en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李雪伍,男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为涂层表界面行为与调控、表面工程与摩擦学、金属腐蚀与防护。E-mail:lixuewu55@126.com

邢志国,男,1979年出生,博士,助理研究员,硕士研究生导师。主要研究方向为表面摩擦学。E-mail:xingzg2011@163.com

王海斗,男,1969年出生,博士,研究员。主要研究方向为表面工程、再制造与摩擦学。

通讯作者:

郭伟玲,女,1980年出生,博士,副研究员。主要研究方向为再制造表面工程。E-mail:guoweiling_426@163.com

中图分类号:TB381

DOI:10.11933/j.issn.1007−9289.20220313001

参考文献 1
SEZER N,KOC M.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J].Nano Energy,2020,80(105567):1-25.
参考文献 2
ZHOU X F,XUE G L,LUO H,et al.Phase structure and properties of sodium bismuth titanate lead-freepiezoelectric ceramics[J].Progress in Materials Science,2021,122:100836.
参考文献 3
NYAMAYOKA,LUMBUMBA,TATY-ETIENNE,et al.Design of a prototype generator based on piezoelectric power generation for vibration energy harvesting[J].Journal of Energy in Southern Africa,2017,28(4):32-40.
参考文献 4
唐明响,陈良,祁核,等.缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J].材料导报,2022,36(2):66-71.TANG Mingxiang,CHEN Liang,QI He,et al.Progress of defect dipole modulation of lead-based chalcogenide piezoelectric ceramic properties[J].Materials Direct,2022,36(2):66-71.(in Chinese)
参考文献 5
石伟丽,邢志国,王海斗,等.等离子喷涂PZT涂层的制备与性能分析[J].中国表面工程,2014,27(4):19-24.SHI Weili,XING Zhiguo,WANG Haidou,et al.Preparation and performance analysis of plasma sprayed PZT coatings[J].China Surface Engineering,2014,27(4):19-24.(in Chinese)
参考文献 6
WANG C,FANG B,WU D,et al.Pyroelectric performance,dielectric response and conductive mechanism of BCHT lead-free piezoelectric ceramics via powder injection molding[J].Journal of Materials Research and Technology,2020,9(5):11303-11310.
参考文献 7
宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):34-43.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.Research progress on doping modification of lead-free piezoelectric ceramics based on potassium niobate[J].Materials Guide,2022,36(5):34-43.(in Chinese)
参考文献 8
ZAKARIA C,FATIMA E B,YOUSSEF T,et al.Design,structural evolution,optical,electrical and dielectric properties of perovskite ceramics Ba1-xBixTi1-xFexO3(0≤x ≤0.8)[J].Materials Chemistry and Physics,2021,273:125096.
参考文献 9
WANG H,LI Q,JIA Y X,et al.(Na0.8-K0.2Li)0.5Bi0.5Ti0.985Ta0.015O3 lead-free ceramics with large strain and high recoverable energy density[J].Journal of Alloys and Compounds,2021,879:160378.
参考文献 10
李海涛,张波萍,文九巴,等.Li 补偿量对铌酸盐基无铅压电陶瓷结构和性能的影响[J].无机材料学报,2012,27(4):385-389.LI Haitai,ZHANG Boping,WEN Jiuba,et al.The influence of Li compensation on the structure and performance of niobate-based lead-free piezoelectric ceramics[J].Journal of Inorganic Materials,2012,27(4):385-389.(in Chinese)
参考文献 11
ZHANG J,WANG X.Piezoelectric properties,phase transitions and domain structure of(Bi,Na)HfO3 modified(K,Na)(Nb,Sb)O3 ceramics[J].Materialia,2021,17:101120.
参考文献 12
POLITOVA E D,KALEVA G M,MOSUNOV A V,et al.Dielectric and local piezoelectric properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2020,569(1):201-208.
参考文献 13
XU K,LI J,LV X,et al.Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J].Advanced Materials,2016,28(38):8519–8523.
参考文献 14
TAO H,YIN J,ZHAO C,et al.Relaxor behavior of potassium sodium niobate ceramics by domain evolution[j].Journal of the European Ceramic Society,2020,41(1):335-343.
参考文献 15
YANG Z,DU J,MARTIN L,et al.Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics[J].Journal of the European Ceramic Society,2020,41(3):1925-1933.
参考文献 16
JHINKWAN S S,PANWAR N S.Effect of Li doping on dielectric properties of Na1-xKxNbO3,x = 0.500,morphotropic phase region[J].Ferroelectrics,2021,570(1):122-131.
参考文献 17
LI J W,LIU Y X,THONG H C,et al.Effect of ZnO doping on(K,Na)NbO3-based lead-free piezoceramics:Enhanced ferroelectric and piezoelectric performance[J].Journal of Alloys and Compounds,2020,847(8):155936.
参考文献 18
ZHANG L H,WANG S L,LIU F H.Effect of Eu doping on the structural,electrical,and dielectric properties of K0.5Na0.5NbO3 ceramics for high-temperature capacitor applications[J].Journal of Electronic Materials,2015,44(10):3408-3414.
参考文献 19
WENMING,SHI,JUAN,et al.Dielectric relaxation,impedance spectra,temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics[J].Journal of Materials Science:Materials in Electronics,2020,31(2):959-966.
参考文献 20
POLITOVA E D,KALEVA G M,et al.Influence of A-site doping on properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2021,575(1):158-166.
参考文献 21
WANG Y,ZHU W,SUN Q,et al.Effects of A/B-site dopants on microstructure and domain configuration of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of Alloys and Compounds,2019,787:407-413.
参考文献 22
TAN L,SUN Q,WANG Y.Outstanding piezoelectric properties of Al-substituted potassium-sodium niobatebased lead-free piezoceramics[J].Journal of Alloys and Compounds,2020,836:155419.
参考文献 23
CHU D L,WANG C,ZHU M K,et al.Effect of Mn doping on sintering characteristics,microstructure and electrical properties of lead-free potassium sodium niobate ceramics[J].Optoelectronics and Advanced Materialsrapid Communications,2020,14(9-10):466-470.
参考文献 24
李海涛,邢朝君,闫焉服,等.Zn 掺杂对铌酸钾钠压电陶瓷结构和性能的影响[J].河南科技大学学报(自然科学版),2013,34(6):1-4.LI Haitao,XING Zhaojun,YAN Yanfu,et al.Effect of Zn doping on the structure and properties of potassium sodium niobate piezoelectric ceramics[J].Journal of Henan University of Science and Technology(Natural Science),2013,34(6):1-4.(in Chinese)
参考文献 25
DAI Y J,ZHANG X W,CHEN K P.Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics[J].Applied Physics Letters,2009,94(4):4141.
参考文献 26
田爱芬,徐志蓬,刘淑娟,等.铋掺杂对铌酸钾钠无铅压电陶瓷结构和性能的影响[J].硅酸盐学报,2014,42(5):667-671.TIAN Aifen,XU Zhipeng,LIU Shujuan,et al.The effect of bismuth doping on the structure and properties of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,2014,42(5):667-671.(in Chinese)
参考文献 27
R.MAHDI,AL-BAHNAM B,MOHAMMED A A,et al.High-performance(K,Na)NbO3-based binary lead-free piezoelectric ceramics modified with acceptor metal oxide-ScienceDirect[J].Ceramics International,2020,46(13):21762-21770.
参考文献 28
WANG X,WU J,XIAO D,et al.Giant Piezoelectricity in potassium-sodium niobate lead-Free ceramics[J].Journal of the American Chemical Society,2014,136(7):2905-2910.
参考文献 29
WILES A A,BRUCKBAUER J,MOHAMMED N,et al.A poly(urethane)-encapsulated benzo[2,3-d:6,7-d′] diimidazole organic down-converter for green hybrid LEDs[J].Materials Chemistry Frontiers,2020,4(3):1006-1012.
参考文献 30
CUI R,ZHU D,TANG K,et al.Influence of Dy3+ doping on the luminescent and piezoelectric properties of bifunctional(K0.48Na0.52)(Nb0.95Sb0.05)O3 based lead-free piezoceramics[J].Optik-International Journal for Light and Electron Optics,2020,207:163785.
参考文献 31
WEI Y,ZHENG W,JIA Y,et al.Dual-enhancement of ferro-piezoelectric and photoluminescent performance in Pr3+ doped(K0.5Na0.5)NbO3 lead-free ceramics[J].Applied Physics Letters,2014,105(4):2651-465.
参考文献 32
刘绍军,王鹏飞,万冰冰,等.Nd 掺杂 K0.53Na0.47NbO3 基无铅压电陶瓷的结构和性能[J].中国有色金属学报,2012,22(7):2010-2015.LIU Shaojun,WANG Pengfei,WAN Bingbing,et al.Structure and properties of Nd-doped K0.53Na0.47NbO3 based lead-free piezoelectric ceramics[J].The Chinese Journal of Nonferrous Metals,2012,22(7):2010-2015.(in Chinese)
参考文献 33
XING J,JIANG L,ZHAO C,et al.Potassium sodium niobate based lead-free ceramic for high-frequency ultrasound transducer applications[J].Journal of Materiomics,2020,6(3):513-522.
参考文献 34
田爱芬,王茜茜,惠璇,等.无铅陶瓷结构及性能的影响[J].西安科技大学学报,2019(4):158-162.TIAN Aifen,WANG Qianqian,HUI Xuan,et al.Influence of lead-free ceramic structure and properties[J].Journal of Xi’ an University of Science and Technology,2019(4):158-162.(in Chinese)
参考文献 35
PENG X,ZHANG B,ZHU L,et al.Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics[J].Journal of Advanced Ceramics,2018,7(1):79-87.
参考文献 36
周飞.Li3SbCu2O6掺杂KNN无铅压电陶瓷的结构与电性能研究[J].中国陶瓷,2016(52):73-79.ZHOU Fei.Study on the structure and electrical properties of Li3SbCu2O6 doped KNN lead-free piezoelectric ceramics[J].China Ceramics,2016(52):73-79.(in Chinese)
参考文献 37
LI C,LI Y,YAO T,et al.Wireless electrochemotherapy by selenium-doped piezoelectric biomaterials to enhance cancer cell apoptosis[J].ACS Applied Materials & Interfaces,2020,12(31):34505-34513.
参考文献 38
唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Hardening behavior of high temperature sintering of plasma sprayed La2Zr2O7 thermal barrier coatings[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)
参考文献 39
邢志国.超音速等离子喷涂制备 BaTiO3 压电涂层取得重要进展[J].中国表面工程,2014,27(1):1.XING Zhiguo.Important progress in the preparation of BaTiO3 piezoelectric coatings by supersonic plasma spraying[J].China Surface Engineering,2014,27(1):1.(in Chinese)
参考文献 40
LI H,YAN Y,WANG G,et al.Hydrothermal solvothermal synthesis potassium sodium niobate lead-free piezoelectric ceramics assisted with microwave[J].Journal of Materials Science Materials in Electronics,2018,29(1):746-752.
参考文献 41
MARAKHOVSKY M A,PANICH A A,TALANOV M V,et al.Comparative study of the hard and soft PZT-based ceramics sintered by various methods[J].Ferroelectrics,2021,575(1):43-49.
参考文献 42
KULTAYEVA S,KIM Y W,SONG I H.Influence of sintering atmosphere and BN additives on microstructure and properties of porous SiC ceramics[J].Journal of the European Ceramic Society,2021,41(14):6925-6933.
参考文献 43
RUTKOWSKI P,HUEBNER J,GRABO A,et al.Dense KNN polycrystals doped by Er2O3 obtained by hot pressing with hexagonal boron nitride protective layer[J].Materials(Basel,Switzerland),2020,13(24):5741.
参考文献 44
SU,Y L,CHEN,XM,YU,Z D,et al.Comparative study on microstructure and electrical properties of(K0.5Na0.5)NbO3 lead-free ceramics prepared via two different sintering methods[J].Journal of Materials Science,2017,5(52):2934-2943.
参考文献 45
郭福强,张保花,王伟,等.不同烧结工艺对 K0.5Na0.5NbO3 陶瓷微结构的影响[J].无机材料学报,2012,27(3):277-280.GUO Fuqiang,ZHANG Baohua,WANG Wei,et al.The influence of different sintering processes on the microstructure of K0.5Na0.5NbO3 ceramics[J].Journal of Inorganic Materials,2012,27(3):277-280.(in Chinese)
参考文献 46
SUCHANICZ J,FINDER A,SMELTERE I,et al.Dielectric properties of Na0.5K0.5(Nb1-xSbx)O3+MnO2 ceramics(x = 0.04,0.05 and 0.06)[J].Integrated Ferroelectrics,2011,123(1):102-107.
参考文献 47
LU G,ZHOU W,LUO F,et al.Dielectric properties in the microwave range of K0.5Na0.5NbO3 ceramics[J].Journal of Electronic Materials,2016,46(1):123-129.
参考文献 48
李海涛,李冉,王广欣,等.钙-硼共掺铌酸钾钠基无铅压电陶瓷的微波制备及性能[J].硅酸盐学报,48(9):1396-1404.LI Haitao,LI Ran,WANG Guangxin,et al.Microwave preparation and properties of calcium-boron co-doped potassium sodium niobate-based lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,48(9):1396-1404.(in Chinese)
参考文献 49
HUIDROM S D,MAMATA M.Microwave sintering effect on the structural and electrical properties of sodium potassium niobate nanocrystallites[J].Integrated Ferroelectrics,2019,202(1):204-209.
参考文献 50
BAFANDEH M R,GHARAHKHANI R,ABBASI M H,et al.Improvement of piezoelectric and ferroelectric properties in(K,Na)NbO3-based ceramics via microwave sintering[J].Journal of Electroceramics,2014,33(1-2):128-133.
参考文献 51
MACHADO I F,BOIDI G,FUKUMASU N K,et al.Effect of sintering densification on micro-scale mechanical and tribological behaviour of niobium carbide[J].Wear,2021:482-483.
参考文献 52
RIGOBERTO LÓPEZ-JUÁREZ,GONZÁLEZ-GARCÍA F,ZÁRATE-MEDINA J,et al.Piezoelectric properties of Li–Ta co-doped potassium-sodium niobate ceramics prepared by spark plasma and conventional sintering[J].Journal of Alloys & Compounds,2011,509(9):3837-3842.
参考文献 53
ZLOUZEOVA K,HRIBALOVA S,NECINA V,et al.Partially sintered leadfree ceramics form piezoelectric powdersprepared prepared via conventional firing and spark plasma sintering(sps)characterization of microstructure and dielectric properties[J].Ceramicssilikaty,65(1):30-37.
参考文献 54
MORSHED T,ZUBAIR A,SILIEN C,et al.Piezo and pyroelectricity in spark plasma sintered potassium sodium niobate(KNN)ceramics[J].IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(5):1428-1432.
参考文献 55
WANG R,XIE R,SEKIYA T,et al.Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method[J].Materials Research Bulletin,2004,39(11):1709-1715.
参考文献 56
赵高磊,张海龙,张波萍.气氛烧结锂掺杂铌酸钾钠无铅压电陶瓷的电学性能[J].材料导报,2010(10):4-6.ZHAO Gaolei,ZHANG Hailong,ZHANG Boping.Electrical properties of lead-free piezoelectric ceramics doped with potassium sodium niobate[J].Materials Reports,2010(10):4-69.(in Chinese)
参考文献 57
陆雷,肖定全,田建华,等.无铅压电陶瓷薄膜的制备及应用研究[J].功能材料,2009(5):4.LU Lei,XIAO Dingquan,TIAN Jianhua,et al.Preparation and application of lead-free piezoelectric ceramic films[J].Functional Materials,2009(5):4.(in Chinese)
参考文献 58
PRELLIER W,MERCEY B.Influence of the deposition temperature on the metal-to-insulator transition in Pr0.5Sr0.5MnO3 thin films[J].Journal of Physics D Applied Physics,2004,38(1):172.
参考文献 59
范学敏,付鹏,杜鹃,等.(100)择优取向 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 无铅压电薄膜的结构和性能影响[J].硅酸盐学报,2020,371(2):13-18.FAN Xuemin,FU Peng,DU Juan,et al.The influence of(100)preferred orientation on the structure and properties of 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 leadfree piezoelectric film[J].Journal of the Chinese Ceramic Society,2020,371(2):13-18.(in Chinese)
参考文献 60
SHWETA S,ASHOK K,VINAY G,et al.Influence of top metal electrode on electrical properties of pulsed laser deposited lead-free ferroelectric K0.35Na0.65NbO3 thin films-ScienceDirect[J].Materials Science in Semiconductor Processing,2019,103(15):104618-104618.
参考文献 61
SHWETA S,ASHOK K,VINAY G,et al.Dielectric and ferroelectric studies of KNN thin film grown by pulsed laser deposition technique[J].Vacuum,2019,160:233-237.
参考文献 62
ZHANG W,ZHU H,ZHANG X,et al.Structural and electrical study of highly(100)-oriented KNN films fabricated by a sol-gel non-alkoxide process[J].Ceramics International,2019,45(17):22156-22162.
参考文献 63
YAO L,ZHU K,WANG J,et al.Annealing temperature effects on the electrical properties of(K,Na)NbO3 thin film fabricated by a sol-gel process with a citrate precursor solution[J].Ferroelectrics,2016,493(1):47-53.
参考文献 64
AKMAL M,WARIKH A,AZLAN U,et al.Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique[J].Ceramics International,2018,44(1):317-325.
参考文献 65
HUANG J W,LIU J S,LI Z Q,et al.Effects of annealing temperature on structure and electrical properties of(Na,K)NbO3 thin films grown by RF magnetron sputtering deposition[J].Journal of Materials Science-materials in Electronics,2016,27(1):899-905.
参考文献 66
MADANI A,MRAD R B,SINCLAIR A N.Characterization of RF sputtered thin film potassium sodium niobate(KNN)with silicon and nickel electrodes[J].Microsystem Technologies,2017,23(6):1-6.
参考文献 67
ISAKU,KANNO,TAKUYA,et al.Piezoelectric properties of(K,Na)NbO3 thin films deposited on(001)SrRuO3/Pt/MgO substrates[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2007,54(12):2562-2566.
参考文献 68
陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubin,et al.Current status and development prospect of equipment application of thermal spraying technology[J].China Surface Engineering,2021,34(4):12-18.
参考文献 69
CHEN S,TAN C,TAN S Y,et al.Potassium sodium niobate(KNN)-based lead-free piezoelectric ceramic coatings on steel structure by thermal spray method[J].Journal of the American Ceramic Society,2018,12(101):5524-5533.
参考文献 70
CHEN,S T,TAN C K I,YAO K.Potassium-sodium niobate-based lead-free piezoelectric ceramic coatings by thermal spray process[J].Journal of the American Ceramic Society,2016,10(99):3293-3299.
参考文献 71
刘培新,朱孔军,胡秀兰,等.聚合物前驱体法制备铌酸钾钠薄膜[J].电子元件与材料,2009,28(9):61-65.LIU Peixin,ZHU Kongjun,HU Xiulan,et al.Preparation of potassium sodium niobate film by polymer precursor method[J].Electronic Components and Materials,2009,28(9):61-65.(in Chinese)
参考文献 72
阎鑫,任巍.金属有机盐热分解法制备铌酸钾钠无铅压电薄膜[J].电子元件与材料,2010(10):25-27.YAN Xin,REN Wei.Preparation of potassium sodium niobate lead-free piezoelectric films by thermal decomposition of metal organic salts[J].Electronic Components and Materials,2010(10):25-27.(in Chinese)
目录contents

    摘要

    铌酸钾钠无铅压电陶瓷因具有环境友好型、良好的电学性能、较好的居里温度等成为当前压电铁电材料的研究热点之一,广泛应用于科技、工业等方面。综述近年来铌酸钾钠压电陶瓷材料的研究进展,主要从金属离子及其氧化物掺杂、稀土离子,以及其他化合物掺杂等方面对铌酸钾钠的掺杂制备进行总结,从热压烧结、微波烧结及放电等离子烧结等方面对其烧结技术进行论述,从激光脉冲沉积技术、射频磁控溅射法等方面对其成形工艺进行综述。结果表明,对铌酸钾钠压电陶瓷进行掺杂制备及采取先进的烧结技术可以明显提升其电学性能,铌酸钾钠压电陶瓷薄膜和涂层的制备拓展了铌酸钾钠的应用范围,使其可以应用于国防、航空航天及通信等方面。最后对铌酸钾钠的发展趋势进行总结。主要从铌酸钾钠陶瓷的掺杂制备、烧结工艺及成形工艺等方面进行综述,对铌酸钾钠压电陶瓷在各领域的研究有一定理论与参考意义。

    Abstract

    Piezoelectric ceramics are important ceramic materials for the conversion of mechanical and electrical energy and have an important function in our national economy and defense industry. Lead-containing ferroelectric piezoelectric materials are widely applied owing to their abundant storage capacity, good performance, and low cost. However, the current piezoelectric materials are lead zirconate titanate ceramics, which are harmful to the human body and environment. With the gradual advance of the green sustainable development concept, the improvement of environment-friendly lead-free piezoelectric ceramics has become an important research objective in the discipline of ferroelectric materials. Based on the requirements of human protection of ecological environment and the development of environmentally friendly materials, lead-free piezoelectric ceramics with potassium niobate have been widely used in science and technology, industry, military, aerospace, and aviation because of their properties, such as environmental friendliness, good electrical properties, and proper Curie temperature. They are considered to be one of the most likely materials to replace lead-containing piezoelectric ceramics, and have become one of the current focuses of piezoelectric ferroelectric materials research. The research progress of potassium sodium niobate (KNN) piezoelectric ceramic materials in recent years is reviewed in this paper, which summarizes the doping preparation of the KNN by metal and metal-oxide, rare earth ions, and other compound doping and discusses the hot pressing, microwave, and discharge plasma sintering technologies and the molding processes, such as laser pulse deposition technology and radio frequency (RF) magnetron sputtering. The results show that the sintering technology of KNN is not suitable for the sintering of sodium niobate. The doping of the KNN piezoelectric ceramics and advanced sintering techniques can significantly improve their electrical properties. The appropriate concentration of the metal ions in the doping promotes the grain growth of the KNN-based piezoelectric ceramics and constructs a multiphase coexistence structure at room temperature, which in turn improves the electrical properties of the KNN-based piezoelectric ceramics. Rare earth element doping generally occurs via an unequal substitution, reducing the internal stress and relieving the domain wall motion, thereby enhancing the electrical properties. Additionally, the use of other compounds in the doping permits the KNN ceramics to be applied in high temperature and medical environments, expanding their application field. Sintering can inhibit the volatilization of the alkali metals during the preparation of the ceramics, and hot-pressure sintering increases the driving force on the powder to obtain ceramics with better densities and well-developed grains, which effectively enhances the electrical properties of the ceramics. Microwave sintering shortens the sintering time and reduces the volatilization of the elements, which in turn improves the electrical properties of the ceramics. Spark plasma sintering, owing to its short sintering time, produces ceramic samples with a smaller grain size and increased density, which in turn improves the electrical properties of the ceramics. The surface morphology of the films prepared by the pulsed deposition technique is uniform and dense, and their electrical properties are good. Films with a dense and uniform microstructure are obtained by the sol–gel method after annealing at an appropriate temperature, and the electrical properties of the films are excellent. The preparation of thin films by the RF magnetron sputtering method requires an appropriate annealing temperature and atmosphere, which can promote grain growth, aid in the formation of dense films, and improve the electrical properties. The preparation of KNN piezoelectric ceramic films and coatings expands the range of applications of KNN in fields such as defense, aerospace, and communication. Finally, the contents of the paper and the development trend of KNN are summarized. This paper reviews the doping preparation, sintering technology, and molding processes of KNN ceramics, providing a theoretical basis and reference for the research of KNN piezoelectric ceramics in various fields.

  • 0 前言

  • 压电陶瓷是一种机械能与电能相互转化的功能陶瓷,由于其低廉的价格、良好的电学性能等优点,在科学研究领域扮演了重要的角色,主要应用于压电滤波器、压电变压器和压电扬声器等方面[1-4]。目前国内外对于锆钛酸铅(PZT)为主的压电材料研究较多,但是由于含铅量较高,在使用过程中产生的铅离子会随着雨水、大气等结合形成酸雨,最终会对人体健康、生态系统和建筑设施等造成严重危害[5-6]

  • 随着人类社会可持续发展战略的提出,近年来无铅压电陶瓷正在受到研究者的广泛关注[7]。无铅压电陶瓷体系主要分为钙钛矿型结构(perovskite structure)、钨青铜型结构 ( tungsten-bronze structure)、铋层状结构(bismuth layer structure)及铌酸锂型结构(lithium niobate type structure)四大类型[8-9]。其中,铌酸盐系压电陶瓷是具有氧八面体结构的铁电陶瓷,主要指钨青铜系及碱金属铌酸盐系等,包括偏铌酸铅、铌酸钾钠、铌酸钡钠等陶瓷材料[10]。而铌酸钾钠压电材料因具有较好的电学性能、机械品质因数及居里温度,公认为最有可能取代铅基陶瓷材料的体系之一[11-12]。但是铌酸钾钠无铅压电陶瓷自身的压电性能及稳定性较差,难以满足小型元器件、精密仪器控制等方面的发展[13]。目前,如何提升铌酸钾钠的电学性能成为广泛研究的焦点。

  • 本文综述了国内外近几年铌酸钾钠无铅压电陶瓷的掺杂改性、烧结技术及成形工艺的研究进展,总结展望了铌酸钾钠压电陶瓷的发展及发展方向。

  • 1 铌酸钾钠压电陶瓷的掺杂制备

  • 铌酸钾钠是一种重要的无铅压电陶瓷,但是在制备过程中由于 K 和 Na 容易挥发,得到的铌酸钾钠无铅压电陶瓷材料致密性较差,进而导致陶瓷材料的电学性能较差[14]。为了提升 KNN 陶瓷的电学性能,研究者对铌酸钾钠压电陶瓷采取掺杂改性的方式提升其性能[15]。目前针对掺杂的研究主要集中在常规金属离子掺杂[16-17]、稀土元素掺杂[18]和其他化合物掺杂[19]等方面。

  • 1.1 金属及其氧化物掺杂

  • 铌酸钾钠基压电陶瓷是一种典型的 ABO3 型钙钛矿结构,选取离子半径、电负性相近的离子或者离子团分别取代铌酸钾钠基压电陶瓷中的 A 位、B 位或者同时取代铌酸钾钠无铅压电陶瓷中的 A 位、 B 位,在一定的的组分范围内可以形成稳定的固溶体,进而提升铌酸钾钠压电材料的电学性能及机械品质因数[20-21]。目前掺杂的常规金属单质及其氧化物主要有 Al、Mn、Zn、Bi、Fe2O3 等。

  • TAN 等[22]采取传统固相反应方法制备了 KNNS-BAxNZ 陶瓷,将 Al 离子与铌酸钾钠无铅压电陶瓷材料进行掺杂。图1 表示掺杂后所有 KNN 基无铅压电陶瓷具有纯钙钛矿结构。研究结果表明,当 x=0.10 时,R-T 相(三方相-四方相)共存,当 x=0.08、0.12、0.14 时观察到 O-T 相(正交相-四方相)共存。随着 x 的增加,陶瓷的晶粒尺寸也在随之增加。由图2 及表1 可知,在掺杂量 x=0.10 时,可以获得优异的压电性能(d33=570 pC / N)、介电性能(介电常数 εr=1 364,介电损耗 tanδ=2.8%),这是由于适当含量的 Al 离子可以促进陶瓷三方相向四方相的多晶相转变,掺杂量 x=0.10 时,三方相与四方相的比例为 47.3∶52.7,Al 掺杂铌酸钾钠压电陶瓷更接近于四方相,而 R 相的极化导致 T 相的准连续极化转换,T 相由 R 相通过(110)向内变形和氧八面体的 c 缩短而演化,极化转换变得更容易,压电性能也因此显著提高。所以,三方相与四方相共存,是 KNN 基压电陶瓷获得优异电学性能的重要相结构。

  • 图1 KNNS-BAxNZ 陶瓷的 XRD 谱图以及陶瓷在 44°~47°的扩展 XRD 图谱[22]

  • Fig.1 XRD patterns of KNNS-BAxNZ ceramics and expanded XRD patterns of the ceramics at 44°-47°[22]

  • 表1 KNS-BAxNZ 陶瓷的介电性能和 Tc参数[22]

  • Table1 Dielectric properties and Tc parameters of KNS-BAxNZ ceramics[22]

  • 图2 KNS-BAxNZ 陶瓷的压电性能[22]

  • Fig.2 Piezoelectric properties of KNNS-BAxNZ ceramics[22]

  • CHU 等 [23] 经过常规的固相法制备了(K0.5Na0.5)NbO3+xMnCO3(KNN+xMn)压电陶瓷,利用 Mn 离子掺杂铌酸钾钠无铅压电陶瓷,对其微观形貌、电学性能等进行研究,研究结果表明,当 Mn 含量小于 2 mol.%时,随着 Mn 含量的增加,KNN 陶瓷的晶格常数 ambmcm均增大,而 β 角减小。 Mn 含量为 2 mol.%时,β 角为 90.09°,陶瓷更接近四方相。Mn 离子一般以 Mn2+ 和 Mn3+的形式存在于钙钛矿结构中。Mn2+的离子半径为 0.072 nm, Mn3+的离子半径为 0.067 nm,均接近 Nb5+的离子半径(0.064 nm),易于替代 Nb5+。Nb5+被较大半径的 Mn2+和 Mn3+取代引起晶格膨胀,导致 KNN 陶瓷相结构转变为四方相。适量的 Mn 离子会增加陶瓷的晶粒尺寸,引起陶瓷的晶格畸变,有助于烧结。由表2 可知,KNN 基压电陶瓷的最佳掺杂量为 2 mol.%,陶瓷的介电性能(介电常数 εr =545 和介电损耗 tanδ=2.3%)和压电性能(压电常数 d33=207 pC / N),说明适当含量的 Mn 离子掺杂 KNN 基压电陶瓷可以明显提升其电学特性。

  • 表2 KNN+xMn 陶瓷的电学性能[23]

  • Table2 Electrical properties of KNN+xMn ceramics[23]

  • 李海涛等[24]采用传统固相法的制备工艺成功制备了 Zn 离子 B 位掺杂 KNN 基压电陶瓷,研究掺杂后陶瓷的相结构、微观形貌以及电学性能。由文献[25]可知,衍射角 45°附近(002)和(020)晶面特征峰,前一个峰的强度 I(002)高于后一个峰的强度 I(020),为正交相钙钛矿结构,反之则为四方相钙钛矿结构。研究结果表明,掺杂陶瓷衍射角 45° 前一个峰的强度 I(002)低于后一个峰的强度 I (020),掺杂后陶瓷为四方相钙钛矿结构。晶粒尺寸随着掺杂量的增加而增加,当 Zn 掺杂量(摩尔分数)x =0.008~0.010 时,掺杂制备的陶瓷电学性能最佳,此时陶瓷的电学性能(介电常数 εr =1000 和介电损耗 tanδ=3%)和压电性能(压电常数 d33=264 pC / N)。

  • 田爱芬等[26]用常压烧结法制备 Bi 掺杂铌酸钾钠无铅压电陶瓷((K0.5Na0.51-3xBixNbO3(KNBN)),研究不同铋掺杂量对 KNN 陶瓷结构、形貌、致密度及电学性能的影响。研究结果表明,最佳含量 x=1% 时,样品中存在准同型相界。由表3 可知,在 1 120℃ 烧结的 x=1.0%的陶瓷样品表现出了最佳的压电性能(压电系数 d33=121 pC / N)、优异的介电性能(介电常数 εr=575 和介电损耗 tanδ=5.82%),而且陶瓷样品的相转变温度为 131℃,说明 Bi 离子的存在降低了 KNBN 系列的相转变温度,促进了正交相朝着四方相转变,进而获得优异的电学性能。

  • 表3 最佳烧结温度下制备 KNBN 系列陶瓷片的性能[26]

  • Table3 Performance of KNBN series ceramic sheets prepared at the optimal sintering temperature[26]

  • MAHDI 等 [27] 采用常规固相法制备了 0.90(Na0.5K0.5)NbO30.10(Bi0.5Li0.5)TiO3+xFe2O3x=0-0.14 mol.%)环保新型无铅压电陶瓷,经过对其微观结构、相结构等进行研究,如图3 所示,随着 x 值的增加,强度比 I002 / I200 逐渐增加并在 x=0.08 处接近于 1,从而表明正交和四方相在室温附近共存, Tc 从 397℃移至 343℃,而 TO-T 接近室温。根据文献[28],在近似室温下,正交相和四方相之间存在准同型相界可能提高 KNN 基陶瓷的压电性能。研究结果表明,随着 Fe2O3 含量的增加,Fe3+的半径与 Nb5+、Ti4+离子的半径相似,所以 Fe3+通过 B 位掺杂取代了原压电陶瓷中的 Nb5+和 Ti4+离子,如图4 所示,在最佳掺杂量 x=0.08 mol.%获得优异的电学性能,其中压电性能(压电常数 d33=246 pC / N)表明 Fe 离子的掺杂可以将正交-四方相的多晶型相变 (PPT)区域边界移动至室温,促进烧结过程,进而促进均匀的晶粒生长和致密化,促进畴壁迁移率,所以电学性能得到了极大的提升。

  • 图3 未掺杂 KNN-BLT-xFe 在 10 kHz 时介电温谱和 25℃至 150℃的温度介电常数[27]

  • Fig.3 Dielectric temperature spectrum of undoped KNN-BLT-xFe at 10 kHz and temperature dielectric constants from 25 °C to 150℃[27]

  • 图4 压电系数(d33)和机电耦合系数(kp) 随 Fe2O3含量的变化[27]

  • Fig.4 Variations in the piezoelectric coefficient (d33) and electromechanical coupling coefficient (kp) with the Fe2O3 content[27]

  • 1.2 稀土离子掺杂

  • 稀土元素主要包括镧系在内的 15 种元素及与镧系元素密切相关的钇(Y)和钪(Sc)元素,稀土元素有着特殊的结构,可以使材料的电学、发光性能等得到提升[29]

  • CUI 等 [30] 采取传统的高温固态法制备了 KNNS-xDy((K0.48Na0.52)(Nb0.95Sb0.05)O3固溶体。Dy3+ 掺杂后晶粒尺寸大大减小,故稀土元素一般用作晶粒生长抑制剂。经过研究表明,最佳掺杂量为 0.4% 时 PL(光致发光光谱)的强度达到最大值,同时所制备的 0.4%Dy 掺杂 KNN 样品具有最佳的压电常数、最高的介电常数、最低的介电损耗及典型的弛豫铁电特性。

  • WEI 等[31]经过常规固相反应法制备了 Pr3+掺杂 KNN 基压电陶瓷,如图5 所示,在最佳掺杂为 0.3% 时,其 KNN 陶瓷的铁电剩余极化强度和压电系数 d33 分别提高了 1.2 倍和 1.25 倍,光致发光光谱(PL) 提升了 1.3 倍。结果表明,pr3+掺杂 KNN 基无铅压电陶瓷的光致发光性能与铁 / 压电极化之间存在相互增强作用,Pr3+不等价的取代陶瓷中的 K+ 以及 Na+,KNN 陶瓷固溶体出现了 A 位离子空位,与 Pr3+形成缺陷偶极子,缺陷偶极子在极化过程中会引起晶格畸变,畴壁中的应力将通过迁移到缺陷而释放,促进畴壁横向移动以及降低 Pr3+周围结构的不对称性,导致畴的重新定向和生长,从而提高压电性能以及 PL 强度。

  • 图5 KNN-xPr 陶瓷“剩余磁滞”回线、压电常数和机电耦合系数以及 KNN-0.3%Pr 样品 PL 和 PLE 光谱[31]

  • Fig.5 KNN-xPr ceramic "residual hysteresis" returns, piezoelectric constants and electromechanical coupling coefficients, and PL and PLE spectra of KNN-0.3% Pr samples[31]

  • 刘绍军等[32]采取固相反应合成法成功制备了 0.942(Na0.53K0.47)NbO3-0.058LiNbO3(KNN-LN)无铅压电陶瓷,利用稀土 Nd 掺杂 KNN 基无铅压电陶瓷。研究结果表明,与未掺杂陶瓷样品的透光率相比, KNN-LN 陶瓷样品的透光率显著提高,Nd 掺杂扰乱了 Nb-O6 键并使得其连接强度变弱,进而导致 KNN-LN 陶瓷样品的相结构发生变化。Nd 掺杂显著改善了 KNN-LN 陶瓷的烧结密度并减小其晶粒尺寸。由表4 可知,2%Nd 掺杂样品的压电常数 d33=128 pC / N,其室温介电常数 εr约为 694。而未掺杂 KNN 样品的压电常数和介电常数分别为 d33=87 pC / N 和 εr=54。

  • 表4 Nd 掺杂 KNN-LN 陶瓷的介电常数、介电损耗、居里温度点和压电常数[32]

  • Table4 Dielectric constant, dielectric loss, Curie temperature point and piezoelectric constant of Nd-doped KNN-LN ceramic[32]

  • 综上,将铌酸钾钠无铅压电陶瓷进行稀土元素掺杂,会导致晶粒尺寸降低,稀土元素的掺杂会发生不等价取代,A 位离子空位将出现以保持电荷中性。这可能会减少内应力,缓解畴壁运动,从而提高铌酸钾钠压电陶瓷的电学性能,极化后晶体对称性降低可以明显提升其 PL 强度,稀土元素掺杂的 KNN 陶瓷由于优异的电学性能及光致发光性能拓宽了其应用背景。

  • 1.3 其他化合物掺杂

  • 除了上述提及的几种常见的离子掺杂,研究者还采取 BaZr0.2Ti0.8O3(BZT)、Li3SbCu2O6等化合物对铌酸钾钠压电陶瓷进行掺杂,结果表明,掺杂后的压电陶瓷的各项基本性能得到极大提升[33]。田爱芬等 [34] 采用锆钛酸钡 BaZr0.2Ti0.8O3(BZT)掺杂 K0.5Na0.5NbO3(KNN)压电陶瓷,如图6 所示,随着 BZT 含量的增加,晶粒的平均尺寸增加,掺杂量为 5 mol%的样品,相对介电常数和介电损耗分别为 εr=772 和 tanδ=8.5%,压电常数较为优异。结果表明, BZT 的含量和烧结温度可以有效增加 KNN 陶瓷晶粒尺寸,BZT 含量为 5 mol.%时,陶瓷样品表面最为致密,进而增加了该陶瓷的电学性能。

  • 图6 不同 BZT 含量添加条件下 1 150℃烧结的 KNN-xBZT 陶瓷样品 SEM 形貌 [34]

  • Fig.6 SEM morphology of KNN-xBZT ceramic samples sintered at 1 150℃ with different BZT content additions[34]

  • PENG 等 [35] 通过常规固相烧结法制备了(1−x)K0.48Na0.56NbO3-xBi0.5Li0.5ZrO3(KNN-xBLZ,x=0~0.006))(BLZ)。研究表明,所有经过掺杂的样品均 O-T 相共存,在最佳掺杂量 x=0.04 时,TO-T相转变温度降低至 98℃,O-T 相的比例将近 1∶1,介电常数 εr=938,压电常数 d33=239 pC / N,相转变温度发生变化,导致室温下存在 O、T 相共存的多晶相变(PPT),从而 KNN-xBLZ 陶瓷的电学性能提高。

  • 周飞 [36] 采用传统固相法烧结制备了(1-x)K0.48Na0.52NbO3-xLi3SbCu2O6 无铅压电陶瓷,研究 Li3SbCu2O6 的添加对陶瓷相结构、微观结构、电学性能的影响。当 x=0.01 时,随着 Li3SbCu2O6 含量的增加,陶瓷的晶粒尺寸变大以及致密度提升。结果表明,适量含量的 Li3SbCu2O6 可显著降低烧结温度,增大晶粒尺寸,提高陶瓷致密度,增大介电常数。当 x=0.01 时,陶瓷获得最佳的综合性能:压电常数 d33=109 pC / N,介电常数 εr=250,介电损耗 tanδ=0.6%。综上所述,除了对 KNN 基无铅压电陶瓷进行常规金属离子、稀土元素掺杂等,研究者还采取其他化合物对其进行掺杂改性,使其可以在高温、医学等环境下进行应用,进一步拓展了应用背景[37]。最后,利用化合物对铌酸钾钠压电陶瓷进行掺杂也可以有效地提升其电学性能。

  • 综上所述,铌酸钾钠制备过程中 A 位碱性元素易挥发,致密性较差,导致陶瓷材料的电学性能较差,故采用离子掺杂的方式将其性能进行提升,主要从金属离子及其氧化物、稀土元素、其他化合物进行掺杂等方面进行综述。研究结果表明,适当含量的金属离子掺杂可以促进铌酸钾钠无铅压电陶瓷晶粒的生长,促进三方相朝着四方相转变,在室温下构建多相共存结构,进而提升铌酸钾钠无铅压电陶瓷的电学性能。稀土元素掺杂通常发生不等价取代,出现 A 位离子空位维持电荷中性,减少内应力,缓解畴壁运动,提升其电学性能,同时极化后晶体对称性降低可以提升其光学性能。而利用其他化合物掺杂使得铌酸钾钠陶瓷在高温、医学等环境下应用,拓展了应用背景。

  • 2 铌酸钾钠压电陶瓷烧结工艺

  • 烧结是陶瓷制备过程中较为重要的工序之一[38]。但是随着当代科学技术的不断发展,人们对于陶瓷材料的需求也在逐渐的增加,陶瓷材料的烧结技术也在随之不断发展,除了传统的常温烧结外,还有热压烧结[39]、微波烧结[40]、放电等离子烧结[41]、气氛烧结[42]等。

  • 2.1 热压烧结

  • 铌酸钾钠的烧结特性较差,在烧结过程中碱金属大量挥发,导致在常温下很难制备出性能优异的压电陶瓷。KNN 基压电陶瓷烧结过程中,烧结温度的提高和烧结时间的延长导致陶瓷晶粒长大。与陶瓷无压烧结相比,热压烧结会降低烧结温度和缩短烧结时间,可获得细晶粒的陶瓷材料[43]

  • SU 等[44]分别采取传统烧结和热压烧结方法制备出(K0.5Na0.5)NbO3 无铅压电陶瓷。研究表明,经过热压烧结后的陶瓷呈单正交晶相,晶粒平均尺寸减少到 0.1 μm,相对密度上升到 96%,相比较于传统烧结方法,热压烧结提升了 KNN 压电陶瓷的电学性能,压电常数 d33=120 pC / N,介电常数 εr=830,介电损耗 tanδ=2%。PFM(压电力显微镜)结果表明,热压烧结技术制备的 KNN 压电陶瓷电畴可以随电场的变化而发生偏转,热压烧结的压力作用于粉末,为粉末颗粒的接触和扩散提供了额外的驱动力,提升了陶瓷的致密度,使得陶瓷组织细密、晶粒细小,从而具有良好的压电和铁电性能。郭福强等[45]采取普通烧结方法和热压烧结方法制备了 K0.5Na0.5NbO3(KNN)无铅压电陶瓷,着重研究两种烧结工艺对陶瓷的微观结构、晶粒形貌及致密度的影响。研究表明,制备的 KNN 压电陶瓷具有正交相钙钛矿结构,相对密度大于 98%,晶粒尺寸较小 (0.6 μm 左右),热压烧结技术制备的 KNN 压电陶瓷由于有较好的致密度,电学性能也在随之增加。

  • SUCHANICZ 等[46]采用常规烧结和热压工艺制备了 Na0.5k0.5(Nb1-xSbx)O3+0.5mol%MnO2 x=0.04、 0.05和0.06)无铅陶瓷,研究其微观结构和介电性能。如图7 所示,热压烧结有助于获得高致密的微观结构并增大晶粒尺寸,同时 Sb 的掺杂有助于获得更致密、更均匀的微观结构和更小的晶粒尺寸。热压烧结使得烧结体的组织更加均匀、致密,晶粒尺寸增大,其电学性能也较为优异。

  • 图7 不同温度下热压 Na0.5K0.5(Nb1-xSbx)O3+ 0.5 mol.%MnO2x =0.06)陶瓷的 SEM 图[46]

  • Fig.7 SEM images of hot-pressed Na0.5K0.5 (Nb1-xSbx) O3 + 0.5 mol.%MnO2 (x = 0.06) ceramics at different temperatures[46]

  • 综上所述,热压烧结的压力作用于粉末,为粉末颗粒的接触和扩散提供了额外的驱动力,提升了陶瓷的致密度,使得陶瓷组织细密、晶粒细小,从而具有良好的电学性能。

  • 2.2 微波烧结

  • 微波制备技术是通过微波辐射耦合将其转化为热能的原理而进行加热的过程。微波烧结可使材料整体加热至烧结温度而实现致密化,具有烧结温度低、烧结时间短、能源利用率和加热效率高、安全卫生无污染、改善材料品质等优点[47]

  • 李海涛等[48]采用传统固相技术和微波技术制备了(Na0.535K0.48)Nb0.91Sb0.09O3+x%CaO-B2O3(NKNS-xCB)陶瓷样品,研究两种不同的烧结工艺对陶瓷的相结构及性能的影响,如图8 所示,在同等条件下,微波技术制备的粉体所用时间是传统固相技术 1 / 6,微波烧结技术将陶瓷的烧结时间减少了 3 / 4,表明微波技术在制备 NKN 基陶瓷方面具有高效性和较高的能量利用率,并且烧结的成品具有良好的致密度以及电学性能。x=0.50 的陶瓷样品在 1 020℃微波烧结 30 min 具有优异的电学性能:压电常数 d33 =225 pC / N,介电常数 εr=647。不同于传统烧结“由外向内”的传热模式,微波烧结是“由内向外”的传热模式,这种模式所产生的温度梯度较小,能够加快物质的传输,提高能量利用率,因此能够降低致密化烧结温度,大幅度缩短烧结时间。HUIDROM 等[49]Na2CO3,K2CO3,Nb2O5 为原材料采取高能球磨法制备 K0.50Na0.50NbO3,并采取不同的时间节点(10 min、15 min、20 min)进行微波烧结,研究表明,微波烧结10 min时样品的介电常数及交流电导率最高,介电损耗较低,致密性较好。微波烧结可以有效减少压电陶瓷的烧结时间,烧结后的压电陶瓷具有较高的介电常数及较低的介电损耗,同时致密性较高。BAFANDEH 等[50]制备了不同成分的 SrTiO3 改性 KNN 压电陶瓷,烧结过程在传统炉及微波炉进行,研究表明,微波烧结后的样品的压电常数最高,这是由于微波烧结过程中密度较高及挥发元素 (K 和 Na)的损失较少,同时还有效提升了压电陶瓷的铁电行为,增加了电场诱导应变。总之,采取微波烧结进行压电陶瓷的制备,可以有效缩短烧结时间,减少挥发元素的损失,同时有效改善其电学性能。

  • 图8 不同加热技术合成与烧结 NKNS–xCB 陶瓷的温度-时间工艺方案[48]

  • Fig.8 Temperature-time profiles for MC, MS, CC and CS of NKNS-xCB ceramics[48]

  • 2.3 放电等离子烧结

  • 放电等离子烧结(Spark plasma sintering,SPS) 是制备功能材料的一种全新技术,具有升温速度快、烧结时间短、组织结构可控、节能环保等特点,可用来制备金属材料、陶瓷材料、复合材料,也可用来制备纳米块体、非晶块体、梯度等材料[51]。 RIGOBERTO 等[52]采用常规无压烧结(PLS)和放电等离子烧结( SPS)技术烧结了(K0.48Na0.520.96Li0.04Nb0.85Ta0.15O3,如图9 所示,SPS 烧结时间较短,减少了碱性元素损失并抑制了晶粒生长,样品的致密化水平较高,进而促进了其电学性能增加。研究表明,经过 SPS 烧结后陶瓷样品的压电常数、介电常数和介电损耗分别为d33=66 pC / N、εr =557.4、tanδ=2.4%。

  • 图9 不同温度及烧结方式下 KNLNT-SD 微观形貌图[52]

  • Fig.9 Microscopic morphology of KNLNT-SD at different temperatures and sintering methods [52]

  • ZLOUZEOVA 等[53]采用常规烧结和火花等离子烧结(SPS)制备了 KNN 基无铅压电陶瓷。结果表明,相同温度下由于 SPS 过程中施加的压力促进了致密化,SPS 样品的孔隙率低于常规烧结。如图10 所示,随着烧结温度的升高,可以观察到体积密度 ρ 的增加。这表明随着烧结温度的升高,致密化程度更高,从而降低样品的孔隙率,故 SPS 烧结技术可以有效促进 KNN 基无铅压电陶瓷的电学性能。

  • 图10 BT 陶瓷样品 εr及 tanδ 与频率的关系[53]

  • Fig.10 εr and tanδ versus frequency for BT ceramic samples[53]

  • MORSHED 等[54]研究了等离子烧结(SPS)下铌酸钾钠无铅压电陶瓷的制备以压电热释电表征。在 900℃的烧结温度下,KNN 基无铅压电陶瓷的致密度是理论密度的 99%,经过 SPS 烧结后的样品的介电、压电以及热释电性能得到大幅度提升,其压电系数与介电常数分别为 d33=94 pC / N 与 εr=1 536。WANG 等[55]采用火花等离子体烧结 ( SPS)方法成功制备了高密度(Na1-xKx)NbO3x=0.5、0.6、0.7),研究 SPS 样品的介电和压电性能,并与热压样品进行比较。结果表明,与热压烧结样品相比,SPS 烧结后样品具有更高的室温介电常数、更高的矫顽场、更低的残余极化率和更低的机电系数。综上,等离子烧结技术烧结时间较短,可以获得较小的晶粒尺寸,样品的致密化水平较高,进而促进了 KNN 无铅压电陶瓷的电学性能。

  • 2.4 其他烧结工艺

  • 铌酸钾钠无铅压电陶瓷的烧结工艺除了热压烧结、微波烧结、放电等离子烧结,还有气氛烧结、毫米波烧结等。气氛烧结是指在空气中难以烧结的样品,为了防治其氧化,在烧结炉中加入一定量的某种气体进行烧结。赵高磊等[56]在 1 020℃与工业氮气(N2)的气氛条件下成功制备了锂(Li)掺杂铌酸钾钠压电陶瓷,研究锂离子的加入对 KNN 基压电陶瓷的微观结构、相结构等的影响。研究可知,NKLN 基压电陶瓷具备钙钛矿结构,并随着 Li 离子含量的增加,样品在室温下由斜方相向四方相转变;当 Li 离子的掺杂量为 7%(摩尔分数) 时,样品具备良好的电学性能,此时压电常数(d33)、机电耦合系数(kp)和剩余极化强度(Pr)分别为 d33=223 pC / N、kp=38.2%和 Pr=12.11 μC / cm2,陶瓷的居里温度也在随着添加量的增加而增加。

  • 总之,烧结是陶瓷制备过程中较为重要的工艺步骤之一,烧结可以抑制陶瓷制备过程中碱金属的挥发,热压烧结通过对粉末增加驱动力,所获得的陶瓷致密性较好,晶粒发育良好、晶界明显,并有效提升了陶瓷的综合电学性能。而微波烧结可以缩短烧结时间,减少元素的挥发,进而提升陶瓷的电学性能。SPS 烧结由于其自身烧结时间短,所获得陶瓷样品的晶粒尺寸较小,致密性增加,进而可提升陶瓷的电学性能。

  • 3 铌酸钾钠压电陶瓷成形工艺

  • 薄膜技术的发展及对电子小型元件化的发展需求促进了材料的研究由块状材料朝着涂层及薄膜材料发展,KNN 基压电陶瓷薄膜具有对环境危害小、压电系数高、介电常数小、居里温度高等优点。当前关于铌酸钾钠的制备技术按照厚度进行分类可分为薄膜和涂层。关于 KNN 压电陶瓷薄膜的制备主要集中在脉冲激光沉积法(PLD)、射频(RF)磁控溅射法和溶胶凝胶法(Sol-gel),其制备技术特征见表5。关于涂层的制备技术主要集中于热喷涂技术,接下来就这几种制备方法展开论述。

  • 表5 RF、PLD、Sol-gel 三种薄膜制备技术特征[57]

  • Table5 Technical characteristics of three kinds of film preparation: RF, PLD, and Sol-gel[57]

  • 3.1 激光脉冲沉积法

  • 激光脉冲沉积(PLD)法是利用高温将被照射区域的物质进行瞬时灼烧,烧灼物会优先朝着靶的法线方向传输,最后沉积到基体上生成一层薄膜,这是一种较为先进的镀膜技术。该技术应用范围较广,操作简单,而且生成的薄膜的质量较好,是制备铌酸钾钠压电薄膜的常用技术之一[58]

  • 范学敏等[59]利用激光脉冲技术在采用激光脉冲沉积技术分别在 Pt(111)/ Ti / SiO2 / Si(Pt)衬底和 LaNiO3缓冲层的 Pt(111)/ Ti / SiO2 / Si(LNO / Pt)两种衬底上制备了 0.935Bi1 / 2Na1 / 2TiO3-0.065BaTiO3-0.01Al6Bi2O12(简称 BNT–BT–AB)薄膜,且都为钙钛矿结构,如图11 所示,两种衬底上沉积的薄膜厚度约为 400 nm,以 LNO / Pt 为衬底的薄膜展示了(100)的择优取向,Pt 为衬底的薄膜显示随机取向,而(100)择优取向的薄膜的生长的势头较好,平均粒径较大。如图12 所示,采取 PLD 制备的两种薄膜的电学性能都较为优异,其中(100)择优取向的薄膜介电常数为 εr =700,(100)择优取向的薄膜剩余极化 2Pr=21.25 μC / cm2,饱和极化强度 Ps=27.81 μC / cm2,随机取向薄膜的 d* 33=130 pm / V,(100)择优取向薄膜的 d33* =150 pm / V。LNO / Pt 衬底上沉积的薄膜晶粒相对更大,电畴容易在外电场下发生极化翻转,同时 LNO 缓冲层的存在,优化了薄膜与界面的结构,使得电畴壁容易在外加电场下极化翻转,而且 LNO 是一种良好的导体,可以诱导晶体取向并降低漏电流密度,同时减少薄膜的氧空位,改善与衬底界面结合,进而使得电学性能得到改善。

  • 图11 LNO / Pt、Pt 衬底上薄膜的形貌和晶粒尺寸以及横截面[59]

  • Fig.11 Morphology and grain size and cross section of thin films on LNO / Pt, Pt substrates[59]

  • 图12 BNT–BT–AB 薄膜介电频谱以及不同衬底沉积 BNT–BT–AB 薄膜的压电响应曲线[59]

  • Fig.12 Dielectric spectrum of BNT-BT-AB films and piezoelectric response curves of BNT-BT-AB films deposited on different substrates[59]

  • SHWETA 等[60]利用激光脉冲沉积技术在镀铂化硅衬底上生长(100)优选取向的 K0.35Na0.65 NbO3(KNN)薄膜。结果表明,所制备的薄膜均无裂纹、光滑,在 700℃衬底温度下沉积的薄膜优选 a 轴取向,晶粒分布均匀。采取激光脉冲技术制备的薄膜无裂纹且光滑的纳米结构,如图13 所示,具有良好的电学性能。

  • 图13 KNN 薄膜介电常数和介电损耗随上电极的变化曲线[60]

  • Fig.13 Curves of dielectric constant and dielectric loss of KNN films with respect to the upper electrode[60]

  • SHWETA 等[61]采用 PLD 技术制备了高质量 (001)取向的 KxNa(1-xNbO3x=0.35)铁电薄膜。分析在最佳沉积参数下沉积的 KNN 薄膜的形貌、结构和电学性能。研究结果表明,生长的 KNN 薄膜的表面形貌显示出均匀分布的致密纳米结构及纳米级孔隙的存在,所制备的薄膜样品具备良好的电学性能。综上,采用脉冲沉积技术制备 KNN 基薄膜的表面形貌较为均匀致密,可以获得较为优异的电学性能。

  • 3.2 溶胶-凝胶法

  • 化学溶液沉积法,也叫溶胶-凝胶(Sol-gel)法或者金属氧化物沉积法,是将金属醇盐按照一定的离子配比或者其他有机与无机的非金属盐溶于同一溶剂,经过水解和聚合生成均匀的前驱物溶液,然后采取旋转涂覆等方法将其涂覆至基体表面,将其烘干进一步去除有机物,反复涂覆增加厚度,最后退火得到一定晶相结构的无机薄膜。该方法设备简单,成本较低,很容易进行元素掺杂并能精确控制掺杂量,应用的范围较广,可以制备各种类型薄膜,而且不需要真空环境,能够实行大规模的生产。

  • ZHANG 等[62]采取低成本可控的溶胶-凝胶技术(以非醇铌盐 Nb2O5为铌源)在 Pt / Ti / SiO2 / Si 和 LNO / Si 衬底上制备高取向的铌酸钾钠薄膜,并对退火温度、退火气氛等进行研究。如图14 和 15 所示,在空气中退火的 KNN 薄膜比在氧气中退火的薄膜具有更好的晶体结构和更致密的表面,在空气中退火的 KNN 薄膜比在氧气中退火的具有更大的介电常数和更低的介电损耗。KNN 薄膜涂层数量的增加也会导致更好的晶体结构(取向度更高、晶粒更大、半高宽更窄)和电学性能。

  • 图14 在 Pt / Ti / SiO2 / Si 衬底上旋涂不同层数 KNN 薄膜(在空气中退火)的 SEM 图像[62]

  • Fig.14 SEM images of KNN films spin-coated (annealed in air) with different layers on Pt / Ti / SiO2 / Si substrates [62]

  • YAO 等[63]以成本相对较低的五氧化二铌 (Nb2O5)为原料,采用溶胶-凝胶非醇盐法在 Ti 衬底上制备了(K,Na)NbO3(KNN)薄膜,研究退火温度对 KNN 薄膜的物相、形貌、介电性能和铁电性能的影响,在 700℃以上获得无杂质的 KNN 薄膜,其微观结构致密、均匀。在 700℃退火的薄膜由于高结晶度和纯钙钛矿相获得了最佳的电学性能。AKMAL 等[64]采用溶胶-凝胶自旋包覆法成功制备了铌酸钾钠薄膜,研究退火的温度和不同涂层数量对陶瓷薄膜微观结构及电学性能的影响。分析表明,退火温度对陶瓷的影响较大,600℃ 下退火的 KNN 薄膜显示出均匀的表面。另外,随着薄膜层数的增加,KNN 薄膜的结晶质量和结构缺点得到了明显提升,薄膜层数为 5 层的KNN 薄膜结晶质量更好,表面无裂纹,形貌与晶粒尺寸更加均匀,电阻率也随着层数的增加而逐渐降低。总的来说,退火温度及薄膜涂层的厚度是影响 KNN 薄膜的两个关键因素。综上,溶胶-凝胶法是制备薄膜的常见方法之一,所制备的薄膜经过适当温度的退火温度处理后,薄膜微观结构致密、均匀,获得较为优异的电学性能。

  • 图15 不同衬底对应的 KNN 薄膜的介电常数和损耗角正切[62]

  • Fig.15 Dielectric constant and loss tangent of KNN films with different number of coating layers [62]

  • 3.3 射频磁控溅射法

  • 射频(RF)磁控溅射法是指用高速运动的惰性粒子将靶材上的原子(或者分子)轰击下来沉积在基体的表面,进而生成薄膜。此方法生成的薄膜可以大幅度提升薄膜的均匀性,可以高效沉积大面积薄膜。

  • HUANG 等[65]通过射频磁控溅射成功沉积了无铅(Na,K)NbO3 薄膜,系统研究退火温度对 KNN 薄膜结构和电性能的影响。结果表明,薄膜的粒径和表面质量与退火温度及气氛密切相关。如图16 及表6 所示,薄膜的表面较为均匀。经过适当温度及气氛退火后,晶粒尺寸增加,铁电性能增加。

  • 图16 空气中不同退火温度对应的 KNN 薄膜扫描电镜图及尺寸[65]

  • Fig.16 Scanning electron micrographs and dimensions of KNN films corresponding to different annealing temperatures in air[65]

  • 表6 由磁滞测量确定在不同温度下退火 KNN 薄膜的剩余极化和矫顽场值[65]

  • Table6 Determine the remanent polarization and coercive field values of the annealed KNN film at different temperatures from the hysteresis measurement[65]

  • MADANI 等 [66] 采用射频磁控溅射法在 Pt / Ti / SiO2 / Si 和石英衬底上制备了(K0.5Na0.5)NbO3(KNN)薄膜,研究表明,在 100%OMP 下沉积并在 700℃下退火的薄膜在纯 KNN 相中结晶,没有任何第二相。原子力显微镜(AFM)显示在纯氧气氛下沉积的薄膜呈现出均匀致密的微观结构。随着氧混合百分比(OMP)的增加,平均粗糙度和均方根粗糙度分别从 7.32 nm 降至 3.34 nm 和 9.06 nm 降至 4.08 nm,平均晶粒尺寸也从 24 nm 增加到 52 nm。退火 KNN 薄膜的微波介电常数比沉积薄膜高,在 10 和 20 GHz 下测量的范围分别为 238~287 和 215~250。原子堆积密度随着退火温度以及 OMP 的增加而增加,晶粒生长的增强可能是由于在纯氧气氛中薄膜结晶的改善,堆积密度的提高可能由于原子间距的减小,从而导致薄膜的致密化和结晶化。

  • ISAKU 等 [67] 采用射频磁控溅射法在(001)SrRuO3 /(001)Pt /(001)MgO衬底上制备了(Kx, Na1-x)NbO3(KNN)薄膜,并对其压电性能进行研究。研究表明,厚度为 0.5 µm 的 KNN 薄膜(x=0)表面具有高密度和光滑均匀的结构。KNN 薄膜(x=0 和 0.16)表现出典型的电滞回线,相对介电常数 εr 分别为 270 和 320。横向压电系数 e 31= −2.4 C / m2。综上,射频磁控溅射法是最常见的薄膜制备方法之一,退火温度和气氛是影响薄膜质量的两个重要因素,优异的退火温度及气氛可以促进薄膜晶粒生长,获得较为致密的薄膜,进而提升薄膜的电学性能。

  • 3.4 热喷涂技术

  • 热喷涂技术是通过热能将喷涂材料加热,使之达到熔融状态或者半熔融状态,然后以一定的速度喷射沉积在已经预处理过后的表面,进而在基体表面形成涂层的办法[68]。热喷涂技术应用在普通的材料表面,使其表面耐腐蚀、抗氧化、绝缘等。

  • CHEN 等[69]在不锈钢基体上面引入NiCrAlY 和 YSZ 两层中间层,采用热喷涂技术获得较强压电效应的 KNN 基无铅压电陶瓷涂层。如图17 和 18 所示,热喷涂过程中 KNN-LiTaSb 粉末被有效加热到熔融或半熔融状态,两种结构均表现出很强的附着力,层间无裂纹或分层,这可能是由在较高温度下,热处理期间晶粒生长诱导的致密化增强所致, KNN-LiTaSb 涂层在 / NiCrAlY / YSZ / AgPd / KNN-LiTaSb 中的介电常数和损耗分别为 443 和 0.2%(室温和 1 khz)。钢 / NiCrAlY / YSZ / AgPd / KNN-LiTaSb 中的 LiTaSb 涂层也表现出更饱和的 P-E 磁滞回线和显著更高的残余极化。图19 显示了两个样品的 KNN LiTaSb 涂层在电驱动下的振动三维图。中央突出部分是顶部电极下的电激发区域,周围的平坦区域是没有顶部电极的 KNN LiTaSb 涂层。由于顶部电极区域的位移分布不是平坦的,因此使用平均位移值来确定 KNN LiTaSb 涂层的膨胀,钢 / NiCrAlY / YSZ / Ag-Pd / KNN-LiTaSb 结构中 KNN-LiTaSb 涂层的有效压电系数(d33)测量为 125 pm / V。

  • 图17 压电陶瓷横截面 SEM 图像及 EDX 扫描结果[69]

  • Fig.17 Cross-sectional SEM images and EDX scan results of piezoelectric ceramics [69]

  • 图18 钢 / NiCrAlY / YSZ / AgPd / KNN-LiTaSb 和钢 / AgPd / KNN-LiTaSb 在不同热处理温度的综合性能[69]

  • Fig.18 Comprehensive performance of steel / NiCrAlY / YSZ / AgPd / KNN-LiTaSb and steel / AgPd / KNN-LiTaSb at different heat treatment temperatures [69]

  • 图19 钢 / NiCrAlY / YSZ / Ag-Pd / KNN-LiTaSb 以及钢 / Ag-Pd / KNN-LiTaSb 在不同热处理温度下振动数据三维图[69]

  • Fig.19 Three dimensional vibration data of steel / NiCrAlY / YSZ / Ag Pd / KNN LiTaSb and steel / Ag Pd / KNN LiTaSb under different heat treatment temperatures[69]

  • CHEN 等[70]首次通过热喷涂技术成功制备了具有单一钙钛矿相、形貌较为致密的 KNN 基压电陶瓷涂层,研究在不同条件下沉积的涂层的结构、形貌和性能,并证明其优异的压电性能。图2 0显示所有喷涂涂层显示出相对致密的表面,由于残余应力的释放,在表面上观察到微小的微裂纹,这是热喷涂涂层的典型特征。如图21 所示,热处理后结晶度和晶粒尺寸的显著增加导致介电常数增加,介电损耗显著降低。热处理后的热喷涂 KNN 基涂层的有效压电系数(d33)为 112 pm / V,高压电系数是由在 KNN 基涂层中实现的具有高结晶度的单相钙钛矿结构产生的。在热喷涂 KNN 基涂层中成功形成高结晶度钙钛矿结构单相的原因主要是三个因素:局部结构的相似性和熔体与钙钛矿晶体结构之间的协调,抑制混法损失和热喷涂工艺结晶过程中碱性离子的高迁移率。综上,热喷涂技术是制备 KNN 涂层最常见的制备技术,热喷涂技术制备的 KNN 涂层具有优异的电学性能,这是由于高温热处理后,晶粒尺寸和结晶度的尺寸显著增加,进而导致电学性能显著增加。

  • 图20 在不同等离子体功率下沉积的(K,Na,Li)(Nb,Ta,Sb)O3喷涂涂层的 SEM 图像[70]

  • Fig.20 SEM images of the (K, Na, Li) (Nb, Ta, Sb) O3 as-sprayed coatings deposited at different plasma power[70]

  • 图21 不同工况条件下在室温和 10 kHz(K,Na,L)(Nb,Ta,Sb)O3 涂层的介电性能[70]

  • Fig.21 Dielectric properties of (K, Na, L) (Nb, Ta, Sb) O3 coatings at room temperature and 10 khz under different working conditions[70]

  • 3.5 其他方法

  • KNN 薄膜除了上述几种主要制备方法,还有 MOCVD、气溶胶法(ADM)、聚合物改性 CSD 法 (CSD)、聚合物前驱体法、金属有机盐分解法等。刘培新等[71]以碳酸钾、碳酸钠和所制备的氢氧化铌为原料,柠檬酸为螯合剂,乙二醇为酯化剂,通过聚合物前驱体法在 SiO2 / Si 基板上制备了铌酸钾钠 (KNN)薄膜。结果显示,在 pH=7.5,金属阳离子与柠檬酸摩尔比为 1∶3;柠檬酸与乙二醇的摩尔比为 2∶1 时,可以获得均匀稳定的 KNN 前驱体溶胶。草酸铵的加入优化了薄膜的性能;随着退火温度的增加,薄膜的致密度越来越高。退火温度在 850℃ 时,薄膜结晶性相对较好;900℃退火处理后,薄膜晶粒有定向生长趋势。阎鑫等[72]选用乙醇铌、乙酸钾、乙酸钠等为原料,经过金属有机盐分解法成功制备了 Na0.5K0.5NbO3(NKN)无铅压电薄膜,研究不同退火温度对 NKN 薄膜的晶体结构和形貌的影响。结果表明,当退火温度低于 500℃时,所制 NKN 薄膜为无定形结构。650℃制备的 NKN 薄膜具有(100)晶面生长的择优取向;该薄膜的表面致密,颗粒尺寸分布均匀,10 kHz 的相对介电常数为 258,介电损耗为 0.05。该薄膜具有铁电体典型的电滞回线,剩余极化强度(Pr)和矫顽场强(Ec)分别为 3.45 pC / cm2 和 160 kV / cm。

  • 综上所述,脉冲沉积技术、溶胶-凝胶法、射频磁控溅射法三种成形技术是制备薄膜的常见方法。采用脉冲沉积技术制备的薄膜表面形貌均匀致密,电学性能良好。采用溶胶-凝胶法需要经过适当温度的退火处理,同时也可以获得微观结构致密、均匀的薄膜,薄膜的电学性能优异。采用射频磁控溅射法需要同时关注退火温度及气氛两个因素,适当的退火温度和气氛可以促进薄膜的晶粒生长,薄膜较为致密,故电学性能提升。利用热喷涂技术成功制备性能优异的铌酸钾钠涂层可以为铌酸钾钠涂层的制备提供新思路,拓展其应用背景。

  • 4 结论与展望

  • 压电陶瓷经过多年的研究已经取得了长足的进步,已经成为国内外重要的材料之一,在通信、航空航天、核能、汽车、探测和计算机等诸多领域得到重要而广泛的应用。

  • (1)主要从金属离子及其氧化物、稀土元素、其他化合物进行掺杂等方面进行综述,结果表明适当含量的金属离子掺杂可以促进晶粒的生长,在室温下构建多相共存结构,进而提升其电学性能。稀土元素掺杂通常会出现 A 位离子空位维持电荷中性,减少内应力,缓解畴壁运动,提升其电学性能,同时极化后晶体对称性降低可以提升其光学性能。而利用其他化合物掺杂可以拓展其应用背景。

  • (2)烧结是陶瓷制备过程中重要工艺步骤之一,烧结可以抑制陶瓷制备过程中碱金属的挥发,热压烧结通过对粉末增加驱动力,制备出的陶瓷致密性较好,晶粒发育良好、晶界明显,微波烧结可以缩短烧结时间,减少元素的挥发,放电等离子烧结由于其自身烧结时间短,陶瓷样品的晶粒尺寸较小,致密性增加,均提升了陶瓷的综合电学性能。

  • (3)脉冲沉积技术、溶胶-凝胶法、射频磁控溅射法三种成形技术是制备薄膜的常见方法。脉冲沉积技术和采用适当退火温度处理的溶胶-凝胶法,可以获得微观结构致密、均匀的薄膜,薄膜的电学性能优异。射频磁控溅射法采用适当的退火温度和气氛可以促进薄膜的晶粒生长,薄膜较为致密,电学性能提升。利用热喷涂技术成功制备性能优异的 KNN 涂层可以为涂层的制备提供新思路,拓展其应用背景。

  • 对于铌酸钾钠陶瓷未来的发展趋势主要分为以下几点:

  • (1)当前关于等离子喷涂技术制备铌酸钾钠基压电陶瓷的研究较少,在未来需要加强这一方面研究,应用于各种重要零件表面的制备,进而代替复杂的监控系统。

  • (2)铌酸钾钠无铅压电陶瓷的制备工艺较差,对于温度的敏感性较高,采用传统固相烧结法得到的铌酸钾钠无铅压电陶瓷的致密性较差,同时铌酸钾钠无铅压电陶瓷自身的电学性能及机械品质因数较低,不能满足电子、计算机及航天技术等方面的发展,需要通过对其进行常规金属离子、其他化合物等掺杂改性,同时采取新的制备技术,如热压烧结、微波烧结等技术,进而提升铌酸钾钠的压电性能及机械品质因数等,以满足铌酸钾钠陶瓷在航天航空、小型电子元器件方面的发展需求。

  • (3)在未来可以充分利用计算机仿真技术去实现铌酸钾钠无铅压电陶瓷的模型构建与仿真,建立铌酸钾钠压电陶瓷的三维结构模型,并对其晶体的性质及相关过程进行深入研究,尝试得出提高压电陶瓷电学性能的办法。

  • 参考文献

    • [1] SEZER N,KOC M.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J].Nano Energy,2020,80(105567):1-25.

    • [2] ZHOU X F,XUE G L,LUO H,et al.Phase structure and properties of sodium bismuth titanate lead-freepiezoelectric ceramics[J].Progress in Materials Science,2021,122:100836.

    • [3] NYAMAYOKA,LUMBUMBA,TATY-ETIENNE,et al.Design of a prototype generator based on piezoelectric power generation for vibration energy harvesting[J].Journal of Energy in Southern Africa,2017,28(4):32-40.

    • [4] 唐明响,陈良,祁核,等.缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J].材料导报,2022,36(2):66-71.TANG Mingxiang,CHEN Liang,QI He,et al.Progress of defect dipole modulation of lead-based chalcogenide piezoelectric ceramic properties[J].Materials Direct,2022,36(2):66-71.(in Chinese)

    • [5] 石伟丽,邢志国,王海斗,等.等离子喷涂PZT涂层的制备与性能分析[J].中国表面工程,2014,27(4):19-24.SHI Weili,XING Zhiguo,WANG Haidou,et al.Preparation and performance analysis of plasma sprayed PZT coatings[J].China Surface Engineering,2014,27(4):19-24.(in Chinese)

    • [6] WANG C,FANG B,WU D,et al.Pyroelectric performance,dielectric response and conductive mechanism of BCHT lead-free piezoelectric ceramics via powder injection molding[J].Journal of Materials Research and Technology,2020,9(5):11303-11310.

    • [7] 宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):34-43.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.Research progress on doping modification of lead-free piezoelectric ceramics based on potassium niobate[J].Materials Guide,2022,36(5):34-43.(in Chinese)

    • [8] ZAKARIA C,FATIMA E B,YOUSSEF T,et al.Design,structural evolution,optical,electrical and dielectric properties of perovskite ceramics Ba1-xBixTi1-xFexO3(0≤x ≤0.8)[J].Materials Chemistry and Physics,2021,273:125096.

    • [9] WANG H,LI Q,JIA Y X,et al.(Na0.8-K0.2Li)0.5Bi0.5Ti0.985Ta0.015O3 lead-free ceramics with large strain and high recoverable energy density[J].Journal of Alloys and Compounds,2021,879:160378.

    • [10] 李海涛,张波萍,文九巴,等.Li 补偿量对铌酸盐基无铅压电陶瓷结构和性能的影响[J].无机材料学报,2012,27(4):385-389.LI Haitai,ZHANG Boping,WEN Jiuba,et al.The influence of Li compensation on the structure and performance of niobate-based lead-free piezoelectric ceramics[J].Journal of Inorganic Materials,2012,27(4):385-389.(in Chinese)

    • [11] ZHANG J,WANG X.Piezoelectric properties,phase transitions and domain structure of(Bi,Na)HfO3 modified(K,Na)(Nb,Sb)O3 ceramics[J].Materialia,2021,17:101120.

    • [12] POLITOVA E D,KALEVA G M,MOSUNOV A V,et al.Dielectric and local piezoelectric properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2020,569(1):201-208.

    • [13] XU K,LI J,LV X,et al.Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J].Advanced Materials,2016,28(38):8519–8523.

    • [14] TAO H,YIN J,ZHAO C,et al.Relaxor behavior of potassium sodium niobate ceramics by domain evolution[j].Journal of the European Ceramic Society,2020,41(1):335-343.

    • [15] YANG Z,DU J,MARTIN L,et al.Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics[J].Journal of the European Ceramic Society,2020,41(3):1925-1933.

    • [16] JHINKWAN S S,PANWAR N S.Effect of Li doping on dielectric properties of Na1-xKxNbO3,x = 0.500,morphotropic phase region[J].Ferroelectrics,2021,570(1):122-131.

    • [17] LI J W,LIU Y X,THONG H C,et al.Effect of ZnO doping on(K,Na)NbO3-based lead-free piezoceramics:Enhanced ferroelectric and piezoelectric performance[J].Journal of Alloys and Compounds,2020,847(8):155936.

    • [18] ZHANG L H,WANG S L,LIU F H.Effect of Eu doping on the structural,electrical,and dielectric properties of K0.5Na0.5NbO3 ceramics for high-temperature capacitor applications[J].Journal of Electronic Materials,2015,44(10):3408-3414.

    • [19] WENMING,SHI,JUAN,et al.Dielectric relaxation,impedance spectra,temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics[J].Journal of Materials Science:Materials in Electronics,2020,31(2):959-966.

    • [20] POLITOVA E D,KALEVA G M,et al.Influence of A-site doping on properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2021,575(1):158-166.

    • [21] WANG Y,ZHU W,SUN Q,et al.Effects of A/B-site dopants on microstructure and domain configuration of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of Alloys and Compounds,2019,787:407-413.

    • [22] TAN L,SUN Q,WANG Y.Outstanding piezoelectric properties of Al-substituted potassium-sodium niobatebased lead-free piezoceramics[J].Journal of Alloys and Compounds,2020,836:155419.

    • [23] CHU D L,WANG C,ZHU M K,et al.Effect of Mn doping on sintering characteristics,microstructure and electrical properties of lead-free potassium sodium niobate ceramics[J].Optoelectronics and Advanced Materialsrapid Communications,2020,14(9-10):466-470.

    • [24] 李海涛,邢朝君,闫焉服,等.Zn 掺杂对铌酸钾钠压电陶瓷结构和性能的影响[J].河南科技大学学报(自然科学版),2013,34(6):1-4.LI Haitao,XING Zhaojun,YAN Yanfu,et al.Effect of Zn doping on the structure and properties of potassium sodium niobate piezoelectric ceramics[J].Journal of Henan University of Science and Technology(Natural Science),2013,34(6):1-4.(in Chinese)

    • [25] DAI Y J,ZHANG X W,CHEN K P.Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics[J].Applied Physics Letters,2009,94(4):4141.

    • [26] 田爱芬,徐志蓬,刘淑娟,等.铋掺杂对铌酸钾钠无铅压电陶瓷结构和性能的影响[J].硅酸盐学报,2014,42(5):667-671.TIAN Aifen,XU Zhipeng,LIU Shujuan,et al.The effect of bismuth doping on the structure and properties of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,2014,42(5):667-671.(in Chinese)

    • [27] R.MAHDI,AL-BAHNAM B,MOHAMMED A A,et al.High-performance(K,Na)NbO3-based binary lead-free piezoelectric ceramics modified with acceptor metal oxide-ScienceDirect[J].Ceramics International,2020,46(13):21762-21770.

    • [28] WANG X,WU J,XIAO D,et al.Giant Piezoelectricity in potassium-sodium niobate lead-Free ceramics[J].Journal of the American Chemical Society,2014,136(7):2905-2910.

    • [29] WILES A A,BRUCKBAUER J,MOHAMMED N,et al.A poly(urethane)-encapsulated benzo[2,3-d:6,7-d′] diimidazole organic down-converter for green hybrid LEDs[J].Materials Chemistry Frontiers,2020,4(3):1006-1012.

    • [30] CUI R,ZHU D,TANG K,et al.Influence of Dy3+ doping on the luminescent and piezoelectric properties of bifunctional(K0.48Na0.52)(Nb0.95Sb0.05)O3 based lead-free piezoceramics[J].Optik-International Journal for Light and Electron Optics,2020,207:163785.

    • [31] WEI Y,ZHENG W,JIA Y,et al.Dual-enhancement of ferro-piezoelectric and photoluminescent performance in Pr3+ doped(K0.5Na0.5)NbO3 lead-free ceramics[J].Applied Physics Letters,2014,105(4):2651-465.

    • [32] 刘绍军,王鹏飞,万冰冰,等.Nd 掺杂 K0.53Na0.47NbO3 基无铅压电陶瓷的结构和性能[J].中国有色金属学报,2012,22(7):2010-2015.LIU Shaojun,WANG Pengfei,WAN Bingbing,et al.Structure and properties of Nd-doped K0.53Na0.47NbO3 based lead-free piezoelectric ceramics[J].The Chinese Journal of Nonferrous Metals,2012,22(7):2010-2015.(in Chinese)

    • [33] XING J,JIANG L,ZHAO C,et al.Potassium sodium niobate based lead-free ceramic for high-frequency ultrasound transducer applications[J].Journal of Materiomics,2020,6(3):513-522.

    • [34] 田爱芬,王茜茜,惠璇,等.无铅陶瓷结构及性能的影响[J].西安科技大学学报,2019(4):158-162.TIAN Aifen,WANG Qianqian,HUI Xuan,et al.Influence of lead-free ceramic structure and properties[J].Journal of Xi’ an University of Science and Technology,2019(4):158-162.(in Chinese)

    • [35] PENG X,ZHANG B,ZHU L,et al.Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics[J].Journal of Advanced Ceramics,2018,7(1):79-87.

    • [36] 周飞.Li3SbCu2O6掺杂KNN无铅压电陶瓷的结构与电性能研究[J].中国陶瓷,2016(52):73-79.ZHOU Fei.Study on the structure and electrical properties of Li3SbCu2O6 doped KNN lead-free piezoelectric ceramics[J].China Ceramics,2016(52):73-79.(in Chinese)

    • [37] LI C,LI Y,YAO T,et al.Wireless electrochemotherapy by selenium-doped piezoelectric biomaterials to enhance cancer cell apoptosis[J].ACS Applied Materials & Interfaces,2020,12(31):34505-34513.

    • [38] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Hardening behavior of high temperature sintering of plasma sprayed La2Zr2O7 thermal barrier coatings[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [39] 邢志国.超音速等离子喷涂制备 BaTiO3 压电涂层取得重要进展[J].中国表面工程,2014,27(1):1.XING Zhiguo.Important progress in the preparation of BaTiO3 piezoelectric coatings by supersonic plasma spraying[J].China Surface Engineering,2014,27(1):1.(in Chinese)

    • [40] LI H,YAN Y,WANG G,et al.Hydrothermal solvothermal synthesis potassium sodium niobate lead-free piezoelectric ceramics assisted with microwave[J].Journal of Materials Science Materials in Electronics,2018,29(1):746-752.

    • [41] MARAKHOVSKY M A,PANICH A A,TALANOV M V,et al.Comparative study of the hard and soft PZT-based ceramics sintered by various methods[J].Ferroelectrics,2021,575(1):43-49.

    • [42] KULTAYEVA S,KIM Y W,SONG I H.Influence of sintering atmosphere and BN additives on microstructure and properties of porous SiC ceramics[J].Journal of the European Ceramic Society,2021,41(14):6925-6933.

    • [43] RUTKOWSKI P,HUEBNER J,GRABO A,et al.Dense KNN polycrystals doped by Er2O3 obtained by hot pressing with hexagonal boron nitride protective layer[J].Materials(Basel,Switzerland),2020,13(24):5741.

    • [44] SU,Y L,CHEN,XM,YU,Z D,et al.Comparative study on microstructure and electrical properties of(K0.5Na0.5)NbO3 lead-free ceramics prepared via two different sintering methods[J].Journal of Materials Science,2017,5(52):2934-2943.

    • [45] 郭福强,张保花,王伟,等.不同烧结工艺对 K0.5Na0.5NbO3 陶瓷微结构的影响[J].无机材料学报,2012,27(3):277-280.GUO Fuqiang,ZHANG Baohua,WANG Wei,et al.The influence of different sintering processes on the microstructure of K0.5Na0.5NbO3 ceramics[J].Journal of Inorganic Materials,2012,27(3):277-280.(in Chinese)

    • [46] SUCHANICZ J,FINDER A,SMELTERE I,et al.Dielectric properties of Na0.5K0.5(Nb1-xSbx)O3+MnO2 ceramics(x = 0.04,0.05 and 0.06)[J].Integrated Ferroelectrics,2011,123(1):102-107.

    • [47] LU G,ZHOU W,LUO F,et al.Dielectric properties in the microwave range of K0.5Na0.5NbO3 ceramics[J].Journal of Electronic Materials,2016,46(1):123-129.

    • [48] 李海涛,李冉,王广欣,等.钙-硼共掺铌酸钾钠基无铅压电陶瓷的微波制备及性能[J].硅酸盐学报,48(9):1396-1404.LI Haitao,LI Ran,WANG Guangxin,et al.Microwave preparation and properties of calcium-boron co-doped potassium sodium niobate-based lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,48(9):1396-1404.(in Chinese)

    • [49] HUIDROM S D,MAMATA M.Microwave sintering effect on the structural and electrical properties of sodium potassium niobate nanocrystallites[J].Integrated Ferroelectrics,2019,202(1):204-209.

    • [50] BAFANDEH M R,GHARAHKHANI R,ABBASI M H,et al.Improvement of piezoelectric and ferroelectric properties in(K,Na)NbO3-based ceramics via microwave sintering[J].Journal of Electroceramics,2014,33(1-2):128-133.

    • [51] MACHADO I F,BOIDI G,FUKUMASU N K,et al.Effect of sintering densification on micro-scale mechanical and tribological behaviour of niobium carbide[J].Wear,2021:482-483.

    • [52] RIGOBERTO LÓPEZ-JUÁREZ,GONZÁLEZ-GARCÍA F,ZÁRATE-MEDINA J,et al.Piezoelectric properties of Li–Ta co-doped potassium-sodium niobate ceramics prepared by spark plasma and conventional sintering[J].Journal of Alloys & Compounds,2011,509(9):3837-3842.

    • [53] ZLOUZEOVA K,HRIBALOVA S,NECINA V,et al.Partially sintered leadfree ceramics form piezoelectric powdersprepared prepared via conventional firing and spark plasma sintering(sps)characterization of microstructure and dielectric properties[J].Ceramicssilikaty,65(1):30-37.

    • [54] MORSHED T,ZUBAIR A,SILIEN C,et al.Piezo and pyroelectricity in spark plasma sintered potassium sodium niobate(KNN)ceramics[J].IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(5):1428-1432.

    • [55] WANG R,XIE R,SEKIYA T,et al.Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method[J].Materials Research Bulletin,2004,39(11):1709-1715.

    • [56] 赵高磊,张海龙,张波萍.气氛烧结锂掺杂铌酸钾钠无铅压电陶瓷的电学性能[J].材料导报,2010(10):4-6.ZHAO Gaolei,ZHANG Hailong,ZHANG Boping.Electrical properties of lead-free piezoelectric ceramics doped with potassium sodium niobate[J].Materials Reports,2010(10):4-69.(in Chinese)

    • [57] 陆雷,肖定全,田建华,等.无铅压电陶瓷薄膜的制备及应用研究[J].功能材料,2009(5):4.LU Lei,XIAO Dingquan,TIAN Jianhua,et al.Preparation and application of lead-free piezoelectric ceramic films[J].Functional Materials,2009(5):4.(in Chinese)

    • [58] PRELLIER W,MERCEY B.Influence of the deposition temperature on the metal-to-insulator transition in Pr0.5Sr0.5MnO3 thin films[J].Journal of Physics D Applied Physics,2004,38(1):172.

    • [59] 范学敏,付鹏,杜鹃,等.(100)择优取向 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 无铅压电薄膜的结构和性能影响[J].硅酸盐学报,2020,371(2):13-18.FAN Xuemin,FU Peng,DU Juan,et al.The influence of(100)preferred orientation on the structure and properties of 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 leadfree piezoelectric film[J].Journal of the Chinese Ceramic Society,2020,371(2):13-18.(in Chinese)

    • [60] SHWETA S,ASHOK K,VINAY G,et al.Influence of top metal electrode on electrical properties of pulsed laser deposited lead-free ferroelectric K0.35Na0.65NbO3 thin films-ScienceDirect[J].Materials Science in Semiconductor Processing,2019,103(15):104618-104618.

    • [61] SHWETA S,ASHOK K,VINAY G,et al.Dielectric and ferroelectric studies of KNN thin film grown by pulsed laser deposition technique[J].Vacuum,2019,160:233-237.

    • [62] ZHANG W,ZHU H,ZHANG X,et al.Structural and electrical study of highly(100)-oriented KNN films fabricated by a sol-gel non-alkoxide process[J].Ceramics International,2019,45(17):22156-22162.

    • [63] YAO L,ZHU K,WANG J,et al.Annealing temperature effects on the electrical properties of(K,Na)NbO3 thin film fabricated by a sol-gel process with a citrate precursor solution[J].Ferroelectrics,2016,493(1):47-53.

    • [64] AKMAL M,WARIKH A,AZLAN U,et al.Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique[J].Ceramics International,2018,44(1):317-325.

    • [65] HUANG J W,LIU J S,LI Z Q,et al.Effects of annealing temperature on structure and electrical properties of(Na,K)NbO3 thin films grown by RF magnetron sputtering deposition[J].Journal of Materials Science-materials in Electronics,2016,27(1):899-905.

    • [66] MADANI A,MRAD R B,SINCLAIR A N.Characterization of RF sputtered thin film potassium sodium niobate(KNN)with silicon and nickel electrodes[J].Microsystem Technologies,2017,23(6):1-6.

    • [67] ISAKU,KANNO,TAKUYA,et al.Piezoelectric properties of(K,Na)NbO3 thin films deposited on(001)SrRuO3/Pt/MgO substrates[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2007,54(12):2562-2566.

    • [68] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubin,et al.Current status and development prospect of equipment application of thermal spraying technology[J].China Surface Engineering,2021,34(4):12-18.

    • [69] CHEN S,TAN C,TAN S Y,et al.Potassium sodium niobate(KNN)-based lead-free piezoelectric ceramic coatings on steel structure by thermal spray method[J].Journal of the American Ceramic Society,2018,12(101):5524-5533.

    • [70] CHEN,S T,TAN C K I,YAO K.Potassium-sodium niobate-based lead-free piezoelectric ceramic coatings by thermal spray process[J].Journal of the American Ceramic Society,2016,10(99):3293-3299.

    • [71] 刘培新,朱孔军,胡秀兰,等.聚合物前驱体法制备铌酸钾钠薄膜[J].电子元件与材料,2009,28(9):61-65.LIU Peixin,ZHU Kongjun,HU Xiulan,et al.Preparation of potassium sodium niobate film by polymer precursor method[J].Electronic Components and Materials,2009,28(9):61-65.(in Chinese)

    • [72] 阎鑫,任巍.金属有机盐热分解法制备铌酸钾钠无铅压电薄膜[J].电子元件与材料,2010(10):25-27.YAN Xin,REN Wei.Preparation of potassium sodium niobate lead-free piezoelectric films by thermal decomposition of metal organic salts[J].Electronic Components and Materials,2010(10):25-27.(in Chinese)

  • 参考文献

    • [1] SEZER N,KOC M.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J].Nano Energy,2020,80(105567):1-25.

    • [2] ZHOU X F,XUE G L,LUO H,et al.Phase structure and properties of sodium bismuth titanate lead-freepiezoelectric ceramics[J].Progress in Materials Science,2021,122:100836.

    • [3] NYAMAYOKA,LUMBUMBA,TATY-ETIENNE,et al.Design of a prototype generator based on piezoelectric power generation for vibration energy harvesting[J].Journal of Energy in Southern Africa,2017,28(4):32-40.

    • [4] 唐明响,陈良,祁核,等.缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J].材料导报,2022,36(2):66-71.TANG Mingxiang,CHEN Liang,QI He,et al.Progress of defect dipole modulation of lead-based chalcogenide piezoelectric ceramic properties[J].Materials Direct,2022,36(2):66-71.(in Chinese)

    • [5] 石伟丽,邢志国,王海斗,等.等离子喷涂PZT涂层的制备与性能分析[J].中国表面工程,2014,27(4):19-24.SHI Weili,XING Zhiguo,WANG Haidou,et al.Preparation and performance analysis of plasma sprayed PZT coatings[J].China Surface Engineering,2014,27(4):19-24.(in Chinese)

    • [6] WANG C,FANG B,WU D,et al.Pyroelectric performance,dielectric response and conductive mechanism of BCHT lead-free piezoelectric ceramics via powder injection molding[J].Journal of Materials Research and Technology,2020,9(5):11303-11310.

    • [7] 宋牙牙,黄艳斐,郭伟玲,等.铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J].材料导报,2022,36(5):34-43.SONG Yaya,HUANG Yanfei,GUO Weiling,et al.Research progress on doping modification of lead-free piezoelectric ceramics based on potassium niobate[J].Materials Guide,2022,36(5):34-43.(in Chinese)

    • [8] ZAKARIA C,FATIMA E B,YOUSSEF T,et al.Design,structural evolution,optical,electrical and dielectric properties of perovskite ceramics Ba1-xBixTi1-xFexO3(0≤x ≤0.8)[J].Materials Chemistry and Physics,2021,273:125096.

    • [9] WANG H,LI Q,JIA Y X,et al.(Na0.8-K0.2Li)0.5Bi0.5Ti0.985Ta0.015O3 lead-free ceramics with large strain and high recoverable energy density[J].Journal of Alloys and Compounds,2021,879:160378.

    • [10] 李海涛,张波萍,文九巴,等.Li 补偿量对铌酸盐基无铅压电陶瓷结构和性能的影响[J].无机材料学报,2012,27(4):385-389.LI Haitai,ZHANG Boping,WEN Jiuba,et al.The influence of Li compensation on the structure and performance of niobate-based lead-free piezoelectric ceramics[J].Journal of Inorganic Materials,2012,27(4):385-389.(in Chinese)

    • [11] ZHANG J,WANG X.Piezoelectric properties,phase transitions and domain structure of(Bi,Na)HfO3 modified(K,Na)(Nb,Sb)O3 ceramics[J].Materialia,2021,17:101120.

    • [12] POLITOVA E D,KALEVA G M,MOSUNOV A V,et al.Dielectric and local piezoelectric properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2020,569(1):201-208.

    • [13] XU K,LI J,LV X,et al.Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J].Advanced Materials,2016,28(38):8519–8523.

    • [14] TAO H,YIN J,ZHAO C,et al.Relaxor behavior of potassium sodium niobate ceramics by domain evolution[j].Journal of the European Ceramic Society,2020,41(1):335-343.

    • [15] YANG Z,DU J,MARTIN L,et al.Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics[J].Journal of the European Ceramic Society,2020,41(3):1925-1933.

    • [16] JHINKWAN S S,PANWAR N S.Effect of Li doping on dielectric properties of Na1-xKxNbO3,x = 0.500,morphotropic phase region[J].Ferroelectrics,2021,570(1):122-131.

    • [17] LI J W,LIU Y X,THONG H C,et al.Effect of ZnO doping on(K,Na)NbO3-based lead-free piezoceramics:Enhanced ferroelectric and piezoelectric performance[J].Journal of Alloys and Compounds,2020,847(8):155936.

    • [18] ZHANG L H,WANG S L,LIU F H.Effect of Eu doping on the structural,electrical,and dielectric properties of K0.5Na0.5NbO3 ceramics for high-temperature capacitor applications[J].Journal of Electronic Materials,2015,44(10):3408-3414.

    • [19] WENMING,SHI,JUAN,et al.Dielectric relaxation,impedance spectra,temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics[J].Journal of Materials Science:Materials in Electronics,2020,31(2):959-966.

    • [20] POLITOVA E D,KALEVA G M,et al.Influence of A-site doping on properties of lead-free KNN-based perovskite ceramics[J].Ferroelectrics,2021,575(1):158-166.

    • [21] WANG Y,ZHU W,SUN Q,et al.Effects of A/B-site dopants on microstructure and domain configuration of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of Alloys and Compounds,2019,787:407-413.

    • [22] TAN L,SUN Q,WANG Y.Outstanding piezoelectric properties of Al-substituted potassium-sodium niobatebased lead-free piezoceramics[J].Journal of Alloys and Compounds,2020,836:155419.

    • [23] CHU D L,WANG C,ZHU M K,et al.Effect of Mn doping on sintering characteristics,microstructure and electrical properties of lead-free potassium sodium niobate ceramics[J].Optoelectronics and Advanced Materialsrapid Communications,2020,14(9-10):466-470.

    • [24] 李海涛,邢朝君,闫焉服,等.Zn 掺杂对铌酸钾钠压电陶瓷结构和性能的影响[J].河南科技大学学报(自然科学版),2013,34(6):1-4.LI Haitao,XING Zhaojun,YAN Yanfu,et al.Effect of Zn doping on the structure and properties of potassium sodium niobate piezoelectric ceramics[J].Journal of Henan University of Science and Technology(Natural Science),2013,34(6):1-4.(in Chinese)

    • [25] DAI Y J,ZHANG X W,CHEN K P.Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics[J].Applied Physics Letters,2009,94(4):4141.

    • [26] 田爱芬,徐志蓬,刘淑娟,等.铋掺杂对铌酸钾钠无铅压电陶瓷结构和性能的影响[J].硅酸盐学报,2014,42(5):667-671.TIAN Aifen,XU Zhipeng,LIU Shujuan,et al.The effect of bismuth doping on the structure and properties of potassium sodium niobate lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,2014,42(5):667-671.(in Chinese)

    • [27] R.MAHDI,AL-BAHNAM B,MOHAMMED A A,et al.High-performance(K,Na)NbO3-based binary lead-free piezoelectric ceramics modified with acceptor metal oxide-ScienceDirect[J].Ceramics International,2020,46(13):21762-21770.

    • [28] WANG X,WU J,XIAO D,et al.Giant Piezoelectricity in potassium-sodium niobate lead-Free ceramics[J].Journal of the American Chemical Society,2014,136(7):2905-2910.

    • [29] WILES A A,BRUCKBAUER J,MOHAMMED N,et al.A poly(urethane)-encapsulated benzo[2,3-d:6,7-d′] diimidazole organic down-converter for green hybrid LEDs[J].Materials Chemistry Frontiers,2020,4(3):1006-1012.

    • [30] CUI R,ZHU D,TANG K,et al.Influence of Dy3+ doping on the luminescent and piezoelectric properties of bifunctional(K0.48Na0.52)(Nb0.95Sb0.05)O3 based lead-free piezoceramics[J].Optik-International Journal for Light and Electron Optics,2020,207:163785.

    • [31] WEI Y,ZHENG W,JIA Y,et al.Dual-enhancement of ferro-piezoelectric and photoluminescent performance in Pr3+ doped(K0.5Na0.5)NbO3 lead-free ceramics[J].Applied Physics Letters,2014,105(4):2651-465.

    • [32] 刘绍军,王鹏飞,万冰冰,等.Nd 掺杂 K0.53Na0.47NbO3 基无铅压电陶瓷的结构和性能[J].中国有色金属学报,2012,22(7):2010-2015.LIU Shaojun,WANG Pengfei,WAN Bingbing,et al.Structure and properties of Nd-doped K0.53Na0.47NbO3 based lead-free piezoelectric ceramics[J].The Chinese Journal of Nonferrous Metals,2012,22(7):2010-2015.(in Chinese)

    • [33] XING J,JIANG L,ZHAO C,et al.Potassium sodium niobate based lead-free ceramic for high-frequency ultrasound transducer applications[J].Journal of Materiomics,2020,6(3):513-522.

    • [34] 田爱芬,王茜茜,惠璇,等.无铅陶瓷结构及性能的影响[J].西安科技大学学报,2019(4):158-162.TIAN Aifen,WANG Qianqian,HUI Xuan,et al.Influence of lead-free ceramic structure and properties[J].Journal of Xi’ an University of Science and Technology,2019(4):158-162.(in Chinese)

    • [35] PENG X,ZHANG B,ZHU L,et al.Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics[J].Journal of Advanced Ceramics,2018,7(1):79-87.

    • [36] 周飞.Li3SbCu2O6掺杂KNN无铅压电陶瓷的结构与电性能研究[J].中国陶瓷,2016(52):73-79.ZHOU Fei.Study on the structure and electrical properties of Li3SbCu2O6 doped KNN lead-free piezoelectric ceramics[J].China Ceramics,2016(52):73-79.(in Chinese)

    • [37] LI C,LI Y,YAO T,et al.Wireless electrochemotherapy by selenium-doped piezoelectric biomaterials to enhance cancer cell apoptosis[J].ACS Applied Materials & Interfaces,2020,12(31):34505-34513.

    • [38] 唐春华,李广荣,刘梅军,等.等离子喷涂 La2Zr2O7 热障涂层高温烧结的硬化行为[J].中国表面工程,2020,33(2):119-126.TANG Chunhua,LI Guangrong,LIU Meijun,et al.Hardening behavior of high temperature sintering of plasma sprayed La2Zr2O7 thermal barrier coatings[J].China Surface Engineering,2020,33(2):119-126.(in Chinese)

    • [39] 邢志国.超音速等离子喷涂制备 BaTiO3 压电涂层取得重要进展[J].中国表面工程,2014,27(1):1.XING Zhiguo.Important progress in the preparation of BaTiO3 piezoelectric coatings by supersonic plasma spraying[J].China Surface Engineering,2014,27(1):1.(in Chinese)

    • [40] LI H,YAN Y,WANG G,et al.Hydrothermal solvothermal synthesis potassium sodium niobate lead-free piezoelectric ceramics assisted with microwave[J].Journal of Materials Science Materials in Electronics,2018,29(1):746-752.

    • [41] MARAKHOVSKY M A,PANICH A A,TALANOV M V,et al.Comparative study of the hard and soft PZT-based ceramics sintered by various methods[J].Ferroelectrics,2021,575(1):43-49.

    • [42] KULTAYEVA S,KIM Y W,SONG I H.Influence of sintering atmosphere and BN additives on microstructure and properties of porous SiC ceramics[J].Journal of the European Ceramic Society,2021,41(14):6925-6933.

    • [43] RUTKOWSKI P,HUEBNER J,GRABO A,et al.Dense KNN polycrystals doped by Er2O3 obtained by hot pressing with hexagonal boron nitride protective layer[J].Materials(Basel,Switzerland),2020,13(24):5741.

    • [44] SU,Y L,CHEN,XM,YU,Z D,et al.Comparative study on microstructure and electrical properties of(K0.5Na0.5)NbO3 lead-free ceramics prepared via two different sintering methods[J].Journal of Materials Science,2017,5(52):2934-2943.

    • [45] 郭福强,张保花,王伟,等.不同烧结工艺对 K0.5Na0.5NbO3 陶瓷微结构的影响[J].无机材料学报,2012,27(3):277-280.GUO Fuqiang,ZHANG Baohua,WANG Wei,et al.The influence of different sintering processes on the microstructure of K0.5Na0.5NbO3 ceramics[J].Journal of Inorganic Materials,2012,27(3):277-280.(in Chinese)

    • [46] SUCHANICZ J,FINDER A,SMELTERE I,et al.Dielectric properties of Na0.5K0.5(Nb1-xSbx)O3+MnO2 ceramics(x = 0.04,0.05 and 0.06)[J].Integrated Ferroelectrics,2011,123(1):102-107.

    • [47] LU G,ZHOU W,LUO F,et al.Dielectric properties in the microwave range of K0.5Na0.5NbO3 ceramics[J].Journal of Electronic Materials,2016,46(1):123-129.

    • [48] 李海涛,李冉,王广欣,等.钙-硼共掺铌酸钾钠基无铅压电陶瓷的微波制备及性能[J].硅酸盐学报,48(9):1396-1404.LI Haitao,LI Ran,WANG Guangxin,et al.Microwave preparation and properties of calcium-boron co-doped potassium sodium niobate-based lead-free piezoelectric ceramics[J].Journal of the Chinese Ceramic Society,48(9):1396-1404.(in Chinese)

    • [49] HUIDROM S D,MAMATA M.Microwave sintering effect on the structural and electrical properties of sodium potassium niobate nanocrystallites[J].Integrated Ferroelectrics,2019,202(1):204-209.

    • [50] BAFANDEH M R,GHARAHKHANI R,ABBASI M H,et al.Improvement of piezoelectric and ferroelectric properties in(K,Na)NbO3-based ceramics via microwave sintering[J].Journal of Electroceramics,2014,33(1-2):128-133.

    • [51] MACHADO I F,BOIDI G,FUKUMASU N K,et al.Effect of sintering densification on micro-scale mechanical and tribological behaviour of niobium carbide[J].Wear,2021:482-483.

    • [52] RIGOBERTO LÓPEZ-JUÁREZ,GONZÁLEZ-GARCÍA F,ZÁRATE-MEDINA J,et al.Piezoelectric properties of Li–Ta co-doped potassium-sodium niobate ceramics prepared by spark plasma and conventional sintering[J].Journal of Alloys & Compounds,2011,509(9):3837-3842.

    • [53] ZLOUZEOVA K,HRIBALOVA S,NECINA V,et al.Partially sintered leadfree ceramics form piezoelectric powdersprepared prepared via conventional firing and spark plasma sintering(sps)characterization of microstructure and dielectric properties[J].Ceramicssilikaty,65(1):30-37.

    • [54] MORSHED T,ZUBAIR A,SILIEN C,et al.Piezo and pyroelectricity in spark plasma sintered potassium sodium niobate(KNN)ceramics[J].IEEE Transactions on Dielectrics and Electrical Insulation,2020,27(5):1428-1432.

    • [55] WANG R,XIE R,SEKIYA T,et al.Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method[J].Materials Research Bulletin,2004,39(11):1709-1715.

    • [56] 赵高磊,张海龙,张波萍.气氛烧结锂掺杂铌酸钾钠无铅压电陶瓷的电学性能[J].材料导报,2010(10):4-6.ZHAO Gaolei,ZHANG Hailong,ZHANG Boping.Electrical properties of lead-free piezoelectric ceramics doped with potassium sodium niobate[J].Materials Reports,2010(10):4-69.(in Chinese)

    • [57] 陆雷,肖定全,田建华,等.无铅压电陶瓷薄膜的制备及应用研究[J].功能材料,2009(5):4.LU Lei,XIAO Dingquan,TIAN Jianhua,et al.Preparation and application of lead-free piezoelectric ceramic films[J].Functional Materials,2009(5):4.(in Chinese)

    • [58] PRELLIER W,MERCEY B.Influence of the deposition temperature on the metal-to-insulator transition in Pr0.5Sr0.5MnO3 thin films[J].Journal of Physics D Applied Physics,2004,38(1):172.

    • [59] 范学敏,付鹏,杜鹃,等.(100)择优取向 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 无铅压电薄膜的结构和性能影响[J].硅酸盐学报,2020,371(2):13-18.FAN Xuemin,FU Peng,DU Juan,et al.The influence of(100)preferred orientation on the structure and properties of 0.935Bi1/2Na1/2TiO3-0.065BaTiO3-0.01Al6Bi2O12 leadfree piezoelectric film[J].Journal of the Chinese Ceramic Society,2020,371(2):13-18.(in Chinese)

    • [60] SHWETA S,ASHOK K,VINAY G,et al.Influence of top metal electrode on electrical properties of pulsed laser deposited lead-free ferroelectric K0.35Na0.65NbO3 thin films-ScienceDirect[J].Materials Science in Semiconductor Processing,2019,103(15):104618-104618.

    • [61] SHWETA S,ASHOK K,VINAY G,et al.Dielectric and ferroelectric studies of KNN thin film grown by pulsed laser deposition technique[J].Vacuum,2019,160:233-237.

    • [62] ZHANG W,ZHU H,ZHANG X,et al.Structural and electrical study of highly(100)-oriented KNN films fabricated by a sol-gel non-alkoxide process[J].Ceramics International,2019,45(17):22156-22162.

    • [63] YAO L,ZHU K,WANG J,et al.Annealing temperature effects on the electrical properties of(K,Na)NbO3 thin film fabricated by a sol-gel process with a citrate precursor solution[J].Ferroelectrics,2016,493(1):47-53.

    • [64] AKMAL M,WARIKH A,AZLAN U,et al.Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique[J].Ceramics International,2018,44(1):317-325.

    • [65] HUANG J W,LIU J S,LI Z Q,et al.Effects of annealing temperature on structure and electrical properties of(Na,K)NbO3 thin films grown by RF magnetron sputtering deposition[J].Journal of Materials Science-materials in Electronics,2016,27(1):899-905.

    • [66] MADANI A,MRAD R B,SINCLAIR A N.Characterization of RF sputtered thin film potassium sodium niobate(KNN)with silicon and nickel electrodes[J].Microsystem Technologies,2017,23(6):1-6.

    • [67] ISAKU,KANNO,TAKUYA,et al.Piezoelectric properties of(K,Na)NbO3 thin films deposited on(001)SrRuO3/Pt/MgO substrates[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2007,54(12):2562-2566.

    • [68] 陈永雄,罗政刚,梁秀兵,等.热喷涂技术的装备应用现状及发展前景[J].中国表面工程,2021,34(4):12-18.CHEN Yongxiong,LUO Zhenggang,LIANG Xiubin,et al.Current status and development prospect of equipment application of thermal spraying technology[J].China Surface Engineering,2021,34(4):12-18.

    • [69] CHEN S,TAN C,TAN S Y,et al.Potassium sodium niobate(KNN)-based lead-free piezoelectric ceramic coatings on steel structure by thermal spray method[J].Journal of the American Ceramic Society,2018,12(101):5524-5533.

    • [70] CHEN,S T,TAN C K I,YAO K.Potassium-sodium niobate-based lead-free piezoelectric ceramic coatings by thermal spray process[J].Journal of the American Ceramic Society,2016,10(99):3293-3299.

    • [71] 刘培新,朱孔军,胡秀兰,等.聚合物前驱体法制备铌酸钾钠薄膜[J].电子元件与材料,2009,28(9):61-65.LIU Peixin,ZHU Kongjun,HU Xiulan,et al.Preparation of potassium sodium niobate film by polymer precursor method[J].Electronic Components and Materials,2009,28(9):61-65.(in Chinese)

    • [72] 阎鑫,任巍.金属有机盐热分解法制备铌酸钾钠无铅压电薄膜[J].电子元件与材料,2010(10):25-27.YAN Xin,REN Wei.Preparation of potassium sodium niobate lead-free piezoelectric films by thermal decomposition of metal organic salts[J].Electronic Components and Materials,2010(10):25-27.(in Chinese)

  • 手机扫一扫看