en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘海龙,男,1984年出生,博士,教授,硕士研究生导师。主要研究方向为非牛顿流体与多相流、多相流的测量与模拟。E-mail:leo@ujs.edu.cn

中图分类号:TG156;TB114

DOI:10.11933/j.issn.1007−9289.20220228002

参考文献 1
WANG C H,TSAI H L,WU Y C,et al.Investigation of molten metal droplet deposition and solidification for 3D printing techniques[J].Journal of Micromechanics and Microengineering,2016,26(9):095012.
参考文献 2
JIAO Z,LI F,XIE L,et al.Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer:Research Article[J].Journal of Applied Polymer Science,2018,135(9):45933.
参考文献 3
KNOCHE M.Effect of droplet size and carrier volume on performance of foliage-applied herbicides[J].Crop Protection,1994,13(3):163-178.
参考文献 4
MOGALICHERLA A K,LEE S,PFEIFER P,et al.Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels[J].Microfluidics and Nanofluidics,2014,16(4):655-666.
参考文献 5
ZHOU Z F,CHEN B,WANG R,et al.Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J].Experimental Thermal and Fluid Science,2017,82(11):189-197.
参考文献 6
BERTOLA V.An impact regime map for water drops impacting on heated surfaces[J].International Journal of Heat and Mass Transfer,2015,85(6):430-437.
参考文献 7
ANDRADE R,SKURTYS O,OSORIO F.Drop impact behavior on food using spray coating:Fundamentals and applications[J].Food Research International,2013,54(1):397-405.
参考文献 8
JOSSERAND C,THORODDSEN S T.Drop impact on a solid surface[J].Annual Review of Fluid Mechanics,2016,48(1):365-391.
参考文献 9
宋云超,宁智,孙春华,等.液滴撞击湿润壁面的运动形态及飞溅运动机制[J].力学学报,2013,45(6):833-842.SONG Yunchao,NING Zhi,SUN Chunhua,et al.Movement and splashing of droplet impacting on a wet surface[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(6):833-842.(in Chinese)
参考文献 10
TSAI P,PACHECO S,PIRAT C,et al.Drop impact upon micro-and nanostructured superhydrophobic surfaces[J].Langmuir,2009,25(20):12293-12298.
参考文献 11
李晓宇,李昱鹏,霍磊,等.超疏水性聚合物表面宏观结构对液滴撞击行为影响[J].中国表面工程,2021,34(5):9-16.LI Xiaoyu,LI Yupeng,HUO Lei,et al.Effect of macrostructures on impacting behaviors of water droplets on superhydrophobic polymer surfaces[J].China Surface Engineering,2021,34(5):9-16.(in Chinese)
参考文献 12
焦云龙,刘小君,刘焜.离散型织构表面液滴的铺展及其接触线的力学特性分析[J].力学学报,2016,48(2):353-360.JIAO Yunlong,LIU Xiaojun,LIU Kun.Mechanical analysis of a droplet spreading on the discrete textured surfaces[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(2):353-360.(in Chinsese)
参考文献 13
毕菲菲,郭亚丽,沈胜强,等.液滴撞击固体表面铺展特性的试验研究[J].物理学报,2012,61(18):295-300.BI Feifei,GUO Yali,SHEN Shengqiang,et al.Experimental study of spread characteristics of droplet impacting solid surface [J].Acta Physica Sinica,2012,61(18):295-300.(in Chinese)
参考文献 14
李春曦,陈朋强,叶学民,等.含活性剂液滴在倾斜粗糙壁面上的铺展稳定性[J].物理学报,2015,64(1):146-157.LI Chunxi,CHEN Pengqiang,YE Xuemin,et al.Stability of surfactant-laden droplet spreading over an inclined heterogeneous substrate [J].Acta Physica Sinica 2015,64(1):146-157.(in Chinese)
参考文献 15
杨宝海,王宏,朱恂,等.速度对液滴撞击超疏水壁面行为特性的影响[J].化工学报,2012,63(10):3027-3033.YANG Baohai,WANG Hong,ZHU Xun,et al.Effect of velocity on behavior of droplets impacting superhydrophobic surface[J].CIESC Journal,2012,63(10):3027-3033.(in Chinese)
参考文献 16
刘冬薇,宁智,吕明,等.液滴撞击超疏水壁面反弹及破碎行为研究[J].计算力学学报,2016,33(1):106-112.LIU Dongwei,NING Zhi,LÜ Ming,et al.Study On the rebound and breakup of the droplet after impacting on the super-hydrophobic wall[J].Chinese Journal of Computational Mechanics,2016,33(1):106-112.(in Chinese)
参考文献 17
GUO Y R,CAO Q D,HONG Z S,et al.The origin,transmission and clinical therapies on coronavirus disease 2019(COVID-19)outbreak—an update on the status[J].Military Medical Sciences,2020,7(1):99-109.
参考文献 18
DU W,IACOVIELLO F,FERNANDEZ T,et al.Microstructure analysis and image-based modelling of face masks for COVID-19 virus protection[J].Communications Materials,2021,2(1):69-78.
参考文献 19
THORODDSEN S T,ETOH T G,TAKEHARA K,et al.The air bubble entrapped under a drop impacting on a solid surface[J].Journal of Fluid Mechanics,2005,545:203-212.
参考文献 20
THORODDSEN S T,TAKEHARA K,ETOH T G.Dewetting at the center of a drop impact[J].Modern Physics Letters B,2009,23(03):361-364.
参考文献 21
BARTOLO D,JOSSERAND C,BONN D.Singular jets and bubbles in drop impact[J].Physical Review Letters,2006,96(12):124501.
参考文献 22
CHEN L,LI L,LI Z,et al.Submillimeter-sized bubble entrapment and a high-speed jet emission during droplet impact on solid surfaces[J].Langmuir,2017,33(29):7225-7230.
参考文献 23
YAMAMOTO K,TAKEZAWA H,OGATA S.Droplet impact on textured surfaces composed of commercial stainless razor blades[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,506(6):363-370.
参考文献 24
KEN Y,MASAHIRO M,SATOSHI O.Initiation of the Worthington jet on the droplet impact[J].Applied Physics Letters,2018,112(9):093701.
参考文献 25
THORODDSEN S T,ETOH T G,TAKEHARA K.Microjetting from wave focusing on oscillating drops[J].Physics of Fluids,2007,19(5):052101.
参考文献 26
MARSTON J O,THORODDSEN S T.Apex jets from impacting drops[J].Journal of Fluid Mechanics,2008,614:293-302.
参考文献 27
GANAN C,ALFONSO M.Revision of bubble bursting:universal scaling laws of top jet drop size and speed[J].Physical Review Letters,2017,119(20):204502.
参考文献 28
MA D C,QUERE D,POPINET S,et al.Pyramidal and toroidal water drops after impact on a solid surface[J].Journal of Fluid Mechanics,2003,484:69-83.
参考文献 29
VISSER C W,FROMMHOLD P E,WILDEMAN S,et al.Dynamics of high-speed micro-drop impact:numerical simulations and experiments at frame-to-frame times below 100 ns[J].Soft Matter,2015,11(9):1708-1722.
参考文献 30
LI D,ZHANG D,ZHENG Z,et al.Numerical analysis on air entrapment during a droplet impacts on a dry flat surface[J].International Journal of Heat and Mass Transfer,2017,115(1):186–193.
参考文献 31
MUKHERJEE S,ABRAHAM J.Investigations of drop impact on dry walls with a lattice-Boltzmann model[J].Journal of Colloid and Interface Science,2007,312(2):341-354.
参考文献 32
沈学峰,曹宇,刘海龙,等.剪切变稀液滴撞击不同浸润性壁面的数值模拟研究[J].物理学报,2020,69(6):158-167.SHEN Xuefeng,CAO Yu,LIU Hailong,et al.Numerical simulation of shear-thinning droplet impact on surfaces with different wettability[J].Acta Physica Sinica,2020,69(6):158-167.(in Chinese)
目录contents

    摘要

    液滴在特定条件下撞击超疏水壁面会形成奇异射流现象,该现象产生机理及调控机理有待进一步研究。基于高速显微数码摄像技术,研究不同黏度(0.9~27.7 mPa·s)牛顿流体液滴撞击超疏水壁面(静态接触角为 158°)的动态行为,归纳奇异射流发生的相图。通过水平集相界面追踪法,建立液滴撞击超疏水壁面的有限元数值模型。研究结果表明:对于中低黏度(甘油质量分数小于 67 wt.%)的液滴,奇异射流现象发生在特定的 We 数区间。随着液滴黏度的增大,发生奇异射流的 We 数阈值提高。当液滴的黏度大于 14.2 mPa·s 后,即使继续提高液滴撞击速度(We > 100),奇异射流现象不再出现。奇异射流的产生与回缩阶段液滴内空腔的形成有关,且发生射流时空腔底部有很大的压力集中区。黏度的改变会影响液滴内空腔底部气液交界处的界面形态。随着黏度增加,空腔底部气液相界面将由上凸形转变为下凹形,无法形成向上的射流。奇异射流主要发生于 Re 在 700~1000 的区域,且在该区间内奇异射流发生的 We 数区域较宽,可为液滴动力学行为调控提供理论依据。

    Abstract

    The impact of liquid droplets on surfaces has fascinated scientists for over a century, motivated by a variety of applications such as additive manufacturing, spray cooling, and more recently, epidemic prevention and control. Previous research has shown that when water droplets gently impact a superhydrophobic surface, they can shoot out a small diameter but extremely high velocity jet, called a singular jet. Pure water is one of the most widely used working fluids in industry. However, the evolution of their internal flow field structure, velocity vector, and pressure distribution have yet to be fully studied. The impact and singular jet behaviors of droplets on superhydrophobic surfaces are investigated using a high-speed imaging system. We prepared Newtonian working fluids with viscosities of 0.9–27.7 mPa⋅s by proportioning the glycerol / water solution. Using the nanosilica deposition technique, superhydrophobic surfaces were prepared with a static contact angle of approximately 158°. To simulate the impact process of droplets on superhydrophobic surfaces, a numerical model was constructed based on finite element scheme coupled with a level-set method. The simulation and experimental results showed good agreement. The impact conditions for the occurrence of the singular jet behavior of viscous fluid droplets are summarized. The experimental results showed that when pure water droplets hit superhydrophobic surfaces in the lower We number range, entrained bubbles can be observed, which also directly lead to the occurrence of a singular jet. However, when the viscosity of the droplet is greater than 14.2 mPa·s, even if the impact velocity is enhanced (We > 100), the singular jet behavior no longer appears. From the We-Re phase diagram, it can be observed that the singular jet behavior mainly occurs in the region with Re = 700–1000. The range of We numbers for the singular jet is wider. However, no singular jet phenomenon occurred in the regions where Re < 300 or Re > 1100. The experimental results also showed that the viscous force reduced the maximum jet velocity of the droplet, which caused the jet velocity to become flat. The numerical simulation results indicate that the singular jet is related to the cavity formation during the retraction stage of the impact droplets. Moreover, a larger pressure concentration area was found at the center of the droplet when the singular jet occurred. The interfacial morphology between the gas and liquid at the bottom of the cavity inside the droplet was significantly affected by changes in the viscosity. The gas-liquid interface at the bottom of the cavity could change from an upward convex into a downward concave shape with the increase in viscosity. Therefore, an upward jet cannot be formed. The simulation results showed that the surface tension is in the opposite direction, while the curved gas-liquid level at the bottom of the cavity is reversed. In combination with the experimental and numerical simulation methods, the generation and regulation mechanisms for the singular jet of viscous fluid droplets were determined. Regulating the viscosity of the working fluid significantly influences the singular jet behavior when the droplets impact superhydrophobic surfaces. This study provides a theoretical basis for the regulation of droplet dynamics.

  • 0 前言

  • 液滴撞击固体壁面行为广泛存在于自然界和工农业生产过程中,如降水与土壤冲蚀、农药喷洒、喷雾冷却、喷墨打印、表面喷涂及镀膜等[1-7]。在特定的条件下,液滴撞击壁面的过程伴随着沉积、溅射、回弹以及气体卷吸等现象的产生[8-10]。液滴的物性参数、撞击壁面的特性、撞击速度等主导了液滴撞击壁面后的动态过程[11-16]。自 2019 年爆发的新冠对全球的公共安全提出了巨大威胁[17]。在抗击疫情的工作中,人们希望防护装备在尽可能隔离病毒液滴(唾液、气溶胶微液滴群等)的同时,防止液滴飞溅、二次破碎等现象的发生[18]。因此,对液滴与壁面相互作用的认知和调控方法的研究提出了迫切的需求。

  • 基于高速摄影技术,学者们实现了对液滴撞击固体壁面的瞬态过程的捕捉。THORODDSEN 等[19-20]首先发现在纯水液滴撞击超疏水壁面的回缩过程中,液滴中心会向顶部射出一股直径很小的微射流,并将这一现象命名为奇异射流。BARTOLO 等 [21]进一步试验表明,纯水液滴撞击超疏水壁面后形成的奇异射流速度可达到撞击速度的数十倍。之后CHEN等[22]研究壁面浸润性对液滴撞击壁面后奇异射流行为的影响。研究发现液滴撞击疏水壁面发生奇异射流时产生的卷吸气泡吸附于壁面上,而液滴撞击超疏水表面发生奇异射流时产生的卷吸气泡位于液滴中心位置。YAMAMOTO 等[23-24]研究推测液滴在回缩过程中形成的中心气腔以及表面波震荡可能与奇异射流的形成有关。相关研究发现奇异射流不仅存在于液固相界面,在气液及液液等自由表面处也可能发生奇异射流现象,如突然被夹断的液滴在下落震荡过程中顶部产生微射流[25]、液滴撞击液池形成顶端射流[26]等。奇异射流现象成为液滴动力学研究的前沿与热点[27]。在液滴撞击固体壁面行为的诸多应用中,需要有效地将液滴沉积到固体壁面上,不希望有任何液滴材料的损失。奇异射流行为会影响液滴沉积效率,因此奇异射流的形成与调控机制有待进一步的探索与研究。

  • 已有大部分工作集中在奇异射流的外特性研究上,例如射流速度及射流直径等[21-24]。受限于测量方法的局限性,发生奇异射流时液滴内部流场结构演化、速度场及压力分布等信息仍较为匮乏[28]。液滴动力学模拟是典型的多相流相界面追踪问题,常见的研究方法主要包括体积分数法(VOF method)、水平集法(Level set method)、格子—玻尔兹曼法 (Lattice Boltzmann method)及耦合水平集—体积分数法(CLSVOF method)等。VISSER 等[29]利用体积分数法对毫米、微米液滴撞击固体壁面的行为进行数值模拟研究,预测溅射边缘液膜的尺寸及运动轨迹。LI 等[30]基于耦合—水平集体积分数法探索液滴撞击壁面的卷吸气泡行为的产生机制。发现气液两相之间的压力差使得相界面拓扑发生变化。气膜在液滴底部形成后,会出现收缩,聚结和分离等一系列行为,最终导致卷吸气泡的产生。MUKHERJEE 等[31]基于格子—玻尔兹曼方法模拟了液滴撞击固体壁面的行为,提出液滴回弹与韦伯数、前进和后退接触角等参数的关系。刘海龙等[32]基于水平集法探索剪切变稀特性对液滴撞击固体壁面的铺展、震荡及回弹行为。相关数值模拟手段为研究奇异射流液滴内部流场结构及探索奇异射流调控机理提供了有力工具。

  • 本文利用高速数码及显微摄像技术,搭建液滴撞击壁面动力学行为的可视化试验平台,同时基于水平集相界面追踪方法建立液滴撞击超疏水表面的有限元数值计算模型。试验通过配比甘油 / 水混合溶液,制备不同黏度的(0.9~27.7 mPa·s)牛顿流体工作介质。利用纳米 SiO2 粒沉积技术制作稳定的超疏水表面(接触角≈158°)。试验研究在中低韦伯数(1.2≤We≤100)条件下,不同黏度液滴撞击超疏水壁面后的动态行为及奇异射流生成特性。通过数值计算模型探索奇异射流产生时液滴内部的流场结构及压力的变化规律。分析黏度变化对于液滴内流场演变及奇异射流行为的影响。归纳牛顿流体液滴奇异射流行为产生的相图。从黏性耗散的角度分析奇异射流发生的分布规律。本研究可为液滴动力学行为及表面沉积调控提供理论依据。

  • 1 试验装置与方法

  • 1.1 液滴撞击可视化试验方案

  • 基于显微高速摄像技术,本研究搭建了液滴撞击超疏水壁面的可视化试验平台,试验方案如图1 所示。通过设置微流量注射泵的流量,在针头处产生尺寸均匀的液滴。生成液滴在重力作用下脱离,撞击下方水平放置的超疏水基面。液滴撞击壁面的速度通过升降台高度调节。撞击瞬态过程利用高速数码相机(Phantom V1611,Dantec Dynamics)与显微镜头(12×,Navitar)捕捉。高速数码的拍摄帧率为 10 000(帧 / 秒),图像分辨率为 1 280×800。试验采集数据使用 Image J 软件进行特征提取及分析。

  • 图1 液滴撞击超疏水壁面试验装置示意图

  • Fig.1 Experimental setup for droplet impacting on the superhydrophobic surfaces

  • 由于撞击液滴在下落过程中会成为一个不规则的椭球体,水平方向尺寸和竖直方向尺寸并不一致,因此通过公式d=dvdh23对撞击液滴直径进行修正。其中 d 为撞击液滴的当量直径, dhdv分别表示液滴的水平长度和竖直高度。试验采用韦伯数We=ρV2d/σ 和雷诺数 Re=ρVd/η 作为研究液滴动力学行为的量纲一参数。其中 ρ 是液滴的密度, V 是撞击速度,σ 是液滴表面张力,η 是液滴黏度。 We 表示惯性力和表面张力的影响,Re 表示惯性力和黏性力的影响。试验温度为 25±0.5℃,相对湿度控制在 50±2%。

  • 1.2 超疏水表面制备

  • 本文利用 SiO2 纳米流体(异丙醇 85%~90%、纳米SiO2颗粒0.1%~3%,液化石油气10%~15%),以亲水玻璃板为基底制备稳定的超疏水表面,向玻璃基底喷涂 SiO2 纳米流体。使用烘箱烘干,溶剂快速挥发。SiO2 颗粒沉积于基底表面,形成具备纳米尺度表面粗糙度的表面。制备具体流程如下。

  • (1)预处理:将亲水玻璃板放置于去离子水溶液浸泡 5 min,随后取出玻璃基板进行冲洗并放置烤箱进行烘干,保证基底表面光滑。

  • (2)喷涂:向亲水玻璃基底表面喷涂 SiO2 纳米流体。

  • (3)烘干:将喷涂完成的基面放置于 120°C 的烘箱中烘干 60 min,使有机溶剂完全挥发,纳米 SiO2 颗粒沉积在基底上;

  • (4)重复喷涂和烘干过程 3 次以上,保证涂层的均匀性与稳定性。

  • 对制备完成的超疏水表面进行电镜扫描,从图2 可以看出试验制备的表面已经形成均匀的纳米级表面粗糙度。图2 右上方给出了制备表面上纯水液滴静止状态下的图像,并通过影像分析法测量出静态接触角稳定在 158°±2°,符合超疏水要求。

  • 图2 超疏水壁面 SEM 图像及静止于超疏水壁面的纯水液滴接触角测量

  • Fig.2 SEM image of prepared superhydrophobic surface and the equilibrium contact angle of a resting DI water droplet

  • 1.3 试验流体及物性

  • 本文通过调整甘油 / 水的配比质量百分数,制备了 9 种不同黏度的牛顿流体基液,并使用黏度计(ViscoQC 100,Anton Paar)和界面张力仪(DCAT11, Dataphysics)对试验流体的黏度和表面张力进行测量。试验工质配比及对应的主要物性参数汇总于表1。从表中可以看出,随着工质内甘油质量分数的增大,工质的黏度逐渐增大(从 0.9 mPa·s 增加到 27.7 mPa·s),表面张力略有减小,但是密度几乎保持不变。

  • 表1 液滴工质的物性参数

  • Table1 Properties of working fluids

  • 2 数值计算模型

  • 本文基于水平集相界面追踪方法,建立了纯水液滴撞击超疏水壁面的数值计算模型。图3 给出了数值模型的示意图。计算域为二维轴对称结构,液滴以初始速度 V 撞击壁面。固体壁面为浸润边界条件,其余边界设置为开边界(法向应力为零)。

  • 图3 液滴撞击超疏水表面数值计算模型示意图

  • Fig.3 Numerical model of a droplet impacting on the superhydrophobic surface

  • 控制方程为不可压流体连续性方程和动量守恒方程,由式(1)、(2)表示:

  • u=0
    (1)
  • ρut+uu=-PI+ηu+(u)T+ρg+Fst
    (2)
  • 式中, ρ 为密度,u 为速度, p 为压力, I 为单位矩阵, g 为重力加速度, Fst 为表面张力项。 Fst 通过连续应力模型方程(3)与动量方程耦合:

  • Fst=σI-nnTδ
    (3)
  • 式中,n 为界面法向,σ 为表面张力系数,δ 为狄拉克函数。

  • 液滴撞击壁面的动态过程受壁面浸润性影响,壁面所受合力通过下式求解:

  • Fwall =σnwall -(ncosθ)δ-ηβu
    (4)
  • 式中, nwall 为壁面法向量,θ 为经过润湿边界的接触角, β 为滑移长度。设定垂直壁面的速度分量为 0,即 unwall =0。捕捉相界面的移动时,在气相 φ = 0,向液相φ =1的过渡过程中,对φ 函数求解确定相界面的位置:

  • ϕt+uϕ=γεϕ-ϕ(1-ϕ)ϕ|ϕ|
    (5)
  • 式中ε 为相界面厚度参数,γ 为重新初始化参数。相界面处通过方程(6)对进行平滑处理:

  • (6)
  • 气液两相的密度和黏度用下式求解:

  • ρ=ρ1+ρ2-ρ1ϕ
    (7)
  • η=η1+η2-η1ϕ
    (8)
  • 式中, ρ1为气相密度, ρ2为液相密度,η1为表气相黏度,η2为液相黏度。本研究选取ϕxt=0.5 等值线追踪相界面。

  • 为验证液滴撞击超疏水壁面的数值模型。对纯水液滴以 We = 8.8 撞击超疏水壁面的铺展(2.0 ms)、回缩(3.8 ms)、射流(5.5 ms)以及回弹(12.0 ms) 等动态演变过程进行数值模拟研究。从图4 中可以看出,左侧试验结果与右侧数值模拟结果展现了良好的一致性。

  • 多相流数值模拟需要较高精度的网格数,但网格过密会大大增加计算的成本,因此对液滴撞击超疏水壁面的数值模型进行了网格无关性验证。如图5 所示,分别对 30 337、51 399、80 458、142 999 四种不同网格数下量纲一速度的径向分量进行数值分析,结果表明收敛性较好。由于网格数 80 458 和网格数 142 999 的误差很小,因此为保证合理的计算量,本数值模拟选择 80 458 网格。

  • 图4 纯水液滴以 We = 8.8 撞击超疏水壁面动态变化过程的试验和模拟对比

  • Fig.4 Comparison of the numerical simulation results and experiment results when pure water droplet impacting on a superhydrophobic surface at We = 8.8

  • 图5 液滴撞击超疏水壁面的网格收敛性验证

  • Fig.5 Mesh convergence study of droplets impact on the superhydrophobic surfaces

  • 3 结果分析与讨论

  • 3.1 纯水撞击超疏水壁面的奇异射流行为

  • 本文首先研究纯水液滴撞击超疏水壁面的奇异射流行为。图6 展示了纯水液滴以不同韦伯数 We 撞击超疏水壁面的动态过程(1.2≤We≤18.8)。液滴在惯性力作用下克服表面张力、壁面动摩擦力开始铺展。液滴达到最大铺展后,在表面张力的作用下开始回缩,并且液滴逐步向上回弹。当液滴以很小的速度(We = 1.5)撞击超疏水壁面时,如图6a 所示,没有奇异射流现象出现。当撞击 We 增大到 4.6 时,如图6b 所示,液滴在回缩行程中,顶部会产生一股直径较小的射流。在 5.5 ms 时刻后,尖端射流以微液滴的形式脱离主液滴。随着 We 的进一步变大(We = 7.6),在液滴顶部发生奇异射流的同时,液滴中心部位出现气泡。当 We 增大到 10.6 时,在铺展与回缩阶段均未观察到液滴内有气泡出现。但是奇异射流现象仍然发生,并且射流脱离后形成的子液滴的直径显著变大。当纯水液滴以更高的 We (18.8)撞击超疏水壁面时,奇异射流现象不再发生。特别需要指出的是,由于壁面的超疏水性,所有撞击液滴最终(6.5 ms 后)会完全反弹飞离壁面。

  • 图6 纯水液滴以不同 We 撞击超疏水壁面过程(图中比例尺为 1 mm)

  • Fig.6 Snapshots of DI water droplets impacting on the superhydrophobic surface at various We (scale bars represent 1 mm)

  • 图7 给出了 We = 7.6 时纯水液滴撞击壁面的数值模拟结果。图7 左侧为速度矢量场,右侧为压力场。模拟结果与试验现象图6c 取得了良好的一致性。数值模拟研究发现,在铺展阶段,液滴的惯性力克服表面张力、黏性力、壁面动摩擦力不断向外铺展。当液滴达到最大铺展后,在表面张力作用下液滴开始回缩,伴随着液滴的形貌变化,液滴内部会形成明显的空腔。腔体下的液体在表面张力和周围流体挤压作用下形成尖状凸起(4.0 ms)。腔体上部逐渐受到周围流体的挤压也有闭合的趋势 (4.3 ms)。在液滴闭合前时刻(4.5 ms),腔体附近的压力场达到峰值(最大压强为 4.18 kPa),惯性力和黏性力不足以维持腔体的形貌,腔体有被夹断的趋势。随着腔体的溃灭,如图中 5.5 ms 时刻所示,射流脱离主液滴,形成向上运动的微小液滴,小部分未逃逸气体伴随液滴运动形成内部气泡。从模拟结果可以明显看出微小液滴的速度远大于液滴的撞击速度,直径远小于撞击液滴的直径。

  • 图7 纯水液滴撞以We = 7.6 撞击超疏水壁面的数值模拟结果

  • Fig.7 Numerical simulation results of the droplet impacting on the superhydrophobic surface at We = 7.6

  • 3.2 不同黏度牛顿流体液滴的奇异射流行为

  • 图8 和图9 给出了不同黏度牛顿流体液滴在两组 We 数下撞击超疏水壁面的动力学响应时间序列图像。如图8 所示,We = 5.0 时 20 wt.%甘油 / 水溶液液滴撞击超疏水壁面,在 6.5 ms 时刻液滴顶部发生奇异射流。此时射流形态与 We = 4.3 时纯水液滴射流形态相近。这可能是由于 20 wt.%甘油溶液黏度 (1.54 mPa·s)相较纯水黏度(0.9 mPa·s)增加不大。但是奇异射流的断裂高度减小,子液滴明显增大。当甘油质量分数增至 50 wt.%时,工质黏度 (5.04 mPa·s)增至纯水黏度(0.9 mPa·s)的 5.6 倍。在同样韦伯数下(We = 5.0),50 wt.%甘油液滴撞击超疏水表面不再出现奇异射流现象。图9 给出了在中等韦伯数下,50 wt.%与 60 wt.%甘油液滴撞击超疏水表面的试验图像。从试验结果可知,当韦伯数 We 从 5.0 提高至 28.2 后,原本不发生奇异射流的 50 wt.%甘油液滴(η = 5.04 mPa·s),在 6.5 ms 时发生奇异射流。再次增大液滴黏度(60 wt.%甘油液滴,η = 8.83 mPa·s),液滴撞击超疏水壁面时的奇异射流现象消失。

  • 图8 不同黏度牛顿流体液滴在 We = 5.0 下撞击超疏水壁面过程(图中比例尺为 1 mm)

  • Fig.8 Snapshots of Newtonian fluid droplets with different viscosities impacting on the superhydrophobic surface at We = 5.0 (all of the scale bars represent 1 mm)

  • 图9 不同黏度牛顿流体液滴在 We = 28.2 下撞击超疏水壁面过程(图中比例尺为 1 mm)

  • Fig.9 Snapshots of Newtonian fluid droplets with different viscosities impacting on the superhydrophobic surface at We = 28.2 (all of the scale bars represent 1 mm)

  • 为进一步研究黏度对射流行为的影响,对η = 5.04 mPa·s 和η = 8.83 mPa·s 的液滴在 We = 28.2 下撞击超疏水壁面的过程进行了数值模拟分析。对比图10 和图11 可以发现,两种不同黏度的液滴在回缩阶段都会在液滴内部产生空腔结构。但是空腔底部气液交界处的界面弯曲形态大不相同。在较低黏度下(η = 5.04 mPa·s,50 wt.%甘油液滴),腔体底部气液界面呈现明显的上凸,如图10b 中 5.0 ms~5.3 ms 时刻结果所示。该凸起界面随着液滴回缩最终形成速度与压力最高点,导致奇异射流的产生。相比之下,在η = 8.83 mPa·s(60 wt.%甘油) 液滴内部,空腔底部较为平缓。在 5.2 ms 与 5.3 ms 时刻,由于黏性力增大,抑制了空腔底部向上凸起的趋势,空腔底部出现与 50 wt.%甘油液滴完全相反的下陷曲面。随着空腔的坍塌,液滴上部完全闭合,不产生奇异射流。此外,如图12 所示,数值模拟结果表明在不同凹凸界面下的表面张力的方向大致相反。

  • 图10 50 wt.%甘油牛顿流体液滴(η = 5.04 mPa·s) 在 We = 28.2 下撞击超疏水壁面的数值模拟结果

  • Fig.10 Numerical simulation results of 50 wt.% glycerol Newtonian fluid droplet (η = 5.04 mPa·s) impacting a superhydrophobic surface at We = 28.2

  • 图11 60 wt.%甘油牛顿流体液滴(η = 8.83 mPa·s) 在 We = 28.2 下撞击超疏水壁面的数值模拟结果

  • Fig.11 Numerical simulation results of 60 wt.% glycerol Newtonian fluid droplet (η = 8.83 mPa·s) impacting a superhydrophobic surface at We = 28.2

  • 图12 不同凹凸液面下表面张力的方向变化

  • Fig.12 Direction of surface tension at different concave and convex liquid surfaces

  • 图13给出了甘油 / 水溶液液滴在不同甘油质量分数与 We 下的奇异射流行为的相图。从相图中可以看出,对于中低黏度(甘油质量分数小于 67 wt.%) 的液滴,奇异射流行为会在一个特定的 We 数区间内发生。奇异射流发生的 We 数阈值随着黏度的增加不断提升。对于纯水,在 We = 2.7 时就会出现奇异射流现象。但当甘油 / 水溶液液滴的质量分数大于 67 wt.%后,即使继续提高液滴撞击速度,奇异射流现象也不再出现。对于甘油质量分数较低的液滴,奇异射流发生的区间较窄,在 We = 2.7 至 We = 28.2 的范围内。当甘油质量分数高于 40 wt.%后,只要奇异射流发生,均会出现在一个比较宽的 We 数范围内。特别是对于 40 wt.%的甘油液滴,奇异射流发生的 We 数区间最宽。从 We = 16 到 We = 78.8 的范围内,液滴撞击超疏水壁面时都伴随有奇异射流行为的出现。

  • 图13 不同甘油 / 水配比溶液液滴发生奇异射流的甘油质量分数与韦伯数的关系相图

  • Fig.13 Phase diagram of jet relationship between mass fraction of glycerin aqueous solution and Weber number

  • 为了进一步探讨黏性力及惯性力对奇异射流的影响,给出了奇异射流在 ReWe 下的发生相图。如图14 所示,从相图上可以看出奇异射流主要发生于 Re 在 700~1 000 的区域,且在该区间内奇异射流发生的 We 区域较宽。黏度较低的甘油 / 水溶液,即使在很小惯性力的作用下也会产生奇异射流。但是对于黏性较大的流体,惯性力会被黏性完全耗散或者迅速转化为回弹动能。对于 Re <300 及 Re >1 100 的区域,甘油 / 水溶液液滴都不会发生奇异射流现象。

  • 图14 不同韦伯数和雷诺数下的射流关系图

  • Fig.14 Jet relationship diagram for Weber number and Reynolds number

  • 图15 给出了射流速度随韦伯数和甘油水溶液质量分数变化的关系图。以射流液滴速度和液滴撞击速度的比值 Vj / V 一化,刻画液滴撞击超疏水壁面后的射流液滴速度大小。数据结果表明,纯水液滴在撞击超疏水壁面后射流液滴速度可达撞击速度的 18 倍,但波动性较大。随着甘油的加入,撞击液滴的黏度增大,运动过程中的黏性耗散能增加。同时黏性力对射流行为产生了抑制作用,削弱了液滴的最大射流速度。黏度越大,削弱效果越显著,促使射流速度逐步趋于稳定。当甘油水溶液质量分数增大至 60 wt.%时,最大射流速度减小为撞击速度的 3.8 倍,相对于纯水液滴射流速度降低约 80%。研究结果表明,黏性力削弱了奇异射流的速度,且牛顿流体的黏度越大,黏性力越大,影响效果越显著。

  • 图15 不同质量分数甘油水溶液液滴的射流速度变化关系图

  • Fig.15 Relationship for the jet velocity of the glycerol aqueous solution droplets with various mass fractions

  • 4 结论

  • (1)试验和模拟相结合揭示了牛顿流体液滴射流行为的生成机理和调控机理。结果表明改变撞击液滴的黏度能有效调控奇异射流行为。

  • (2)数值模拟研究获得了奇异射流发生时液滴内部流场结构演化、速度场及压力分布,为探索液滴与壁面作用时内流场的演变提供了新的方法。

  • (3)液滴撞击超疏水壁面奇异射流行为机理的研究对表面喷涂、喷雾冷却以及表面清洁等应用具有指导性意义。

  • 参考文献

    • [1] WANG C H,TSAI H L,WU Y C,et al.Investigation of molten metal droplet deposition and solidification for 3D printing techniques[J].Journal of Micromechanics and Microengineering,2016,26(9):095012.

    • [2] JIAO Z,LI F,XIE L,et al.Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer:Research Article[J].Journal of Applied Polymer Science,2018,135(9):45933.

    • [3] KNOCHE M.Effect of droplet size and carrier volume on performance of foliage-applied herbicides[J].Crop Protection,1994,13(3):163-178.

    • [4] MOGALICHERLA A K,LEE S,PFEIFER P,et al.Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels[J].Microfluidics and Nanofluidics,2014,16(4):655-666.

    • [5] ZHOU Z F,CHEN B,WANG R,et al.Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J].Experimental Thermal and Fluid Science,2017,82(11):189-197.

    • [6] BERTOLA V.An impact regime map for water drops impacting on heated surfaces[J].International Journal of Heat and Mass Transfer,2015,85(6):430-437.

    • [7] ANDRADE R,SKURTYS O,OSORIO F.Drop impact behavior on food using spray coating:Fundamentals and applications[J].Food Research International,2013,54(1):397-405.

    • [8] JOSSERAND C,THORODDSEN S T.Drop impact on a solid surface[J].Annual Review of Fluid Mechanics,2016,48(1):365-391.

    • [9] 宋云超,宁智,孙春华,等.液滴撞击湿润壁面的运动形态及飞溅运动机制[J].力学学报,2013,45(6):833-842.SONG Yunchao,NING Zhi,SUN Chunhua,et al.Movement and splashing of droplet impacting on a wet surface[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(6):833-842.(in Chinese)

    • [10] TSAI P,PACHECO S,PIRAT C,et al.Drop impact upon micro-and nanostructured superhydrophobic surfaces[J].Langmuir,2009,25(20):12293-12298.

    • [11] 李晓宇,李昱鹏,霍磊,等.超疏水性聚合物表面宏观结构对液滴撞击行为影响[J].中国表面工程,2021,34(5):9-16.LI Xiaoyu,LI Yupeng,HUO Lei,et al.Effect of macrostructures on impacting behaviors of water droplets on superhydrophobic polymer surfaces[J].China Surface Engineering,2021,34(5):9-16.(in Chinese)

    • [12] 焦云龙,刘小君,刘焜.离散型织构表面液滴的铺展及其接触线的力学特性分析[J].力学学报,2016,48(2):353-360.JIAO Yunlong,LIU Xiaojun,LIU Kun.Mechanical analysis of a droplet spreading on the discrete textured surfaces[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(2):353-360.(in Chinsese)

    • [13] 毕菲菲,郭亚丽,沈胜强,等.液滴撞击固体表面铺展特性的试验研究[J].物理学报,2012,61(18):295-300.BI Feifei,GUO Yali,SHEN Shengqiang,et al.Experimental study of spread characteristics of droplet impacting solid surface [J].Acta Physica Sinica,2012,61(18):295-300.(in Chinese)

    • [14] 李春曦,陈朋强,叶学民,等.含活性剂液滴在倾斜粗糙壁面上的铺展稳定性[J].物理学报,2015,64(1):146-157.LI Chunxi,CHEN Pengqiang,YE Xuemin,et al.Stability of surfactant-laden droplet spreading over an inclined heterogeneous substrate [J].Acta Physica Sinica 2015,64(1):146-157.(in Chinese)

    • [15] 杨宝海,王宏,朱恂,等.速度对液滴撞击超疏水壁面行为特性的影响[J].化工学报,2012,63(10):3027-3033.YANG Baohai,WANG Hong,ZHU Xun,et al.Effect of velocity on behavior of droplets impacting superhydrophobic surface[J].CIESC Journal,2012,63(10):3027-3033.(in Chinese)

    • [16] 刘冬薇,宁智,吕明,等.液滴撞击超疏水壁面反弹及破碎行为研究[J].计算力学学报,2016,33(1):106-112.LIU Dongwei,NING Zhi,LÜ Ming,et al.Study On the rebound and breakup of the droplet after impacting on the super-hydrophobic wall[J].Chinese Journal of Computational Mechanics,2016,33(1):106-112.(in Chinese)

    • [17] GUO Y R,CAO Q D,HONG Z S,et al.The origin,transmission and clinical therapies on coronavirus disease 2019(COVID-19)outbreak—an update on the status[J].Military Medical Sciences,2020,7(1):99-109.

    • [18] DU W,IACOVIELLO F,FERNANDEZ T,et al.Microstructure analysis and image-based modelling of face masks for COVID-19 virus protection[J].Communications Materials,2021,2(1):69-78.

    • [19] THORODDSEN S T,ETOH T G,TAKEHARA K,et al.The air bubble entrapped under a drop impacting on a solid surface[J].Journal of Fluid Mechanics,2005,545:203-212.

    • [20] THORODDSEN S T,TAKEHARA K,ETOH T G.Dewetting at the center of a drop impact[J].Modern Physics Letters B,2009,23(03):361-364.

    • [21] BARTOLO D,JOSSERAND C,BONN D.Singular jets and bubbles in drop impact[J].Physical Review Letters,2006,96(12):124501.

    • [22] CHEN L,LI L,LI Z,et al.Submillimeter-sized bubble entrapment and a high-speed jet emission during droplet impact on solid surfaces[J].Langmuir,2017,33(29):7225-7230.

    • [23] YAMAMOTO K,TAKEZAWA H,OGATA S.Droplet impact on textured surfaces composed of commercial stainless razor blades[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,506(6):363-370.

    • [24] KEN Y,MASAHIRO M,SATOSHI O.Initiation of the Worthington jet on the droplet impact[J].Applied Physics Letters,2018,112(9):093701.

    • [25] THORODDSEN S T,ETOH T G,TAKEHARA K.Microjetting from wave focusing on oscillating drops[J].Physics of Fluids,2007,19(5):052101.

    • [26] MARSTON J O,THORODDSEN S T.Apex jets from impacting drops[J].Journal of Fluid Mechanics,2008,614:293-302.

    • [27] GANAN C,ALFONSO M.Revision of bubble bursting:universal scaling laws of top jet drop size and speed[J].Physical Review Letters,2017,119(20):204502.

    • [28] MA D C,QUERE D,POPINET S,et al.Pyramidal and toroidal water drops after impact on a solid surface[J].Journal of Fluid Mechanics,2003,484:69-83.

    • [29] VISSER C W,FROMMHOLD P E,WILDEMAN S,et al.Dynamics of high-speed micro-drop impact:numerical simulations and experiments at frame-to-frame times below 100 ns[J].Soft Matter,2015,11(9):1708-1722.

    • [30] LI D,ZHANG D,ZHENG Z,et al.Numerical analysis on air entrapment during a droplet impacts on a dry flat surface[J].International Journal of Heat and Mass Transfer,2017,115(1):186–193.

    • [31] MUKHERJEE S,ABRAHAM J.Investigations of drop impact on dry walls with a lattice-Boltzmann model[J].Journal of Colloid and Interface Science,2007,312(2):341-354.

    • [32] 沈学峰,曹宇,刘海龙,等.剪切变稀液滴撞击不同浸润性壁面的数值模拟研究[J].物理学报,2020,69(6):158-167.SHEN Xuefeng,CAO Yu,LIU Hailong,et al.Numerical simulation of shear-thinning droplet impact on surfaces with different wettability[J].Acta Physica Sinica,2020,69(6):158-167.(in Chinese)

  • 参考文献

    • [1] WANG C H,TSAI H L,WU Y C,et al.Investigation of molten metal droplet deposition and solidification for 3D printing techniques[J].Journal of Micromechanics and Microengineering,2016,26(9):095012.

    • [2] JIAO Z,LI F,XIE L,et al.Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer:Research Article[J].Journal of Applied Polymer Science,2018,135(9):45933.

    • [3] KNOCHE M.Effect of droplet size and carrier volume on performance of foliage-applied herbicides[J].Crop Protection,1994,13(3):163-178.

    • [4] MOGALICHERLA A K,LEE S,PFEIFER P,et al.Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels[J].Microfluidics and Nanofluidics,2014,16(4):655-666.

    • [5] ZHOU Z F,CHEN B,WANG R,et al.Comparative investigation on the spray characteristics and heat transfer dynamics of pulsed spray cooling with volatile cryogens[J].Experimental Thermal and Fluid Science,2017,82(11):189-197.

    • [6] BERTOLA V.An impact regime map for water drops impacting on heated surfaces[J].International Journal of Heat and Mass Transfer,2015,85(6):430-437.

    • [7] ANDRADE R,SKURTYS O,OSORIO F.Drop impact behavior on food using spray coating:Fundamentals and applications[J].Food Research International,2013,54(1):397-405.

    • [8] JOSSERAND C,THORODDSEN S T.Drop impact on a solid surface[J].Annual Review of Fluid Mechanics,2016,48(1):365-391.

    • [9] 宋云超,宁智,孙春华,等.液滴撞击湿润壁面的运动形态及飞溅运动机制[J].力学学报,2013,45(6):833-842.SONG Yunchao,NING Zhi,SUN Chunhua,et al.Movement and splashing of droplet impacting on a wet surface[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(6):833-842.(in Chinese)

    • [10] TSAI P,PACHECO S,PIRAT C,et al.Drop impact upon micro-and nanostructured superhydrophobic surfaces[J].Langmuir,2009,25(20):12293-12298.

    • [11] 李晓宇,李昱鹏,霍磊,等.超疏水性聚合物表面宏观结构对液滴撞击行为影响[J].中国表面工程,2021,34(5):9-16.LI Xiaoyu,LI Yupeng,HUO Lei,et al.Effect of macrostructures on impacting behaviors of water droplets on superhydrophobic polymer surfaces[J].China Surface Engineering,2021,34(5):9-16.(in Chinese)

    • [12] 焦云龙,刘小君,刘焜.离散型织构表面液滴的铺展及其接触线的力学特性分析[J].力学学报,2016,48(2):353-360.JIAO Yunlong,LIU Xiaojun,LIU Kun.Mechanical analysis of a droplet spreading on the discrete textured surfaces[J].Chinese Journal of Theoretical and Applied Mechanics,2016,48(2):353-360.(in Chinsese)

    • [13] 毕菲菲,郭亚丽,沈胜强,等.液滴撞击固体表面铺展特性的试验研究[J].物理学报,2012,61(18):295-300.BI Feifei,GUO Yali,SHEN Shengqiang,et al.Experimental study of spread characteristics of droplet impacting solid surface [J].Acta Physica Sinica,2012,61(18):295-300.(in Chinese)

    • [14] 李春曦,陈朋强,叶学民,等.含活性剂液滴在倾斜粗糙壁面上的铺展稳定性[J].物理学报,2015,64(1):146-157.LI Chunxi,CHEN Pengqiang,YE Xuemin,et al.Stability of surfactant-laden droplet spreading over an inclined heterogeneous substrate [J].Acta Physica Sinica 2015,64(1):146-157.(in Chinese)

    • [15] 杨宝海,王宏,朱恂,等.速度对液滴撞击超疏水壁面行为特性的影响[J].化工学报,2012,63(10):3027-3033.YANG Baohai,WANG Hong,ZHU Xun,et al.Effect of velocity on behavior of droplets impacting superhydrophobic surface[J].CIESC Journal,2012,63(10):3027-3033.(in Chinese)

    • [16] 刘冬薇,宁智,吕明,等.液滴撞击超疏水壁面反弹及破碎行为研究[J].计算力学学报,2016,33(1):106-112.LIU Dongwei,NING Zhi,LÜ Ming,et al.Study On the rebound and breakup of the droplet after impacting on the super-hydrophobic wall[J].Chinese Journal of Computational Mechanics,2016,33(1):106-112.(in Chinese)

    • [17] GUO Y R,CAO Q D,HONG Z S,et al.The origin,transmission and clinical therapies on coronavirus disease 2019(COVID-19)outbreak—an update on the status[J].Military Medical Sciences,2020,7(1):99-109.

    • [18] DU W,IACOVIELLO F,FERNANDEZ T,et al.Microstructure analysis and image-based modelling of face masks for COVID-19 virus protection[J].Communications Materials,2021,2(1):69-78.

    • [19] THORODDSEN S T,ETOH T G,TAKEHARA K,et al.The air bubble entrapped under a drop impacting on a solid surface[J].Journal of Fluid Mechanics,2005,545:203-212.

    • [20] THORODDSEN S T,TAKEHARA K,ETOH T G.Dewetting at the center of a drop impact[J].Modern Physics Letters B,2009,23(03):361-364.

    • [21] BARTOLO D,JOSSERAND C,BONN D.Singular jets and bubbles in drop impact[J].Physical Review Letters,2006,96(12):124501.

    • [22] CHEN L,LI L,LI Z,et al.Submillimeter-sized bubble entrapment and a high-speed jet emission during droplet impact on solid surfaces[J].Langmuir,2017,33(29):7225-7230.

    • [23] YAMAMOTO K,TAKEZAWA H,OGATA S.Droplet impact on textured surfaces composed of commercial stainless razor blades[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,506(6):363-370.

    • [24] KEN Y,MASAHIRO M,SATOSHI O.Initiation of the Worthington jet on the droplet impact[J].Applied Physics Letters,2018,112(9):093701.

    • [25] THORODDSEN S T,ETOH T G,TAKEHARA K.Microjetting from wave focusing on oscillating drops[J].Physics of Fluids,2007,19(5):052101.

    • [26] MARSTON J O,THORODDSEN S T.Apex jets from impacting drops[J].Journal of Fluid Mechanics,2008,614:293-302.

    • [27] GANAN C,ALFONSO M.Revision of bubble bursting:universal scaling laws of top jet drop size and speed[J].Physical Review Letters,2017,119(20):204502.

    • [28] MA D C,QUERE D,POPINET S,et al.Pyramidal and toroidal water drops after impact on a solid surface[J].Journal of Fluid Mechanics,2003,484:69-83.

    • [29] VISSER C W,FROMMHOLD P E,WILDEMAN S,et al.Dynamics of high-speed micro-drop impact:numerical simulations and experiments at frame-to-frame times below 100 ns[J].Soft Matter,2015,11(9):1708-1722.

    • [30] LI D,ZHANG D,ZHENG Z,et al.Numerical analysis on air entrapment during a droplet impacts on a dry flat surface[J].International Journal of Heat and Mass Transfer,2017,115(1):186–193.

    • [31] MUKHERJEE S,ABRAHAM J.Investigations of drop impact on dry walls with a lattice-Boltzmann model[J].Journal of Colloid and Interface Science,2007,312(2):341-354.

    • [32] 沈学峰,曹宇,刘海龙,等.剪切变稀液滴撞击不同浸润性壁面的数值模拟研究[J].物理学报,2020,69(6):158-167.SHEN Xuefeng,CAO Yu,LIU Hailong,et al.Numerical simulation of shear-thinning droplet impact on surfaces with different wettability[J].Acta Physica Sinica,2020,69(6):158-167.(in Chinese)

  • 手机扫一扫看