en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

方子文,男,1997年出生,硕士。主要研究方向为固体润滑材料的设计、制备及性能。E-mail:200511029@sust.edu.cn

贾均红,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学及表面工程。E-mail:jhjiasust@163.com

通讯作者:

何乃如,男,1989年出生,博士,副教授,硕士研究生导师。主要研究方向为固体润滑材料的设计、制备及性能。E-mail:henairu@sust.edu.cn

中图分类号:TG174;TH117

DOI:10.11933/j.issn.1007−9289.20220512002

参考文献 1
陈建敏,卢小伟,李红轩,等.宽温域固体自润滑涂/覆层材料的研究进展[J].摩擦学学报,2014,34(5):592-600.CHEN Jianmin,LU Xiaowei,LI Hongxuan,et al.Progress of solid self-lubricating coating over a wide range of temperature[J].Tribology,2014,34(5):592-600.(in Chinese)
参考文献 2
何鹏飞,王海斗,马国政,等.含银硬质涂层高温摩擦学性能的研究进展[J].中国有色金属学报,2015,25(11):2962-2974.HE Pengfei,WANG Haidou,MA Guozheng,et al.Research progress of high-temperature tribological properties of silver-containing hard coatings[J].The Chinese Journal of Nonferrous Metals,2015,25(11):2962-2974.(in Chinese)
参考文献 3
刘二勇,贾均红,高义民,等.宽温域连续润滑材料的研究进展[J].中国表面工程,2015,28(4):1-13.LIU Eryong,JIA Junhong,GAO Yimin,et al.Progress of continuous lubricating materials over wide temperature range[J].China Surface Engineering,2015,28(4):1-13.(in Chinese)
参考文献 4
ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.
参考文献 5
PAPPACENA K E,SINGH D,AJAYI O O,et al.Residual stresses,interfacial adhesion and tribological properties of MoN/Cu composite coatings[J].Wear,2012,278-279:62-70.
参考文献 6
SHI P Y,YI G W,WAN S H,et al.High temperature tribological performance of nickel-based composite coatings by incorporating multiple oxides(TiO2–ZnO–MoO3)[J].Tribology International,2021,155:106759.
参考文献 7
ZHU R,ZHANG P,YU Z,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.
参考文献 8
ZHANG T T,LAN H,HUANG C B,et al.Preparation and characterizations of nickel-based composite coatings with self-lubricating property at elevated temperatures[J].Surface and Coatings Technology,2016,294:21-29.
参考文献 9
SHI P Y,WANG W Z,WAN S H,et al.Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni-and NiCrAlY-based composite coatings[J].Surface and Coatings Technology,2021,405:126615.
参考文献 10
LI B,GAO Y M,JIA J H,et al.Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings[J].Journal of Alloys and Compounds,2016,686:503-510.
参考文献 11
刘乐卿,单奇艺,安宇龙,等.WC-(W,Cr)2C-Ni/Ag 复合涂层的制备及摩擦学性能[J].中国表面工程,2015,28(3):10-16.LIU Leqing,SHAN Qiyi,AN Yulong,et al.Preparation and tribology properties of WC-(W,Cr)2C-Ni/Ag composite coatings[J].China Surface Engineering,2015,28(3):10-16.(in Chinese)
参考文献 12
YANG J J,JIA J H,LI X,et al.Synergistic lubrication of Ag and Ag2MoO4 nanoparticles anchored in plasmasprayed YSZ coatings:Remarkably-durable lubricating performance at 800 °C[J].Tribology International,2021,153:106670.
参考文献 13
CHEN J,AN Y L,YANG J,et al.Tribological properties of adaptive NiCrAlY–Ag–Mo coatings prepared by atmospheric plasma spraying[J].Surface and Coatings Technology,2013,235:521-528.
参考文献 14
DELLACORTE C.The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650 °C[J].Surface and Coatings Technology,1996,86-87:486-492.
参考文献 15
SLINEY H E,LOOMIS W R,DELLACORTE C.Evaluation of PS 212 coatings under boundary lubrication conditions with an ester-based oil to 300 °C[J].Surface and Coatings Technology,1995,76-77:407-414.
参考文献 16
DELLACORTE C,LASKOWSKI J A.Tribological evaluation of PS300:A new chrome oxide-based solid lubricant coating sliding against Al2O3 from 25° to 650°C[J].Tribology Transactions,1997,40(1):163-167.
参考文献 17
陈丽梅,李强.等离子喷涂技术现状及发展[J].热处理技术与装备,2006(1):1-5.CHEN Limei,LI Qiang.The present status and development of plasma spraying technology[J].Heat Treatment Technology and Equipment,2006(1):1-5.(in Chinese)
参考文献 18
杜三明,刘超,蔡宏章,等.等离子喷涂 Cu-Al2O3 复合涂层制备及摩擦学性能研究[J].表面技术,2019,48(3):134-140.DU Sanming,LIU Chao,CAI Hongzhang,et al.Preparation and tribological properties of plasma sprayed Cu-Al2O3 composite coatings[J].Surface Technology,2019,48(3):134-140.(in Chinese)
参考文献 19
袁建辉,祝迎春,雷强,等.等离子喷涂制备 WC-CoCu-BaF2/CaF2 自润滑耐磨涂层及其高温摩擦性能[J].中国表面工程,2012,25(2):31-36.YUAN Jianhui,ZHU Yingchun,LEI Qiang,et al.Fabrication and high temperature tribological properties of plasma sparyed WC-Co-Cu-BaF2/CaF2 self-lubricating wear resistant coating[J].China Surface Engineering,2012,25(2):31-36.(in Chinese)
参考文献 20
杨晶晶,陕钰,付英英,等.原位合成 Ag/Ag2MoO4 纳米复合润滑剂对YSZ涂层摩擦学性能的影响[J].摩擦学学报,2019,39(6):756-765.YANG Jingjing,SHAN Yu,FU Yingying,et al.Effects of in-situ synthesis nanoscale Ag/Ag2MoO4 composite lubricants on tribological properties of YSZ coatings[J].Tribology,2019,39(6):756-765.(in Chinese)
参考文献 21
DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.
参考文献 22
MURATORE C,VOEVODIN A A,HU J J,et al.Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C[J].Wear,2006,261(7):797-805.
参考文献 23
文怀兴,黄琰,何乃如.Al2O3-Ag@Ni-Mo 自润滑材料宽温域多循环摩擦学性能研究[J].陕西科技大学学报,2021,39(2):133-138.WEN Huaixing,HUANG Yan,HE Nairu.Study on multiple cycles tribological properties of Al2O3-Ag@ Ni-Mo self-lubricating material in wide temperature range[J].Joural of Shaanxi University of Science & Techology,2021,39(2):133-138.(in Chinese)
参考文献 24
MULLIGAN C P,BLANCHET T A,GALL D.CrN–Ag nanocomposite coatings:High-temperature tribological response[J].Wear,2010,269(1):125-131.
参考文献 25
HU J J,MURATORE C,VOEVODIN A A.Silver diffusion and high-temperature lubrication mechanisms of YSZ–Ag–Mo based nanocomposite coatings[J].Composites Science and Technology,2007,67(3):336-347.
参考文献 26
XU Z W,ZHAO G H,QIU L,et al.Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate[J].npj Computational Materials,2020,6(1):14.
参考文献 27
PRAKASH B,CELIS J P.The lubricity of oxides revised based on a polarisability approach[J].Tribology Letters,2007,27:105-112.
参考文献 28
张志杰.材料物理化学[M].北京:化学工业出版社,2006.ZHANG Zhijie.Physical chemistry of materials[M].Beijing:Chemical Industry Press,2006.(in Chinese)
目录contents

    摘要

    含软金属自适应涂层在摩擦过程因软金属独特的性能而具备良好的摩擦学性能,然而在不断摩擦过程中软金属会发生一定的耗散导致涂层失效。为了研究软金属润滑剂在宽温域摩擦过程中的耗散机制,利用等离子喷涂技术制备 NiCrAlY-Cu 涂层;通过分析热处理及宽温域摩擦前后涂层的组分与形貌演变,揭示 NiCrAlY-Cu 涂层中 Cu 的高温扩散及宽温域摩擦耗散机制。结果表明:Cu 以片层状分布在 NiCrAlY 基础相中,软金属 Cu 在温度单因素影响下垂直向涂层表面扩散,随着温度的升高扩散加剧。在 1000 ℃环境下 Cu 在涂层内部发生平行扩散,并最终呈现弥散态分布。在中低温环境下随着温度的升高 Cu 的剪切强度降低进而使得涂层摩擦因数逐渐下降,但是由于 Cu 呈片层状分布,随着温度的升高涂层发生疲劳剥落导致磨损率升高。随着温度的进一步升高,Cu 扩散加剧,片层状 Cu 减少,同时发生氧化,使得摩擦因数升高,磨损率降低。在宽温域摩擦过程中由于温度和载荷的共同影响,Cu 在涂层中的摩擦耗散机制为 Cu 垂直向涂层表面扩散,由磨痕区域内向磨痕外平行扩散。同时,磨痕内聚集的 Cu 以磨屑形式逐渐损耗。提出在不同温域摩擦过程中受力-热耦合影响的软金属耗散机制,可为解决含软金属自适应涂层的失效问题提供理论依据。

    Abstract

    Soft metal-containing composite coatings exhibit favorable tribological properties owing to extremely low shear strength. However, the soft metal dissipates during the friction process at elevated temperatures, resulting in the failure of such coatings. Recent studies have identified dissipation mechanisms of soft metals based on the effect of temperature. However, research on the dissipation mechanisms of soft metals by the synergetic effect of the load and temperature during the friction process at elevated temperatures has not yet been explored. NiCrAlY-Cu coatings were prepared using air plasma spraying technology to study the diffusion and dissipation mechanisms of soft metal lubrication in the composite coating by the synergetic effect of load and temperature. Heat treatment and tribological tests of the NiCrAlY-Cu coatings were carried out over a wide temperature range. The wear mechanisms of the NiCrAlY-Cu coatings are also discussed. The compositions and morphologies of the NiCrAlY-Cu coatings and worn tracks were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS).The Cu content of the NiCrAlY-Cu coating was calculated and compared after heat treatment and tribological tests over a wide temperature range. The diffusion mechanisms of Cu at elevated temperatures and the dissipation mechanisms of Cu during the friction process were studied using compositional and morphological analyses. The results showed that Cu was uniformly distributed with a lamellar structure in the NiCrAlY-Cu coatings. According to the Gibbs-Thomson effect and Ostwald ripening theory, soft metal would diffuse vertically under the influence of temperature, which is consistent with Cu vertical diffusion to the coating surface. Meanwhile, the diffusion intensified as the temperature increased. Furthermore, Cu diffused in parallel and was dispersedly distributed in the NiCrAlY-Cu coating at 1000 ℃. At low and moderate temperatures, the shear strength of Cu decreased with increasing temperature, resulting in a gradual decrease in the friction coefficients of the NiCrAlY-Cu coatings. However, fatigue spalling on the worn surface of the NiCrAlY-Cu coating caused by the lamellar distribution of Cu led to an obvious increase in the wear rate. The friction coefficient and wear rate of the NiCrAlY-Cu coatings were 0.401 and 2.49×10−3 mm3 / (N·m) at 400 °C, respectively. The wear mechanism at 400 °C is mainly severe fatigue wear. With a further increase in temperature, the intensification of Cu diffusion and oxidation in the NiCrAlY-Cu coating resulted in an increase in the friction coefficients and decrease in the wear rates. During the friction process from 25 to 1000 °C, owing to the synergetic effect of the temperature and load, Cu diffused vertically to the coating surface according to the analysis of the Gibbs-Thomson effect, Ostwald ripening theory, and Fick’ s first law. This was further confirmed by the EDS mapping results. Moreover, Cu diffused in parallel from the inside to the outside of the worn track owing to the effect of the load. At low and moderate temperatures, the main driving force for Cu diffusion was the load effect. With a further increase in temperature, the main driving force of Cu diffusion was the temperature effect. Simultaneously, the enrichment of Cu on the worn surface gradually dissipated in the form of wear debris during the friction process. In this paper, the diffusion and dissipation mechanisms of soft metal in a soft metal-containing adaptive coating under the synergetic effect of load and temperature during the friction process over a wide temperature range are proposed, which provide a theoretical basis for solving the problem of lubrication failure of the soft metal-containing adaptive coating.

  • 0 前言

  • 航空、航天、能源动力工程等高技术领域的快速发展,对关键运动部件在高温、重载、强腐蚀等苛刻工况下摩擦学性能和服役寿命的要求越来越高[1-4]。针对高温运动部件的宽温域连续润滑难题,研究人员[5-9]通过将不同温域固体润滑剂复配至耐温粘结相中,以实现运动部件在宽温域环境下的连续润滑与耐磨。在众多固体润滑剂中,软金属(Cu、 Ag、Au 等)由于低剪切强度及低熔点使其具有良好的宽温域润滑性能[10-11]。在中低温环境下依靠软金属的低剪切强度起到减摩作用;高温环境下依靠软金属的低熔点实现流体润滑。同时,对于宽温域自润滑材料通常在添加软金属的基础上通过引入过渡族金属元素,利用高温摩擦化学反应在磨痕表面原位形成软金属基三元金属氧化物润滑相,进而赋予材料优异的高温摩擦学性能[12-13]

  • 基于软金属(Cu、Ag)来实现宽温域连续润滑已有大量研究与应用,如美国 NASA 开发的 PS (Plasma spraying)系列 Ni 基含 Ag 自润滑涂层[14-16],在宽温域内表现出优异的摩擦学性能,其中 PS200 (NiCo-Cr3C2-Ag-BaF2 / CaF2)成功解决了斯特林发动机气缸壁高温润滑难题,PS304(NiCr-Cr2O3-Ag-BaF2 / CaF2)解决了航空发动机空气箔片轴承的高温运行问题。延续 PS 系列涂层的设计思路,结合等离子喷涂涂层致密,结合强度高等特点[17],研究人员将固体润滑剂复配至陶瓷基粘结相中制备等离子喷涂涂层,以此来提升涂层材料的力学以及摩擦学性能。杜三明等[18]利用等离子喷涂技术分别制备了 Al2O3和 Cu-Al2O3涂层,发现 Cu-Al2O3 涂层较 Al2O3 涂层摩擦因数出现明显降低且磨损率相较于 Al2O3 涂层降低了 14.68%,说明 Cu 的添加显著改善了 Al2O3 涂层的摩擦学性能。袁建辉等[19] 通过对涂层进行不同温度环境的摩擦试验,发现 WC-Co-Cu-BaF2 / CaF2 涂层的摩擦因数在各温度环境下均比 WC-Co 涂层低,且在高温环境下 WC-Co-Cu-BaF2 / CaF2涂层的磨损量相较于WC-Co涂层下降了 4.23 倍,Cu 和 BaF2 / CaF2 固体润滑剂的加入能够大幅提升 WC-Co 涂层的摩擦学性能。杨晶晶等[20]利用真空浸渍技术和水热合成方法在氧化钇稳定氧化锆(YSZ)涂层中原位合成了 Ag / Ag2MoO4,使得 YSZ-Ag / Ag2MoO4 涂层在常温和 600℃摩擦因数分别下降了 1.6 倍和 5.1 倍,且磨损率有了显著降低。DU等[21]研究发现含15 wt.% Ag 的 NiCoCrAlY-Cr2O3-15Ag-Mo 涂层在 800℃时摩擦因数达到最低值 0.35,磨损率在不同温度环境下普遍降低至 10−5mm3 /(N·m),15 wt.% Ag 的添加使得 Ni 基涂层摩擦学性能得到进一步改善。

  • 软金属的添加可以显著降低材料在宽温域环境下的摩擦因数与磨损率。然而,软金属润滑剂迁移至材料表面或者与其他组分形成新的润滑相,在摩擦力和法向载荷的共同作用下被急剧消耗,难以保证材料的润滑寿命。同时,软金属的耗散使得材料孔隙率增加,力学性能下降,进一步恶化材料的耐磨寿命。为了提升自润滑材料的服役寿命, MURATORE 等 [22] 利用 TiN 阻挡层限制 YSZ-Ag-Mo / TiN 自润滑涂层中 Ag 在高温摩擦过程的耗散,使得 YSZ-Ag-Mo / TiN 涂层可在 5 个热循环中保持良好的摩擦学性能。笔者前期研究也发现对软金属Ag进行包覆可以有效降低软金属Ag在高温摩擦过程中的耗散,提升材料润滑寿命[23]。然而软金属润滑剂在宽温域摩擦过程中即力-热耦合作用下的耗散机制尚不明确。

  • 为了研究软金属润滑剂在宽温域摩擦过程中的耗散机制,本文采用大气等离子喷涂的方法在 Inconel718 高温合金基体表面制备 NiCrAlY-Cu 涂层,通过对涂层的组分、结构及形貌演变和宽温域摩擦学性能研究,结合 Gibbs-Thomson 效应和 Ostwald 熟化理论[24],分析 Cu 在 NiCrAlY-Cu 涂层中的热扩散及摩擦耗散机制。

  • 1 试验准备

  • 1.1 NiCrAlY-Cu 涂层制备

  • 选用 Inconel718 高温合金作为涂层基底材料,试样直径 25 mm,厚度 8 mm。选择商用 NiCrAlY (纯度:99.99%,30~45 μm)作为涂层基体相,商用 Cu(纯度:99.99%,30~35 μm)作为润滑相。将 NiCrAlY 粉和 Cu 粉按质量比 9∶1 在三维混合仪 (M10,Grinder,CHINA)中混合 24 h,以确保喷涂时各组分均匀混合。将基体喷砂处理,并用无水乙醇超声清洗 15 min,以保证基底洁净。使用 APS 喷涂设备(APS-3000A)进行 NiCrAlY-Cu 涂层制备,具体工艺参数见表1。

  • 表1 NiCrAlY-Cu 涂层的沉积参数

  • Table1 Deposition parameters of the NiCrAlY-Cu coating

  • 1.2 涂层的表征及性能测试

  • 将 NiCrAlY-Cu 涂层放置在马弗炉中进行 200℃、400℃、600℃、800℃、1000℃热处理,升温速率与保温时间统一设定为 10℃ / min 和 60 min,随后自然冷却。利用 TESCAN-MIRA3 型扫描电子显微镜和 X 射线能谱仪分析热处理前后涂层表面以及截面形貌与组分。利用 Smart-Lab 型 X 射线衍射仪对涂层进行物相分析。利用 HV-1000A 显微硬度仪对涂层的硬度进行测定,负载为 2 N,保压时间为 10 s,随机选择 8 个测试点,求取平均值。

  • 利用 HT-1000 球盘式高温磨擦机分析涂层宽温域摩擦学性能,选择 Si3N4 球(硬度为 2 200 HV,密度为 3.20 g / cm³)为对偶,测试温度分别为室温 (RT,20~25℃)、200℃、400℃、600℃、800℃、 1 000℃,载荷 5 N,转速 0.3 m / s,摩擦试验时间 60 min。每个温度下进行 3 次试验,以保证摩擦学性能数据的重复性,摩擦因数取稳定后的测试平均值。测试前将试样抛光处理,并用无水乙醇清洗 10 min,确保试样表面平整洁净。使用奥林巴斯三维轮廓仪测量磨痕截面积 A(mm2),随机取 16 个点,求平均值。通过公式W=ACNL计算磨损率[W 为磨损率 mm3 /(N·m)、C 为磨痕周长 mm、N 为载荷 N、L 为行程长度 m]。利用扫描电子显微镜和 X 射线能谱仪分析磨痕内外的形貌及组分。

  • 2 结果与讨论

  • 2.1 涂层的微观组织结构及力学性能

  • 图1 为混合粉末形貌、元素分布,可以看出 Cu粉均匀地分布在 NiCrAlY 粉末中。图2 为 NiCrAlY-Cu 涂层的截面形貌,从图2a、2b 能够看到 NiCrAlY-Cu 涂层呈现典型的层状组织铺叠结构,涂层厚度为 335 μm,并在涂层中发现裂纹、孔洞等缺陷。从图2c 可以看出 NiCrAlY-Cu 涂层中 Cu 和 NiCrAlY 分布情况,喷涂过程中 NiCrAlY 和 Cu 的熔点和密度不同使得 Cu 呈现不规则长条状,并均匀分布在 NiCrAlY 基体中。图3 为 NiCrAlY-Cu 涂层的 XRD 谱图,从图中可以看出,NiCrAlY-Cu 涂层相组成为 Ni3Al 和 Cu,原始粉末在喷涂过程中没有发生氧化。表2 给出了 NiCrAlY-Cu 涂层经不同温度热处理后的硬度,涂层原始硬度为 296.1 HV,低于 800℃的热处理对涂层硬度无明显影响,当热处理温度达到 1 000℃时涂层硬度出现明显下降。

  • 图1 混合粉末形貌及元素分布

  • Fig.1 SEM morphologies and EDS mapping of the mixed feedstock powders

  • 图2 NiCrAlY-Cu 涂层的截面形貌

  • Fig.2 SEM morphologies of the cross-section for the NiCrAlY-Cu coating

  • 图3 NiCrAlY-Cu 涂层的 XRD 谱图

  • Fig.3 XRD pattern of the NiCrAlY-Cu coating

  • 表2 不同温度处理后的 NiCrAlY-Cu 涂层维氏硬度

  • Table2 Vickers hardness of NiCrAlY-Cu coating after different temperatures

  • 2.2 NiCrAlY-Cu 涂层中 Cu 的高温扩散机制

  • 为了研究 Cu 在不同温度下的扩散机制,对涂层经不同温度热处理后的截面进行 Cu 元素面分布分析,如图4 所示,随着热处理温度的升高原始涂层中的 Cu 聚集区域逐渐减少,当热处理温度达到 1 000℃时 Cu 在涂层中呈现完全弥散态。从不同温度热处理后涂层表面的 Cu 元素分布(图5)中可以发现,伴随着涂层内部 Cu 聚集区域的减少,涂层表面出现了 Cu 的富集,且随着热处理温度的升高富集区域增大。同时,由图5(f)可以看出,与截面分布一致,经过 1 000℃热处理后涂层表面的 Cu 也同样呈现弥散态。如图6 所示,对涂层热处理前后的表面形貌分析发现,当热处理温度达到 400℃ 时涂层表面出现颗粒凸起现象,且随着热处理温度的升高凸起现象愈加明显,说明随着温度的升高涂层内部的 Cu 向表面扩散,并聚集在涂层表面形成颗粒状凸起。图7 给出了 NiCrAlY-Cu 涂层经不同温度热处理后,表面的 Cu / Ni(NiCrAlY-Cu 涂层中 Ni 含量始终维持在一定值且均匀分布,为了减小不同区域 Cu 含量聚集程度不同对数据影响,采取 Cu / Ni 作为 Cu 含量以保证数据的准确性)。可以看出,随着温度的升高,Cu 的扩散速率显著增加。

  • 图4 不同温度热处理后 NiCrAlY-Cu 涂层截面 Cu 元素分布图

  • Fig.4 EDS mapping of Cu for the cross-section of the NiCrAlY-Cu coatings after annealing at different temperatures

  • 图5 不同温度热处理后 NiCrAlY-Cu 涂层表面 Cu 元素分布图

  • Fig.5 EDS mapping of Cu for the surface of the NiCrAlY-Cu coatings after annealing at different temperatures

  • 图6 不同温度热处理后 NiCrAlY-Cu 涂层的表面形貌

  • Fig.6 SEM morphology for the surface of the NiCrAlY-Cu coatings after annealing at different temperatures

  • 图7 不同温度热处理后 NiCrAlY-Cu 涂层表面 Cu / Ni

  • Fig.7 Cu / Ni for the surface of the NiCrAlY-Cu coatings after annealing at different temperatures

  • 根据 Gibbs-Thomson 公式(1)[24],涂层中存在的 Cu 颗粒大小不同,表面能效应引起的 Cu 颗粒表面压力差为:

  • ΔP=γ1R1+1R2
    (1)
  • 式中,ΔP 为压力差变化量,γ 为表面自由能,R1R2 分别为内外曲面曲率半径。

  • 根据 Gibbs-Thomson 公式(2)[24],随着 Cu 颗粒的大小不同,其化学势变化量也发生相应改变:

  • Δμ=ΔPVm=2γVmr
    (2)
  • 式中,Δμ 为 Cu 颗粒化学势的变化量;r 为球形颗粒的半径;Vm 为 Cu 原子的摩尔体积。

  • 结合 Gibbs-Thomson 公式(1)、(2)可知,Cu 颗粒表面压力差影响 Cu 原子的分离能力,同时表面压力差与 Cu 颗粒的化学势变化量成正比,Cu 颗粒半径越小,其表面压力差越大,化学势变化量越大,越容易分离出 Cu 原子。根据 Gibbs-Thomson 效应和 Ostwald 熟化理论[24]可以得出,随着温度的升高,分离比率变大,较小 Cu 颗粒分离出 Cu 原子向较大 Cu 颗粒表面汇聚。因此,Cu 在涂层中会不断地由小颗粒演变成大颗粒,然而由于涂层的结构相较致密,Cu 颗粒只能存在于晶界缺陷的一些孔隙中[25],当 Cu 颗粒生长到一定程度时,孔隙限制了 Cu 颗粒的进一步生长,导致 Cu 受到内部挤压向涂层表面扩散,并在涂层表面聚集。宏观上 Cu 表现出由涂层内部垂直向涂层表面扩散,并且随着温度的升高扩散加剧。然而当温度达到 1 000℃时(Cu 熔点:1 083.4℃),Cu 不再单一地垂直扩散,此时 Cu 呈现一种半熔融状态具有很高的流动性[26],在温度影响下弥散分布于整个涂层中,此时涂层中原本富集 Cu 区域 Cu 含量减少,涂层内部产生缺陷导致涂层硬度下降。

  • 2.3 NiCrAlY-Cu 涂层的宽温域摩擦学性能

  • 图8 为 NiCrAlY-Cu 涂层 RT-1 000℃环境下的摩擦因数和磨损率。从图8a 可以看出,NiCrAlY-Cu 涂层的 RT 摩擦因数高达 0.814,随着温度升高,摩擦因数显著降低,在 400℃时达到最低值,约为 0.401。当温度升高至 600℃时摩擦因数出现明显升高。此后,随着温度的进一步升高,摩擦因数又呈现下降趋势。从图8b 可以看出,在中低温环境下涂层的磨损率变化趋势与摩擦因数截然相反,随着温度升高,磨损率显著增加,400℃时 NiCrAlY-Cu 涂层的磨损率达到最大值,约为 2.49 × 10−3 mm3 /(N·m)。在高温环境下(≥600℃)磨损率急剧降低并呈现下降趋势,在 800℃磨损率达到最低为 1.50×10−5 mm3 /(N·m)。

  • 图8 NiCrAlY-Cu 涂层在不同温度下的摩擦因数和磨损率

  • Fig.8 Friction factor and wear rates of NiCrAlY-Cu coatings tested at different temperatures

  • 为了进一步分析涂层磨损机制,图9 给出了 NiCrAlY-Cu 涂层在不同温度下的磨痕表面形貌。由图9a~9c 可以看出,中低温区间(≤400℃)磨痕表面存在犁沟、剥落层,磨损机制以磨粒磨损和疲劳磨损为主。在中低温区间,随着温度的升高,Cu 的剪切强度降低,同时伴随着层间剪切强度的降低导致涂层摩擦因数显著降低。然而在中低温摩擦过程中片层 Cu 层首先发生剪切,层间剪切强度降低导致层间塑性变形及严重疲劳剥落,导致涂层磨损率显著增加。

  • 如图10 所示,从磨痕表面元素分布图也可以看出,在中低温区间,由于摩擦过程中沿着片层 Cu发生层间剥落,新鲜的 Cu 表面不断暴露,导致磨痕表面 Cu 含量逐步升高。如图11 所示,对 400℃ 摩擦试验后收集的磨屑进行分析,发现在磨屑中存在大量 Cu 和 Ni 元素,且比较均匀地分布在磨屑中,说明 400℃环境下起到润滑作用的是沿着片层 Cu 聚集区域发生严重疲劳剥落。

  • 图9 不同温度摩擦磨损后 NiCrAlY-Cu 涂层在不同温度下的磨痕形貌

  • Fig.9 SEM morphology of worn surface of the NiCrAlY-Cu coatings after being tested at different temperatures

  • 图10 不同温度摩擦磨损后 NiCrAlY-Cu 涂层的磨痕表面 Cu 元素分布图

  • Fig.10 EDS mapping of Cu for the worn surface of the NiCrAlY-Cu coatings after being tested at different temperatures

  • 图11 400℃摩擦磨损后磨屑形貌和元素分布图

  • Fig.11 SEM morphology and EDS mapping for the wear debris of the NiCrAlY-Cu coating after being tested at 400℃

  • 当测试温度达到 600℃时,从图9d 中磨痕形貌来看,涂层主要表现为轻微疲劳磨损。由图10d 可以看出,相比于 400℃此时磨痕表面 Cu 含量显著下降。从涂层不同温度摩擦试验后的 XRD 谱图(图12)可以看出,经 600℃摩擦试验后涂层表面出现明显的 CuO 的衍射峰。磨痕表面 Cu 含量的明显下降使得涂层在 600℃环境下的摩擦因数升高,同时 CuO 是一种良好的耐磨材料[27],使得磨损率出现明显下降。从图9e 可以看出,800℃环境下的磨痕表面相对光滑,此时的磨损率降至最低值。由图10e 可以发现,随着温度的进一步升高,磨痕表面的 Cu 含量再次升高,进而使得涂层摩擦因数随之降低。结合磨痕形貌(图9f)及 XRD 谱图(图12e)可以发现,当温度达到 1 000℃时涂层出现了明显的氧化磨损。同时,虽然涂层摩擦因数进一步降低,但磨痕表面的 Cu 含量相较于 800℃时却出现轻微下降。

  • 图12 不同温度摩擦磨损后 NiCrAlY-Cu 涂层的磨痕 XRD 谱图

  • Fig.12 XRD pattern for the worn surface of the NiCrAlY-Cu coatings after being tested at different temperatures

  • (a) 200℃, (b) 400℃, (c) 600℃, (d) 800℃, (e) 1 000℃.

  • 2.4 NiCrAlY-Cu 涂层中 Cu 的摩擦耗散机制

  • 摩擦过程中涂层受温度、载荷耦合的影响,因此 NiCrAlY-Cu 涂层中的 Cu 受温度、载荷耦合影响出现不同程度的扩散。图13、14 分别给出了 NiCrAlY-Cu 涂层磨痕内外表面 Cu / Ni 和 Cu 元素分布。从这两个图可以看出,在中低温阶段磨痕内外表面的 Cu 含量相近,而在高温阶段磨痕外 Cu 含量要明显高于磨痕内 Cu 含量。摩擦过程中由于载荷和温度的双重影响,Cu 垂直扩散到涂层磨痕表面。随着温度升高,涂层磨痕内和磨痕外都出现 Cu 含量升高的现象,且由于载荷和温度对于 Cu 扩散的速率影响不同,导致在磨痕外和磨痕内存在 Cu 含量的差异。

  • 图15 进一步显示了经不同温度热处理及摩擦试验后 NiCrAlY-Cu 涂层截面 Cu / Ni,在载荷和温度的双重影响下,磨痕外截面的 Cu 含量明显高于磨痕内截面及同等温度热处理后的截面 Cu 含量。如图16 中扩散示意图所示,在摩擦过程中,载荷的作用使得涂层中的 Cu 受到挤压向涂层中的不同区域扩散:磨痕内截面(区域 1)中的 Cu 向磨痕外截面(区域 2)和磨痕表面(区域 4)扩散。在温度的作用下,Cu 的扩散是垂直扩散至涂层表面,区域 1 中的 Cu 向区域 4 扩散,区域 2 中的 Cu 向区域 3(涂层表面)扩散。当温度升高到 1 000℃时, Cu 弥散在整个涂层中,因此磨痕内外的 Cu 含量接近。在相同载荷条件下,由于温度的不同,Cu 垂直扩散的扩散速率不同;在载荷和温度共同影响下涂层中 Cu 由区域 1 向区域 2 扩散、区域 1 向区域 4 扩散、区域 2 向区域 3 扩散的扩散速率不同。

  • 图13 不同温度摩擦磨损后 NiCrAlY-Cu 涂层磨痕表面 Cu / Ni

  • Fig.13 Cu / Ni for the worn surface of the NiCrAlY-Cu coatings after being tested at different temperatures

  • 图14 不同温度摩擦磨损后 NiCrAlY-Cu 涂层磨痕内外表面 Cu 元素分布

  • Fig.14 EDS mapping of Cu for the worn surface and unworn surface of the NiCrAlY-Cu coatings after being tested at different temperatures

  • 图15 NiCrAlY-Cu 涂层截面 Cu / Ni

  • Fig.15 Cu / Ni for the cross-section of the NiCrAlY-Cu coatings

  • 菲克定律[28]指出,在稳定扩散时物质的扩散数量(原子的扩散通量)和浓度梯度成正比。受应力场作用,扩散过程中的推动力与扩散的关系可以表示为如下:

  • J=MBF
    (3)
  • 式中,J 为扩散通量;M 为质点数;B 为单位力作用下的平均速率;F 为作用力。

  • 扩散的数量与作用力是一种正比关系,也就是说在摩擦运动转速、载荷不变的情况下,同一区域载荷对扩散影响是一定的。在载荷的作用下 Cu 由区域 1 向区域 2、4 扩散的扩散速率是相同的。

  • 图16 NiCrAlY-Cu 涂层高温摩擦过程中 Cu 扩散示意图

  • Fig.16 Cu diffusion diagram of NiCrAlY-Cu coating in the friction process at high temperature

  • 结合摩擦过程中载荷和温度对 Cu 扩散的影响可以知道,5 N 载荷与中低温相比,载荷给 Cu 扩散带来的驱动力大于温度给 Cu 的扩散驱动力,此时涂层中 Cu 水平扩散至磨痕外截面的含量大于 Cu 垂直扩散至涂层表面的含量。随着温度的进一步升高,温度给 Cu 扩散带来的驱动力大于载荷给 Cu 的扩散驱动力,Cu 水平扩散含量显著降低,Cu 垂直扩散至涂层表面的含量升高,但由于摩擦过程存在 Cu 的消耗,导致磨痕外 Cu 含量要高于磨痕内 Cu 含量。结合图13~16 分析可以得出,在中低温情况下载荷是影响 Cu 扩散的主要因素,在高温摩擦过程中 Cu 的扩散主要受温度影响。随着温度的升高达到 1 000℃,Cu 的扩散更加充分,此时 Cu 弥散在整个涂层中;Cu 的剪切强度不断降低,导致磨痕内 Cu 润滑消耗越来越严重,且由于的扩散导致磨痕外的 Cu 含量越来越高。因此,NiCrAlY-Cu 涂层在摩擦过程中 Cu 除了参与润滑的消耗外,还存在着向磨痕外区域、涂层表面的扩散。

  • 3 结论

  • (1)等离子喷涂制备的 NiCrAlY-Cu 涂层呈现典型的层状组织结构,提出 Cu 在摩擦过程中的润滑机理。中低温域(RT-400℃)涂层沿着层片状 Cu 发生剪切,并在 400℃时获得最低摩擦因数,但是层间的疲劳剥落使其磨损率较高。当温度达到 600℃时,涂层中 Cu 扩散加剧,易剪切的片层状 Cu 数量减少,摩擦因数较高。当温度进一步升高时,涂层表面 Cu 含量增加,剪切强度进一步下降,使得涂层摩擦因数再次逐步降低。

  • (2)设计静态热处理试验,阐明了软金属 Cu 在单因素温度影响下的热扩散机制。在温度的影响下涂层中 Cu 向涂层表面垂直扩散,且随着温度的升高扩散速率增大。当温度达到 1 000℃时涂层中 Cu 还表现出明显的平行扩散。

  • (3)首次提出 NiCrAlY-Cu 涂层中软金属 Cu 在力-热耦合影响下的扩散机制。通过宽温域摩擦试验发现 Cu 的扩散也受到载荷的影响,载荷使得加载区域 Cu 发生平行和垂直扩散。宽温域摩擦过程中 Cu 的扩散受到温度和载荷共同影响,在中低温环境下载荷为主要影响因素,在高温环境下温度为主要影响因素。

  • (4)分析总结 NiCrAlY-Cu 涂层中软金属 Cu 在摩擦过程中耗散机制。在宽温域摩擦过程中磨痕区域内部 Cu 在载荷的影响下向磨痕外平行扩散,磨痕外区域在温度的影响下垂直向涂层表面扩散,使得参与润滑的 Cu 含量降低。同时,早期磨损使得表面富集的 Cu 很快消耗。

  • 参考文献

    • [1] 陈建敏,卢小伟,李红轩,等.宽温域固体自润滑涂/覆层材料的研究进展[J].摩擦学学报,2014,34(5):592-600.CHEN Jianmin,LU Xiaowei,LI Hongxuan,et al.Progress of solid self-lubricating coating over a wide range of temperature[J].Tribology,2014,34(5):592-600.(in Chinese)

    • [2] 何鹏飞,王海斗,马国政,等.含银硬质涂层高温摩擦学性能的研究进展[J].中国有色金属学报,2015,25(11):2962-2974.HE Pengfei,WANG Haidou,MA Guozheng,et al.Research progress of high-temperature tribological properties of silver-containing hard coatings[J].The Chinese Journal of Nonferrous Metals,2015,25(11):2962-2974.(in Chinese)

    • [3] 刘二勇,贾均红,高义民,等.宽温域连续润滑材料的研究进展[J].中国表面工程,2015,28(4):1-13.LIU Eryong,JIA Junhong,GAO Yimin,et al.Progress of continuous lubricating materials over wide temperature range[J].China Surface Engineering,2015,28(4):1-13.(in Chinese)

    • [4] ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.

    • [5] PAPPACENA K E,SINGH D,AJAYI O O,et al.Residual stresses,interfacial adhesion and tribological properties of MoN/Cu composite coatings[J].Wear,2012,278-279:62-70.

    • [6] SHI P Y,YI G W,WAN S H,et al.High temperature tribological performance of nickel-based composite coatings by incorporating multiple oxides(TiO2–ZnO–MoO3)[J].Tribology International,2021,155:106759.

    • [7] ZHU R,ZHANG P,YU Z,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.

    • [8] ZHANG T T,LAN H,HUANG C B,et al.Preparation and characterizations of nickel-based composite coatings with self-lubricating property at elevated temperatures[J].Surface and Coatings Technology,2016,294:21-29.

    • [9] SHI P Y,WANG W Z,WAN S H,et al.Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni-and NiCrAlY-based composite coatings[J].Surface and Coatings Technology,2021,405:126615.

    • [10] LI B,GAO Y M,JIA J H,et al.Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings[J].Journal of Alloys and Compounds,2016,686:503-510.

    • [11] 刘乐卿,单奇艺,安宇龙,等.WC-(W,Cr)2C-Ni/Ag 复合涂层的制备及摩擦学性能[J].中国表面工程,2015,28(3):10-16.LIU Leqing,SHAN Qiyi,AN Yulong,et al.Preparation and tribology properties of WC-(W,Cr)2C-Ni/Ag composite coatings[J].China Surface Engineering,2015,28(3):10-16.(in Chinese)

    • [12] YANG J J,JIA J H,LI X,et al.Synergistic lubrication of Ag and Ag2MoO4 nanoparticles anchored in plasmasprayed YSZ coatings:Remarkably-durable lubricating performance at 800 °C[J].Tribology International,2021,153:106670.

    • [13] CHEN J,AN Y L,YANG J,et al.Tribological properties of adaptive NiCrAlY–Ag–Mo coatings prepared by atmospheric plasma spraying[J].Surface and Coatings Technology,2013,235:521-528.

    • [14] DELLACORTE C.The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650 °C[J].Surface and Coatings Technology,1996,86-87:486-492.

    • [15] SLINEY H E,LOOMIS W R,DELLACORTE C.Evaluation of PS 212 coatings under boundary lubrication conditions with an ester-based oil to 300 °C[J].Surface and Coatings Technology,1995,76-77:407-414.

    • [16] DELLACORTE C,LASKOWSKI J A.Tribological evaluation of PS300:A new chrome oxide-based solid lubricant coating sliding against Al2O3 from 25° to 650°C[J].Tribology Transactions,1997,40(1):163-167.

    • [17] 陈丽梅,李强.等离子喷涂技术现状及发展[J].热处理技术与装备,2006(1):1-5.CHEN Limei,LI Qiang.The present status and development of plasma spraying technology[J].Heat Treatment Technology and Equipment,2006(1):1-5.(in Chinese)

    • [18] 杜三明,刘超,蔡宏章,等.等离子喷涂 Cu-Al2O3 复合涂层制备及摩擦学性能研究[J].表面技术,2019,48(3):134-140.DU Sanming,LIU Chao,CAI Hongzhang,et al.Preparation and tribological properties of plasma sprayed Cu-Al2O3 composite coatings[J].Surface Technology,2019,48(3):134-140.(in Chinese)

    • [19] 袁建辉,祝迎春,雷强,等.等离子喷涂制备 WC-CoCu-BaF2/CaF2 自润滑耐磨涂层及其高温摩擦性能[J].中国表面工程,2012,25(2):31-36.YUAN Jianhui,ZHU Yingchun,LEI Qiang,et al.Fabrication and high temperature tribological properties of plasma sparyed WC-Co-Cu-BaF2/CaF2 self-lubricating wear resistant coating[J].China Surface Engineering,2012,25(2):31-36.(in Chinese)

    • [20] 杨晶晶,陕钰,付英英,等.原位合成 Ag/Ag2MoO4 纳米复合润滑剂对YSZ涂层摩擦学性能的影响[J].摩擦学学报,2019,39(6):756-765.YANG Jingjing,SHAN Yu,FU Yingying,et al.Effects of in-situ synthesis nanoscale Ag/Ag2MoO4 composite lubricants on tribological properties of YSZ coatings[J].Tribology,2019,39(6):756-765.(in Chinese)

    • [21] DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.

    • [22] MURATORE C,VOEVODIN A A,HU J J,et al.Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C[J].Wear,2006,261(7):797-805.

    • [23] 文怀兴,黄琰,何乃如.Al2O3-Ag@Ni-Mo 自润滑材料宽温域多循环摩擦学性能研究[J].陕西科技大学学报,2021,39(2):133-138.WEN Huaixing,HUANG Yan,HE Nairu.Study on multiple cycles tribological properties of Al2O3-Ag@ Ni-Mo self-lubricating material in wide temperature range[J].Joural of Shaanxi University of Science & Techology,2021,39(2):133-138.(in Chinese)

    • [24] MULLIGAN C P,BLANCHET T A,GALL D.CrN–Ag nanocomposite coatings:High-temperature tribological response[J].Wear,2010,269(1):125-131.

    • [25] HU J J,MURATORE C,VOEVODIN A A.Silver diffusion and high-temperature lubrication mechanisms of YSZ–Ag–Mo based nanocomposite coatings[J].Composites Science and Technology,2007,67(3):336-347.

    • [26] XU Z W,ZHAO G H,QIU L,et al.Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate[J].npj Computational Materials,2020,6(1):14.

    • [27] PRAKASH B,CELIS J P.The lubricity of oxides revised based on a polarisability approach[J].Tribology Letters,2007,27:105-112.

    • [28] 张志杰.材料物理化学[M].北京:化学工业出版社,2006.ZHANG Zhijie.Physical chemistry of materials[M].Beijing:Chemical Industry Press,2006.(in Chinese)

  • 参考文献

    • [1] 陈建敏,卢小伟,李红轩,等.宽温域固体自润滑涂/覆层材料的研究进展[J].摩擦学学报,2014,34(5):592-600.CHEN Jianmin,LU Xiaowei,LI Hongxuan,et al.Progress of solid self-lubricating coating over a wide range of temperature[J].Tribology,2014,34(5):592-600.(in Chinese)

    • [2] 何鹏飞,王海斗,马国政,等.含银硬质涂层高温摩擦学性能的研究进展[J].中国有色金属学报,2015,25(11):2962-2974.HE Pengfei,WANG Haidou,MA Guozheng,et al.Research progress of high-temperature tribological properties of silver-containing hard coatings[J].The Chinese Journal of Nonferrous Metals,2015,25(11):2962-2974.(in Chinese)

    • [3] 刘二勇,贾均红,高义民,等.宽温域连续润滑材料的研究进展[J].中国表面工程,2015,28(4):1-13.LIU Eryong,JIA Junhong,GAO Yimin,et al.Progress of continuous lubricating materials over wide temperature range[J].China Surface Engineering,2015,28(4):1-13.(in Chinese)

    • [4] ZHU S Y,CHENG J,QIAO Z H,et al.High temperature solid-lubricating materials:A review[J].Tribology International,2019,133:206-223.

    • [5] PAPPACENA K E,SINGH D,AJAYI O O,et al.Residual stresses,interfacial adhesion and tribological properties of MoN/Cu composite coatings[J].Wear,2012,278-279:62-70.

    • [6] SHI P Y,YI G W,WAN S H,et al.High temperature tribological performance of nickel-based composite coatings by incorporating multiple oxides(TiO2–ZnO–MoO3)[J].Tribology International,2021,155:106759.

    • [7] ZHU R,ZHANG P,YU Z,et al.Microstructure and wide temperature range self-lubricating properties of laser cladding NiCrAlY/Ag2O/Ta2O5 composite coating[J].Surface and Coatings Technology,2020,383:125248.

    • [8] ZHANG T T,LAN H,HUANG C B,et al.Preparation and characterizations of nickel-based composite coatings with self-lubricating property at elevated temperatures[J].Surface and Coatings Technology,2016,294:21-29.

    • [9] SHI P Y,WANG W Z,WAN S H,et al.Tribological performance and high temperature oxidation behaviour of thermal sprayed Ni-and NiCrAlY-based composite coatings[J].Surface and Coatings Technology,2021,405:126615.

    • [10] LI B,GAO Y M,JIA J H,et al.Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings[J].Journal of Alloys and Compounds,2016,686:503-510.

    • [11] 刘乐卿,单奇艺,安宇龙,等.WC-(W,Cr)2C-Ni/Ag 复合涂层的制备及摩擦学性能[J].中国表面工程,2015,28(3):10-16.LIU Leqing,SHAN Qiyi,AN Yulong,et al.Preparation and tribology properties of WC-(W,Cr)2C-Ni/Ag composite coatings[J].China Surface Engineering,2015,28(3):10-16.(in Chinese)

    • [12] YANG J J,JIA J H,LI X,et al.Synergistic lubrication of Ag and Ag2MoO4 nanoparticles anchored in plasmasprayed YSZ coatings:Remarkably-durable lubricating performance at 800 °C[J].Tribology International,2021,153:106670.

    • [13] CHEN J,AN Y L,YANG J,et al.Tribological properties of adaptive NiCrAlY–Ag–Mo coatings prepared by atmospheric plasma spraying[J].Surface and Coatings Technology,2013,235:521-528.

    • [14] DELLACORTE C.The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650 °C[J].Surface and Coatings Technology,1996,86-87:486-492.

    • [15] SLINEY H E,LOOMIS W R,DELLACORTE C.Evaluation of PS 212 coatings under boundary lubrication conditions with an ester-based oil to 300 °C[J].Surface and Coatings Technology,1995,76-77:407-414.

    • [16] DELLACORTE C,LASKOWSKI J A.Tribological evaluation of PS300:A new chrome oxide-based solid lubricant coating sliding against Al2O3 from 25° to 650°C[J].Tribology Transactions,1997,40(1):163-167.

    • [17] 陈丽梅,李强.等离子喷涂技术现状及发展[J].热处理技术与装备,2006(1):1-5.CHEN Limei,LI Qiang.The present status and development of plasma spraying technology[J].Heat Treatment Technology and Equipment,2006(1):1-5.(in Chinese)

    • [18] 杜三明,刘超,蔡宏章,等.等离子喷涂 Cu-Al2O3 复合涂层制备及摩擦学性能研究[J].表面技术,2019,48(3):134-140.DU Sanming,LIU Chao,CAI Hongzhang,et al.Preparation and tribological properties of plasma sprayed Cu-Al2O3 composite coatings[J].Surface Technology,2019,48(3):134-140.(in Chinese)

    • [19] 袁建辉,祝迎春,雷强,等.等离子喷涂制备 WC-CoCu-BaF2/CaF2 自润滑耐磨涂层及其高温摩擦性能[J].中国表面工程,2012,25(2):31-36.YUAN Jianhui,ZHU Yingchun,LEI Qiang,et al.Fabrication and high temperature tribological properties of plasma sparyed WC-Co-Cu-BaF2/CaF2 self-lubricating wear resistant coating[J].China Surface Engineering,2012,25(2):31-36.(in Chinese)

    • [20] 杨晶晶,陕钰,付英英,等.原位合成 Ag/Ag2MoO4 纳米复合润滑剂对YSZ涂层摩擦学性能的影响[J].摩擦学学报,2019,39(6):756-765.YANG Jingjing,SHAN Yu,FU Yingying,et al.Effects of in-situ synthesis nanoscale Ag/Ag2MoO4 composite lubricants on tribological properties of YSZ coatings[J].Tribology,2019,39(6):756-765.(in Chinese)

    • [21] DU L,HUANG C,ZHANG W,et al.Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating[J].Surface and Coatings Technology,2011,205(12):3722-3728.

    • [22] MURATORE C,VOEVODIN A A,HU J J,et al.Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C[J].Wear,2006,261(7):797-805.

    • [23] 文怀兴,黄琰,何乃如.Al2O3-Ag@Ni-Mo 自润滑材料宽温域多循环摩擦学性能研究[J].陕西科技大学学报,2021,39(2):133-138.WEN Huaixing,HUANG Yan,HE Nairu.Study on multiple cycles tribological properties of Al2O3-Ag@ Ni-Mo self-lubricating material in wide temperature range[J].Joural of Shaanxi University of Science & Techology,2021,39(2):133-138.(in Chinese)

    • [24] MULLIGAN C P,BLANCHET T A,GALL D.CrN–Ag nanocomposite coatings:High-temperature tribological response[J].Wear,2010,269(1):125-131.

    • [25] HU J J,MURATORE C,VOEVODIN A A.Silver diffusion and high-temperature lubrication mechanisms of YSZ–Ag–Mo based nanocomposite coatings[J].Composites Science and Technology,2007,67(3):336-347.

    • [26] XU Z W,ZHAO G H,QIU L,et al.Molecular dynamics simulation of graphene sinking during chemical vapor deposition growth on semi-molten Cu substrate[J].npj Computational Materials,2020,6(1):14.

    • [27] PRAKASH B,CELIS J P.The lubricity of oxides revised based on a polarisability approach[J].Tribology Letters,2007,27:105-112.

    • [28] 张志杰.材料物理化学[M].北京:化学工业出版社,2006.ZHANG Zhijie.Physical chemistry of materials[M].Beijing:Chemical Industry Press,2006.(in Chinese)

  • 手机扫一扫看