en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张腾飞,男,1988年出生,博士。主要研究方向为涂层制备与性能表征。E-mail:tengfeizhang@126.com

廖海燕,女,1997年出生,博士研究生。主要研究方向为表面工程。E-mail:52190916132@2019.cqut.edu.cn

通讯作者:

阮海波,男,1984年出生,博士,教授。主要研究方向为涂层和薄膜制备、功能材料。E-mail:rhbcqu@aliyun.com

中图分类号:TG156;TB114.

DOI:10.11933/j.issn.1007−9289.20220222001

参考文献 1
杨红艳,陈寰,韦天国,等.锆合金表面Cr涂层 900~ 1 200 ℃氧化行为研究[J].材料保护,2021,54(12):13-18.YANG Hongyan,CHEN Huan,WEI Tianguo,et al.Oxidation behavior of Cr coating on the surface of zirconium alloy at 900-1 200 ℃[J].Materials Ptotection,2021,54(12):13-18.(in Chinese)
参考文献 2
BRACHE J,IDARRAGA-TRUJILLO I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.
参考文献 3
肖珣,王亚强,张金钰,等.锆合金包壳表面金属Cr涂层的研究进展[J].中国材料进展,2022,41(6):445-457.XIAO Xun,WANG Yaqiang,ZHANG Jinyu,et al.Research progress of metal Cr coating on zirconium alloy cladding in water-cooled reactors[J].Materials China,2022,41(6):445-457.(in Chinese)
参考文献 4
黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)
参考文献 5
KIM H,KIM I,JUNG Y,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.
参考文献 6
CHEN H,WANG X,ZHANG R.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.Selection,preparation,and characteristics of coating materials[J].Coatings,2020,10:808-832.
参考文献 7
刘俊凯,张新虎,恽迪.事故容错燃料包壳候选材料的研究现状及展望 [J].材料导报,2018,32(11):1757-1778.LIU Junkai,ZHANG Xinhu,YUN Di.A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings[J].Materials Reports,2018,32(11):1757-1778.(in Chinese)
参考文献 8
BRACHET J,ROUESNE E,RIBIS J,et al.High temperature steam oxidation of chromium-coated zirconium-based alloys:Kinetics and process[J].Corrosion Science,2020,167:108537.
参考文献 9
WANG H,ZHOU X,HE H,et al.Development of low-Cr wrought FeCrAl cladding alloys and its irradiation tolerance and steam oxidation resistance at 1 200 ℃[J].Corrosion Science,2022,195:109998.
参考文献 10
位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAlcoating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)
参考文献 11
OPILA E J,JACOBSON N S,MTERS D L,et al.Predicting oxide stability in high-temperature water vapor[J].JOM,2006,58(1):22-28.
参考文献 12
ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.
参考文献 13
PANTANO M,ANGELICI A V,SEZEP A,et al.High temperature steam oxidation performance of max phase(Ti2AlC)coated ZIRLO[J].International Congress on Advances in Nuclear Power Plants,ICAP P 2014,2014,3:2126-2135.
参考文献 14
TANG C,STEINBRUECK M,STUEBER M,et al.Deposition,characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J].Corrosion Science,2018,135:87-98.
参考文献 15
MAIER B R,GARCIA-DIAZ B L,HANCH B,et al.Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J].Journal of Nuclear Materials,2015,466:712-717.
参考文献 16
王晓婧,刘艳红,刘威,等.锆合金表面射频磁控溅射SiC涂层制备工艺参数优选[J].材料保护,2018,51(4):74-79.WANG Xiaojing,LIU Yanhong,LIU Wei,et al.Process parameter optimization of SiC coatings on zirconium alloy surface by radio frequency magnetron sputtering[J].Materials Protection,2018,51(4):74-79.(in Chinese)
参考文献 17
谭瑞轩,王洪磊,余金山,等.锆合金包壳管内壁SiC涂层的PECVD制备与性能[J].粉末冶金材料科学与工程,2020,25(3):206-212.TAN Ruixuan,WANG Honglei,YU Jinshan,et al.Preparation and properties of SiC coating on inner surface of Zr-caldding by PECVD[J].Materials Science and Engineering of Powder Metallurgy,2020,25(3):206-212.(in Chinese)
参考文献 18
AL-OLAYYAN Y,FUCHS G E,BANEY R,et al.The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings[J].Journal of Nuclear Materials,2005,346(2):109-119.
参考文献 19
XIAO W,CHEN H,LIU X,et al.Thermal shock resistance of TiN-,Cr-,and TiN/Cr-coated zirconium alloy[J].Journal of Nuclear Materials,2019,526:151777.
参考文献 20
CHEN H,WANG X M,Zhang R.Application and development progress of Cr-based surface coating in nuclear fuel elements II.Current status and shortcomings of performance studies[J].Coatings,2020(10):835-864.
参考文献 21
KASHKAROV E B,SIDELEV D V,SYRTANOV M S,et al.Oxidation kinetics of Cr-coated zirconium alloy:Effect of coating thickness and microstructure[J].Corrosion Science,2020,175:108883.
目录contents

    摘要

    锆合金是重要的核燃料包壳材料,在包壳表面沉积抗高温水蒸气氧化涂层是在失水事故中避免核泄漏的有效途径,然而涂层在高温氧化过程中存在氧化产物不稳定及界面扩散问题。用磁控溅射的方法在 Zr-4 合金表面沉积 Mo / Al / Cr 复合涂层,拟利用 Al 层生成氧化铝提升抗氧化温度上限,利用 Mo 层阻挡 Al 与 Zr-4 基体的扩散。用 SEM 表征涂层的表面及横截面形貌,利用 XRD 分析涂层物相结构,用纳米压痕的方法评价涂层的力学性能,用管式炉连接水蒸气发生器来评价涂层的抗高温水蒸气氧化性能。结果表明:在锆合金表面制备的 Mo / Al / Cr 复合涂层与基体结合良好,结构完整,界面清晰,硬度高于 Zr-4 合金基体。在高温水蒸气氧化试验中,复合涂层中的 Al 会发生熔融,导致涂层结构的破坏而不能生成连续致密氧化铝膜。在 Cr 层、Al 层失效的情况下,Mo 层可以有效阻挡 Al 及 O 元素向基体内部扩散。探讨了 Al 作为抗氧化层及 Mo 作为扩散阻挡层的可行性,试验结果可为核燃料包壳涂层的设计选材提供借鉴和支撑。

    Abstract

    Zirconium alloys are important materials for nuclear fuel claddings. When a loss of coolant accident (LOCA) occurs, the zirconium alloy cladding will be oxidized by the high-temperature (>1000 ℃) steam, generating hydrogen and releasing significant heat. If the emergency action is not taken promptly, a hydrogen explosion or nuclear leakage will occur. The deposition of coatings with high temperature steam oxidation resistance, such as Mn+1AXn phase, FeCrAl, and Cr coatings, on the cladding surfaces is an effective mechanism for delaying the hydrogen explosion and nuclear leakage of a LOCA. Of all the coatings, the Cr coating is considered the most promising for practical application because of its good oxidation resistance in high-temperature steam and excellent corrosion resistance in subcritical water. However, the oxidation products of Cr coatings are unstable, and the Cr-Zr eutectic reaction will occur at the interface during the process of high-temperature oxidation, which limits the performance of the Cr coatings. In this paper, a Mo / Al / Cr composite coating is deposited on the surface of a Zr-4 alloy by the magnetron sputtering method. The outer Cr layer is designed to resist the corrosion of the subcritical water under normal conditions. The Al layer is proposed to improve the upper limit of the oxidation resistance of the composite coating during accident conditions because aluminum oxide is more stable than chromium oxide at high temperatures. The Mo layer is designed to inhibit the diffusion between the Al layer and the Zr-4 substrate. Cr coatings and Al / Cr coatings are also prepared on the surfaces of the Zr-4 alloys as reference samples. The surface and cross-sectional morphologies of the coatings are characterized by scanning electron microscopy; the phase structures of the coatings are analyzed by X-ray diffraction; the mechanical properties of the coatings are evaluated by the method of nano-indentation; and the high temperature steam oxidation resistance of the coatings is evaluated using a tube furnace connected to a steam generator. The results show that the Cr, Al / Cr, and Mo / Al / Cr coatings deposited on the Zr-4 alloys have good adhesion to the Zr-4 substrates, which exhibit clear interfaces and pure phase structures. Because the preparation process for the outer Cr layer is the same, the surface hardness and modulus of the Cr, Al / Cr and Mo / Al / Cr coatings are similar and higher than those of the Zr-4 alloy. After the high-temperature steam oxidation, the Cr, Al / Cr and Mo / Al / Cr coatings display surfaces with cracks, which may result from the difference in the thermal coefficients of expansion of the Cr2O3 and residual Cr layers. The cracks provide pathways for the oxidizing medium, which induces the oxidation of the substrate or the inner layer of the composite coatings. The Al layer in the Al / Cr and Mo / Al / Cr composite coatings melts, resulting in the destruction of the coating structure; thus, it is unable to form a continuous dense alumina film. For the Al / Cr coating, when the Cr and Al layers fail, the oxygen will diffuse to the Zr-4 substrate, forming zirconium oxide. For the Mo / Al / Cr coating, even though the Cr layer fractures and the Al layer melts at high temperatures, the residual Mo layer can effectively restrict the diffusion of the Al and O elements into the Zr-4 substrate. This paper explores the feasibility of using the Al layer as an oxidation resistant layer and the Mo layer as a diffusion barrier layer. We have demonstrated that the layers with a low melting point, such as the Al layer, are not suitable for the composite coatings applied for high-temperature conditions and that the Mo layer is an effective diffusion barrier at a temperature of 1000 ℃. The results of this paper provide reference and data support for the material design of nuclear cladding coatings.

  • 0 前言

  • 发展核能是大规模取代化石能源,推进我国 “碳达峰、碳中和”战略的重要举措。安全性是确保核能利用的前提,在我国现有的压水堆核电站中,锆合金包壳负责封装 UO2 燃料芯块,是核安全的第一道屏障。反应堆在正常运行时,包壳外壁处于高温高压水中,一旦发生失水事故,冷却水的流失会导致锆合金包壳迅速被高温水蒸气氧化,产生大量氢气并有可能引发爆炸,造成堆芯熔毁以及核泄漏等灾难性后果。用表面工程的手段在锆合金表面沉积涂层可以有效提高包壳的抗氧化性,延长事故救援时间,是提高包壳耐事故能力的重要手段。

  • 目前国内外研究的锆合金表面涂层主要有金属涂层和非金属涂层两类。金属涂层主要包括 Cr 涂层、FeCrAl 涂层等。Cr 涂层在反应堆正常运行环境 (高温高压水)下具有优异的耐腐蚀性,在非事故条件下可以大幅延长包壳的使用寿命[1-5]。在事故条件下(高温水蒸气),Cr 涂层的抗氧化性也优于锆合金,是目前最有应用潜力的包壳涂层[6]。但是 Cr 涂层在温度超过 1 200℃的水蒸气中生成易挥发的氢氧化物,虽然反应速率较慢,但是气态产物也会造成涂层中缺陷的形成[7]。在温度超过 1 300℃时, Cr 涂层还会与基体锆合金发生共晶反应,破坏涂层结合的稳定性,影响涂层的性能[8]。FeCrAl、CrAl 等材料主要依靠 Al 元素的选择性氧化,形成致密 Al2O3 膜来阻止氧元素的扩散[9-10]。相比于 Cr 涂层氧化形成的 Cr2O3 膜,ɑ-Al2O3 具有更高的高温稳定性,能够在 1 500℃以下保持结构稳定[11],然而涂层中 Al 元素在高温高压水(正常服役环境)中会形成不致密的 AlOOH 相而溶解于水中,造成涂层结构的失稳,不利于长期服役[12]

  • 非金属涂层主要包括 MAX 相涂层、SiC 涂层、 TiN 等氮化物涂层。MAX 相(Ti2AlN、Cr2AlN 等) 涂层主要依靠在表面形成 Al2O3、Cr2O3 膜保护基体不被进一步氧化,在高温水蒸气中具有良好的抗氧化性,但在高温高压水中,同样存在 Al 元素不稳定的问题[13-15]。SiC 涂层具有极低中子吸收截面,依靠表面形成 SiO2 膜阻止氧元素的扩散,具有良好的抗氧化性,然而 Si 元素在高温高压水中会形成易溶的氢氧化物,不利于在正常工况下的使用[16-18]。TiN 涂层具有良好的耐腐蚀性与耐磨性,但其与基体热膨胀系数差异较大,在热冲击过程中产生裂纹和剥落,其与基体之间的协同变形能力还有待提高[19]

  • 在现有的涂层中,Cr 涂层在高温高压水中可以形成稳定致密的氧化膜,在正常工况下可以大幅延长使用寿命,且 Cr 涂层的热膨胀系数与 Zr 合金相近,是最有希望实现工程应用的涂层。在事故工况下,虽然 Cr 涂层可以明显提高 Zr 合金的抗氧化性,但是受高温下挥发性氢氧化物生成和界面共晶反应的影响,其抗氧化性能的上限不高。相比于 Cr 的氧化物,Al 的氧化物在高温水蒸气中的稳定性更高。设计制备含有 Cr、Al 元素的复合涂层,并在复合涂层与界面之间添加扩散阻挡层阻止共晶反应,使正常工况下 Cr 元素优先氧化形成 Cr2O3膜来延长使用寿命,事故工况下 Al 元素优先氧化形成 Al2O3 膜提高耐事故上限,有望综合利用 Cr、Al 元素在不同工况下的性能优势,提高耐事故涂层的综合性能。

  • 本文利用磁控溅射的方法,在锆合金表面依次制备 Mo 扩散阻挡层、Al 抗氧化层和 Cr 耐腐蚀层,在锆合金表面构筑 Mo / Al / Cr 复合结构,对复合涂层的结构、力学性能以及高温抗氧化性进行研究,并对 Mo / Al / Cr 复合涂层在高温水蒸气中的氧化及失效机制进行讨论。

  • 1 试验准备

  • 1.1 样品制备

  • 采用磁控溅射的方法在锆合金表面制备 Mo / Al / Cr 复合涂层,并在锆合金表面分别制备 Cr 涂层和 Al / Cr 涂层为参照涂层样品,涂层制备工艺参数见表1。在制备涂层之前,先用砂纸以及粒径为 0.05 μm 的 Al2O3 腐蚀抛光液将锆合金样品(15 mm×15 mm×1.5 mm)研磨抛光至镜面,并依次用丙酮、酒精、去离子水超声清洗并吹干。将吹干后的样品放置到真空室中,将真空室抽至 3.0 mPa,然后向真空室中通入 Ar 气,控制气压为 1.2 Pa。在样品上施加 1 kV、40 kHz、 80%的脉冲偏压,对样品进行溅射清洗 20 min 以去除表面污染物。

  • 表1 Mo / Al / Cr 复合涂层沉积参数

  • Table1 Deposition parameters of Mo / Al / Cr composite coatings

  • 1.2 结构与力学性能表征

  • 采用 Zeiss Gemini300 场发射扫描电镜对涂层样品的表面及横截面形貌进行观察,用集成在扫描电镜上的 X 射线能谱分析仪(EDS)对涂层进行成分表征;采用理学 Smartlab 掠入射(掠入射角 0.5°) 方式对样品进行 XRD 测试,采用 Cu 靶 (Kα=1.540 56)激发 X 射线;利用纳米压痕仪 (Keysight G200)对涂层的硬度及弹性模量进行表征,压入深度为 200 nm。

  • 1.3 高温水蒸气氧化试验

  • 利用管式炉(BEQ,BTF-1700C-SL)连接蒸汽发生器进行高温水蒸气氧化试验,样品放入前先将管式炉升温至 1 000℃,再往管式炉中通入高温水蒸气 10 min 以排除炉内残余空气,水蒸气的流量通过调节蒸汽发生器的进水量进行控制,设置为 1 mL / min,样品放入后继续保持 1 000℃氧化 20 min,氧化结束后马上将样品取出空冷至室温。氧化后的表面以及横截面形貌用 Zeiss Gemini300 场发射扫描电镜表征,氧化后涂层内元素分布用集成在扫面电镜上的 EDS 进行检测。

  • 2 结果与讨论

  • 2.1 涂层横截面形貌

  • 图1 为 Cr、Al / Cr、Mo / Al / Cr 涂层的横截面形貌扫描电镜图以及 EDX 图谱。从图1a 中可以看出,Cr 涂层与基体结合良好,界面清晰,厚度大约在 5.6 μm,且存在明显的柱状晶结构。EDX 图谱 (图1b)进一步证明了 Cr 涂层被成功地沉积在了 Zr-4 合金基体上。图1c 显示了 Al / Cr 涂层的双层结构,其中 Cr 层的厚度大约在 5.2 μm,Al 层的厚度大约在 1 μm,其中 Cr 层中存在明显的柱状晶结构。图1d 中 EDX 结果显示在 Cr 和 Zr-4 基体间出现了强烈的 Al 峰,从成分上证实了涂层的 Al / Cr 双层结构。图1e 显示了 Mo / Al / Cr 涂层的三层结构形貌,其中 Cr 层的厚度大约在 5 μm,Al 层的厚度大约在 1.2 μm, Mo 层厚度大约在 2.3 μm,这与图1f 中检测到的成分分布数据相吻合,说明本研究成功制备了与界面清晰,结合良好的 Mo / Al / Cr 涂层。

  • 图1 不同涂层的截面形貌与成分分布

  • Fig.1 Cross-section morphologies and element distributions of different coatings

  • 2.2 涂层的结构

  • 涂层的物相结构用 XRD 的方法进行表征。图2 显示的是 Mo 层、Al 层以及表面 Cr 层的 XRD 图谱。从图2a 中可以看出,用磁控溅射法在锆合金表面制备的 Mo 层衍射峰均为其体心立方结构的特征衍射峰,Al 层显示出的衍射峰也均源于其面心立方结构,没有其他结构的衍射峰被检测到,说明用磁控溅射法在锆合金表面制备的 Mo 层、Al 层物相纯净,分别为体心立方和面心立方结构。图2b 显示的是 Cr、Al / Cr、Mo / Al / Cr 涂层中表层 Cr 的衍射谱线,从图中可以看出,单层 Cr 及 Mo / Al / Cr 涂层中 Cr 显示出 Cr 的体心立方结构三强峰,Al / Cr 涂层中的 Cr 只显示出(100)晶面的衍射峰,其他晶面的衍射峰不明显,这可能是由于 Al / Cr 涂层中的 Cr 层具有一定的择优取向。用谢乐公式计算 Cr、Al / Cr、 Mo / Al / Cr 涂层中 Cr 的晶粒尺寸,分别为 104 nm、 156 nm、96 nm,从计算结果看晶粒尺度在百纳米左右,为纳米晶。

  • 图2 不同涂层的 XRD 图谱

  • Fig.2 XRD patterns of different coatings

  • 2.3 涂层的力学性能

  • Cr、Al / Cr 及 Mo / Al / Cr 涂层的纳米硬度以及模量如图3 所示。从图中可以看出,Cr、Al / Cr 及 Mo / Al / Cr 涂层均提高了基体的硬度和弹性模量,这对于提高涂层的耐磨性有一定的益处。由于纳米硬度测试深度设为 200 nm,顶层 Cr 涂层厚度约为 5 μm,测试深度小于涂层深度 1 / 10,所以测得硬度可视为涂层本征硬度,又由于顶层 Cr 涂层均在同一工艺条件下制备,故 Cr、Al / Cr、 Mo / Al / Cr 三种样品的硬度及弹性模量差异不大。

  • 图3 Zr-4 合金基体和不同涂层的纳米硬度和弹性模量

  • Fig.3 Indentation hardness and indentation modulus of bare and coated Zr-4 alloy

  • 2.4 涂层抗高温水蒸气氧化性能

  • 2.4.1 涂层氧化后的表面形貌

  • 图4 是 Cr、Al / Cr 及 Mo / Al / Cr 涂层在 1 000℃水蒸气氧化后的表面形貌。从图中可以看出,Cr、Al / Cr 及 Mo / Al / Cr 涂层在高温氧化后都出现一定程度上的皲裂,这可能是由于涂层在氧化时表面生成氧化物体积产生膨胀,在升温-降温过程中由于热膨胀系数的不同产生了裂纹。裂纹的产生会为水蒸气及氧元素的扩散提供通道,使涂层失去保护作用。从图4 中可以看出,Cr 涂层上产生的裂纹比较细长,Al / Cr 涂层表面产生的裂纹较为粗短, Mo / Al / Cr 涂层表面皲裂程度最为轻微。

  • 图4 不同涂层 1 000℃ / 20 min 水蒸气氧化后表面 SEM 图

  • Fig.4 Surface SEM images of different coatings after steam oxidations at 1000℃ for 20min

  • 2.4.2 涂层氧化后的截面形貌及成分

  • Cr、Al / Cr 及 Mo / Al / Cr 涂层在 1 000℃水蒸气氧化 20 min 后的横截面形貌及成分分析如图5 所示。从图5a 中可以看出,氧化后的 Cr 涂层在非裂纹区出现了明显的分层,这是由元素在高温下发生反应扩散造成的。从图5b 可以看出,O 元素在涂层表面出现富集,说明在 Cr 涂层表面生成 Cr2O3,这与其他研究报道的情况一致[20]。在 Cr2O3层下方的残余 Cr 层中也分布有 O,说明 O 元素已经扩散进涂层内部,只是还未引发 Cr→Cr2O3的扩散型相变。在残余 Cr 与 Zr-4 基体之间形成了 ZrCr2化合物层,这是由高温下 Cr 层与基体的互扩散引起的。图5c 显示的是氧化后的 Cr 涂层裂纹区域的形貌,从图中可以看出裂纹的尖端已经由涂层扩展至基体,裂纹的产生为氧元素的扩散提供了快速通道,在膜-基界面的基体一侧形成了局部的氧化锆相,这说明 Cr 涂层在开裂部位丧失了防护性能。

  • 图5 不同涂层在 1 000℃水蒸气中氧化 20 min 后的横截面形貌及成分

  • Fig.5 Cross-section morphologies and element distributions of different coatings after steam oxidations at 1 000℃ for 20 min

  • 图5d 显示的是 Al / Cr 涂层高温氧化厚度横截面形貌,可以看出表面 Cr 层出现断裂,这与图4b 中表面粗大的裂纹相对应。在 Cr 层与基体之间出现了约 1 μm 宽的缝隙,说明 Al 层的结构已经不完整,这可能是由于 Al 的熔点(660℃)较低,在升温过程中还没来得及扩散就已经发生了熔融,造成 Al / Cr 复合涂层结构失稳。此外在 Al / Cr 涂层下面的锆合金基体中,出现了明显的两相区,结合图5e 中的成分分析,可以推断出在界面基体一侧生成了锆的氧化物层,这说明在 1 000℃氧化 20 min 后, Al / Cr 涂层彻底丧失了保护功能。

  • 图5f 显示的是 Mo / Al / Cr 涂层氧化后的截面形貌,可以看出表面 Cr 层被氧化成 Cr2O3 层和残余 Cr 层,中间 Al 层同样发生了熔融导致结构破坏,但在界面处依然存在残余的 Mo 层。从图5g 中成分分析上可以看出,熔融的铝在 Cr 层以及 Mo 层中都存在扩散现象。从图5g 中还可以看出,由于残余 Mo 层阻挡,O 元素不能大量扩散到锆合金基体,故没有在基体中检测到氧化锆的生成。

  • 在对锆合金表面涂层抗氧化性的研究中,一般将涂层与界面处生成氧化锆视为涂层失效的标志[21]。在本试验中,Cr 涂层由于表面氧化铬的生成以及在升温降温过程中的热胀冷缩,表面产生裂纹,为氧元素的扩散提供快速通道,在裂纹的底部基体一侧生成了氧化锆,这说明 Cr 涂层已经局部丧失了保护作用。Al / Cr 涂层由于高温下 Al 层的熔融,造成复合涂层结构的破坏,使氧元素大量的扩散到了基体并生成氧化锆,基本完全丧失了对基体的保护作用。Mo / Al / Cr 涂层中的 Al 层虽然也发生了熔融,但残存的 Mo 层成功的阻挡了氧元素向基体内部的扩散,在结合界面处未发现氧化锆的生成,故 Mo / Al / Cr 涂层的防护效果要优于 Cr 涂层和 Al / Cr 涂层。本试验预想 Al 元素在高温下会快速扩散至涂层表面并发生选择性氧化,但试验结果表明,由于 Al 的熔点较低,Al 层在发生有效扩散之前先发生了熔融,造成了涂层结构的破坏,降低了涂层的防护性能,在未来的涂层设计中应采用高熔点抗氧化层替代 Al 层,以提高涂层抗高温水蒸气氧化性能。

  • 3 结论

  • 采用磁控溅射的方法成功地在锆合金表面制备了 Mo / Al / Cr 复合涂层,通过研究涂层在 1 000℃ 水蒸气条件下的抗氧化性能,探讨了纯 Al 层作为抗氧化层和纯 Mo 层作为扩散阻挡层的可行性,主要结论如下:

  • (1)纯 Al 层在高温氧化过程中的扩散速度远低于发生熔融的速度,Al 层的熔融会造成复合涂层结构的破坏,降低涂层的高温抗氧化性。由此可见低熔点金属作为复合涂层中的抗氧化层具有局限性,应当被慎重选用。

  • (2)复合涂层中的 Mo 层在高温下可以有效阻挡 Al、O 等元素向锆合金基体的扩散,说明在高温抗氧化涂层中,Mo 是一种有非常潜力的阻挡层材料。

  • 参考文献

    • [1] 杨红艳,陈寰,韦天国,等.锆合金表面Cr涂层 900~ 1 200 ℃氧化行为研究[J].材料保护,2021,54(12):13-18.YANG Hongyan,CHEN Huan,WEI Tianguo,et al.Oxidation behavior of Cr coating on the surface of zirconium alloy at 900-1 200 ℃[J].Materials Ptotection,2021,54(12):13-18.(in Chinese)

    • [2] BRACHE J,IDARRAGA-TRUJILLO I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [3] 肖珣,王亚强,张金钰,等.锆合金包壳表面金属Cr涂层的研究进展[J].中国材料进展,2022,41(6):445-457.XIAO Xun,WANG Yaqiang,ZHANG Jinyu,et al.Research progress of metal Cr coating on zirconium alloy cladding in water-cooled reactors[J].Materials China,2022,41(6):445-457.(in Chinese)

    • [4] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [5] KIM H,KIM I,JUNG Y,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.

    • [6] CHEN H,WANG X,ZHANG R.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.Selection,preparation,and characteristics of coating materials[J].Coatings,2020,10:808-832.

    • [7] 刘俊凯,张新虎,恽迪.事故容错燃料包壳候选材料的研究现状及展望 [J].材料导报,2018,32(11):1757-1778.LIU Junkai,ZHANG Xinhu,YUN Di.A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings[J].Materials Reports,2018,32(11):1757-1778.(in Chinese)

    • [8] BRACHET J,ROUESNE E,RIBIS J,et al.High temperature steam oxidation of chromium-coated zirconium-based alloys:Kinetics and process[J].Corrosion Science,2020,167:108537.

    • [9] WANG H,ZHOU X,HE H,et al.Development of low-Cr wrought FeCrAl cladding alloys and its irradiation tolerance and steam oxidation resistance at 1 200 ℃[J].Corrosion Science,2022,195:109998.

    • [10] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAlcoating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [11] OPILA E J,JACOBSON N S,MTERS D L,et al.Predicting oxide stability in high-temperature water vapor[J].JOM,2006,58(1):22-28.

    • [12] ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.

    • [13] PANTANO M,ANGELICI A V,SEZEP A,et al.High temperature steam oxidation performance of max phase(Ti2AlC)coated ZIRLO[J].International Congress on Advances in Nuclear Power Plants,ICAP P 2014,2014,3:2126-2135.

    • [14] TANG C,STEINBRUECK M,STUEBER M,et al.Deposition,characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J].Corrosion Science,2018,135:87-98.

    • [15] MAIER B R,GARCIA-DIAZ B L,HANCH B,et al.Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J].Journal of Nuclear Materials,2015,466:712-717.

    • [16] 王晓婧,刘艳红,刘威,等.锆合金表面射频磁控溅射SiC涂层制备工艺参数优选[J].材料保护,2018,51(4):74-79.WANG Xiaojing,LIU Yanhong,LIU Wei,et al.Process parameter optimization of SiC coatings on zirconium alloy surface by radio frequency magnetron sputtering[J].Materials Protection,2018,51(4):74-79.(in Chinese)

    • [17] 谭瑞轩,王洪磊,余金山,等.锆合金包壳管内壁SiC涂层的PECVD制备与性能[J].粉末冶金材料科学与工程,2020,25(3):206-212.TAN Ruixuan,WANG Honglei,YU Jinshan,et al.Preparation and properties of SiC coating on inner surface of Zr-caldding by PECVD[J].Materials Science and Engineering of Powder Metallurgy,2020,25(3):206-212.(in Chinese)

    • [18] AL-OLAYYAN Y,FUCHS G E,BANEY R,et al.The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings[J].Journal of Nuclear Materials,2005,346(2):109-119.

    • [19] XIAO W,CHEN H,LIU X,et al.Thermal shock resistance of TiN-,Cr-,and TiN/Cr-coated zirconium alloy[J].Journal of Nuclear Materials,2019,526:151777.

    • [20] CHEN H,WANG X M,Zhang R.Application and development progress of Cr-based surface coating in nuclear fuel elements II.Current status and shortcomings of performance studies[J].Coatings,2020(10):835-864.

    • [21] KASHKAROV E B,SIDELEV D V,SYRTANOV M S,et al.Oxidation kinetics of Cr-coated zirconium alloy:Effect of coating thickness and microstructure[J].Corrosion Science,2020,175:108883.

  • 参考文献

    • [1] 杨红艳,陈寰,韦天国,等.锆合金表面Cr涂层 900~ 1 200 ℃氧化行为研究[J].材料保护,2021,54(12):13-18.YANG Hongyan,CHEN Huan,WEI Tianguo,et al.Oxidation behavior of Cr coating on the surface of zirconium alloy at 900-1 200 ℃[J].Materials Ptotection,2021,54(12):13-18.(in Chinese)

    • [2] BRACHE J,IDARRAGA-TRUJILLO I,FLEM M L,et al.Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J].Journal of Nuclear Materials,2019,517:268-285.

    • [3] 肖珣,王亚强,张金钰,等.锆合金包壳表面金属Cr涂层的研究进展[J].中国材料进展,2022,41(6):445-457.XIAO Xun,WANG Yaqiang,ZHANG Jinyu,et al.Research progress of metal Cr coating on zirconium alloy cladding in water-cooled reactors[J].Materials China,2022,41(6):445-457.(in Chinese)

    • [4] 黄鹤,邱长军,陈勇,等.锆合金表面磁控溅射与多弧离子镀Cr涂层的高温抗氧化性能[J].中国表面工程,2018,31(2):51-58.HUANG He,QIU Changjun,CHEN Yong,et al.High temperature oxidation resistance of magnetron sputtering and multi-arc ion plating Cr films on zirconium alloy[J].China Surface Engineering,2018,31(2):51-58.(in Chinese)

    • [5] KIM H,KIM I,JUNG Y,et al.Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J].Journal of Nuclear Materials,2015,465:531-539.

    • [6] CHEN H,WANG X,ZHANG R.Application and development progress of Cr-based surface coatings in nuclear fuel element:I.Selection,preparation,and characteristics of coating materials[J].Coatings,2020,10:808-832.

    • [7] 刘俊凯,张新虎,恽迪.事故容错燃料包壳候选材料的研究现状及展望 [J].材料导报,2018,32(11):1757-1778.LIU Junkai,ZHANG Xinhu,YUN Di.A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings[J].Materials Reports,2018,32(11):1757-1778.(in Chinese)

    • [8] BRACHET J,ROUESNE E,RIBIS J,et al.High temperature steam oxidation of chromium-coated zirconium-based alloys:Kinetics and process[J].Corrosion Science,2020,167:108537.

    • [9] WANG H,ZHOU X,HE H,et al.Development of low-Cr wrought FeCrAl cladding alloys and its irradiation tolerance and steam oxidation resistance at 1 200 ℃[J].Corrosion Science,2022,195:109998.

    • [10] 位东辉,吴亚文,贺秀杰,等.锆合金表面CrAl涂层的高温氧化与拉伸行为[J].中国表面工程,2019,32(2):44-53.WEI Donghui,WU Yawen,HE Xiujie,et al.High-temperature oxidation and tensile behaviors of CrAlcoating on zirconium alloy[J].China Surface Engineering,2019,32(2):44-53.(in Chinese)

    • [11] OPILA E J,JACOBSON N S,MTERS D L,et al.Predicting oxide stability in high-temperature water vapor[J].JOM,2006,58(1):22-28.

    • [12] ZHONG W,MOUCHE P A,HAN X,et al.Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions[J].Journal of Nuclear Materials,2016,470:327-338.

    • [13] PANTANO M,ANGELICI A V,SEZEP A,et al.High temperature steam oxidation performance of max phase(Ti2AlC)coated ZIRLO[J].International Congress on Advances in Nuclear Power Plants,ICAP P 2014,2014,3:2126-2135.

    • [14] TANG C,STEINBRUECK M,STUEBER M,et al.Deposition,characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4[J].Corrosion Science,2018,135:87-98.

    • [15] MAIER B R,GARCIA-DIAZ B L,HANCH B,et al.Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J].Journal of Nuclear Materials,2015,466:712-717.

    • [16] 王晓婧,刘艳红,刘威,等.锆合金表面射频磁控溅射SiC涂层制备工艺参数优选[J].材料保护,2018,51(4):74-79.WANG Xiaojing,LIU Yanhong,LIU Wei,et al.Process parameter optimization of SiC coatings on zirconium alloy surface by radio frequency magnetron sputtering[J].Materials Protection,2018,51(4):74-79.(in Chinese)

    • [17] 谭瑞轩,王洪磊,余金山,等.锆合金包壳管内壁SiC涂层的PECVD制备与性能[J].粉末冶金材料科学与工程,2020,25(3):206-212.TAN Ruixuan,WANG Honglei,YU Jinshan,et al.Preparation and properties of SiC coating on inner surface of Zr-caldding by PECVD[J].Materials Science and Engineering of Powder Metallurgy,2020,25(3):206-212.(in Chinese)

    • [18] AL-OLAYYAN Y,FUCHS G E,BANEY R,et al.The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings[J].Journal of Nuclear Materials,2005,346(2):109-119.

    • [19] XIAO W,CHEN H,LIU X,et al.Thermal shock resistance of TiN-,Cr-,and TiN/Cr-coated zirconium alloy[J].Journal of Nuclear Materials,2019,526:151777.

    • [20] CHEN H,WANG X M,Zhang R.Application and development progress of Cr-based surface coating in nuclear fuel elements II.Current status and shortcomings of performance studies[J].Coatings,2020(10):835-864.

    • [21] KASHKAROV E B,SIDELEV D V,SYRTANOV M S,et al.Oxidation kinetics of Cr-coated zirconium alloy:Effect of coating thickness and microstructure[J].Corrosion Science,2020,175:108883.

  • 手机扫一扫看