en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曹佳俊,男,1996年出生,硕士研究生。主要研究方向为表面工程技术。E-mail:cjj1729706685@163.com

通讯作者:

闫星辰,男,1990年出生,博士,副研究员。主要研究方向为激光增材制造和表面工程技术。E-mail:yanxingchen@gdinm.com

中图分类号:TG146

DOI:10.11933/j.issn.1007−9289.20220524002

参考文献 1
KUMAR C S,ZEMAN P,POLCAR T.A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel[J].Ceramics International,2020,46(16):25073-25088.
参考文献 2
HAM G S,KREETHI R,KIM H J,et al.Effects of different HVOF thermal sprayed cermet coatings on tensile and fatigue properties of AISI 1045 steel[J].Journal of Materials Research and Technology,2021,15:6647-6658.
参考文献 3
刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzou,LIU Hongxi,DI Yingnan,et al.Effect of carbon content on friction,wear and corrosion resistance of laser melting CoCrFeMnNiCx high entropy alloy coatings[J].China Surafce Engineering,2020,33(6):118-127.(in Chinese)
参考文献 4
李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application,research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)
参考文献 5
RANJAN R,KUMAR DAS A.Protection from corrosion and wear by different weld cladding techniques:A review[J].Materials Today:Proceedings,2022,57(4):1687-1693.
参考文献 6
INSPEKTOR A,SALVADOR P A.Architecture of PVD coatings for metalcutting applications:A review[J].Surface and Coatings Technology,2014,257:138-153.
参考文献 7
SCARAZZATO T,PANOSSIAN Z,TENóRIO J A S,et al.A review of cleaner production in electroplating industries using electrodialysis[J].Journal of Cleaner Production,2017,168:1590-1602.
参考文献 8
BAX B,RAJPUT R,KELLET R,et al.Systematic evaluation of process parameter maps for laser cladding and directed energy deposition[J].Additive Manufacturing,2018,21:487-494.
参考文献 9
常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):9.CHANG Cheng,YAN Xingchen,JULIEN G,et al.Study on microstructure and mechanical properties of nano-WC/CX steel formed by selective laser melting[J].Materials Research and Application,2021,15(4):9.(in Chinese)
参考文献 10
褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):8.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy fabricated by selective laser melting[J].Materials Research and Application,2021,15(4):8.(in Chinese)
参考文献 11
YC A,XL B,HX C,et al.Fabrication of laminated high entropy alloys using differences in laser melting deposition characteristics of FeCoCrNi and FeCoCrNiAl[J].Journal of Manufacturing Processes,2021,72:294-308.
参考文献 12
ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(7):573-581.
参考文献 13
田雪梅,姚军,乔红斌,等.热熔覆合金涂层研究进展[J].机械工程师,2017,12(9):15-6,20.TIAN Xuemei,YAO Jun,QIAO Hongbin,et al.Research progress of hot melting coatings[J].Mechanical Engineer,2017,12(9):15-16,20.(in Chinese)
参考文献 14
LIU Y,DING Y,YANG L,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.
参考文献 15
CUI C,WU M,MIAO X,et al.The effect of laser energy density on the geometric characteristics,microstructure and corrosion resistance of Co-based coatings by laser cladding[J].Journal of Materials Research and Technology,2021,15:2405-2418.
参考文献 16
CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.
参考文献 17
PANIGRAHI A,ACHARYA T S,SENGUPTA P,et al.Microstructure and mechanical properties of novel tungsten heavy alloys prepared using FeNiCoCrCu HEA as binder[J].Materials Science and Engineering:A,2022,832(13):343-352.
参考文献 18
MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.
参考文献 19
WEI D,LI X,SCHöNECKER S,et al.Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J].Acta Materialia,2019,181:318-330.
参考文献 20
LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.
参考文献 21
LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134(5):411-453.
参考文献 22
JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402:126328.
参考文献 23
WANG Y P,LI B S,FU H Z.Solid solution or intermetallics in a high-entropy alloy[J].Advanced Engineering Materials,2009,11(8):641-644.
参考文献 24
LU Y,DONG Y,GUO S,et al.A promising new class of high-temperature alloys:eutectic high-entropy alloys[J].Sci Rep,2014,4:6200.
参考文献 25
ZHANG K,FU Z.Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys[J].Intermetallics,2012,22:24-32.
参考文献 26
WANG F J,ZHANG Y,CHEN G L.Atomic packing efficiency and phase transition in a high entropy alloy[J].Journal of Alloys and Compounds,2009,478(1-2):321-324.
参考文献 27
ZHOU R,LIU Y,LIU B,et al.Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J].Intermetallics,2019,106:20-25.
参考文献 28
HE B,ZHANG N,LIN D,et al.The phase evolution and property of FeCoCrNiAlTix high-entropy alloying coatings on Q253 via laser cladding[J].Coatings,2017,7(10):157.
参考文献 29
JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402(7):312-321.
参考文献 30
YAN X,CHANG C,DENG Z,et al.Microstructure,interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel[J].Tribology International,2021,157(9):2331-2339.
参考文献 31
ZOU Y,QIU Z,ZHENG Z,et al.Ex-situ additively manufactured FeCrMoCB/Cu bulk metallic glass composite with well wear resistance[J].Tribology International,2021,162(9):357-368.
参考文献 32
LIU Y,MA S,GAO M C,et al.Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions[J].Metallurgical and Materials Transactions A,2016,47(7):3312-21.
参考文献 33
BHATT J,KUMAR S,DONG C,et al.Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass[J].Materials Science and Engineering:A,2007,458(1-2):290-294.
参考文献 34
TARN C Y,SHEK C H.Abrasive wear of Cu60Zr30Ti10bulk metallic glass[J].Materials Science and Engineering:A,2004,384(1-2):138-142.
参考文献 35
LIM S C,ASHBY M F.Overview No.55 wear-mechanism maps[J].Acta Metallurgica,1987,35(1):1-24.
目录contents

    摘要

    激光熔覆高熵合金涂层摩擦磨损行为的研究主要聚焦在涂层表面,鲜有对熔覆层 / 基体界面区域的摩擦学行为进行研究。为了提高 AISI 1045 钢的耐磨性,采用激光熔覆技术在 AISI 1045 钢基体表面制备宏观形貌良好、组织均匀的 FeCoCrNiAl0.5Ti0.5高熵合金涂层。利用 OM、XRD、SEM、EDS 和摩擦磨损测试仪对激光熔覆 FeCoCrNiAl0.5Ti0.5涂层的微观结构、物相组成、界面特性和摩擦磨损性能进行研究。通过对 FeCoCrNiAl0.5Ti0.5涂层 XRD 图谱和元素分布分析发现,涂层主要由面心立方(Fe,Ni)相和体心立方相(BCC)形成的共晶组织及其中弥散分布着的 NiAl 金属间化合物构成。硬度测试表明,从涂层顶部到基体,涂层、稀释区、热影响区和基体的平均显微硬度分别为 518±20、561±63、473±81 和 217± 12 HV0.2。涂层 / 基体界面区域生成了 Cr23C6,在摩擦过程中会形成一层摩擦层,相比于涂层和基体具有更小的摩擦因数(0.56),磨损率(4.76±0.51×10−5 mm3 / (N·m))最低,为涂层 / 界面区域摩擦学行为提供了理论参考。

    Abstract

    AISI 1045 steel has good workability and exceptional comprehensive mechanical properties due to hardening and tempering, relying on a tempered sorbitic matrix. However, it is vulnerable to wear even after heat treatment when used in load-bearing applications. An appropriate fabrication method is urgently required to strengthen the surface properties of AISI 1045 steel. Laser cladding (LC), an advanced surface modification technique, has become a research hotspot owing to its adjustable processing parameters, ultrafast heating / cooling rate, and utilization of high-energy beams. It provides a method for the preparation of high-entropy alloy (HEAs) coatings on the surface of AISI 1045 steel to increase the surface wear resistance and hardness Benefiting from the characteristics of HEAs and the merits of the LC process, the dense HEAs coating fabricated by LC has good metallurgical bonding on the substrate and generates a small amount of precipitation, such as intermetallic compounds, to strengthen the coating. At present, research on the wear of laser-cladding high-entropy alloy coatings mainly focuses on the coating surface, and the tribological behavior of the coating / substrate interface region has rarely been studied. A series of FeCoCrNiAl0.5Ti0.5 coatings with good macromorphology and uniform microstructure were fabricated on an AISI 1045 steel substrate using laser cladding technology to improve the wear resistance of AISI 1045 steel. The microstructure and phase distribution were investigated by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). The coating consists of planar crystals, columnar dendrite crystals, and equiaxed crystals from the bottom to the top. The XRD pattern and elemental distribution of the FeCoCrNiAl0.5Ti0.5 coatings revealed that the coating was composed of a eutectic structure face-centered cubic phase (Fe, Ni), some body-centered cubic phase (BCC) and dispersed NiAl intermetallic compounds. In addition, hardening phases such as Cr23C6 and CoTi2 are formed when carbon is dissolved in the coating / substrate interface region, and the substrate is composed of fine lath martensite α'- (Cr, Fe). The microhardness and tribological properties of the coatings were tested using a Vickers hardness tester and a tribometer. From the top of the coatings to the substrate, the average microhardness of the coating, dilution area, heat-affected zone, and substrate were 518±20 HV0.2, 561±63 HV0.2, 473±81 HV0.2 and 217±12HV0.2, respectively. This shows a trend of first increasing and then decreasing due to the deposition of Cr23C6 in the dilution area and the depression of the quenching effect on the substrate. The wear tests showed that the mechanisms were abrasive wear on the substrate, a combination of adhesive and oxidative wear on the coating, and a combination of abrasive and oxidative wear on the coating / substrate interface region. During friction, the substrate produces a large amount of spalling and oxidation debris, followed by severe three-body wear. The coating formed a cycle of oxide film growth-crack-detaching, causing coating wear. Compared with the coating and substrate, the Cr23C6 and friction layer are formed in the coating / substrate interface region during the friction process to protect the interface region, which provides a theoretical reference for the tribological behavior of the coating / interface region. The coefficient of friction on the coating / substrate interface region (COF=0.56) and the wear rate (4.76±0.51×10−5 mm3 / (N·m)) were the lowest. The wear rate of the coating / substrate interface region is half that of the substrate, which is slightly lower than that of the coating.

  • 0 前言

  • AISI 1045 钢是一种以碳元素为主要合金元素的低成本中碳结构钢,由于其优异的可加工性、强韧配比和综合力学性能,在海洋、能源、航空航天和化工等领域得到了广泛应用。然而,AISI 1045 钢合金含量较低,在接触应力高、传动速度快等苛刻工况下使用的零部件中,如连杆、齿轮和轴类等,即使经过热处理后,AISI 1045 钢也极易因为表面磨损而导致失效[1-3],因此迫切需要应用合适的表面改性技术来提升 AISI 1045 钢的硬度和摩擦磨损性能。

  • 表面改性技术在提高关键零部件表面性能方面有着广泛应用,热喷涂(Thermal spraying)、电弧熔覆 ( Arc cladding)、物理 / 化学气相沉积 ( Physical / chemical vapor deposition)和电镀 (Electroplating)等方法是几种常用的表面改性技术。鉴于这几种方法中热喷涂涂层的结合强度较低[4],电弧熔覆对材料的热影响较大[5],气相沉积制备条件苛刻,生产效率低[6],以及电镀环境污染严重[7]等问题,亟须发展一种高效快捷绿色的表面改性技术来满足材料在极端工况下的使用要求。

  • 激光熔覆(Laser cladding)是利用高能量密度激光束使粉末在基体表面快速熔化和凝固后,与基体形成冶金结合的一种先进表面改性技术[8]。具有高加工柔性的激光熔覆设备对粉末进行快速激光作用后,基体变形较小,并且较快的冷却 / 凝固速率使涂层获得精细的微观结构[9-10]。此外,涂层厚度的可调控性拓宽了激光熔覆应用范围[11-12]。综合以上优势,激光熔覆为 AISI 1045 钢表面制备高硬高耐磨涂层提供了一种有效的技术方法。

  • 激光熔覆常用材料为成形性较好的自熔合金粉末和金属基陶瓷粉末,但这些材料存在强度不足和热膨胀系数差异较大等缺点,限制了涂层耐磨性能的改善[13-14]。为解决上述问题,使用激光熔覆技术制备高硬耐磨高熵合金(High entropy alloys)涂层在近年来成为了研究热点[15-16]。由 5~13 种元素以接近等原子摩尔数组成的高熵合金不同于单一主元传统合金,其混乱度较大,4 大核心效应(高熵效应、晶格畸变效应、缓慢扩散效应和鸡尾酒效应) 使其具有远超传统合金强硬度的优异性能[17-18]。此外,高熵合金可通过析出相强化进一步提高材料的强度,进而改善摩擦磨损性能[19]。LIU 等[20]在 AISI 1045 钢表面通过激光熔覆工艺制备了原位生成 TiC 微纳米颗粒增强的 AlCoCrFeNiTix 复合涂层,发现 Ti 的加入可提高涂层的耐磨性。LI 等[21]则利用激光熔覆工艺制备了 AlxCrFeCoNiCu 涂层,JIN 等[22]利用激光重熔技术制备了 AlxCoCrFeNiSi 涂层,二者都揭示了涂层硬度和耐磨性随铝元素的增加而提高。目前,激光熔覆高熵合金涂层开展过许多研究,但激光熔覆对基体的热影响以及熔覆过程中所造成的涂层 / 基体界面区域成分的相互混合而带来的组织结构转变并未引起过多的关注。在实际工况下,受力复杂的零部件(比如冲压模具、齿轮等)在服役程中会因涂层的局部脱落容易使涂层、稀释区、热影响区,甚至基体都参与到摩擦过程,使零部件的使用性能因为磨损进一步恶化。鉴于此,需要对熔覆层 / 基体界面区域的摩擦学行为进行研究,进一步对实际工况下因涂层的局部脱落而形成的熔覆层 / 基体界面区域的摩擦提供指导。

  • 综上可知,激光熔覆高熵合金涂层可以显著提高基体表面的耐磨损性能,但对合金粉末制备的涂层界面摩擦行为研究较少。因此,本文拟用 FeCoCrNiAl0.5Ti0.5(FCCNAT)合金粉末为原材料,使用激光熔覆技术在 AISI 1045 钢表面制备高熵合金涂层,探究激光熔覆高熵合金涂层微观组织、界面特性和摩擦行为三者间的关系,阐明激光熔覆 FCCNAT 涂层 / 基体界面摩擦行为及其动态失效机制。

  • 1 材料与方法

  • 1.1 原材料和试样制备

  • 选用厚度为 8 mm 的热轧态 AISI 1045 钢和真空气雾化法制取的球形 FeCoNiCrAl0.5Ti0.5 合金粉末 (江苏威拉里新材料科技有限公司)作为基板和涂层粉末原材料,并通过配有能谱仪(EDS,EDAX XLT TEM-SDD,美国)的扫描电子显微镜(SEM,FEI Nova NanoSEM 450,美国)和激光粒度测试仪 (Malvern Instruments Ltd.,英国)分别对粉末形貌、元素分布和粒径分布进行表征和检测。AISI 1045 钢和 FCCNAT 粉末成分如表1 所示,粉末形貌和粒径分布如图1 所示。

  • 表1 FCCNAT 合金粉末和 AISI 1045 钢的化学成分(质量分数 / wt.%)

  • Table1 Chemical composition of the FCCNAT powder and AISI 1045 steel substrate(wt.%)

  • 图1 FCCNAT 球形粉末物理性质

  • Fig.1 Morphology of FCCNAT powders physical properties

  • 在氩气保护下,选用激光功率为 2 kW、扫描速度为 8 mm / s 和送粉速率为 16 g / min 的工艺参数,利用装配 6 kW 的碟片机和 TruDisk 6006 激光头的激光沉积系统(TRUMPF GmbH,德国) 制备试样,制取的单道长度为 40 mm,多道单层涂层尺寸为 40 mm×40 mm×3 mm,多道三层涂层尺寸为 40 mm×40 mm×10 mm(激光扫描采用曲折行进策略,每层间扫描行进夹角为 90°),如图2 所示,所用激光波长为 1 030 nm,光斑聚焦直径为 4 mm。

  • 图2 摩擦磨损试样

  • Fig.2 Wear test samples

  • 1.2 结构表征

  • 用电火花线切割机切割涂层试样,经 SiC 砂纸打磨和金刚石研磨抛光膏抛光后再用王水(浓硝酸∶浓盐酸的体积分数为 1∶3)腐蚀,利用光学显微镜(Leica Dmi5000 m,德国)、X 射线衍射仪 (XRD,Siemens,德国)和扫描电子显微镜对显微结构及物相进行表征。

  • 1.3 力学性能测试

  • 用维氏硬度计(EmcoTest Dura Scan 70G5,澳大利亚)在 200 g、保压 15 s 的条件下,测量抛光后涂层截面到基体的硬度值(共 33 个点,相邻点相隔 0.2 mm)。

  • 用电火花线切割机分别从基体、涂层表面和截面上切割出尺寸为 20 mm×20 mm×8 mm 摩擦磨损试样,如图2 所示。将样品表面打磨抛光至粗糙度小于 0.15 μm,采用旋转球盘摩擦方式进行摩擦测试(UMT-Tribolab(SPT-191109))。在大气环境下,选用直径为 4 mm 的氮化硅对磨球,在载荷 1 kg、转速为 200 r / min(104 mm / s)、摩擦旋转半径 5 mm 的摩擦条件下进行摩擦磨损试验,摩擦总长度 565.2 m。

  • 磨痕三维形貌通过表面三维轮廓仪(Dektak XT Bruker,美国)和 SEM 进行表征,样品的磨损率根据式(1)进行计算。为保证结果的准确性,每个试样进行 3 次摩擦磨损试验。

  • W=2πrscPL
    (1)
  • 式中,r 为磨损轨迹的半径(mm);Sc 为磨损轨迹的横截面积(mm 2);P 为加载载荷(N);L 为滑动距离(m)。

  • 2 结果与讨论

  • 2.1 相结构分析

  • 图3为 AISI 1045钢、FCCNAT粉末和FCCNAT 涂层的 X 射线衍射谱。由图可知,AISI 1045 钢由 α-Fe 相组成、FCCNAT 粉末主相为体心立方结构,而涂层由面心立方(Fe,Ni)相、体心立方相(BCC) 以及衍射峰强度较小的金属间化合物组成[23-24]

  • 图3 AISI 1045 钢、FCCNAT 粉末和 FCCNAT 涂层的 XRD 图谱

  • Fig.3 XRD profiles of AISI 1045 steel, FCCNAT powder and FCCNAT coating

  • 热轧态 AISI 1045 钢在较快的冷却速度下发生了马氏体转变,得到具有一定强度的 α-Fe 相。对于高温下制备的气雾化 FCCNAT 粉末,由 Gmix=HmixTSmix 可知,混合熵对合金中吉布斯自由能起主导作用,从而抑制了有序度高的金属间化合物的形成,粉末为单一的固溶体[25]。激光熔覆制备 FCCNAT 涂层过程中,高温熔池使 Al 元素发生一定程度的挥发,体心立方结构向具有更高原子致密堆积效率的面心立方结构[26]发生晶型转变,生成了由面心立方(Fe,Ni)和体心立方共存的双相结构[27-29]。与粉末衍射图相比,涂层存在更多的弱衍射峰,金属间化合物的转变作用增强,并且 Ti、 Al 与其他元素(如 Fe、Ni 和 Co)之间的负混合焓较高,诱导了固溶体向 NiAl 为主要金属间化合物的转变[2224]

  • 2.2 涂层与界面微观组织特征

  • 图4 为 FCCNAT 涂层的微观组织形貌和元素分布图。由图4a 可知,涂层晶界呈网状,且较粗晶界中伴随有少量析出相生成。Al-Ni 间负的混合焓使得其具有较好的混溶性,结合元素分布可知析出相为 NiAl 金属间化合物[28]。涂层晶粒比较细小,晶内为层片间距细小的共晶组织。由图4c 元素分布可知, Fe 和 Cr 在晶内富集,Ni 分布较均匀,结合 XRD 谱图知层片状的两相组织分别为 BCC 相和(Fe, Ni)相。原子半径较大的 Ti 原子在晶界存在明显偏聚,其作为固溶原子产生较大晶格畸变,有利于增大涂层强度。此外,Ti 元素与其它元素间强的亲和力能促使硬度较高的金属间化合物如 CoTi2[25] 生成,进一步提高高熵合金的硬度。

  • 图4 FCCNAT 涂层微观组织

  • Fig.4 Microstructure of the FCCNAT coatings

  • 图5 为FCCNAT涂层 / AISI 1045 钢基体界面的微观组织形貌和线扫描元素分布图。由图5a 可知,涂层从底部到顶部,分别为平面晶、柱状树枝晶和等轴晶,主要由于从熔池底部到顶部的温度梯度 G逐渐减小而凝固速率 R 逐步增大,G / R 比值逐渐减小导致界面附近微观组织从平面晶向等轴晶过渡。由图5b 并结合图3 的 XRD 图谱可知,涂层的柱状树枝晶主要由体心立方相和面心立方(Fe,Ni)相组成,同时原子半径较大的 Ti 原子在其中起到了较好的固溶强化效果,提高了界面的强硬度。由图5c 线扫描元素分布图谱可知,Ti 元素聚集在柱状树枝晶的结合处,且 Cr、C 元素分别扩散进入基体和涂层,高温促使 Cr23C6、CoTi2 等金属间化合物形成[2527]。此外,AISI 1045 钢在热影响区快速冷却生成具有较高强度的细小板条状马氏体组织 α’-(Cr, Fe)[30],能起到较好的强化效果。

  • 图5 FCCNAT 涂层 / AISI 1045 钢界面结合处微观组织

  • Fig.5 Microstructure of the interface of the FCCNAT coatings / AISI 1045 steel substrate

  • 2.3 力学性能

  • 2.3.1 显微硬度

  • 图6 为 FCCNAT 涂层顶部至 AISI 1045 钢基体底部显微硬度图,从上至下依次为涂层、稀释区、热影响区和基体 4 部分,平均显微硬度分别为 518±20、561±63、473±81 和 217±12 HV0.2。结合之前的 SEM-EDS 分析可知,Al 和 Ti 原子的固溶强化以及涂层中弥散分布的细小金属间化合物,使得涂层具有较高的硬度。在整个界面中,稀释区的硬度最大,由线扫描元素分布可知,这主要归因于熔覆过程中熔融粉末的 Cr 元素与中碳钢基体的 C 元素对流,使得 C 元素固溶于涂层面心立方(Fe, Ni)相中,并生成了 Cr23C6 等硬质相,提高了稀释区的硬度。由图6 右侧云图可知,在熔道搭接处由于退火效应导致内应力释放,硬度值降低,最终造成了稀释区硬度的波动。而热影响区相当于淬火过程,且远离热源端的基体所起到的淬火效应减弱,因此硬度值逐渐降低,从而造成了热影响区之间较大的硬度差值。

  • 图6 FCCNAT 涂层顶部至 AISI 1045 钢基体显微硬度云图

  • Fig.6 Microhardness contour map from the top of the FCCNAT coatings to the AISI 1045 steel substrate

  • 2.3.2 摩擦性能

  • 图7a 为 AISI 1045 钢基体、FCCNAT 涂层和涂层 / 基体界面处的磨损结果,其磨损率分别为10.90±1.18×10-5 mm3 /(N·m)、5.94±1.17×10−5 mm3 /(N·m)和 4.76±0.51×10−5 mm3 /(N·m),基体的磨损率接近涂层的两倍,涂层 / 基体界面处磨损率略低于涂层,结合硬度分布可知,各试样的耐磨性与硬度成正相关。图7b 为 AISI 1045 钢基体、 FCCNAT 涂层磨痕的二维轮廓图,图7d 为涂层 / 基体界面处磨痕不同区域处的二维轮廓图。由结果可知,基体磨痕的深度(30.7 μm)和宽度(1150 μm) 都远大于涂层(深度 21.2 μm、宽度 850 μm),深度接近涂层 1.5 倍。涂层 / 基体界面中,磨痕深度和宽度整体都远低于基体试样,且优于涂层试样。

  • 图7 AISI 1045 钢基体、FCCNAT 涂层和涂层 / 基体界面的磨损率和磨痕二维形貌

  • Fig.7 Wear rate and 2D profile of wear track sections of AISI 1045 steel, FCCNAT coating and interface of the coatings / substrate

  • 总体来说,激光熔覆制备的涂层晶粒较小,且伴随金属间化合物、细小第二相生成以及 Al 和 Ti 等原子的固溶作用,对涂层起到了较好的强化效果。除此之外,涂层 / 基体界面处较高的C 元素含量促使Cr23C6 等硬质相生成,使得 AISI 1045 钢基体、FCCNAT 涂层和涂层 / 基体界面的耐磨性逐步提高。

  • 图8 为 AISI 1045 钢基体、FCCNAT 涂层和涂层 / 基体界面处的摩擦因数-距离曲线,三者的平均摩擦因数分别为 0.74、0.60 和 0.56。由图可知,三个摩擦试样从赫兹接触时的跑合磨损阶段过渡到稳定磨损阶段后,基体摩擦因数曲线比较平稳,涂层 / 基体界面次之,而涂层波动较大。由于涂层和基体为两类不同的材料,当对磨球在两处切换摩擦时造成了涂层 / 基体界面摩擦因素曲线的轻微波动。涂层摩擦因数曲线集中在 0.6~0.7,其较大波动主要归因于涂层在受到较大法向力时,快速摩擦过程中因高温而生成 Al2O3、TiO2 和 Cr2O3 氧化膜,生成的氧化膜经历破裂→脱落→再生成的过程伴随有摩擦因数曲线的起伏循环波动。

  • 图8 激光熔覆试样的摩擦因素-距离曲线

  • Fig.8 Friction factor-distance curves of the l aser cladded wear test specimens

  • 图9a、9b 和 9c 为 AISI 1045 钢基体磨痕表面形貌图,基体磨痕宽度为 1 150 μm,其磨痕内部分布有大量的沟槽和尺寸较大的凿削坑。基体材料由层片状珠光体和铁素体组成,硬度相对较低,在摩擦过程中较大法向力作用下生成裂纹,随着裂纹逐渐扩展和连接导致大面积剥落和大量的氧化物磨屑,从而在后续摩擦过程中造成对磨副和剥落物之间剧烈的三体磨损,最终形成较深的沟槽和凿削坑。

  • 图9 AISI 1045 钢、涂层 / 基体界面和 FCCNAT 涂层磨痕形貌及 FCCNAT 涂层主要元素分布

  • Fig.9 Wear track morphology of AISI 1045 steel, interface of the coatings / substrate and FCCNAT coating with main elements distribution

  • 图9d、9e 和 9f 为涂层 / 基体界面磨痕表面形貌图,磨痕最小宽度位于结合处的稀释区,且涂层一侧的磨痕宽度小于基体,这一“颈缩”现象与 Archard 定律一致,即硬度越大磨损率越小[31]。耐磨性较差的基体一侧在摩擦过程中产生较多剥落物,剥落物充当硬质颗粒在涂层一侧的对磨过程中产生犁沟,同时将剥落物也带到涂层一侧。涂层产生的韧性磨屑在摩擦过程中充当粘结剂,大量磨屑在涂层 / 基体界面处堆积生成一层摩擦层,使对磨球与界面间隔开而起到一定的保护作用。

  • 图9g、9h 和 9i 为 FCCNAT 涂层磨痕表面形貌图,FCCNAT 涂层磨痕宽度为 830 μm,磨痕内产生了塑性变形和层状现象,分布有少量的氧化物磨屑,并产生了相对较浅的犁沟。图9j 为 h 对应的元素分布图,涂层氧化严重,并且各元素分布呈现龟裂状, Al2O3、TiO2和 Cr2O3 氧化膜在较大法向力作用的摩擦过程中破裂产生裂纹,此后氧化膜脱落、再生成、再破裂的循环过程伴随着摩擦因数曲线的剧烈波动[31-32]

  • 图10为AISI 1045钢,FCCNAT涂层和涂层 / 基体界面摩擦磨损机理示意图,热轧态的 AISI 1045 钢物相以 α-Fe 为主,层片状珠光体组织硬度较低 (217±12 HV0.2),对磨副和剥落物之间剧烈的三体磨损产生较深的犁沟,主要为磨粒磨损机制。

  • 涂层 / 基体界面处有 Cr23C6 硬质相生成,涂层一侧主要为面心立方(Fe,Cr)相,对磨球生成的韧性磨屑充当粘结剂将氧化磨屑在磨痕内堆积出一层摩擦层。根据 Lim and Ashby 理论,如式(2)所示:

  • Tb=T0+μTβ2+β(πv~/8)1/2F~V~
    (2)
  • 式中,Tb 为平均温度(K),T0 为室温(K),T 为等效温度(K),μ 为摩擦因数,β 为等效距离(m),F~ 为等效法向应力(N),V~ 为等效滑动速度(m /s)。

  • 可以看出,在快速摩擦过程中温度升高使摩擦层软化[33-34],在局部剪应力作用下,摩擦层发生变形使得磨损表面覆盖更致密的摩擦层,从而起着保护作用。因此,涂层 / 基体界面处主要是氧化磨损和磨粒磨损机制。

  • 在涂层中弥散分布的 NiAl 和 Co2Ti 等金属间化合物和 Al、Ti 等固溶原子强化了涂层,且由体心立方相和面心立方(Fe,Ni)相构成的微小层片间距整体上增大了涂层强度,使得涂层在摩擦中产生比基体更浅的犁沟。主要由面心立方构成韧性相的涂层与对磨球在摩擦过程中发生冷焊,在后续氮化硅球滑动过程中涂层转移,发生剥落产生层状现象。由式(2)可知[35],大气环境下高速高载荷滑动摩擦产生的摩擦热加速了涂层中 Al、 Cr 和 Ti 等与氧亲和力高的原子生成 Al2O3、TiO2 和 Cr2O3 氧化膜,后续摩擦过程中氧化膜经历膜破裂→脱落→再生成循环过程,主要为氧化磨损和黏着磨损机制。

  • 图10 AISI 1045 钢,涂层 / 基体界面和 FCCNAT 涂层摩擦磨损示意图和摩擦磨损机理示意图

  • Fig.10 Schematic diagram of wear and wear mechanism of AISI 1045 steel, interface of the coatings / substrate and FCCNAT coating

  • 3 结论

  • (1)制备出一种具有较高硬度、耐磨性的 FCCNAT 高熵合金涂层,提高了 AISI 1045 钢基体表面的耐磨性,在减摩耐磨领域有着广阔的应用潜力。

  • (2)对涂层表面和涂层 / 基体界面区域同时进行摩擦学行为研究,发现涂层 / 基体界面区域的耐磨性强于涂层,为材料因磨损失效提供了多方位的参考。

  • 参考文献

    • [1] KUMAR C S,ZEMAN P,POLCAR T.A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel[J].Ceramics International,2020,46(16):25073-25088.

    • [2] HAM G S,KREETHI R,KIM H J,et al.Effects of different HVOF thermal sprayed cermet coatings on tensile and fatigue properties of AISI 1045 steel[J].Journal of Materials Research and Technology,2021,15:6647-6658.

    • [3] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzou,LIU Hongxi,DI Yingnan,et al.Effect of carbon content on friction,wear and corrosion resistance of laser melting CoCrFeMnNiCx high entropy alloy coatings[J].China Surafce Engineering,2020,33(6):118-127.(in Chinese)

    • [4] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application,research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)

    • [5] RANJAN R,KUMAR DAS A.Protection from corrosion and wear by different weld cladding techniques:A review[J].Materials Today:Proceedings,2022,57(4):1687-1693.

    • [6] INSPEKTOR A,SALVADOR P A.Architecture of PVD coatings for metalcutting applications:A review[J].Surface and Coatings Technology,2014,257:138-153.

    • [7] SCARAZZATO T,PANOSSIAN Z,TENóRIO J A S,et al.A review of cleaner production in electroplating industries using electrodialysis[J].Journal of Cleaner Production,2017,168:1590-1602.

    • [8] BAX B,RAJPUT R,KELLET R,et al.Systematic evaluation of process parameter maps for laser cladding and directed energy deposition[J].Additive Manufacturing,2018,21:487-494.

    • [9] 常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):9.CHANG Cheng,YAN Xingchen,JULIEN G,et al.Study on microstructure and mechanical properties of nano-WC/CX steel formed by selective laser melting[J].Materials Research and Application,2021,15(4):9.(in Chinese)

    • [10] 褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):8.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy fabricated by selective laser melting[J].Materials Research and Application,2021,15(4):8.(in Chinese)

    • [11] YC A,XL B,HX C,et al.Fabrication of laminated high entropy alloys using differences in laser melting deposition characteristics of FeCoCrNi and FeCoCrNiAl[J].Journal of Manufacturing Processes,2021,72:294-308.

    • [12] ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(7):573-581.

    • [13] 田雪梅,姚军,乔红斌,等.热熔覆合金涂层研究进展[J].机械工程师,2017,12(9):15-6,20.TIAN Xuemei,YAO Jun,QIAO Hongbin,et al.Research progress of hot melting coatings[J].Mechanical Engineer,2017,12(9):15-16,20.(in Chinese)

    • [14] LIU Y,DING Y,YANG L,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.

    • [15] CUI C,WU M,MIAO X,et al.The effect of laser energy density on the geometric characteristics,microstructure and corrosion resistance of Co-based coatings by laser cladding[J].Journal of Materials Research and Technology,2021,15:2405-2418.

    • [16] CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.

    • [17] PANIGRAHI A,ACHARYA T S,SENGUPTA P,et al.Microstructure and mechanical properties of novel tungsten heavy alloys prepared using FeNiCoCrCu HEA as binder[J].Materials Science and Engineering:A,2022,832(13):343-352.

    • [18] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [19] WEI D,LI X,SCHöNECKER S,et al.Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J].Acta Materialia,2019,181:318-330.

    • [20] LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.

    • [21] LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134(5):411-453.

    • [22] JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402:126328.

    • [23] WANG Y P,LI B S,FU H Z.Solid solution or intermetallics in a high-entropy alloy[J].Advanced Engineering Materials,2009,11(8):641-644.

    • [24] LU Y,DONG Y,GUO S,et al.A promising new class of high-temperature alloys:eutectic high-entropy alloys[J].Sci Rep,2014,4:6200.

    • [25] ZHANG K,FU Z.Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys[J].Intermetallics,2012,22:24-32.

    • [26] WANG F J,ZHANG Y,CHEN G L.Atomic packing efficiency and phase transition in a high entropy alloy[J].Journal of Alloys and Compounds,2009,478(1-2):321-324.

    • [27] ZHOU R,LIU Y,LIU B,et al.Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J].Intermetallics,2019,106:20-25.

    • [28] HE B,ZHANG N,LIN D,et al.The phase evolution and property of FeCoCrNiAlTix high-entropy alloying coatings on Q253 via laser cladding[J].Coatings,2017,7(10):157.

    • [29] JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402(7):312-321.

    • [30] YAN X,CHANG C,DENG Z,et al.Microstructure,interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel[J].Tribology International,2021,157(9):2331-2339.

    • [31] ZOU Y,QIU Z,ZHENG Z,et al.Ex-situ additively manufactured FeCrMoCB/Cu bulk metallic glass composite with well wear resistance[J].Tribology International,2021,162(9):357-368.

    • [32] LIU Y,MA S,GAO M C,et al.Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions[J].Metallurgical and Materials Transactions A,2016,47(7):3312-21.

    • [33] BHATT J,KUMAR S,DONG C,et al.Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass[J].Materials Science and Engineering:A,2007,458(1-2):290-294.

    • [34] TARN C Y,SHEK C H.Abrasive wear of Cu60Zr30Ti10bulk metallic glass[J].Materials Science and Engineering:A,2004,384(1-2):138-142.

    • [35] LIM S C,ASHBY M F.Overview No.55 wear-mechanism maps[J].Acta Metallurgica,1987,35(1):1-24.

  • 参考文献

    • [1] KUMAR C S,ZEMAN P,POLCAR T.A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel[J].Ceramics International,2020,46(16):25073-25088.

    • [2] HAM G S,KREETHI R,KIM H J,et al.Effects of different HVOF thermal sprayed cermet coatings on tensile and fatigue properties of AISI 1045 steel[J].Journal of Materials Research and Technology,2021,15:6647-6658.

    • [3] 刘径舟,刘洪喜,邸英南,等.碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层摩擦磨损和耐蚀性能的影响[J].中国表面工程,2020,33(6):118-127.LIU Jingzou,LIU Hongxi,DI Yingnan,et al.Effect of carbon content on friction,wear and corrosion resistance of laser melting CoCrFeMnNiCx high entropy alloy coatings[J].China Surafce Engineering,2020,33(6):118-127.(in Chinese)

    • [4] 李长久.热喷涂技术应用及研究进展与挑战[J].热喷涂技术,2018,10(4):1-22.LI Changjiu.Application,research progress and challenges of thermal spraying technology[J].Thermal Spraying Technology,2018,10(4):1-22.(in Chinese)

    • [5] RANJAN R,KUMAR DAS A.Protection from corrosion and wear by different weld cladding techniques:A review[J].Materials Today:Proceedings,2022,57(4):1687-1693.

    • [6] INSPEKTOR A,SALVADOR P A.Architecture of PVD coatings for metalcutting applications:A review[J].Surface and Coatings Technology,2014,257:138-153.

    • [7] SCARAZZATO T,PANOSSIAN Z,TENóRIO J A S,et al.A review of cleaner production in electroplating industries using electrodialysis[J].Journal of Cleaner Production,2017,168:1590-1602.

    • [8] BAX B,RAJPUT R,KELLET R,et al.Systematic evaluation of process parameter maps for laser cladding and directed energy deposition[J].Additive Manufacturing,2018,21:487-494.

    • [9] 常成,闫星辰,JULIEN G,等.激光选区熔化成形 nano-WC/CX 钢微观组织及机械性能初探[J].材料研究与应用,2021,15(4):9.CHANG Cheng,YAN Xingchen,JULIEN G,et al.Study on microstructure and mechanical properties of nano-WC/CX steel formed by selective laser melting[J].Materials Research and Application,2021,15(4):9.(in Chinese)

    • [10] 褚清坤,闫星辰,岳术俊,等.激光选区熔化成形 Ti-12Mo-6Zr-2Fe(TMZF)合金微观组织及力学性能的研究[J].材料研究与应用,2021,15(4):8.CHU Qingkun,YAN Xingchen,YUE Shujun,et al.Microstructure and mechanical properties of Ti-12Mo-6Zr-2Fe(TMZF)alloy fabricated by selective laser melting[J].Materials Research and Application,2021,15(4):8.(in Chinese)

    • [11] YC A,XL B,HX C,et al.Fabrication of laminated high entropy alloys using differences in laser melting deposition characteristics of FeCoCrNi and FeCoCrNiAl[J].Journal of Manufacturing Processes,2021,72:294-308.

    • [12] ZHU L,XUE P,LAN Q,et al.Recent research and development status of laser cladding:A review[J].Optics & Laser Technology,2021,138(7):573-581.

    • [13] 田雪梅,姚军,乔红斌,等.热熔覆合金涂层研究进展[J].机械工程师,2017,12(9):15-6,20.TIAN Xuemei,YAO Jun,QIAO Hongbin,et al.Research progress of hot melting coatings[J].Mechanical Engineer,2017,12(9):15-16,20.(in Chinese)

    • [14] LIU Y,DING Y,YANG L,et al.Research and progress of laser cladding on engineering alloys:A review[J].Journal of Manufacturing Processes,2021,66:341-363.

    • [15] CUI C,WU M,MIAO X,et al.The effect of laser energy density on the geometric characteristics,microstructure and corrosion resistance of Co-based coatings by laser cladding[J].Journal of Materials Research and Technology,2021,15:2405-2418.

    • [16] CANTOR B,CHANG I T H,KNIGHT P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering:A,2004,375-377:213-218.

    • [17] PANIGRAHI A,ACHARYA T S,SENGUPTA P,et al.Microstructure and mechanical properties of novel tungsten heavy alloys prepared using FeNiCoCrCu HEA as binder[J].Materials Science and Engineering:A,2022,832(13):343-352.

    • [18] MIRACLE D B,SENKOV O N.A critical review of high entropy alloys and related concepts[J].Acta Materialia,2017,122:448-511.

    • [19] WEI D,LI X,SCHöNECKER S,et al.Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys[J].Acta Materialia,2019,181:318-330.

    • [20] LIU H,LIU J,CHEN P,et al.Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding[J].Optics & Laser Technology,2019,118:140-150.

    • [21] LI Y,SHI Y.Microhardness,wear resistance,and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding[J].Optics & Laser Technology,2021,134(5):411-453.

    • [22] JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402:126328.

    • [23] WANG Y P,LI B S,FU H Z.Solid solution or intermetallics in a high-entropy alloy[J].Advanced Engineering Materials,2009,11(8):641-644.

    • [24] LU Y,DONG Y,GUO S,et al.A promising new class of high-temperature alloys:eutectic high-entropy alloys[J].Sci Rep,2014,4:6200.

    • [25] ZHANG K,FU Z.Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys[J].Intermetallics,2012,22:24-32.

    • [26] WANG F J,ZHANG Y,CHEN G L.Atomic packing efficiency and phase transition in a high entropy alloy[J].Journal of Alloys and Compounds,2009,478(1-2):321-324.

    • [27] ZHOU R,LIU Y,LIU B,et al.Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy[J].Intermetallics,2019,106:20-25.

    • [28] HE B,ZHANG N,LIN D,et al.The phase evolution and property of FeCoCrNiAlTix high-entropy alloying coatings on Q253 via laser cladding[J].Coatings,2017,7(10):157.

    • [29] JIN B,ZHANG N,YU H,et al.AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance[J].Surface and Coatings Technology,2020,402(7):312-321.

    • [30] YAN X,CHANG C,DENG Z,et al.Microstructure,interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel[J].Tribology International,2021,157(9):2331-2339.

    • [31] ZOU Y,QIU Z,ZHENG Z,et al.Ex-situ additively manufactured FeCrMoCB/Cu bulk metallic glass composite with well wear resistance[J].Tribology International,2021,162(9):357-368.

    • [32] LIU Y,MA S,GAO M C,et al.Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions[J].Metallurgical and Materials Transactions A,2016,47(7):3312-21.

    • [33] BHATT J,KUMAR S,DONG C,et al.Tribological behaviour of Cu60Zr30Ti10 bulk metallic glass[J].Materials Science and Engineering:A,2007,458(1-2):290-294.

    • [34] TARN C Y,SHEK C H.Abrasive wear of Cu60Zr30Ti10bulk metallic glass[J].Materials Science and Engineering:A,2004,384(1-2):138-142.

    • [35] LIM S C,ASHBY M F.Overview No.55 wear-mechanism maps[J].Acta Metallurgica,1987,35(1):1-24.

  • 手机扫一扫看