en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

康前飞,男,1997年出生,硕士研究生。主要研究方向为表面工程。E-mail:2455844312@qq.com;

通讯作者:

胡静,女,1966年出生,博士,教授。主要研究方向为金属材料表面改性。E-mail:jinghoo@126.com

中图分类号:TG178

DOI:10.11933/j.issn.1007−9289.20220331003

参考文献 1
LIU S,SHEN J,GUO X H,et al.Corrosion of Fe-Ni-Cr alloys with various aluminum additions in a carburizing-oxidizing atmosphere at 900?℃ [J].Corrosion science,2018,135:67-77.
参考文献 2
ZHOU Z H,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology.2008,203:23-27.
参考文献 3
ZHANG Q Y,ZHOU Y,LIU J Q,et al.Comparative research on dry sliding wear of hot-dip aluminized and uncoated AISI H13 steel[J].Wear,2015,344:22-31.
参考文献 4
CHEN C,LI D Y,SHANG C J.Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear[J].Electrochimica Acta,2009,55:118-124.
参考文献 5
LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.
参考文献 6
陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Yao,JI Qingxin,WEI Kunxia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)
参考文献 7
戴明阳,魏坤霞,陈尧,等.空气预氧化与盐浴预氧化对盐浴渗氮催渗效果的对比[J].中国表面工程,2016,29(6):38-43.DAI Mingyang,WEI Kunxia,CHEN Yao,et al.Comparision of enhancement effect between air pre-oxidation and salt bath pre-oxidation on salt bath nitriding[J].China Surface Engineering,2016,29(6):38-43.(in Chinese)
参考文献 8
毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xi-liang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)
参考文献 9
KIM Y M,SON S W,LEE W B.Thermodynamic and kinetic analysis of formation of compound layer during gas nitriding of AISI1018 carbon steel[J].Metals and Materials international,2018,24:180-18.
参考文献 10
SAEED A,KHAN A W,JAN F,et al.Optimization study of pulsed DC nitrogen-hydrogen plasma in the presence of an active screen cage[J].Plasma Science and Technology,2014,16:460-464.
参考文献 11
MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J],Materials Letters,2021,304(1):130709-11
参考文献 12
PENG T T,CHEN Y,WU M H,et al.Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads [J].Surface and Coatings Technology,2020,403:126403-08.
参考文献 13
PITHAWALLA Y B,DEEVI S.Chemical synthesis of iron aluminide [FeAl] and iron aluminum carbide [Fe3AlC0.5] nanopowders[J].Materials Research Bulletin,2004,39:2303-2316.
参考文献 14
KONG J H,OKUMIYA M,TSUNEKAWA Y,et al.AlN and intermetallic compound layers formed between aluminum and austenitic stainless steel using barrel nitriding[J].Progress in Organic Coatings,2013,76:1841-1845.
参考文献 15
PEDRAZA F,GROSSEAU-POUSSARD J L,DINHUT J F.Low energy-high flux nitrogen implantation of an oxide-dispersion-strengthened FeAl intermetallic alloy [J].Thin Solid Films,2004,467:140-145.
参考文献 16
LU J T,DANG Y Y,HUANG J Y,et al.Preparation and characterization of slurry aluminide coating on Super304H boiler tube in combination with heat-treatment process[J].Surface and Coatings Technology,2019,370:97-105.
参考文献 17
BINDUMADHAVAN P N,MAKESH S,GOWRISHANKAR N,et al.Aluminizing and subsequent nitriding of plain carbon low alloy steels forpiston ring applications[J].Surface and Coatings Technology,2000,127:251–8.
参考文献 18
刘世永,孟德,高学敏,等.低碳钢渗铝加离子渗氮的表面硬化处理[J].金属热处理,2004,29(4):41-43.LIU Shiyong,MENG De,GAO Xuemin,et al.Surface hardening of low carbon steel by plasma nitriding after aluminizing[J].Heat Treatment of Metals,2004,29(4):41-43.(in Chinese)
参考文献 19
陶涛,陈启元,李元高,等.铝酸钠溶液离子膜电解方法制备氢氧化铝[J].中南大学学报(自然科学版),2007,1:102-106.TAO Tao,CHEN Qiyuan,LI Yuangao,et al.Production of A1(OH)3 by ion membrane electrolysis in sodium aluminate solution[J].Journal of Central South University(Science and Technology),2007,1:102-106.(in Chinese)
参考文献 20
PARK J K,BAIK Y J.Increase of hardness and oxidation resistance of VN coating by nanoscale multilayered structurization with AlN[J].Materials Letters,2007,62:2528-2530.
参考文献 21
PENG J W,ZHANG F L,HUANG Y J,et al.Comparative study on NiAl and FeAl intermetallic-bonded diamond tools and grinding performance for Si3N4 ceramic[J].Ceramics International,2021,47:32736-32746.
参考文献 22
TANG L,SUN F,MIAO X J,et al.Evolution of pre-oxide layer during subsequent plasma nitriding[J].Vacuum,2018,152:337-339.
参考文献 23
ZHU L H,HUANG Q W,LIU W.Synthesis of plate-like α-Al2O3 single-crystal particles in NaCl–KCl flux using Al(OH)3 powders as starting materials[J].Ceramics International,2008,34:1729-1733.
参考文献 24
MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.
参考文献 25
李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)
目录contents

    摘要

    为解决高温渗铝存在的基体组织粗化及离子渗氮效率低等问题,研发离子铝氮复合渗。以调质态 42CrMo 钢为材料,先采用电解硝酸铝法在工件表面沉积氢氧化铝膜,然后进行离子渗氮处理,在不影响基体组织性能的前提下,研发离子铝氮复合渗创新技术。采用 SEM、光学显微镜、EDS、XRD、显微硬度计、电化学工作站、摩擦磨损测试机及三维轮廓仪等测试手段,对离子铝氮复合渗层进行测试分析。研究结果表明,离子铝氮复合渗处理后,试样表层高效形成多层次化合物渗层,在(520 ℃ / 4 h)工艺条件下,化合物层由 17.24 μm 增加到 51.23 μm,提升约 3 倍;有效硬化层由 175 μm 增加到 1050 μm,提升约 6 倍。同时,化合物层中形成高硬度 AlN 及 FexAl 相;表面硬度由离子渗氮 750 HV0.025提高到 1250 HV0.025;渗层耐蚀耐磨性比离子渗氮大幅度改善,腐蚀速率由 5.42 μm / a 降低到 1.23 μm / a;摩擦因数由 5.2 降低到 2.9,磨痕明显变窄变浅,表面未有明显磨损裂纹。首次采用沉积氢氧化铝膜作为预处理,成功研发高性能离子铝氮复合渗技术。

    Abstract

    Plasma nitriding (PN) is a widely used environment-friendly chemical heat treatment method that can improve the surface hardness and wear resistance of steel components. However, it has the disadvantages of low efficiency, and an insufficient surface hardness that fails to meet the demands certain severe applications. Aluminization is a surface modification technology that effectively improves the corrosion and oxidation resistance of various metals. Unfortunately, existing aluminizing methods are not environment-friendly and are generally performed at temperatures of up to 800 °C, which has a detrimental effect on the performance of the matrix. In this study, a plasma aluminum-nitriding (PAlN) method is proposed that utilizes the advantages and overcomes the disadvantages of both plasma nitriding and aluminizing. The PAlN method was developed for 42CrMo steel by depositing aluminum hydroxide films on the surface of the samples using the electrolytic aluminum nitrate method as a pretreatment to PN. The microstructures, phase constitutions, cross-sectional elements, hardness profile, and corrosion and wear resistance of the PAlN-treated samples were tested and analyzed by scanning electron microscopy, optical microscopy, X-ray diffraction, microhardness testing, and energy-dispersive X-ray spectroscopy. An electrochemical workstation, friction and wear tester, and 3D profilometer were also used. Aside from combining the advantages of aluminizing and PN, the PAlN method also has much better effects than expected, including behavior and efficiency. This is illustrated as 1 + 1 > 2 owing to the formation of AlN with ultra-high hardness. The results showed that the PAlN layer rapidly formed on the surface of the sample. PAlN treatment at 520 ℃ for 4 h increased the compound layer from 17.24 μm to 51.23 μm, increasing the efficiency by approximately three times that of PN. The effective diffusion layer increased from 175 μm to 1050 μm, increasing the efficiency by approximately six times that of PN. AlN and FexAl phases with high hardness formed in the nitriding layer; the surface hardness increased from 750 HV0.025 to 1250 HV0.025; and the corrosion and wear resistance significantly improved. The corrosion current decreased from 0.923 μA / cm2 to 0.220 μA / cm2 ; the corrosion potential increased from −605.30 mV to −299.58 mV; and the corrosion rate decreased from 5.42 μm / a to 1.23 μm / a. The friction coefficient decreased from 0.52 to 0.29. The wear marks became narrower and shallower, and no obvious wear cracks appeared on the surface. The potential mechanism is as follows. Active [Al] was formed by hydrogen [H] atoms sputtering the aluminum hydroxide film deposited on the surface of the sample, which enabled the active [Al] to easily combine with iron and nitrogen atoms to form FexAl and AlN. This resulted in not only ultra-high efficiency but also the excellent overall performance of the PAlN layer. In conclusion, the PAlN method with ultra-high efficiency and excellent performance was developed by depositing an aluminum hydroxide film on the surface of the samples using the electrolytic aluminum nitrate method as a pretreatment. This can be considered as the optimal surface modification technology to date.

  • 0 前言

  • 金属表面渗铝能够显著提高耐磨、耐蚀、抗高温氧化及抗渗碳性[1-4],但现有渗铝方法处理温度一般高于常用结构钢的调质回火温度,导致晶粒粗化,使零部件整体性能降低。离子渗氮是一种应用广泛的化学热处理,具有环保清洁等特点,可提高工件表面性能[5-8]。但单一离子渗氮化合物层达不到某些特殊领域高性能要求,如表面极高硬度和耐磨性、抗氧化性等[9-12]

  • 基于铝一方面是强氮化物形成元素,可形成高硬度 AlN 相,另一方面也可与铁形成性能优异的 FexAl 金属间化合物[13-16],可以预期离子铝氮复合渗可能具有提升金属零部件表层性能的显著优势。尽管先渗铝后渗氮的铝氮复合渗技术可以发挥两者优势,提高工件表面性能,但该方法不仅工艺复杂,且渗层较薄,工艺效率低[17-18]

  • 为克服传统渗铝和离子渗氮的不足,并挖掘两者优势,本文以调质态 42CrMo 钢为材料,探索采用电解硝酸铝法在工件表面制备氢氧化铝膜作为预处理,然后在低于 42CrMo 钢调质处理的回火温度 (560℃)进行离子渗氮处理,旨在保障不降低零部件基体性能的前提下,形成离子铝氮复合渗技术,获得优于传统离子渗氮渗层的组织性能。本文的创新表面改性技术具有显著的科学研究及工程应用价值。

  • 1 材料与方法

  • 试验材料为调质态 42CrMo 钢,基体硬度为 370 HV0.025。采用线切割加工尺寸为 10 mm× 10 mm×5 mm 试样,并采用 180 #~1500 #的砂纸逐步进行打磨,然后将样品放在无水乙醇中并用超声波清洗 5 min 去除油污和杂质,采用文献中报道的电解硝酸铝法在试样表面沉积氢氧化铝膜[19],将沉积氢氧化铝试样取出吹干。将试样置于离子渗氮炉内,在 25% N2+75% H2 气体、700 Pa 气体压力及 520℃ / 0.5~4 h 工艺条件下通过辉光放电原理将铝和氮元素渗入试样,实现离子铝氮复合渗。作为对比,在 520℃ / 4 h 进行离子渗氮。

  • 采用 SEM 观察氢氧化铝膜微观形貌;采用 DMI-3000M 型光学显微镜观察截面组织,EDS 分析试样截面 Fe、Al、N 元素含量;采用 D / max-2500 型 X 射线衍射仪测试物相组成,使用 Cu-Kα 射线,波长为 λ=0.154 nm,扫描速度设为 0.2(°)/ min,步宽设定为 0.02°,2θ 范围选定 20°~100°;采用 HXD-1000TMC 维氏硬度计测量截面显微硬度,载荷为 25 g,保持时间为 15 s;采用 TD7300 型电化学测试系统在 3.5%NaCl 溶液中测量试样在室温下的极化曲线,参比电极为饱和甘汞电极(SCE),辅助电极为 Pt 电极,扫描速度为 2 mV / s;采用 MMV-1A 多功能材料摩擦行为测试仪测量耐磨性。对磨材料为 GCr15 钢球,直径为 5 mm,转速为 200 r / min,加载载荷为 200 g,对磨时间为 15 min; 采用 MST-5000 电子天平测量磨损前后试样质量,并计算磨损失重。采用三维轮廓仪观察表面磨痕形貌。

  • 2 结果与讨论

  • 2.1 氢氧化铝镀膜形貌

  • 图1 所示为电解硝酸铝法在工件表面沉积的氢氧化铝膜形貌。从图中可以看出,氢氧化铝呈微小碎块状均匀分布在试样表面,并且在工件表面形成大量微裂纹。这些大量的微裂纹可以很好地将轰击试样表面的元素留在工件表面。

  • 图1 电解硝酸铝法沉积氢氧化铝膜形貌

  • Fig.1 Morphology of aluminum hydroxide deposited by electrolytic aluminum nitrate

  • 2.2 截面显微组织

  • 图2 所示为不同工艺条件下离子铝氮复合渗和离子渗氮截面显微组织。可以明显看出,520℃ / 4 h 离子铝氮复合渗(PAlN)后,化合物层显微结构不同于离子渗氮(PN),形成多层次化合物层组织,如同大锯齿型状牢牢钉扎在基体中,化合物层厚度由离子渗氮的 17.24 μm 增加到 51.23 μm。同时,从图2c 看出,相同温度下,保温时间 0.5 h 离子铝氮复合渗(PAlN)后,化合物层厚度达到 20.37 μm,厚度大于离子渗氮保温 4 h 的 17.24 μm。换言之,当要求化合物层厚度为 20 μm 左右时,离子铝氮复合渗时间可以减少到 0.5 h。

  • 图2 不同工艺条件下离子铝氮复合渗和离子渗氮截面显微组织

  • Fig.2 Cross-sectional microstructure of samples treated by PAlN and PN under the different process parameters

  • 2.3 EDS 渗层截面分析图

  • 图3 为不同工艺条件下离子铝氮复合渗和离子渗氮截面 EDS 线扫描分析图,扫描路径为图2 中水平虚线。从图3 中离子铝氮复合渗(PAlN)可以看出,在图2 中 A 区域,以铁元素为主,含少量铝氮元素;B 区域铁铝氮元素浓度相近。离子渗氮化合物层以铁元素为主,氮元素浓度在化合物层结束时快速降低。

  • 图3 不同工艺条件下离子铝氮复合渗和离子渗氮截面 EDS 线扫描分析图

  • Fig.3 PAlN and PN cross section EDS line scanning under the different process parameters

  • 2.4 XRD 分析

  • 图4 为不同工艺条件下离子铝氮复合渗和离子渗氮渗层物相图(XRD)。从图中可以看出,离子铝氮复合渗(PAlN)处理后出现了 AlN 及 FexAl 等强化相,且 γ’-Fe4N 和 ε-Fe2-3N 衍射峰比离子渗氮(PN)时降低。

  • 图4 不同工艺条件下离子铝氮复合渗和离子渗氮渗层物相

  • Fig.4 X-ray diffraction patterns of samples treated by PAlN and PN under different process parameters

  • 2.5 截面硬度

  • 图5 显示了不同工艺条件下离子铝氮复合渗和离子渗氮截面硬度。可以看出,离子铝氮复合渗 (PAlN)处理后试样表层硬度远高于离子渗氮(PN) 处理,表面硬度由 750 HV0.025提高到 1 250 HV0.025; 有效硬化层由 175 μm 显著增加到 1 050 μm。 520℃ / 0.5 h 离子铝氮复合渗(PAlN)表面硬度为 1 070 HV0.025;有效硬化层为 240 μm。即相同处理温度 520℃下,离子铝氮复合渗(PAlN)0.5 h 获得的表面硬度和有效硬化层深度均大于离子渗氮(PN)4 h 的硬度和层深,相当于在形成单位化合物层厚度下所用时间比离子渗氮降低 7 倍。表层硬度及有效硬化层显著提高,源于离子铝氮复合渗处理后渗层中形成了如图2 所示的高硬度 AlN 及 FexAl 相[20-21]

  • 图5 不同工艺条件下离子铝氮复合渗和离子渗氮截面硬度对比

  • Fig.5 Micro-hardness profile of samples treated by PAlN and PN under different process parameters

  • 2.6 极化曲线测试

  • 图6 所示为基体及相同工艺参数下(520℃ / 4 h)等离子处理后的动电位极化曲线。结合表1 可以得出,离子处理前基体耐蚀性最差,自腐蚀电位为-1 083.80 mV,自腐蚀电流为 47.944 μA / cm2,腐蚀速率 0.785 mm / a。离子渗氮处理后(PN) 自腐蚀电位为 −605.30 mV,自腐蚀电流为 0.923 μA / cm2,腐蚀速率 5.42 μm / a。而经铝氮复合渗处理后(PalN)自腐蚀电位为−299.58 mV,自腐蚀电流为 0.220 μA / cm2,腐蚀速率 1.23 μm / a。由此得出,经铝氮离子复合渗后,耐蚀性大大提高。

  • 图6 基体及相同工艺参数下(520℃ / 4 h) 等离子处理后的动电位极化曲线

  • Fig.6 Dynamic polarization curves of the substrate and samples treated by plasma nitriding under the same process parameters

  • 表1 基体及等离子处理试样动电位极化曲线数据分析

  • Table1 Corrosion resistance of substrate and plasma treated samples

  • 2.7 耐磨性分析

  • 图7 所示为相同工艺参数下(520℃ / 4 h)等离子处理处理后试样摩擦因数对比。可以看出,离子铝氮复合渗处理后试样摩擦因数为 0.29,明显低于离子渗氮处理的 0.52,且离子铝氮复合渗处理试样摩擦因数曲线较平滑,波动幅度较小。试样磨损失重由常规离子渗氮的 0.322 μg·m−1 ·N−1 下降到 0.121 μg·m−1 ·N−1

  • 图7 相同工艺参数下(520℃ / 4h)等离子处理后试样摩擦因数和磨损率对比

  • Fig.7 Friction factor and wear rate of samples treated by PAlN and PN under the same process parameters

  • 图8 所示为相同工艺参数下(520℃ / 4 h)等离子处理后三维轮廓磨痕对比。可以看出,离子铝氮复合渗(图8a)试样表面磨损凹坑较小,磨痕宽仅为 264.6 μm,磨痕深为 1.97 μm,且表面未见明显破碎痕迹。离子渗氮(图8b)试样不仅磨痕较宽为 357.5 μm,磨痕深度也较深,达到 2.53 μm,且磨损表面有较大凹坑和磨损物产生,表面出现磨碎破碎痕迹,导致摩擦因数曲线波动较大,见图7。

  • 图8 相同工艺参数下(520℃ / 4 h)等离子处理后三维轮廓磨痕对比

  • Fig.8 Morphology of wear mark of samples treated by PAlN and PN under the same process parameters

  • 2.8 离子铝氮复合渗机理讨论

  • 如图1 所示,氢氧化铝沉积到试样表面成微小块状,在表面形成大量微裂纹。在离子铝氮复合渗过程中试样表面发生如下反应[22-23]

  • 2Al(OH)3=Al2O3+3H2O
    (1)
  • Al(OH)3+3[H]=[Al]+3H2O
    (2)
  • Al2O3+6[H]=2[Al]+3H2O
    (3)
  • xFe+[Al]=FexAl
    (4)
  • [N]+[Al]=A1N
    (5)
  • 从反应式(1)可见,沉积在试样表面的 Al(OH)3 因高温分解成为 Al2O3 和游离态 H2O;同时,根据反应式(2)、(3),沉积在试样表面的 Al(OH)3 及高温分解获得的 Al2O3 可与溅射的[H]反应形成活性 [Al]和游离态 H2O[24];有研究表明游离态 H2O 易与Fe 反应生成 Fe3O4,可促进氮原子扩散,加速化合物层形成[25];同时,根据反应式(4)、(5)所示,反应式(2)、(3)产生的活性[Al]易与铁及氮原子结合形成高硬度相 FexAl 和 AlN,达到提高渗层硬度的显著效果。

  • 3 结论

  • 以 42CrMo 钢为材料,先采用电解硝酸铝法在工件表面沉积氢氧化铝膜作为预处理,然后进行离子渗氮处理,制备离子铝氮复合渗层。与传统离子渗氮技术对比,得出以下主要结论:

  • (1)相同工艺参数下(520℃ / 4 h),离子铝氮复合渗可高效形成具有高硬度 AlN 及 FexAl 相的多层次化合物渗层,化合物层厚度明显增加,由 17.24 μm 增加到 51.23 μm。

  • (2)离子铝氮复合渗试样表面硬度由离子渗氮的 750 HV0.025 增加到 1 250 HV0.025,有效硬化层由 175 μm 增加到 1 050 μm。

  • (3)离子铝氮复合渗大幅度提高耐蚀性能,腐蚀速率由 5.42 μm / a 降低到 1.23 μm / a。

  • (4)离子铝氮复合渗试样耐磨性显著改善,摩擦因数由离子渗氮的 5.2 降低到 2.9,磨痕明显变窄变浅,表面未有明显磨损裂纹。

  • 参考文献

    • [1] LIU S,SHEN J,GUO X H,et al.Corrosion of Fe-Ni-Cr alloys with various aluminum additions in a carburizing-oxidizing atmosphere at 900?℃ [J].Corrosion science,2018,135:67-77.

    • [2] ZHOU Z H,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology.2008,203:23-27.

    • [3] ZHANG Q Y,ZHOU Y,LIU J Q,et al.Comparative research on dry sliding wear of hot-dip aluminized and uncoated AISI H13 steel[J].Wear,2015,344:22-31.

    • [4] CHEN C,LI D Y,SHANG C J.Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear[J].Electrochimica Acta,2009,55:118-124.

    • [5] LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.

    • [6] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Yao,JI Qingxin,WEI Kunxia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)

    • [7] 戴明阳,魏坤霞,陈尧,等.空气预氧化与盐浴预氧化对盐浴渗氮催渗效果的对比[J].中国表面工程,2016,29(6):38-43.DAI Mingyang,WEI Kunxia,CHEN Yao,et al.Comparision of enhancement effect between air pre-oxidation and salt bath pre-oxidation on salt bath nitriding[J].China Surface Engineering,2016,29(6):38-43.(in Chinese)

    • [8] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xi-liang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [9] KIM Y M,SON S W,LEE W B.Thermodynamic and kinetic analysis of formation of compound layer during gas nitriding of AISI1018 carbon steel[J].Metals and Materials international,2018,24:180-18.

    • [10] SAEED A,KHAN A W,JAN F,et al.Optimization study of pulsed DC nitrogen-hydrogen plasma in the presence of an active screen cage[J].Plasma Science and Technology,2014,16:460-464.

    • [11] MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J],Materials Letters,2021,304(1):130709-11

    • [12] PENG T T,CHEN Y,WU M H,et al.Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads [J].Surface and Coatings Technology,2020,403:126403-08.

    • [13] PITHAWALLA Y B,DEEVI S.Chemical synthesis of iron aluminide [FeAl] and iron aluminum carbide [Fe3AlC0.5] nanopowders[J].Materials Research Bulletin,2004,39:2303-2316.

    • [14] KONG J H,OKUMIYA M,TSUNEKAWA Y,et al.AlN and intermetallic compound layers formed between aluminum and austenitic stainless steel using barrel nitriding[J].Progress in Organic Coatings,2013,76:1841-1845.

    • [15] PEDRAZA F,GROSSEAU-POUSSARD J L,DINHUT J F.Low energy-high flux nitrogen implantation of an oxide-dispersion-strengthened FeAl intermetallic alloy [J].Thin Solid Films,2004,467:140-145.

    • [16] LU J T,DANG Y Y,HUANG J Y,et al.Preparation and characterization of slurry aluminide coating on Super304H boiler tube in combination with heat-treatment process[J].Surface and Coatings Technology,2019,370:97-105.

    • [17] BINDUMADHAVAN P N,MAKESH S,GOWRISHANKAR N,et al.Aluminizing and subsequent nitriding of plain carbon low alloy steels forpiston ring applications[J].Surface and Coatings Technology,2000,127:251–8.

    • [18] 刘世永,孟德,高学敏,等.低碳钢渗铝加离子渗氮的表面硬化处理[J].金属热处理,2004,29(4):41-43.LIU Shiyong,MENG De,GAO Xuemin,et al.Surface hardening of low carbon steel by plasma nitriding after aluminizing[J].Heat Treatment of Metals,2004,29(4):41-43.(in Chinese)

    • [19] 陶涛,陈启元,李元高,等.铝酸钠溶液离子膜电解方法制备氢氧化铝[J].中南大学学报(自然科学版),2007,1:102-106.TAO Tao,CHEN Qiyuan,LI Yuangao,et al.Production of A1(OH)3 by ion membrane electrolysis in sodium aluminate solution[J].Journal of Central South University(Science and Technology),2007,1:102-106.(in Chinese)

    • [20] PARK J K,BAIK Y J.Increase of hardness and oxidation resistance of VN coating by nanoscale multilayered structurization with AlN[J].Materials Letters,2007,62:2528-2530.

    • [21] PENG J W,ZHANG F L,HUANG Y J,et al.Comparative study on NiAl and FeAl intermetallic-bonded diamond tools and grinding performance for Si3N4 ceramic[J].Ceramics International,2021,47:32736-32746.

    • [22] TANG L,SUN F,MIAO X J,et al.Evolution of pre-oxide layer during subsequent plasma nitriding[J].Vacuum,2018,152:337-339.

    • [23] ZHU L H,HUANG Q W,LIU W.Synthesis of plate-like α-Al2O3 single-crystal particles in NaCl–KCl flux using Al(OH)3 powders as starting materials[J].Ceramics International,2008,34:1729-1733.

    • [24] MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.

    • [25] 李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)

  • 参考文献

    • [1] LIU S,SHEN J,GUO X H,et al.Corrosion of Fe-Ni-Cr alloys with various aluminum additions in a carburizing-oxidizing atmosphere at 900?℃ [J].Corrosion science,2018,135:67-77.

    • [2] ZHOU Z H,XIE F,HU J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coatings Technology.2008,203:23-27.

    • [3] ZHANG Q Y,ZHOU Y,LIU J Q,et al.Comparative research on dry sliding wear of hot-dip aluminized and uncoated AISI H13 steel[J].Wear,2015,344:22-31.

    • [4] CHEN C,LI D Y,SHANG C J.Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear[J].Electrochimica Acta,2009,55:118-124.

    • [5] LIU H,LI J C,CHAI Y T,et al.A novel plasma oxynitriding by using plain air for AISI 1045 steel[J].Vacuum,2015,121:18-21.

    • [6] 陈尧,纪庆新,魏坤霞,等.不同渗氮温度下38CrMoAl钢低氮氢比无白亮层离子渗氮[J].中国表面工程,2018,31(2):23-28.CHEN Yao,JI Qingxin,WEI Kunxia,et al.Plasma nitriding without white layer for 38CrMoAl steel with lower ratio of N2 to H2 under different temperature[J].China Surface Engineering,2018,31(2):23-28.(in Chinese)

    • [7] 戴明阳,魏坤霞,陈尧,等.空气预氧化与盐浴预氧化对盐浴渗氮催渗效果的对比[J].中国表面工程,2016,29(6):38-43.DAI Mingyang,WEI Kunxia,CHEN Yao,et al.Comparision of enhancement effect between air pre-oxidation and salt bath pre-oxidation on salt bath nitriding[J].China Surface Engineering,2016,29(6):38-43.(in Chinese)

    • [8] 毛长军,魏坤霞,刘细良,等.微量钛对离子渗氮渗层特性及性能的影响[J].中国表面工程,2020,33(1):34-38.MAO Changjun,WEI Kunxia,LIU Xi-liang,et al.Effects of trace titanium on characteristics and properties of plasma nitriding layer[J].China Surface Engineering,2020,33(1):34-38.(in Chinese)

    • [9] KIM Y M,SON S W,LEE W B.Thermodynamic and kinetic analysis of formation of compound layer during gas nitriding of AISI1018 carbon steel[J].Metals and Materials international,2018,24:180-18.

    • [10] SAEED A,KHAN A W,JAN F,et al.Optimization study of pulsed DC nitrogen-hydrogen plasma in the presence of an active screen cage[J].Plasma Science and Technology,2014,16:460-464.

    • [11] MA H,WEI K X,ZHAO X B,et al.Performance enhancement by novel plasma boron-nitriding for 42CrMo4 steel[J],Materials Letters,2021,304(1):130709-11

    • [12] PENG T T,CHEN Y,WU M H,et al.Phase constitution control of plasma nitrided layer and its effect on wear behavior under different loads [J].Surface and Coatings Technology,2020,403:126403-08.

    • [13] PITHAWALLA Y B,DEEVI S.Chemical synthesis of iron aluminide [FeAl] and iron aluminum carbide [Fe3AlC0.5] nanopowders[J].Materials Research Bulletin,2004,39:2303-2316.

    • [14] KONG J H,OKUMIYA M,TSUNEKAWA Y,et al.AlN and intermetallic compound layers formed between aluminum and austenitic stainless steel using barrel nitriding[J].Progress in Organic Coatings,2013,76:1841-1845.

    • [15] PEDRAZA F,GROSSEAU-POUSSARD J L,DINHUT J F.Low energy-high flux nitrogen implantation of an oxide-dispersion-strengthened FeAl intermetallic alloy [J].Thin Solid Films,2004,467:140-145.

    • [16] LU J T,DANG Y Y,HUANG J Y,et al.Preparation and characterization of slurry aluminide coating on Super304H boiler tube in combination with heat-treatment process[J].Surface and Coatings Technology,2019,370:97-105.

    • [17] BINDUMADHAVAN P N,MAKESH S,GOWRISHANKAR N,et al.Aluminizing and subsequent nitriding of plain carbon low alloy steels forpiston ring applications[J].Surface and Coatings Technology,2000,127:251–8.

    • [18] 刘世永,孟德,高学敏,等.低碳钢渗铝加离子渗氮的表面硬化处理[J].金属热处理,2004,29(4):41-43.LIU Shiyong,MENG De,GAO Xuemin,et al.Surface hardening of low carbon steel by plasma nitriding after aluminizing[J].Heat Treatment of Metals,2004,29(4):41-43.(in Chinese)

    • [19] 陶涛,陈启元,李元高,等.铝酸钠溶液离子膜电解方法制备氢氧化铝[J].中南大学学报(自然科学版),2007,1:102-106.TAO Tao,CHEN Qiyuan,LI Yuangao,et al.Production of A1(OH)3 by ion membrane electrolysis in sodium aluminate solution[J].Journal of Central South University(Science and Technology),2007,1:102-106.(in Chinese)

    • [20] PARK J K,BAIK Y J.Increase of hardness and oxidation resistance of VN coating by nanoscale multilayered structurization with AlN[J].Materials Letters,2007,62:2528-2530.

    • [21] PENG J W,ZHANG F L,HUANG Y J,et al.Comparative study on NiAl and FeAl intermetallic-bonded diamond tools and grinding performance for Si3N4 ceramic[J].Ceramics International,2021,47:32736-32746.

    • [22] TANG L,SUN F,MIAO X J,et al.Evolution of pre-oxide layer during subsequent plasma nitriding[J].Vacuum,2018,152:337-339.

    • [23] ZHU L H,HUANG Q W,LIU W.Synthesis of plate-like α-Al2O3 single-crystal particles in NaCl–KCl flux using Al(OH)3 powders as starting materials[J].Ceramics International,2008,34:1729-1733.

    • [24] MADANIPOUR H,SOLTANIEH M,NAYEBPASHAEE N.Investigation of the formation of Al,Fe,N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel[J].Materials & Design,2013,51:43-50.

    • [25] 李景才,孙斐,王树凯,等.离子渗氮前预氧化催渗作用及机理[J].材料热处理学报,2014,35(7):182-186.LI Jingcai,SUN Fei,WANG Shukai,et al.Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J].Transactions of Materials and Heat Treatment,2014,35(7):182-186.(in Chinese)

  • 手机扫一扫看