en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙琳凡,女,1997年出生,硕士研究生。E-mail:1466494152@qq.com

周艳文,女,1966年出生,教授,博士研究生导师。主要研究方向为材料表面薄膜改性。E-mail:3038570645@qq.com

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220524004

参考文献 1
李洪,杨鸿泰,林松盛,等.掺杂元素对TiAlN涂层结构及性能的影响[J].工具技术,2018,52(7):17-20.LI Hong,YANG Hongtai,LIN Songsheng,et al.Effect of elements on structure and properties of TiAlN coating[J].Tool Engineering,2018,52(7):17-20.(in Chinese)
参考文献 2
陈利,汪秀全,尹飞,等.TiN 涂层的微观组织结构及力学性能分析[J].硬质合金,2006,23(1):8-10.CHEN Li,WANG Xiuquan,YIN Fei,et al.Research on microstructure and mechanical properties of TiN coating[J].Cemented Carbide,2006,23(1):8-10.(in Chinese)
参考文献 3
SONG M,GUO J,YANG Y,et al.Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L[J].Applied Surface Science,2019,504:144483.
参考文献 4
张鑫,周艳文,高健波,等.氮气流量对热丝增强等离子体磁控溅射制备 CrNx薄膜组织结构与性能的影响[J].真空科学与技术学报,2017,37(10):984-990.ZHANG Xin,ZHOU Yanwen,GAO Jianbo,et al.Microstructures and tribological properties of CrNx coatings synthesized by plasma enhanced magnetron sputtering[J].Chinese Journal of Vacuum Science Technology,2017,37(10):984-990.(in Chinese)
参考文献 5
李金龙,周艳文,张开策,等.TC4 钛合金表面涂层改性:CrN 素多层[J].表面技术,2021,50(4):215-224.LI Jinlong,ZHOU Yanwen,ZHANG Kaice,et al.Surface modification of TC4 titanium alloy by CrN prime multilayer[J].Surface Technology,2021,50(4):215-224.(in Chinese)
参考文献 6
魏永强,游业豪,蒋志强.脉冲偏压频率对 TiSiN/TiAlN 纳米多层膜结构和性能的影响规律[J].表面技术,2021,50(12):311-319.WEI Yongqiang,YOU Yehao,JIANG Zhiqiang.Effects of pulse bias frequency on the microstructure and properties of TiSiN/TiAlN nano-multilayer films[J].Surface Technology,2021,50(12):311-319.(in Chinese)
参考文献 7
王永康,熊仁章,雷廷权,等.Ti(1-x)AlxN 涂层的组织结构及Al元素的作用机理[J].宁波大学学报(理工版),2001,14(4):48-51.WANG Yongkang,XIONG Renzhang,LEI Tingquan,et al.The effect of Al element on the microstructure of Ti1-xAlxN coating[J].Journal of Ningbo University(Natural Sclence Edltion),2001,14(4):48-51.(in Chinese)
参考文献 8
王均涛,刘平,李伟,等.TiAlN 硬质涂层的研究进展[J].热加工工艺,2010,39(20):104-109.WANG Juntao,LIU Ping,LI Wei,et al.Research progress of TiAlN hard coatings[J].Material & Heat Treatment,2010,39(20):104-109.(in Chinese)
参考文献 9
CANTÓ C E,ANDRADE E,ROCHA M F,et al.Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo[J].Nucl Instrum Meth B,2017,406(pt.a):32-37.
参考文献 10
杜峰,周艳文,王英涵,等.等离子体密度调控CrN薄膜结构改性Ti6Al4V双极板[J].表面技术,2022,51(4):194-201,210.DU Feng,ZHOU Yanwen,WANG Yinghan,et al.Modification of Ti6Al4V bipolar plate with CrN film structure by plasma density control[J].Surface Technology,2022,51(4):194-201,210.(in Chinese)
参考文献 11
苏永要,王锦标,田亮亮,等.微量Al掺杂对TiN微观结构及性能的影响[J].功能材料,2013,44(18):2668-2671.SU Yongyao,WANG Jinbiao,TIAN Liangliang,et al.Effect of Al doped on microstrure and properties of TiN coating[J].Journal of Functional Materials,2013,44(18):2668-2671.(in Chinese)
参考文献 12
邓舜杰,何业东,王鹏,等.阴极等离子电解大面积沉积弥散Pt微粒增韧8YSZ热障涂层[J].材料热处理学报,2015,36(5):191-197.DENG Shunjie,HE Yedong,WANG Peng,et al.8YSZ thermal barrier coating toughened by Pt particles prepared by cathodic plasma electrolysis deposition[J].Transactions of Materials and Heat Treatment,2015,36(5):191-197.(in Chinese)
参考文献 13
范长增,曾松岩,王渊旭,等.贵金属氮化物晶体结构、电子结构和力学性能的实验与理论研究进展[J].物理,2007,36(3):221-227.FAN Changzeng,ZENG Songyan,WANG Yuanxu,et al.Recent studies on the crystal structure,electronic structure and mechanical properties of noble metal nitrides[J].Physics,2007,36(3):221-227.(in Chinese)
参考文献 14
卢柯,刘学东,张皓月,等.纯镍纳米晶体的晶格膨胀[J].金属学报,1995,31(2):74-78.LU Ke,LIU Xuedong,ZHANG Haoyue,et al.Lattice expansion in nanocrystal pure Ni[J].ACTA Metallurgica Sinica,1995,31(2):74-78.(in Chinese)
参考文献 15
MUSIL J,KADLEC S.Reactive sputtering of TiN films at large substrate to target distances[J].Vacuum,1990,40(5):435-444.
参考文献 16
汪元亮,顾正飞,成钢,等.Pt 缓冲层厚度对FePt薄膜合金相转变和磁性能的影响[J].稀有金属材料与工程,2007,36(12):2189-2193.WANG Yuanliang,GU Zhengfei,CHENG Gang,et al.Effect of Pt bufferlayer thickness on phase transformation and magnetic properties of FePt multilayer films[J].Rare Metal Materials and Engineering,2007,36(12):2189-2193.(in Chinese)
参考文献 17
GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.
参考文献 18
PELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197(1-2):117-128.
参考文献 19
VALVODA V,KUŽLELJR R,ČERNÝ R,et al.Structural analysis of tin films by Seemann-Bohlin X-ray diffraction[J].Thin Solid Films,1990,193(part-P1):401-408.
参考文献 20
朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU Lihui,HU Tao,PENG Xiao,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)
参考文献 21
许蓓蓓,王振玉,郭鹏,等.氮化钒(VN)涂层在不同载荷下的摩擦磨损行为[J].摩擦学学报,2020,40(5):656-663.XU Beibei,WANG Zhenyu,GUO Peng,et al.Friction behavior of VN coating under different loads[J].Tribology,2020,40(5):656-663.(in Chinese)
参考文献 22
SUNDGREN J E.Structure and properties of TiN coatings[J].Thin Solid Films,1985,128(1-2):21-44.
参考文献 23
LIM J W,LEE J J,AHN H,et al.Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition[J].Surface and Coatings Technology,2003,174-175(1):720-724.
参考文献 24
时婧,裴志亮,宫骏,等.Si 含量对电弧离子镀 Ti-Al-Si-N 薄膜组织结构和力学性能的影响[J].金属学报,2012,48(11):1349-1356.SHI Jing,PEI Zhiliang,GONG Jun,et al.Effect of Si content on the microstructure and mechanical properties of Ti-Al-Si-N films deposited by cathodic vacuum arc ion plating[J].ACTA Metallurgica Sinica,2012,48(11):1349-1356.(in Chinese)
参考文献 25
侯晏红,乔学亮,吴一平,等.Ti-Al-N 系功能梯度薄膜结合力的实验研究[J].功能材料,2000,31(S1):87-88.HOU Yanhong,QIAO Xueliang,WU Yiping,et al.Study of bonding strength of Ti-Al-N functionally gradient coatings[J].Journal of Functional Materials,2000,31(S1):87-88.(in Chinese)
目录contents

    摘要

    为解决硬质薄膜因与软基体硬度和模量差较大导致的薄膜失效问题,提高硬质薄膜在 Ti6Al4V(TC4)钛合金基体上的适应性,使用掺杂氮化钛(TiN)陶瓷薄膜对低模量 Ti6Al4V 合金表面强化。采用热丝增强等离子体磁控溅射技术在 Ti6Al4V 合金表面制备 Ti(Al / Pt)N 薄膜:包括本征 TiN、Al&Pt 掺杂 TiAlN 和 TiAl(Pt)N 薄膜。采用扫描电子显微镜、X-射线衍射仪、纳米压痕仪、洛氏硬度计和摩擦磨损测试仪分别表征三种薄膜组织形貌、能谱分析、相结构和内应力、纳米硬度和模量及耐磨性。结果表明:Al 元素掺杂使 TiN 薄膜柱状晶细化,截面形貌柱状晶更致密;同时微量 Pt 掺杂后,截面断口呈韧性撕裂。本征 TiN 和 TiAlN 薄膜衍射峰图谱呈现 TiN(111)取向,TiAl(Pt)N 薄膜的衍射峰呈 TiN(200)主峰位。Al 元素掺杂使 TiN 薄膜晶格畸变增多,内应力从-13 MPa 增大到-115 MPa,导致膜-基结合力恶化,洛氏压痕和摩擦磨损实验中均出现薄膜剥落。Pt 掺杂后薄膜内应力降低到-66 MPa,在洛氏压痕试验中 TiAl(Pt)N 薄膜与基体结合良好,仅有少许环形裂纹。摩擦磨损试验中本征 TiN 和 TiAl(Pt)N 薄膜磨痕较浅,TiAlN 薄膜磨损量最大。Al 元素掺杂细化了 TiN 薄膜柱状晶,但 TiAlN 薄膜内应力大,耐磨性差、膜-基结合力低。掺杂 Pt 元素后降低了薄膜内应力,提高了韧性与结合力,综合性能最佳。在 Ti6Al4V 合金表面制备 Al&Pt 元素共掺杂 TiN 薄膜,对提高硬质薄膜与软基体变形协调性具有良好应用前景。

    Abstract

    To solve the problem of film failure caused by the large difference in the hardness and modulus between hard films and soft substrates, and improve the adaptability of hard films on Ti6Al4V (TC4) titanium alloy substrates, doped titanium nitride (TiN) ceramic films are used to strengthen the surface of low modulus Ti6Al4V alloys. Ti(Al / Pt)N films, including intrinsic TiN, TiAlN, and TiAl(Pt)N films, were prepared on the surface of a Ti6Al4V alloy by the hot-wire plasma-enhanced magnetron sputtering technique. The microstructure, composition, phase structure, internal stress, nanohardness and modulus, and wear resistance of the Ti(Al / Pt)N films were characterized by scanning electron microscopy, X-ray diffraction, nano-indentation, Rockwell hardness testing, and friction and wear testing. The results showed that Al doping refined the columnar structure of TiN films, and made the cross-section morphology of columns much more compact. In addition, Al doping increased the critical fracture stress within the film, which reduced the film toughness. Doping with a small amount of metallic Pt enhanced the film toughness, and the fractured section of TiAl(Pt)N exhibited the ductile tearing mode. The diffraction patterns of the intrinsic TiN and TiAlN films showed a TiN (111) orientation. Al atoms replaced the Ti atoms in the TiN lattices and formed a substitutional solid solution of TiN, which widened and weakened the TiN (111) peak. During metallic Pt doping of the TiAlN film, the preferred film orientation changed to the low surface energy (200) of TiN, and the film stress decreased. Al doping increased the distortion of the TiN lattice. The internal stress increased from −13 MPa of intrinsic TiN to −115 MPa of TiAlN, which caused the deterioration of the film-to-substrate adhesion. In other words, film spalling occurred in the Rockwell indentation along with friction and wear. Owing to the excellent deformation ability of the metallic Pt element, the addition of Pt to TiAlN helped release the residual stress and enhanced the film toughness; therefore, the internal stress of the film due to Pt doping decreased to −66 MPa. In the Rockwell indentation experiment, the Ti(Al / Pt)N film was well bonded to the substrate, and only a few annular cracks were observed. In the friction and wear experiments, the wear loss of the TiAlN film was the largest because of the film peeled off, and the wear marks of the TiAl(Pt)N and intrinsic TiN films were very shallow. In short, the TiN films had high hardness and modulus, and were relatively brittle. Because the of the low internal stress of the TiN film, it did not peel off in the indentation detection test, and only edge cracks were observed. The Al-doped TiN film had refined columns, a distorted lattice, and high internal stress. The film peeled off from the TC4 substrate in the Rockwell indentation test. The TiAl(Pt)N film co-doped with Al and Pt showed refined columns, reduced lattice distortion, different orientations, and relatively low internal stress. Cracks appeared at the edge of the indentation, and the film was well bonded to the substrate. The coordination between the Ti(Al / Pt)N film and titanium alloy substrate demonstrated their strong adaptability and good mechanical properties. The Al and Pt co-doped TiN films on the surface of the Ti6Al4V alloy have potential applications in improving the coordinated deformation between hard films and soft substrates.

    Keywords

    PEMSTiN filmdopingadhesionwear resistance

  • 0 前言

  • TiN 是一种硬质薄膜材料,最早应用于数控刀具表面,随着近些年的发展,其制备工艺愈发成熟[1]。由于 TiN 薄膜的硬度较高,因此在硬质合金基体表面制备 TiN 薄膜,可以提高材料表面的耐磨性[2]。但 TiN 薄膜具有高硬度的同时,还具有较高的弹性模量,是一种相对硬且脆的薄膜材料。而对于相对较软且模量较低的基体而言,当膜-基系统受到外力时,如果薄膜与基体硬度差异较大,会导致薄膜与基体变形的不同步,在薄膜与基体的界面处产生较大的内部应力。薄膜通过破裂和脱落的形式来释放应力,造成薄膜的失效[3]。而薄膜与基体的结合强度是薄膜有效应用的前提。为提高薄膜与基体的结合强度,仍需对薄膜材料设计和完善,使基体与薄膜的硬度和模量合理匹配,基体与薄膜的协调性更好。

  • TiN 薄膜脆性大、不耐冲击,且在高温条件下易氧化,为提高其综合性能,以适应刀具表面高速切削和摩擦等使用条件,可以通过改变制备工艺、制备多层薄膜来提高薄膜的强韧性与结合力[4-5],或通过添加元素[1],如在 TiN 薄膜中掺杂 Al、Si 元素,使 Si3N4 非晶相与纳米级的 TiN 之间形成包裹层,阻碍晶界的滑移和位错运动,提高了硬度和韧性[6]。在 TiN 薄膜中加入 Al 元素形成 TiAlN 薄膜,由于 Al 的原子半径小于 Ti 的原子半径,所以从 TiN 转变到 TiAlN 时,发生晶格畸变,晶格常数变小[7], TiAlN 的结构比 TiN 更加紧凑,使得 TiAlN 薄膜具有硬度高、氧化温度高、热硬性好、附着力强和导热率低等优良特性[8]

  • 本文采用热丝增强等离子体磁控溅射(PEMS) 技术,在真空室内增加四根热钨丝作为独立的电子发射源,极大增强了等离子体密度,使生长中的薄膜受高密度离子不断地轰击,膜层致密度和结合力显著增强[9]。调节热丝总放电电流固定为 16 A,在 TC4 基底上制备 Ti(Al / Pt)N 薄膜:包括本征 TiN、 Al&Pt 掺杂 TiAlN 和 TiAl(Pt)N 薄膜。本文在 TiN 薄膜中共掺杂 Al 和 Pt 元素,使用 Pt 的软化作用[10],来降低由于 Al 元素掺杂产生晶格畸变而造成的薄膜内应力,增强硬质 TiN 薄膜的韧性。通过表征分析其形貌、结构和力学性能,获得综合性能良好的钛合金表面改性薄膜。

  • 1 试验准备

  • 1.1 薄膜制备

  • 试验设备采用热丝增强磁控溅射系统,真空腔体尺寸为 Φ900 mm×1 000 mm,真空腔内共安装四根 Φ1.2 mm×1 000 mm 钨丝。制备 TiN 薄膜使用3 个纯度 99.9%、尺寸为 500 mm×180 mm×10 mm 的 Ti 靶为阴极靶材。制备 TiAlN、TiAl(Pt)N 薄膜时使用 3 个 Ti 靶、1 个 Al 靶,Al 靶上镶嵌可拆卸铂片,铂片尺寸为 Φ20 mm×1 mm。试验基体使用 TC4 合金,尺寸为 15 mm×15 mm×3 mm,其主要成份 (质量分数)为:0.015 % H、0.05 % N、0.1 % C、 0.2 % O、0.3 % Fe、3.5 %~4.5 % V、5.5%~6.8 % Al,其余为 Ti。使用单晶硅作为辅助基体,以便薄膜截面形貌检测。基体单面打磨抛光至镜面后,同硅片一起分别在丙酮和酒精中进行声波震动清洗 30 min,取出吹干后放入真空腔体内。

  • 试验时靶材设定 6 A 恒定电流、频率 50 kHz、占空比 80%。待腔内真空度达到 3 mPa 后,真空腔内梯度加热至 400℃。通入 100 cm3 / min 纯度为 99.99% 的氩气降温,并保持真空腔内压力在 0.4 Pa,调节基体脉冲偏压保持-120 V 对试样表面进行等离子体清洗 30 min,随后调节基体脉冲偏压保持-300 V 再清洗 30 min。将基体电源改为直流偏压保持-50 V,热丝总放电电流固定为 16 A,沉积纯 Ti 打底层 5 min,随后通入 100 cm3 / min 纯度为 99.99%的氮气,沉积 TiN 薄膜 120 min。制备 TiAlN、TiAl(Pt)N 薄膜与 TiN 试验过程相同,通过使用 Al 靶获得不同薄膜,制备掺 Pt 薄膜时将铂片嵌入 Al 靶圆孔中,三种薄膜沉积时间相同,具体试验参数见表1。

  • 表1 薄膜沉积参数

  • Table1 Film deposition parameters

  • 1.2 结构表征及力学性能测试

  • 采用 SIGMA HD 场发射扫描电子显微镜 (FESEM)观察薄膜的表面放大 2 万倍和截面放大 2 万倍的形貌,EDS 能谱分析了薄膜的成分。采用 X’Pert 粉末 X 射线衍射(XRD)系统,在 20~100°的 θ-2θ 模式下,扫描步长为 0.003。根据 sin2ψ 法采用基于掠入射 X 射线衍射(GIXRD)的衍射峰处的 ψ 偏差(0°, 15°、30°、45°、90°取向应力,扫描步长为 0.000 1) 来计算薄膜的残余应力。使用 G200 型纳米压痕测试仪测量基体和薄膜的纳米硬度、弹性模量。利用洛氏硬度计在 1 470 N 载荷下对薄膜进行加载,引起与压痕边缘相邻的薄膜破坏,在卸载后用 300 倍的光学显微镜观察压痕形貌。使用 MS-T3001 型摩擦磨损测试仪评估薄膜的摩擦磨损性能,设定其转速为 200 r / min,负载为 2.94 N,持续时间为 60 min,在卸载后用 100 倍的光学显微镜观察磨痕形貌,通过 Alpha-step D-100 型多功能台阶仪测量磨损轨迹轮廓。

  • 2 结果与讨论

  • 2.1 形貌

  • 图1 示出了制备的 Ti(Al / Pt)N 薄膜表面及截面形貌,其中图1a 为 TiN,图1b 为 TiAlN,图1c 为 TiAl(Pt)N 薄膜。由图1a 可见,TiN 薄膜表面呈不均匀球形,无明显缺陷,由局部放大图可以看出截面断口处呈脆性断裂;图1b 中 TiAlN 薄膜表面比 TiN 薄膜更加致密,截面柱状晶明显细化,截面处仅有少量柱状晶断裂,这是由于 Al 元素加入细化了晶粒[11]、强化了柱状晶的硬度;图1c 中少量 Pt 掺杂使 TiAl(Pt)N 薄膜表面无明显改变,截面断口处柱状晶呈韧性撕裂。这是由于提高薄膜中的Pt含量可以提高薄膜的临界断裂应力起到对薄膜增韧的效果[12],柱状晶之间的韧性增强,因此断口呈韧性撕裂。

  • 图1 本征 TiN、TiAlN 及 TiAl(Pt)N 薄膜表面 / 截面形貌

  • Fig.1 Surface / cross section morphology of intrinsic TiN, TiAlN and TiAl (Pt) N films

  • 扫描电镜 EDS 表征了薄膜成分,示于表2。由表2 可见,TiAlN 薄膜与 TiN 薄膜 N 含量相近,Ti 含量降低,这是由于掺杂的 Al 元素置换了薄膜中的 Ti。而 TiAl(Pt)N 薄膜 Ti、Al 含量与 TiAlN 薄膜相近,N 含量略降低,这是因为 Pt 与 N 成键需在高温高压条件下[13],而在本文制备工艺下 Pt 可能以单质或亚稳态存在。而单质 Pt 占据金属位置且难以与 N 元素成键,因此 N 元素降低。

  • 表2 薄膜成分

  • Table2 Composition of films

  • 2.2 相结构

  • TC4 基底和 TiN、TiAlN 及 TiAl(Pt)N 薄膜的 XRD 图示于图2,取 35°~45° 2θ 角峰位进行分析。其中,TC4 基体保持 α-Ti 的衍射峰,如图中圆形标注所示;图中黑色虚线为标准峰位位置,TiN 薄膜呈 TiN(111)取向且较标准峰位向左偏移,这是由于热丝增强等离子体磁控溅射技术等离子体密度大、粒子能量高,高能粒子对表面轰击造成晶格膨胀[14],因此峰位向小角度偏移;TiAlN 薄膜呈 TiN(111)择优取向,且峰位较未掺杂 TiN 薄膜宽化、峰强减弱并向右偏移,这是因为原子半径较小的 Al 原子取代了部分原子半径较大的 Ti 原子形成置换固溶体[11],晶面间距变小,导致峰位向右偏移,同时 Al 作为第二相粒子增加了形核点,使晶粒细化[15],因此峰位宽化和峰强减弱。TiAl(Pt)N 薄膜呈 TiN(200)主峰位,这是因为 Pt 与 N 成键需在高温高压条件下[13],而在本文制备工艺下 Pt 可能以单质或亚稳态的形式弥散分布在薄膜中,软相 Pt 释放了薄膜应力[16],薄膜应力的降低使薄膜沿低表面能(200)择优取向生长[17-18]。综上,未掺杂 TiN 薄膜主峰位为(111)峰,金属 Al 掺杂后导致(111)峰宽化且右移,少量 Pt 元素掺杂使薄膜主峰位向(200)转变。

  • 图2 TC4 基底和 TiN、TiAlN 及 TiAl(Pt)N 薄膜 XRD 图谱

  • Fig.2 XRD diffraction patterns of TC4 matrix and TiN, TiAlN and TiAl (Pt) N films

  • 2.3 薄膜结合力

  • 表3 中示出了 TiN、TiAlN 和 TiAl(Pt)N 薄膜厚度、内应力、纳米硬度及模量信息。薄膜的残余应力是基于 GIXRD 测量的 sin2ψ[19]通过下面公式计算得到。其中 dψ 表示不同偏差下的晶体间距,d0 为无应力面间距,σ 是薄膜的应力,ν 是泊松比(本文取 0.18),E 为薄膜的模量。

  • dψ-d0d0=1+vEσsin2ψ

  • 表3 薄膜厚度、内应力、纳米硬度及模量

  • Table3 Film thickness, internal stress, nano hardness and modulus

  • TiN、TiAlN、TiAl(Pt)N 薄膜内应力分别为-13,-115 和-66 MPa,其中 TiN 薄膜内应力来源于沉积薄膜时高能粒子的轰击,而 TiAlN 薄膜残余应力较 TiN 薄膜大幅提高,是由于小原子半径 Al 取代 TiN 晶格中部分大原子半径 Ti [20],TiAlN 晶格发生收缩,晶格常数变小,晶格畸变增多,导致残余应力大幅提高;Pt 掺杂后残余应力大幅降低,是由于 Pt 为软相弥散分布在薄膜内,导致残余应力释放。综上,由于 Al 元素掺杂,TiN 薄膜残余应力大幅提高,少量 Pt 元素掺杂薄膜残余应力大幅降低。

  • 图3 为基体、TiN、TiAlN、TiAl(Pt)N 薄膜洛氏压痕形貌,压痕表面整体放大 300 倍。如图3 所示, TiN 薄膜边缘存在放射性裂纹,TiAl(Pt)N 薄膜边缘呈少量环形裂纹,且 TiN 薄膜压痕边缘裂纹密度略高于 TiAl(Pt)N,两种薄膜均无明显剥落。这是由于 TiN 薄膜硬度高,薄膜偏脆,在压头压入过程中裂纹径向延伸,而 TiAl(Pt)N 薄膜硬度较 TiN 薄膜低,掺杂软相 Pt 元素使薄膜软且韧,因此裂纹以环形扩展[21]。TiAlN 薄膜压痕边缘出现明显剥落。图4 为基体、TiN、TiAlN、TiAl(Pt)N 薄膜摩擦磨损后磨痕形貌,磨痕表面整体放大 100 倍。图中,TiAlN 薄膜磨痕较宽,接近基体磨痕宽度,且磨痕表面有深浅不一的犁沟,边缘出现薄膜脱落;TiN 与 TiAl(Pt)N 薄膜磨痕较窄,其中 TiN 薄膜表面有少量犁沟, TiAl(Pt)N较TiN薄膜磨痕表面光滑,磨痕边缘清晰,磨损程度较低。图5 示出了基体、TiN、TiAlN、 TiAl(Pt)N 薄膜的磨痕深度。图中 TiN 与 TiAl(Pt)N 薄膜磨痕深度都基本为零;TiAlN 薄膜虽出现剥落,但由于薄膜起到短暂的保护作用,所以磨痕深度较基体略浅,与图4 形貌一致。

  • 图3 TC4 基体、TiN、TiAlN 及 TiAl(Pt)N 薄膜压痕形貌

  • Fig.3 Indentation morphology of TC4 matrix, TiN, TiAlN and TiAl (Pt) N films

  • 图4 TC4 基体、TiN、TiAlN 及 TiAl(Pt)N 薄膜磨痕形貌

  • Fig.4 Morphology of wear marks of TC4 matrix, TiN, TiAlN and TiAl (Pt) N films

  • 基体与薄膜之间硬度差异过大、弹性模量不匹配等将导致膜-基变形的不同性,影响膜-基结合力。在外力作用下,若薄膜弹性模量或硬度大于基体,膜-基界面受力不均,膜内将产生较大的应力,膜-基结合力较差,导致出现裂纹或剥落[22-24]。因此要合理匹配基体与薄膜之间弹性模量、硬度等系数,有效降低膜层与基体界面区的应力,提高结合强度,延长膜层的工作寿命[22-23]。若两种薄膜的硬度和模量相近,那么薄膜的内应力也是影响膜-基结合力的重要因素,若薄膜内应力过大也会造成薄膜与基体分离、剥落[25]

  • 图5 基体、TiN、TiAlN 和 TiAl(Pt)N 薄膜的磨痕深度

  • Fig.5 Wear mark depth of matrix, TiN, TiAlN, and TiAl (Pt) N films

  • 结合表3 数据分析可知,TC4 基体弹性模量为 135.4 GPa,硬度为 4.41 GPa;本征 TiN 薄膜较薄,内应力最低,所以结合力较好,但由于模量高,边缘裂纹较多;TiAlN 硬度为 26.29 GPa、弹性模量为 321 GPa,与基体相差过多,虽然与本征 TiN 薄膜硬度相近,但 TiAlN 薄膜内应力最大,因此在摩擦磨损与压痕试验中 TiAlN 薄膜出现崩落,结合力最差; TiAl(Pt)N 虽然内应力比本征 TiN 薄膜大,但其弹性模量下降至 267.5 GPa,三种薄膜中与基体模量最接近,且内应力较低,压痕边缘裂纹密度较低。因此使其在略牺牲耐磨性的同时,保持了更良的结合力。综上所述,三种薄膜中 TiN 和 TiAl(Pt)N 薄膜结合力较好,TiAlN 薄膜内应力最大、结合力最低,与压痕、磨痕形貌一致。

  • 总之,TiN 薄膜硬度高、模量大,薄膜较脆。由于本文制备的氮化钛薄膜较薄,内应力较低,其压痕检测没有崩裂,但边缘裂纹密度略高于 Al&Pt 元素共掺杂的薄膜。Al 掺杂 TiN 薄膜细化了晶粒,但晶格畸变增加了薄膜内应力,使膜-基结合力急剧下降,压痕检测时薄膜崩落。Al&Pt 元素共掺杂 TiN 不仅细化了晶粒,使薄膜结构更致密;还降低了晶格畸变导致的内应力,增加了薄膜的韧性;同时降低了薄膜与基体的硬度和模量差。综上,TiAl(Pt)N 薄膜与钛合金基体协调性显示了更强的适应性及良好的综合力学性能。

  • 3 结论

  • (1)采用热丝增强等离子体磁控溅射法,在 TC4 合金表面对 TiN 共掺杂 Al&Pt 元素,制备 Ti(Al / Pt)N 薄膜。Al 掺杂 TiN 薄膜由于形成置换固溶体导致晶格常数减小薄膜柱状晶细化,截面柱状晶更加紧凑,微量 Pt 共掺杂后薄膜韧性增强。

  • (2)TiAlN 薄膜由于半径较小的 Al 原子取代 Ti 进入晶格,晶格畸变增多,薄膜内应力过大;微量 Pt 元素共掺杂降低了薄膜内应力。

  • (3)与本征 TiN 薄膜相比,Al 元素掺杂薄膜硬度没变,但模量增高,与基体结合力差,在压痕和摩擦磨损试验过程中薄膜剥落。微量Pt元素共掺杂,薄膜硬度和模量均降低,薄膜与基体的硬度和模量差最小,韧性薄膜与基体协同变形能力增强。

  • 参考文献

    • [1] 李洪,杨鸿泰,林松盛,等.掺杂元素对TiAlN涂层结构及性能的影响[J].工具技术,2018,52(7):17-20.LI Hong,YANG Hongtai,LIN Songsheng,et al.Effect of elements on structure and properties of TiAlN coating[J].Tool Engineering,2018,52(7):17-20.(in Chinese)

    • [2] 陈利,汪秀全,尹飞,等.TiN 涂层的微观组织结构及力学性能分析[J].硬质合金,2006,23(1):8-10.CHEN Li,WANG Xiuquan,YIN Fei,et al.Research on microstructure and mechanical properties of TiN coating[J].Cemented Carbide,2006,23(1):8-10.(in Chinese)

    • [3] SONG M,GUO J,YANG Y,et al.Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L[J].Applied Surface Science,2019,504:144483.

    • [4] 张鑫,周艳文,高健波,等.氮气流量对热丝增强等离子体磁控溅射制备 CrNx薄膜组织结构与性能的影响[J].真空科学与技术学报,2017,37(10):984-990.ZHANG Xin,ZHOU Yanwen,GAO Jianbo,et al.Microstructures and tribological properties of CrNx coatings synthesized by plasma enhanced magnetron sputtering[J].Chinese Journal of Vacuum Science Technology,2017,37(10):984-990.(in Chinese)

    • [5] 李金龙,周艳文,张开策,等.TC4 钛合金表面涂层改性:CrN 素多层[J].表面技术,2021,50(4):215-224.LI Jinlong,ZHOU Yanwen,ZHANG Kaice,et al.Surface modification of TC4 titanium alloy by CrN prime multilayer[J].Surface Technology,2021,50(4):215-224.(in Chinese)

    • [6] 魏永强,游业豪,蒋志强.脉冲偏压频率对 TiSiN/TiAlN 纳米多层膜结构和性能的影响规律[J].表面技术,2021,50(12):311-319.WEI Yongqiang,YOU Yehao,JIANG Zhiqiang.Effects of pulse bias frequency on the microstructure and properties of TiSiN/TiAlN nano-multilayer films[J].Surface Technology,2021,50(12):311-319.(in Chinese)

    • [7] 王永康,熊仁章,雷廷权,等.Ti(1-x)AlxN 涂层的组织结构及Al元素的作用机理[J].宁波大学学报(理工版),2001,14(4):48-51.WANG Yongkang,XIONG Renzhang,LEI Tingquan,et al.The effect of Al element on the microstructure of Ti1-xAlxN coating[J].Journal of Ningbo University(Natural Sclence Edltion),2001,14(4):48-51.(in Chinese)

    • [8] 王均涛,刘平,李伟,等.TiAlN 硬质涂层的研究进展[J].热加工工艺,2010,39(20):104-109.WANG Juntao,LIU Ping,LI Wei,et al.Research progress of TiAlN hard coatings[J].Material & Heat Treatment,2010,39(20):104-109.(in Chinese)

    • [9] CANTÓ C E,ANDRADE E,ROCHA M F,et al.Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo[J].Nucl Instrum Meth B,2017,406(pt.a):32-37.

    • [10] 杜峰,周艳文,王英涵,等.等离子体密度调控CrN薄膜结构改性Ti6Al4V双极板[J].表面技术,2022,51(4):194-201,210.DU Feng,ZHOU Yanwen,WANG Yinghan,et al.Modification of Ti6Al4V bipolar plate with CrN film structure by plasma density control[J].Surface Technology,2022,51(4):194-201,210.(in Chinese)

    • [11] 苏永要,王锦标,田亮亮,等.微量Al掺杂对TiN微观结构及性能的影响[J].功能材料,2013,44(18):2668-2671.SU Yongyao,WANG Jinbiao,TIAN Liangliang,et al.Effect of Al doped on microstrure and properties of TiN coating[J].Journal of Functional Materials,2013,44(18):2668-2671.(in Chinese)

    • [12] 邓舜杰,何业东,王鹏,等.阴极等离子电解大面积沉积弥散Pt微粒增韧8YSZ热障涂层[J].材料热处理学报,2015,36(5):191-197.DENG Shunjie,HE Yedong,WANG Peng,et al.8YSZ thermal barrier coating toughened by Pt particles prepared by cathodic plasma electrolysis deposition[J].Transactions of Materials and Heat Treatment,2015,36(5):191-197.(in Chinese)

    • [13] 范长增,曾松岩,王渊旭,等.贵金属氮化物晶体结构、电子结构和力学性能的实验与理论研究进展[J].物理,2007,36(3):221-227.FAN Changzeng,ZENG Songyan,WANG Yuanxu,et al.Recent studies on the crystal structure,electronic structure and mechanical properties of noble metal nitrides[J].Physics,2007,36(3):221-227.(in Chinese)

    • [14] 卢柯,刘学东,张皓月,等.纯镍纳米晶体的晶格膨胀[J].金属学报,1995,31(2):74-78.LU Ke,LIU Xuedong,ZHANG Haoyue,et al.Lattice expansion in nanocrystal pure Ni[J].ACTA Metallurgica Sinica,1995,31(2):74-78.(in Chinese)

    • [15] MUSIL J,KADLEC S.Reactive sputtering of TiN films at large substrate to target distances[J].Vacuum,1990,40(5):435-444.

    • [16] 汪元亮,顾正飞,成钢,等.Pt 缓冲层厚度对FePt薄膜合金相转变和磁性能的影响[J].稀有金属材料与工程,2007,36(12):2189-2193.WANG Yuanliang,GU Zhengfei,CHENG Gang,et al.Effect of Pt bufferlayer thickness on phase transformation and magnetic properties of FePt multilayer films[J].Rare Metal Materials and Engineering,2007,36(12):2189-2193.(in Chinese)

    • [17] GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.

    • [18] PELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197(1-2):117-128.

    • [19] VALVODA V,KUŽLELJR R,ČERNÝ R,et al.Structural analysis of tin films by Seemann-Bohlin X-ray diffraction[J].Thin Solid Films,1990,193(part-P1):401-408.

    • [20] 朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU Lihui,HU Tao,PENG Xiao,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)

    • [21] 许蓓蓓,王振玉,郭鹏,等.氮化钒(VN)涂层在不同载荷下的摩擦磨损行为[J].摩擦学学报,2020,40(5):656-663.XU Beibei,WANG Zhenyu,GUO Peng,et al.Friction behavior of VN coating under different loads[J].Tribology,2020,40(5):656-663.(in Chinese)

    • [22] SUNDGREN J E.Structure and properties of TiN coatings[J].Thin Solid Films,1985,128(1-2):21-44.

    • [23] LIM J W,LEE J J,AHN H,et al.Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition[J].Surface and Coatings Technology,2003,174-175(1):720-724.

    • [24] 时婧,裴志亮,宫骏,等.Si 含量对电弧离子镀 Ti-Al-Si-N 薄膜组织结构和力学性能的影响[J].金属学报,2012,48(11):1349-1356.SHI Jing,PEI Zhiliang,GONG Jun,et al.Effect of Si content on the microstructure and mechanical properties of Ti-Al-Si-N films deposited by cathodic vacuum arc ion plating[J].ACTA Metallurgica Sinica,2012,48(11):1349-1356.(in Chinese)

    • [25] 侯晏红,乔学亮,吴一平,等.Ti-Al-N 系功能梯度薄膜结合力的实验研究[J].功能材料,2000,31(S1):87-88.HOU Yanhong,QIAO Xueliang,WU Yiping,et al.Study of bonding strength of Ti-Al-N functionally gradient coatings[J].Journal of Functional Materials,2000,31(S1):87-88.(in Chinese)

  • 参考文献

    • [1] 李洪,杨鸿泰,林松盛,等.掺杂元素对TiAlN涂层结构及性能的影响[J].工具技术,2018,52(7):17-20.LI Hong,YANG Hongtai,LIN Songsheng,et al.Effect of elements on structure and properties of TiAlN coating[J].Tool Engineering,2018,52(7):17-20.(in Chinese)

    • [2] 陈利,汪秀全,尹飞,等.TiN 涂层的微观组织结构及力学性能分析[J].硬质合金,2006,23(1):8-10.CHEN Li,WANG Xiuquan,YIN Fei,et al.Research on microstructure and mechanical properties of TiN coating[J].Cemented Carbide,2006,23(1):8-10.(in Chinese)

    • [3] SONG M,GUO J,YANG Y,et al.Fe2Ti interlayer for improved adhesion strength and corrosion resistance of TiN coating on stainless steel 316L[J].Applied Surface Science,2019,504:144483.

    • [4] 张鑫,周艳文,高健波,等.氮气流量对热丝增强等离子体磁控溅射制备 CrNx薄膜组织结构与性能的影响[J].真空科学与技术学报,2017,37(10):984-990.ZHANG Xin,ZHOU Yanwen,GAO Jianbo,et al.Microstructures and tribological properties of CrNx coatings synthesized by plasma enhanced magnetron sputtering[J].Chinese Journal of Vacuum Science Technology,2017,37(10):984-990.(in Chinese)

    • [5] 李金龙,周艳文,张开策,等.TC4 钛合金表面涂层改性:CrN 素多层[J].表面技术,2021,50(4):215-224.LI Jinlong,ZHOU Yanwen,ZHANG Kaice,et al.Surface modification of TC4 titanium alloy by CrN prime multilayer[J].Surface Technology,2021,50(4):215-224.(in Chinese)

    • [6] 魏永强,游业豪,蒋志强.脉冲偏压频率对 TiSiN/TiAlN 纳米多层膜结构和性能的影响规律[J].表面技术,2021,50(12):311-319.WEI Yongqiang,YOU Yehao,JIANG Zhiqiang.Effects of pulse bias frequency on the microstructure and properties of TiSiN/TiAlN nano-multilayer films[J].Surface Technology,2021,50(12):311-319.(in Chinese)

    • [7] 王永康,熊仁章,雷廷权,等.Ti(1-x)AlxN 涂层的组织结构及Al元素的作用机理[J].宁波大学学报(理工版),2001,14(4):48-51.WANG Yongkang,XIONG Renzhang,LEI Tingquan,et al.The effect of Al element on the microstructure of Ti1-xAlxN coating[J].Journal of Ningbo University(Natural Sclence Edltion),2001,14(4):48-51.(in Chinese)

    • [8] 王均涛,刘平,李伟,等.TiAlN 硬质涂层的研究进展[J].热加工工艺,2010,39(20):104-109.WANG Juntao,LIU Ping,LI Wei,et al.Research progress of TiAlN hard coatings[J].Material & Heat Treatment,2010,39(20):104-109.(in Chinese)

    • [9] CANTÓ C E,ANDRADE E,ROCHA M F,et al.Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo[J].Nucl Instrum Meth B,2017,406(pt.a):32-37.

    • [10] 杜峰,周艳文,王英涵,等.等离子体密度调控CrN薄膜结构改性Ti6Al4V双极板[J].表面技术,2022,51(4):194-201,210.DU Feng,ZHOU Yanwen,WANG Yinghan,et al.Modification of Ti6Al4V bipolar plate with CrN film structure by plasma density control[J].Surface Technology,2022,51(4):194-201,210.(in Chinese)

    • [11] 苏永要,王锦标,田亮亮,等.微量Al掺杂对TiN微观结构及性能的影响[J].功能材料,2013,44(18):2668-2671.SU Yongyao,WANG Jinbiao,TIAN Liangliang,et al.Effect of Al doped on microstrure and properties of TiN coating[J].Journal of Functional Materials,2013,44(18):2668-2671.(in Chinese)

    • [12] 邓舜杰,何业东,王鹏,等.阴极等离子电解大面积沉积弥散Pt微粒增韧8YSZ热障涂层[J].材料热处理学报,2015,36(5):191-197.DENG Shunjie,HE Yedong,WANG Peng,et al.8YSZ thermal barrier coating toughened by Pt particles prepared by cathodic plasma electrolysis deposition[J].Transactions of Materials and Heat Treatment,2015,36(5):191-197.(in Chinese)

    • [13] 范长增,曾松岩,王渊旭,等.贵金属氮化物晶体结构、电子结构和力学性能的实验与理论研究进展[J].物理,2007,36(3):221-227.FAN Changzeng,ZENG Songyan,WANG Yuanxu,et al.Recent studies on the crystal structure,electronic structure and mechanical properties of noble metal nitrides[J].Physics,2007,36(3):221-227.(in Chinese)

    • [14] 卢柯,刘学东,张皓月,等.纯镍纳米晶体的晶格膨胀[J].金属学报,1995,31(2):74-78.LU Ke,LIU Xuedong,ZHANG Haoyue,et al.Lattice expansion in nanocrystal pure Ni[J].ACTA Metallurgica Sinica,1995,31(2):74-78.(in Chinese)

    • [15] MUSIL J,KADLEC S.Reactive sputtering of TiN films at large substrate to target distances[J].Vacuum,1990,40(5):435-444.

    • [16] 汪元亮,顾正飞,成钢,等.Pt 缓冲层厚度对FePt薄膜合金相转变和磁性能的影响[J].稀有金属材料与工程,2007,36(12):2189-2193.WANG Yuanliang,GU Zhengfei,CHENG Gang,et al.Effect of Pt bufferlayer thickness on phase transformation and magnetic properties of FePt multilayer films[J].Rare Metal Materials and Engineering,2007,36(12):2189-2193.(in Chinese)

    • [17] GAUTIER C,MACHET J.Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation[J].Thin Solid Films,1997,295(1-2):43-52.

    • [18] PELLEG J,ZEVIN L Z,LUNGO S,et al.Reactive-sputter-deposited TiN films on glass substrates[J].Thin Solid Films,1991,197(1-2):117-128.

    • [19] VALVODA V,KUŽLELJR R,ČERNÝ R,et al.Structural analysis of tin films by Seemann-Bohlin X-ray diffraction[J].Thin Solid Films,1990,193(part-P1):401-408.

    • [20] 朱丽慧,胡涛,彭笑,等.Al 含量对TiAlN涂层结合强度的影响[J].材料热处理学报,2015,36(3):154-158.ZHU Lihui,HU Tao,PENG Xiao,et al.Effect of Al content on adhesion strength of TiAlN coatings[J].Transactions of Materials and Heat Treatment,2015,36(3):154-158.(in Chinese)

    • [21] 许蓓蓓,王振玉,郭鹏,等.氮化钒(VN)涂层在不同载荷下的摩擦磨损行为[J].摩擦学学报,2020,40(5):656-663.XU Beibei,WANG Zhenyu,GUO Peng,et al.Friction behavior of VN coating under different loads[J].Tribology,2020,40(5):656-663.(in Chinese)

    • [22] SUNDGREN J E.Structure and properties of TiN coatings[J].Thin Solid Films,1985,128(1-2):21-44.

    • [23] LIM J W,LEE J J,AHN H,et al.Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition[J].Surface and Coatings Technology,2003,174-175(1):720-724.

    • [24] 时婧,裴志亮,宫骏,等.Si 含量对电弧离子镀 Ti-Al-Si-N 薄膜组织结构和力学性能的影响[J].金属学报,2012,48(11):1349-1356.SHI Jing,PEI Zhiliang,GONG Jun,et al.Effect of Si content on the microstructure and mechanical properties of Ti-Al-Si-N films deposited by cathodic vacuum arc ion plating[J].ACTA Metallurgica Sinica,2012,48(11):1349-1356.(in Chinese)

    • [25] 侯晏红,乔学亮,吴一平,等.Ti-Al-N 系功能梯度薄膜结合力的实验研究[J].功能材料,2000,31(S1):87-88.HOU Yanhong,QIAO Xueliang,WU Yiping,et al.Study of bonding strength of Ti-Al-N functionally gradient coatings[J].Journal of Functional Materials,2000,31(S1):87-88.(in Chinese)

  • 手机扫一扫看