en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘玉健,男,1997年出生,硕士研究生。主要研究方向为流体动压条件下乳化液成膜机理。E-mail:2674499218@qq.com

通讯作者:

韩素立,女,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为摩擦学、光学精密仪器。E-mail:best_hsl@163.com

中图分类号:TH117

DOI:10.11933/j.issn.1007−9289.20220430002

参考文献 1
马丽然.高水基乳化液成膜特性及机理研究[D].北京:清华大学,2010. MA Liran.Research on the lubricating characteristics and mechanisms of aqueous emulsions[D].Beijing:Tsinghua University,2010.(in Chinese)
参考文献 2
ZHU D,BIRESAW G,CLARK S J,et al.Elastohydrodynamic lubrication with O/W emulsions[J].Trans.Asme J.of Tribol,1994,116(2):310-320.
参考文献 3
JOSLYN H,CHRISTOPHE P,LEON J,et al.High-speed elastohydrodynamic lubrication by a dilute oil-in-water emulsion[J].Tribology Transactions,2018,61(2):287-294.
参考文献 4
刘宸旭,陈朝浪,张继平,等.油水乳化液的边界润滑行为及机理分析[J].机械工程学报,2019,55(9):48-54. LIU Chenxu,CHEN Chaolang,ZHANG Jiping,et al.Boundary lubrication behavior and mechanism analysis of oil-water emulsion[J].Chinese Journal of Mechanical Engineering,2019,55(9):48-54.(in Chinese)
参考文献 5
刘玉健,韩素立,郭峰,等.流体动压下乳化液迁移特性及润滑机理研究 [J/OL] .摩擦学学报:1-15 [2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.LIU Yujian,HAN Suli,GUO Feng,et al.Study on emulsion migration characteristics and lubrication mechanism in conformal contact[J/OL].Tribology Letters,1-15[2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.(in Chinese).
参考文献 6
BRIZMER V,KLIGERMAN Y,ETSION I,et al.A laser surface textured parallel thrust bearing[J].Tribology Transactions,2003,46(3):397-403.
参考文献 7
KLIGERMAN Y,ETSION I,SHINKARENKO A,et al.Improving tribological performance of piston rings by partial surface texturing[J].Journal of Tribologytransactions of.The ASME,2005,127(3):632-638.
参考文献 8
MAAN J S.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.
参考文献 9
毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57. MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering.2020,33(6):47-57.(in Chinese)
参考文献 10
刘成龙,郭峰,黄柏林,等.基于梳齿沟槽阵列的集油表面润滑特性[J].中国表面工程,2020,33(5):40-46. LIU Chenglong,GUO Feng,HUANG Bolin,et al.Lubrication characteristics of oil replenishment surface with comb-tooth-shaped grooves[J].China Surface Engineering.2020,33(5):40-46.(in Chinese)
参考文献 11
FRY B M,MOODY G,SPIKES H,et al.Effect of surface cleaning on performance of organic friction modifiers[J].Tribology Transactions,2020,63(2):305-313.
参考文献 12
付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205. FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)
参考文献 13
王茜,郭峰,韩素立.固体表面润湿性对滑块-盘接触润滑供油的影响[J].摩擦学学报,2019,39(1):73-81. WANG Qian,GUO Feng,HAN Suli.Influence of surface wettability on the lubricating oil supply in a slider-on-disc contact[J].Tribology,2019,39(1):73-81.(in Chinese)
参考文献 14
金微,李书义,荆兆刚,等.固/液界面润湿性对线接触油膜润滑的影响[J].表面技术,2020,49(9):252-257,280. JIN Wei,LI Shuyi,JING Zhaogang,et al.Effect of wettability of solid/liquid interface on film lubrication in line contact[J].Surface Technology,2020,49(9):252-257,280.(in Chinese)
参考文献 15
李哲,郭峰,王玉荣.固体表面FAS膜转移对面接触油膜润滑影响的试验研究[J].摩擦学学报,2021,41(6):870-879. LI Zhe,GUO Feng,WANG Yurong.Experimental study on the influence of FAS transfer film on film lubrication at conformal contact[J].Tribology,2021,41(6):870-879.(in Chinese)
参考文献 16
王志君,郭峰,田鹏晖.界面黏附功与润滑油膜厚度的相关性研究[J].润滑与密封,2016,41(12):52-56,73. WANG Zhijun,GUO Feng TIAN Penghui.Correlation of interface adhesion work and hydrodynamic lubrication[J].Lubrication Engineering,2016,41(12):52-56,73.(in Chinese)
参考文献 17
马冲,郭峰,付忠学.微型滑块面接触润滑油膜测量系统[J].摩擦学学报,2010,4:419-424. MA Chong,GUO Feng,FU Zhongxue.Measurement of lubricating oil film thickness in conformal contacts[J].Tribology Letters,2010,4:419-424.(in Chinese)
参考文献 18
韩素立,郭峰,邵晶,等.基于荧光漂白成像的润滑油膜剪切流速测量[J].摩擦学学报,2017,37(4):442-448. HAN Suli,GUO Feng,SHAO Jing,et al.Velocity profile measurements of oil film under pure shear based on fluorescence photobleaching imaging method[J].Tribology Letters,2017,37(4):442-448.(in Chinese)
参考文献 19
王茜,韩素立,郭峰.流体动压润滑油膜厚度及油池的荧光测量[J].润滑与密封,2019,44(5):57-63. WANG Qian,HAN Suli,GUO Feng.Film thickness and oil pool measurement of hydrodynamic lubrication by fluorescence method[J].Lubrication and Sealing,2019,44(5):57-63.(in Chinese)
参考文献 20
王志君.流体动压薄膜润滑中界面亲和效应的研究[D].青岛:青岛理工大学,2016. WANG Zhijun.Studies on the effect of interface affinity on hydrodynamic thin film lubrication[D].Qingdao:Qingdao University of Technology,2016.(in Chinese)
参考文献 21
LI X M,GUO F,WONG P L,et al.Regulation of lubricant supply by wettability gradient in rolling EHL contacts[J].Tribology International,2018,120:565-574.
参考文献 22
YEUNG A,DABROS T,MASLIVAH J H.Dissipative interfaces and departures from the young-laplace equation[J].Langmuir,1997,13(24):597-6606.
参考文献 23
OWENS D K,WENDT R C.estimation of the surface free energy of polymers[J].Journal of Applied Polymer Science,1969,13(8):1741-1747.
目录contents

    摘要

    乳化液广泛应用于机械加工装备,在不同润湿性界面下的摩擦润滑机制亟待明晰。通过涂镀疏油层 AF(氟改性有机基团,主要成分为[CF(CF3)CF2O]x(CF2O)y)和 FAS(C13H13F17O3Si)对轴承钢滑块进行修饰,采用光干涉法测量不同润湿性(AF、 FAS、Steel)界面乳化液膜厚度。结果表明:界面润湿性不同导致乳化液膜厚发生较大变化,同卷吸速度下 AF 表面膜厚最高, Steel 表面次之,FAS 表面膜厚最低。稀释前乳化液原液成膜能力与其在入口处所受 Laplace 压力正相关;稀释后乳化液油水两相存在竞争吸附行为,乳化液成膜厚度受水相将油相从固体表面分离所做黏附功影响。结合光致荧光法和固水油三相黏附功共同分析界面润湿性对乳化液成膜的影响,认为涂镀 AF 后乳化液更易进入接触区。AF 界面乳液池特性与油膜厚度的关系,证明了疏油表面可以具有较好的成膜能力。

    Abstract

    Emulsion are widely used in mechanical processing equipment. However, their friction and lubrication mechanisms at different wettability interfaces still need to be clarified. The film formation properties of emulsions on different wettability surfaces were studied using a micro-slider on a rotating disc oil-film measurement system in conformal contact. The wettability of the slider working surface was changed by applying oleophobic layers of AF ([CF(CF3) CF2O]x (CF2O)y) and FAS (C13H13F17O3Si). The emulsion film thicknesses of the AF, FAS and unmodified steel surfaces were measured by optical interferometry. The test results showed that differences in interfacial wettability led to a significant change in the thickness of the emulsion film. At the same entrainment speed, the oil film thickness at the AF interface was higher than that of the steel surface, whereas the film thickness of the FAS surface was the lowest. The emulsion film thickness of the AF surface with different concentrations tends to be constant at a high speed. Low-viscosity emulsions require a higher entrainment speed to achieve the same film thickness. A positive correlation exists between the film thickness and viscosity on both the steel and FAS surfaces. To explore the reasons for the different film thicknesses of the emulsions on different wettability surfaces, the emulsion was fluorescently treated with R6G at a concentration of 0.5 mmol / L. The pool distribution of the emulsion stock solution was determined by fluorescence microscopy. The cross-sections of the reservoir characteristics along the entrainment direction speed of the interfacial emulsions with different wettabilities were extracted. The emulsion formed a curved surface at the entrance of the contact zone. Different surface wettabilities resulted in different curvatures of the liquid surface. The radius of curvature of the liquid surface formed by the emulsion on the surface after the application of the FAS coating was the largest, followed by the steel surface, with the smallest on the AF surface. Based on the inverse relationship between the radius of curvature and Laplace pressure, the Laplace pressure at the inlet of the emulsion reservoir before dilution is positively correlated with the oil film thickness. The AF surface emulsions were subjected to high Laplace pressures, allowing easier access to the contact area. Diluted emulsified droplets will break inside or before the contact area under the combined action of the interaction forces between the droplets, shear force and sliding force. After the rupture, a competitive relationship emerges between the oil and water phases. Theoretical analysis showed that the oil phase formed an oil film in the contact area by a plate-out mechanism, which plays a major load-bearing role. The film-formation ability is affected by the adhesion work performed by the water phase to separate the oil phase from the solid surface. The surface energies of the different wettability sliders were calculated by the Owens two-liquid method. Based on the contact angles of the emulsions at the interface of the steel, AF and FAS, the three-phase solid-water-oil adhesion work was calculated. When the dispersion component of the emulsion is between 47.4 mN / m and 60 mN / m, the calculated value of the adhesion work is consistent with the variations in the film thickness. In the experiment, the fluorescence method and three-phase solid-water-oil adhesion work were combined to analyze the effects of the interfacial wettability on emulsion film formation. The film thickness of the emulsions with different concentrations significantly increased after the slider was modified by the AF. The relationship between the emulsion pool characteristics of the AF interface and film thickness proves that the oleophobic surface also has a good film formation ability.

  • 0 前言

  • 乳化液作为一种典型的高水基润滑剂,在微型机械、生物润滑及制造业等领域具有广阔的应用前景。乳化液用作润滑剂可追溯到 20 世纪 40 年代,近年来关于乳化液润滑机理的研究不断完善,马丽然[1]研究了高水基乳化液在点接触下的成膜机理,并对乳化液滴进入接触区的动态行为进行观测,认为超低浓度乳化液仍然具有较稳定的成膜能力,该能力主要来自油在固体表面的黏附及润湿。ZHU 等[2]和 JOSLYN 等[3]先后对低浓度水包油乳化液弹流润滑行为进行研究,后者将其归结为三种状态:低速状态乳化液膜厚度和纯油相当;中速状态乳化液膜厚急剧下降,形成乏油润滑;高速状态乳化液膜厚再次增加。刘宸旭等[4]对油水乳化液边界润滑行为进行分析,认为乳化液进入接触区时油相起主要润滑作用,并研究油水两相体系中边界润滑性能受水含量的影响;刘玉健等[5]在前人基础上,对流体动压下乳化液成膜机制及迁移行为进行探究,认为乳化液进入接触区的行为和粒径大小有关。对于乳化液润滑机制的探究不断趋于完善,但为了更好理解乳化液应用于不同介质的摩擦润滑机制,还应考虑界面润湿性对乳化液润滑性能的影响。

  • 已有研究表明,对工件进行表面改性可有效改善润滑,包括表面微织构制备、表面润湿改性等。微织构已应用于轴承[6]和活塞[7]等关键部件减小摩擦;MAAN[8]通过理论计算表明加工适当的微织构可以提高流体动力轴承的承载能力、降低轴承的摩擦因数;毛亚洲等[9]探究了表面织构对动压滑动轴承摩擦学性能的影响,认为表面织构的减摩机理是提高表面耐磨性以及储存磨粒和形成二次动压润滑;刘成龙等[10]在摩擦表面制备梳齿状沟槽阵列,研究其润滑及集油特性,结果表明加工后轨道对润滑油有较好的约束作用,并且在有限供油条件下具有较小的摩擦因数和磨损。针对表面润湿改性的研究,FRY 等[11]研究了钢界面表面清洁方法对摩擦改性剂减摩能力的影响,认为污染物会影响表面活性剂和钢表面结合强度。付小静等[12]对甘油润滑下 TiAlN 涂层的摩擦学性能进行研究,并利用 X 射线光电子能谱探究甘油的润滑机理。王茜等[13]通过涂镀FAS膜研究滑块工作面润湿性对面接触润滑供油的影响,认为接触区内润滑油供给和表面润湿性相关,限量供油条件下经 FAS 修饰后表面膜厚明显降低;金微等[14]对线接触条件下不同润湿性界面膜厚进行研究,证明了疏油表面同样可以具有较好的成膜能力;李哲等[15]研究了滑块到转盘的 FAS 转移膜对面接触润滑的影响,认为转移膜的存在会使入口区供油能力增强,从而膜厚增加;王志君等[16]研究了界面黏附功与油膜厚度的相关性,结果表明高黏附功更易产生高油膜厚度。

  • 以上界面润湿性对成膜特性影响研究是针对单一润滑剂进行的,随着乳化液等水基润滑剂发展,探究界面效应对多相流润滑剂的影响不可避免。本文设计界面润湿性对乳化液成膜影响试验,对滑块工作表面进行 AF、FAS 涂层修饰,选用面接触测量系统,利用光干涉法测量乳化液膜厚度,并结合光致荧光法和固体-水-油三相黏附功分析不同润湿性界面乳化液膜厚变化机理。

  • 1 试验装置与条件

  • 1.1 测量系统

  • 如图1 所示为试验采用微型滑块-转盘面接触油膜测量系统[17]。该系统由加载臂、固定倾角调节机构、玻璃转盘、伺服电机、显微测量机构等组成。利用光干涉法测量乳化液膜厚度时,显微测量机构选用半透半反镜,试验前通过固定倾角调节机构确定滑块与玻璃盘倾角,形成楔形间隙,倾角大小和干涉条纹数目关系如式(1),依次完成图1 所示 Steel、AF 及 FAS 三种不同润湿性滑块表面乳化液膜厚测量。

  • α=λN2nB
    (1)
  • 式中,α 为滑块倾斜角;λ 为激光波长;N 为测量点对应干涉级次;B 为滑块宽度;n 为润滑介质折射率。

  • 图1 面接触油膜测量系统

  • Fig.1 Test apparatus in conformal contacts

  • 完成乳化液膜厚测量后将显微测量机构透镜换为分色镜,并更换激光光源。利用光致荧光法[18]采集滑块-转盘接触区外围乳液池的荧光图像,分析 Steel、 AF 及 FAS 三种不同润湿性表面乳液池区别。试验过程中进行遮光处理,可忽略背景光对结果的影响。

  • 1.2 试验材料及条件

  • 试验中转盘采用 K9 玻璃盘,其表面镀有 Cr膜,反射率在 20%左右,表面粗糙度 Ra 为 4 nm;滑块为钢块,表面尺寸为 4 mm×4 mm。试验时将滑块和玻璃盘间倾角固定为 10 条纹;玻璃盘速度为 1~150 mm / s;载荷为 2 N;所用润滑介质为以 5 # 白油为基础油,包含石油磺酸钠及 S-PAN80 等表面活性剂的乳化液[5],其动力黏度和折射率如表1 所示。试验前选用纯度为 99% 的罗丹明 6G(R6G, C28H31N2O3Cl,分子量 479.01,阿拉丁试剂(上海有限公司)作为荧光探针对乳化液进行荧光标记,标记浓度为 0.5 mmol / L[19],待荧光探针充分溶解于乳化液中,静置后取上层清液按 10%浓度梯度进行稀释。试验中轨道半径为 42 mm,供油量为 0.5 ml 充分供油。试验温度为(20±0.5)℃,湿度为 HR35-40%。

  • 表1 不同浓度乳化液黏度及折射率表征

  • Table1 Viscosity and Refractive index characterization of emulsions with different concentrations

  • 1.3 样品制备及表征

  • 图2 所示为不同润湿性表面制备过程,试验前用耐高温胶带将除工作面外其余表面进行遮挡,保证只修饰工作表面。滑块清洁处理后分为两组,一组将 AF (氟改性有机基团,主要成分为 [CF(CF3)CF2O]x(CF2O)y)滴在无尘布上,涂抹至钢块表面,流平 1~2 min 后放入电热鼓风干燥箱中,恒温 80℃加热 30 min,完成滑块表面 AF 修饰;另一组使用微量进样器将 10 μL FAS(C13H13F17O3Si)试剂滴入小烧杯中,然后将其放置于聚四氟乙烯的塑料瓶内,再将待测钢块均匀摆在小烧杯周围,拧紧瓶盖将其密封放入电热鼓风干燥箱恒温 150℃加热 3 h,完成滑块表面 FAS 修饰[20]

  • 图2 AF、FAS 镀膜过程

  • Fig.2 AF and FAS coating process

  • 通过 AF、FAS 对钢滑块进行表面修饰,表面润湿性具有不同程度的改变。如表2 所示为三种不同表面上 5 次测量后得到的乳化液接触角平均值及标准偏差,由表1 可知乳化液位于 90%~70%浓度附近黏度较高,处于油包水-水包油流型转变区[5],空间结构复杂,因此在表2 及后续膜厚分析讨论过程中未涉及该浓度。

  • 观察可得,经 AF、FAS 修饰后的表面接触角增大,疏水效果更强。极少量的原液加入水中可导致稀释后乳化液接触角发生较大变化,当乳化液浓度大于 0.1%时,同一界面条件下随乳化液浓度降低接触角缓慢增大;当乳化液浓度小于 0.1%时,逐渐趋于纯水接触角。

  • 表2 三种不同表面接触角测量结果

  • Table2 Contact angle measurement results of different concentrations of emulsion on Steel, AF and FAS surfaces

  • 2 试验结果与分析

  • 2.1 不同润湿性界面乳化液膜厚测量结果

  • 接触区内乳化液成膜厚度是衡量润滑效果的一个重要指标。图3a~3c 分别为乳化液在 Steel、AF、 FAS 表面膜厚测量曲线,其中 x 轴是卷吸速度,y 轴是乳化液浓度,z 轴是乳化液膜厚。由表1 乳化液黏度可知乳化液稀释过程中存在油包水到水包油的流型转变,流型转变浓度乳化液处于乳浊状态,其空间框架结构复杂不易进入接触区,故在此试验中未进行浓度 90%~70%膜厚测量。试验开始前,将 0.5 mL 乳化液快速布置于润滑轨道中心,封闭试验台,极轻载荷跑合 5 min,使润滑剂均匀分布在润滑轨道上。

  • 图3 不同浓度乳化液在三种表面上膜厚测量曲线

  • Fig.3 Film thickness measurement of emulsions with different concentrations on three surfaces

  • 如图3a 所示 Steel 表面膜厚测量结果,在 x 方向上,各浓度乳化液膜厚均随卷吸速度增大而增大。在 y 轴方向上,结合表1 可得同卷吸速度下不同浓度乳化液膜厚和黏度正相关,试验中乳化液浓度 p 为 10%时黏度较小,该浓度下膜厚最高可达 500 nm,依然具有较好成膜能力。如图3b 所示为 AF 表面膜厚测量结果,涂镀 AF 后,不同浓度乳化液膜厚随速度升高逐渐趋于同一值,且乳化液黏度越高,达到此值的卷吸速度越小,本试验中卷吸速度为 150 mm / s 时,膜厚可达 4 μm 左右,成膜能力优于 Steel 表面。经 FAS 修饰后表面在 xy 方向膜厚变化规律和 Steel 表面一致,但整体膜厚较小,如图3c 所示,此时 10%浓度乳化液 150 mm / s 速度下膜厚仅有 200 nm 左右。

  • 为更直观对比表面润湿性对膜厚的影响,绘制相同浓度乳化液在 Steel、AF、FAS 三种表面上膜厚随速度变化曲线,如图4 所示。

  • 图4 相同浓度乳化液在不同润湿性表面上膜厚随速度变化曲线

  • Fig.4 Variation curve of film thickness with velocity of the same concentration of emulsion on different wettability surfaces

  • 图4a~4c 所示为乳化液浓度大于 50%时膜厚随速度变化曲线,观察发现,乳化液在 Steel、AF、 FAS 三种表面上,膜厚均随卷吸速度增大而增大,其中 AF 表面膜厚最高,Steel 表面次之,FAS 表面膜厚最低,并且三种表面膜厚在低速下差距最大,随着卷吸速度增高这种差距逐渐减小。

  • 乳化液浓度低于 50%时膜厚随速度变化曲线如图4d~4g 所示,此时乳化液在低速下膜厚均位于 10 nm 左右,随卷吸速度升高,膜厚逐渐增大,但增大过程中出现膜厚交叉现象。已知乳化液浓度越低其粒径越小[5],允许进入接触区乳化液滴变多,液滴尺寸不均导致膜厚产生震荡,从而膜厚曲线出现交叉。随卷吸速度继续升高至膜厚大于粒径时,粒径不再是影响膜厚变化的主要因素,此时膜厚恢复原来大小关系,表面经 AF 修饰后膜厚大于 Steel 表面大于 FAS 修饰后表面。

  • 2.2 荧光法讨论乳化液原液成膜特性

  • 乳化液原液由矿物油和添加剂组成,流体动压膜厚的形成和乳液池供油密切相关,掌握工作过程中不同润湿性表面接触区周围乳液池变化,可从供油角度分析膜厚变化的原因。如图5a 所示为光干涉膜厚分布图,以 Steel 表面为例,由于整个试验过程中为充分供油,未出现乏油现象,光干涉膜厚分布图不能直观的体现出乳液池的具体形态,因此采用荧光法拍摄乳化液原液池,结果如图5b 所示。作者已对乳液池迁移特性进行详细分析[5],因此本试验只讨论不同表面润湿性对乳液池供液影响。试验过程中保持三组试验光强一致,乳液池亮度越大代表该处乳化液堆积越厚。

  • 图5 接触区干涉条纹及乳液池形态变化

  • Fig.5 Interference fringes in contact zone and morphological changes of emulsion pool

  • 由图5b 观察可得,工作表面涂镀疏油层后乳化液原液池面积发生明显变化,同卷吸速度下经 AF 修饰后原液池面积相对 Steel 表面增大,经 FAS 修饰后原液池面积减小。原液池面积和膜厚大小关系一致,AF 表面原液池为高膜厚形成提供更充分供液储备。为探索造成 Steel、AF、FAS 表面膜厚大小不一的直接原因,对图5b 虚线所示沿卷吸速度方向截面进行标定,提取数据后绘制该截面上乳液池厚度变化图。

  • 绘制结果如图6 所示,其中横轴正方向为卷吸速度方向,横轴 3~7 mm 处为滑块-转盘接触区,纵轴为膜厚相对值。观察可得,入口前乳液池形成抛物线状弯曲液面,其厚度沿卷吸速度方向先增加后降低。弯曲液面在接触滑块前达到最高峰,不同润湿性界面峰值不同。AF 表面乳液池所形成弯曲液面峰值较高,且距离滑块边缘较远,乳液池宽度较大;FAS 表面峰值次之,但其乳液池宽度最小,乳液池最高峰距离滑块边缘最近;Steel 表面乳液池所形成弯曲液面峰值最低,但该表面最高峰及乳液池宽度介于 AF、FAS 表面之间。随卷吸速度升高,上述三种不同润湿性表面乳液池宽度差距逐渐减小。结合图6 绘制不同润湿性界面乳化液原液成膜机理图,如图7 所示。

  • 图6 沿卷吸速度方向截面厚度变化图

  • Fig.6 Cross-sectional thickness variation along the direction of entrainment velocity

  • 图7 不同润湿性表面乳化液原液成膜机理

  • Fig.7 Mechanism of film formation of emulsions with different wetting surfaces

  • 图7a 为入口处乳化液原液池三维模型,图7b 为乳化液原液池剖面示意图。在接触区入口处乳化液的回流效应下,乳化液原液池最高峰偏离滑块边缘,导致图6 所示弯曲液面呈抛物线状分布。入口回流的程度和不同界面对乳化液的润湿能力有关。由表2 可得,乳化液原液在 AF 表面接触角大于 FAS 表面接触角,大于 Steel 表面接触角。因此 AF 表面入口处乳化液原液回流效应最强,乳液池峰值相对较高;FAS 表面次之;Steel 表面回流效应最弱,其乳液池最高峰相对最低。增大入口处润滑剂回流是改善乏油工况下成膜能力的有效手段[21],但本试验为充分供油试验,入口回流不是影响乳化液膜厚变化主要因素。

  • 由 Young-Laplace[22]可知,入口处乳液池弯曲液面的表面张力会对乳化液产生附加压力(记为 Laplace 压力),且该压力始终指向弯曲液面曲率中心。如图7a 所示,将乳化液原液池分为 a、b、c 三个区域并进行受力分析,其中区域 a 和区域 b 液面所受 Laplace 压力在卷吸速度方向上分力呈反向分布,其合力对膜厚影响较小。区域 c 液面所受Laplace 压力指向滑块-转盘接触区,因此,着重对不同润湿性界面区域 c 液面所受 Laplace 力对比分析。如图7b 对不同润湿性表面乳液池弯曲液面进行拟合,其中 F1F2F3 分别为 Steel、AF、FAS 表面区域 c 所受 Laplace 压力;O1O2O3R1R2R3 分别为 Steel、AF、FAS 三种表面曲率中心与曲率半径,由拟合结果可得 R3R1R2,且根据图6 中弯曲液面变化规律可知 R1R2R3之间差距随速度增大逐渐减小。结合 Young-Laplace 公式将曲率半径与乳化液所受 Laplace 压力简化为式(2):

  • F=2γR
    (2)
  • 式中,γ 为表面张力,此时润滑剂均为乳化液原液,表面张力 γ 相同。代入曲率半径关系计算可得,在三种不同润湿性表面乳化液原液所受 Laplace 压力始终保持为 F2F1F3,因此 AF 表面乳化液原液更易进入接触区产生较高膜厚。且随卷吸速度增高 F2F1F3 之间差距逐渐减小,原液在 AF、 Steel 及 FAS 三种不同润湿性界面上膜厚差距逐渐减小。

  • 2.3 计算三相黏附功讨论稀释后乳化液成膜特性

  • 乳化液稀释后乳液池入口堆积处成分包含油、水两相,且油水两相在固体界面存在竞争吸附行为,此时 Young-Laplace 所求整体压力差已不适用。已知乳化液润滑时油相经离水展着进入接触区起主要承载作用,水相起运输作用[5],AF、FAS 虽均为疏水疏油表面,但两种镀层疏油疏水程度不同,导致水相将油相从固体表面分离所做黏附功不同,因此可通过计算固体-水-油三相黏附功分析不同润湿性表面成膜能力。如图8 所示为水、油、固体滑块三相接触示意图。

  • 图8 三相接触示意图

  • Fig.8 Three-phase contact diagram

  • 图8 中 σsw是固体与水相之间表面张力;σow是油相和水相之间表面张力;σso 是油相与固体间表面张力。本试验中黏附功可理解为[1]为水相将油相从固体表面分离所做的功,其大小与成膜能力正相关。可表示为:

  • WaSow o=σSw+σow-σSo
    (3)
  • 要得到 WaSow o的值,可将后三者展开计算[1]为:

  • σSW=σS+σw-2σSdσwd1/2-2σSpσWp1/2
    (4)
  • σow=σo+σw-2σodσwd1/2-2σopσWp1/2
    (5)
  • σSo=σS+σo-2σSdσod1/2-2σSpσop1/2
    (6)
  • 式中 σsσoσw 分别为固体表面、油相、水相表面能,σ oσ p 分别为各表面能对应的色散分量和极性分量。将式(4)-(6)带入式(3)中整理可得:

  • Wa Sow o=2σw-σSdσwd1/2-σodσwd1/2+σSdσod1/2-σSpσwp1/2+σopσwp1/2+σSpσop1/2
    (7)
  • 由式(7)可知,只需测出固体表面能分量及乳化液表面能分量便可求得水在不同润湿性表面分离油相所做黏附功。选用去离子水和正十六烷两种液体对固体表面能分量进行表征,液体表面能分量及在 Steel、AF、FAS 表面接触角测量结果如表3 所示。

  • 表3 液体各项表面能值及接触角测量结果

  • Table3 Surface energy values and contact angle measurement results of liquids

  • 将表3 所示液体表面能分量及接触角带入二液法式(8)[23]中,求得固体表面能及分量如表4 所示。

  • σL(1+cosθ)=2σLdσSd1/2+σLpσSd1/2
    (8)
  • 表4 Steel、AF、FAS 表面能及各分量值

  • Table4 Steel, AF and FAS surface energy and component values

  • 经悬滴法测量乳化液表面张力为 79.4mN / m,其色散分量和极性分量未知,如图9 所示以色散分量 σodx 轴,绘制 σod-w 变化曲线。

  • 观察可得当色散分量介于 47.4~60 mN / m 时, AF 表面水相将油相从滑块表面分离所做黏附功大于 Steel 表面黏附功,大于 FAS 表面黏附功。此规律和稀释后乳化液在 AF、Steel、FAS 表面膜厚大小变化规律一致。可得出结论,稀释后乳化液在 Steel、 AF、FAS 三种不同润湿表面成膜差异和固-水-油间黏附功相关。

  • 图9 不同润湿性表面黏附功随 σod 变化

  • Fig.9 Adhesion work of different wettability surfaces variying with σod

  • 根据上述结论绘制如图10 所示的不同润湿性表面稀释后乳化液成膜机理。试验中乳化液进入接触区前液滴为水包油状,进入接触区时由于剪切力作用乳化液滴破裂,破裂后油相经离水展着进入滑块-转盘接触区内起主要承载作用,水相起主要运输作用。油相在接触区内的黏附可分为油与玻璃盘间的黏附和油与滑块间的黏附,由于试验中转盘表面条件相同,故水相将油相从转盘表面分离所做黏附功相同。滑块工作面经 AF、FAS 改性后虽然均为疏水疏油表面,但各表面上疏水疏油程度不同,造成油水竞争吸附能力存在差异。AF 表面油相竞争吸附能力大于 Steel 表面,水相需要做更大的功将油相分离,油相利用率提高,导致 AF 表面膜厚增大且趋于原液膜厚。而 FAS 表面油相竞争吸附能力减小,水相相对易于将油相从固体表面分离,油相利用率降低,导致膜厚下降。

  • 图10 稀释后乳化液在不同润湿性表面成膜机理

  • Fig.10 Mechanism of Film Formation on surfaces with different wetting properties of emulsions of different concentrations

  • 3 结论

  • (1)对轴承钢表面涂镀疏油层 AF 和 FAS 进行表面改性,改性后不同润湿性表面会明显改变乳化液成膜厚度。

  • (2)光致荧光法可更直观观察乳液池形态,将乳液池各点厚度数据化处理,可为 AF 表面上乳化液原液在入口处受到更大的 Laplace 压力这一观点提供有力证据。

  • (3)稀释后乳化液在不同润湿性表面的成膜特性与固油水三相间黏附功相关,存在油水竞争吸附行为,疏油表面亦可具有较好成膜能力。

  • 参考文献

    • [1] 马丽然.高水基乳化液成膜特性及机理研究[D].北京:清华大学,2010. MA Liran.Research on the lubricating characteristics and mechanisms of aqueous emulsions[D].Beijing:Tsinghua University,2010.(in Chinese)

    • [2] ZHU D,BIRESAW G,CLARK S J,et al.Elastohydrodynamic lubrication with O/W emulsions[J].Trans.Asme J.of Tribol,1994,116(2):310-320.

    • [3] JOSLYN H,CHRISTOPHE P,LEON J,et al.High-speed elastohydrodynamic lubrication by a dilute oil-in-water emulsion[J].Tribology Transactions,2018,61(2):287-294.

    • [4] 刘宸旭,陈朝浪,张继平,等.油水乳化液的边界润滑行为及机理分析[J].机械工程学报,2019,55(9):48-54. LIU Chenxu,CHEN Chaolang,ZHANG Jiping,et al.Boundary lubrication behavior and mechanism analysis of oil-water emulsion[J].Chinese Journal of Mechanical Engineering,2019,55(9):48-54.(in Chinese)

    • [5] 刘玉健,韩素立,郭峰,等.流体动压下乳化液迁移特性及润滑机理研究 [J/OL] .摩擦学学报:1-15 [2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.LIU Yujian,HAN Suli,GUO Feng,et al.Study on emulsion migration characteristics and lubrication mechanism in conformal contact[J/OL].Tribology Letters,1-15[2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.(in Chinese).

    • [6] BRIZMER V,KLIGERMAN Y,ETSION I,et al.A laser surface textured parallel thrust bearing[J].Tribology Transactions,2003,46(3):397-403.

    • [7] KLIGERMAN Y,ETSION I,SHINKARENKO A,et al.Improving tribological performance of piston rings by partial surface texturing[J].Journal of Tribologytransactions of.The ASME,2005,127(3):632-638.

    • [8] MAAN J S.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.

    • [9] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57. MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering.2020,33(6):47-57.(in Chinese)

    • [10] 刘成龙,郭峰,黄柏林,等.基于梳齿沟槽阵列的集油表面润滑特性[J].中国表面工程,2020,33(5):40-46. LIU Chenglong,GUO Feng,HUANG Bolin,et al.Lubrication characteristics of oil replenishment surface with comb-tooth-shaped grooves[J].China Surface Engineering.2020,33(5):40-46.(in Chinese)

    • [11] FRY B M,MOODY G,SPIKES H,et al.Effect of surface cleaning on performance of organic friction modifiers[J].Tribology Transactions,2020,63(2):305-313.

    • [12] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205. FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)

    • [13] 王茜,郭峰,韩素立.固体表面润湿性对滑块-盘接触润滑供油的影响[J].摩擦学学报,2019,39(1):73-81. WANG Qian,GUO Feng,HAN Suli.Influence of surface wettability on the lubricating oil supply in a slider-on-disc contact[J].Tribology,2019,39(1):73-81.(in Chinese)

    • [14] 金微,李书义,荆兆刚,等.固/液界面润湿性对线接触油膜润滑的影响[J].表面技术,2020,49(9):252-257,280. JIN Wei,LI Shuyi,JING Zhaogang,et al.Effect of wettability of solid/liquid interface on film lubrication in line contact[J].Surface Technology,2020,49(9):252-257,280.(in Chinese)

    • [15] 李哲,郭峰,王玉荣.固体表面FAS膜转移对面接触油膜润滑影响的试验研究[J].摩擦学学报,2021,41(6):870-879. LI Zhe,GUO Feng,WANG Yurong.Experimental study on the influence of FAS transfer film on film lubrication at conformal contact[J].Tribology,2021,41(6):870-879.(in Chinese)

    • [16] 王志君,郭峰,田鹏晖.界面黏附功与润滑油膜厚度的相关性研究[J].润滑与密封,2016,41(12):52-56,73. WANG Zhijun,GUO Feng TIAN Penghui.Correlation of interface adhesion work and hydrodynamic lubrication[J].Lubrication Engineering,2016,41(12):52-56,73.(in Chinese)

    • [17] 马冲,郭峰,付忠学.微型滑块面接触润滑油膜测量系统[J].摩擦学学报,2010,4:419-424. MA Chong,GUO Feng,FU Zhongxue.Measurement of lubricating oil film thickness in conformal contacts[J].Tribology Letters,2010,4:419-424.(in Chinese)

    • [18] 韩素立,郭峰,邵晶,等.基于荧光漂白成像的润滑油膜剪切流速测量[J].摩擦学学报,2017,37(4):442-448. HAN Suli,GUO Feng,SHAO Jing,et al.Velocity profile measurements of oil film under pure shear based on fluorescence photobleaching imaging method[J].Tribology Letters,2017,37(4):442-448.(in Chinese)

    • [19] 王茜,韩素立,郭峰.流体动压润滑油膜厚度及油池的荧光测量[J].润滑与密封,2019,44(5):57-63. WANG Qian,HAN Suli,GUO Feng.Film thickness and oil pool measurement of hydrodynamic lubrication by fluorescence method[J].Lubrication and Sealing,2019,44(5):57-63.(in Chinese)

    • [20] 王志君.流体动压薄膜润滑中界面亲和效应的研究[D].青岛:青岛理工大学,2016. WANG Zhijun.Studies on the effect of interface affinity on hydrodynamic thin film lubrication[D].Qingdao:Qingdao University of Technology,2016.(in Chinese)

    • [21] LI X M,GUO F,WONG P L,et al.Regulation of lubricant supply by wettability gradient in rolling EHL contacts[J].Tribology International,2018,120:565-574.

    • [22] YEUNG A,DABROS T,MASLIVAH J H.Dissipative interfaces and departures from the young-laplace equation[J].Langmuir,1997,13(24):597-6606.

    • [23] OWENS D K,WENDT R C.estimation of the surface free energy of polymers[J].Journal of Applied Polymer Science,1969,13(8):1741-1747.

  • 参考文献

    • [1] 马丽然.高水基乳化液成膜特性及机理研究[D].北京:清华大学,2010. MA Liran.Research on the lubricating characteristics and mechanisms of aqueous emulsions[D].Beijing:Tsinghua University,2010.(in Chinese)

    • [2] ZHU D,BIRESAW G,CLARK S J,et al.Elastohydrodynamic lubrication with O/W emulsions[J].Trans.Asme J.of Tribol,1994,116(2):310-320.

    • [3] JOSLYN H,CHRISTOPHE P,LEON J,et al.High-speed elastohydrodynamic lubrication by a dilute oil-in-water emulsion[J].Tribology Transactions,2018,61(2):287-294.

    • [4] 刘宸旭,陈朝浪,张继平,等.油水乳化液的边界润滑行为及机理分析[J].机械工程学报,2019,55(9):48-54. LIU Chenxu,CHEN Chaolang,ZHANG Jiping,et al.Boundary lubrication behavior and mechanism analysis of oil-water emulsion[J].Chinese Journal of Mechanical Engineering,2019,55(9):48-54.(in Chinese)

    • [5] 刘玉健,韩素立,郭峰,等.流体动压下乳化液迁移特性及润滑机理研究 [J/OL] .摩擦学学报:1-15 [2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.LIU Yujian,HAN Suli,GUO Feng,et al.Study on emulsion migration characteristics and lubrication mechanism in conformal contact[J/OL].Tribology Letters,1-15[2022-10-18].http://kns.cnki.net/kcms/detail/62.1095.04.20211230.1416.002.html.(in Chinese).

    • [6] BRIZMER V,KLIGERMAN Y,ETSION I,et al.A laser surface textured parallel thrust bearing[J].Tribology Transactions,2003,46(3):397-403.

    • [7] KLIGERMAN Y,ETSION I,SHINKARENKO A,et al.Improving tribological performance of piston rings by partial surface texturing[J].Journal of Tribologytransactions of.The ASME,2005,127(3):632-638.

    • [8] MAAN J S.Influence of surface texture on the performance of hydrodynamic journal bearing operating under turbulent regime[J].Tribology Online,2021,16(2):99-112.

    • [9] 毛亚洲,杨建玺,徐文静,等.表面织构对动压滑动轴承摩擦学性能的影响[J].中国表面工程,2020,33(6):47-57. MAO Yazhou,YANG Jianxi,XU Wenjing,et al.Effects of surface texture on tribological properties of hydrodynamic journal bearing[J].China Surface Engineering.2020,33(6):47-57.(in Chinese)

    • [10] 刘成龙,郭峰,黄柏林,等.基于梳齿沟槽阵列的集油表面润滑特性[J].中国表面工程,2020,33(5):40-46. LIU Chenglong,GUO Feng,HUANG Bolin,et al.Lubrication characteristics of oil replenishment surface with comb-tooth-shaped grooves[J].China Surface Engineering.2020,33(5):40-46.(in Chinese)

    • [11] FRY B M,MOODY G,SPIKES H,et al.Effect of surface cleaning on performance of organic friction modifiers[J].Tribology Transactions,2020,63(2):305-313.

    • [12] 付小静,李瑞川,高建国,等.在甘油润滑下TiAlN涂层的超低摩擦和磨损特性[J].中国表面工程,2021,34(5):198-205. FU Xiaojing,LI Ruichuan,GAO Jianguo,et al.Ultralow friction and wear properties of TiAlN coatings lubricated by glycerol[J].China Surface Engineering,2021,34(5):198-205.(in Chinese)

    • [13] 王茜,郭峰,韩素立.固体表面润湿性对滑块-盘接触润滑供油的影响[J].摩擦学学报,2019,39(1):73-81. WANG Qian,GUO Feng,HAN Suli.Influence of surface wettability on the lubricating oil supply in a slider-on-disc contact[J].Tribology,2019,39(1):73-81.(in Chinese)

    • [14] 金微,李书义,荆兆刚,等.固/液界面润湿性对线接触油膜润滑的影响[J].表面技术,2020,49(9):252-257,280. JIN Wei,LI Shuyi,JING Zhaogang,et al.Effect of wettability of solid/liquid interface on film lubrication in line contact[J].Surface Technology,2020,49(9):252-257,280.(in Chinese)

    • [15] 李哲,郭峰,王玉荣.固体表面FAS膜转移对面接触油膜润滑影响的试验研究[J].摩擦学学报,2021,41(6):870-879. LI Zhe,GUO Feng,WANG Yurong.Experimental study on the influence of FAS transfer film on film lubrication at conformal contact[J].Tribology,2021,41(6):870-879.(in Chinese)

    • [16] 王志君,郭峰,田鹏晖.界面黏附功与润滑油膜厚度的相关性研究[J].润滑与密封,2016,41(12):52-56,73. WANG Zhijun,GUO Feng TIAN Penghui.Correlation of interface adhesion work and hydrodynamic lubrication[J].Lubrication Engineering,2016,41(12):52-56,73.(in Chinese)

    • [17] 马冲,郭峰,付忠学.微型滑块面接触润滑油膜测量系统[J].摩擦学学报,2010,4:419-424. MA Chong,GUO Feng,FU Zhongxue.Measurement of lubricating oil film thickness in conformal contacts[J].Tribology Letters,2010,4:419-424.(in Chinese)

    • [18] 韩素立,郭峰,邵晶,等.基于荧光漂白成像的润滑油膜剪切流速测量[J].摩擦学学报,2017,37(4):442-448. HAN Suli,GUO Feng,SHAO Jing,et al.Velocity profile measurements of oil film under pure shear based on fluorescence photobleaching imaging method[J].Tribology Letters,2017,37(4):442-448.(in Chinese)

    • [19] 王茜,韩素立,郭峰.流体动压润滑油膜厚度及油池的荧光测量[J].润滑与密封,2019,44(5):57-63. WANG Qian,HAN Suli,GUO Feng.Film thickness and oil pool measurement of hydrodynamic lubrication by fluorescence method[J].Lubrication and Sealing,2019,44(5):57-63.(in Chinese)

    • [20] 王志君.流体动压薄膜润滑中界面亲和效应的研究[D].青岛:青岛理工大学,2016. WANG Zhijun.Studies on the effect of interface affinity on hydrodynamic thin film lubrication[D].Qingdao:Qingdao University of Technology,2016.(in Chinese)

    • [21] LI X M,GUO F,WONG P L,et al.Regulation of lubricant supply by wettability gradient in rolling EHL contacts[J].Tribology International,2018,120:565-574.

    • [22] YEUNG A,DABROS T,MASLIVAH J H.Dissipative interfaces and departures from the young-laplace equation[J].Langmuir,1997,13(24):597-6606.

    • [23] OWENS D K,WENDT R C.estimation of the surface free energy of polymers[J].Journal of Applied Polymer Science,1969,13(8):1741-1747.

  • 手机扫一扫看