect of micro-dimple shapes on tribological properties of specimen surfaces[J].Journal of South China University of Technology(Natural Science Edition),2011,39(1):106-110.(in Chinese)

    • [16] 于如飞,陈渭.脂润滑条件下表面织构对滑动表面承载性能的影响[J].润滑与密封,2014,39(10):1-5.YU Rufei,CHEN Wei.Effect of surface texture on load carrying capacity of sliding surface under grease lubrication[J].Lubrication Engineering,2014,39(10):1-5.(in Chinese)

    • [17] 王国荣,廖代胜,钟林,等.沟槽形表面织构对柱塞密封副摩擦性能的影响[J].表面技术,2019,48(12):165-173.WANG Guorong,LIAO Daisheng,ZHONG Lin,et al.Effect of groove-like surface texture on friction performance of plunger seal pair[J].Surface Technology,2019,48(12):165-173.(in Chinese)

    • [18] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:An experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [19] SHEN C,KHONSARI M M.Texture shape optimization for seal-like parallel surfaces:Theory and experiment[J].Tribology Transsctions,2016,59(4):698-706.

    • [20] SHEN C,KHONSARI M M.Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding[J].Tribology International,2015,82(A):1-11.

    • [21] 费建国,罗会信,左兵权,等.雷诺方程的数值计算方法概述[J].润滑与密封,2020,45(4):130-140.FEI Jianguo,LUO Huixin,ZUO Bingquan,et al.An overview of numerical methods for reynolds equation[J].Lubrication Engineering,2020,45(4):130-140.(in Chinese)

    • [22] 李振涛,王赟磊,郝木明,等.下游泵送螺旋槽密封空化试验及性能分析[J].摩擦学学报,2017,37(6):743-755.LI Zhentao,WANG Yunlei,HAO Muming,et al.Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J].Tribology,2017,37(6):743-755.(in Chinese)

    • [23] ELROD H G.A Cavitation algorithm[J].Journal of Tribology,1981,103(3):350-354.

    • [24] ZHANG J Y,MENG Y G.Direct Observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces[J].Tribology Letters,2012,46(2):147-158.

    • [25] 许雪梅.基于模拟退火算法改进遗传算法的织物智能配色[J].纺织学报,2021,42(7):123-128.XU Xuemei.Improved genetic algorithm for fabric formulation prediction based on simulated annealing algorithm[J].Journal of Textile Research,2021,42(7):123-128.(in Chinese)

    • [26] JANKAUSKAS K,FARID S S.Multi-objective biopharma capacity planning under uncertainty using a flexible genetic algorithm approach[J].Computers & Chemical Engineering,2019,128:35-52.

    • [27] MALAKOTI-MOGHADAM M,ASKARZADEH A,RASHIDINEJAD M.Transmission and generation expansion planning of energy hub by an improved genetic algorithm[J].Eeergy Sources Part A-Recovery Utilization and Environmental Effects,2019,41(24):3112-3126.

  • 手机扫一扫看