en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈昊鑫,男,1997年出生,硕士研究生。主要研究方向为精密/超精密加工技术。E-mail:chenhaoxin1129@163.com

通讯作者:

张桂香,女,1964年出生,博士,教授,博士研究生导师。主要研究方向为精密/超精密加工技术。E-mail:zhangggx@sdut.edu.cn

中图分类号:TG176

DOI:10.11933/j.issn.1007−9289.20220127001

参考文献 1
曾光,韩志宇,梁书锦,等.金属零件3D打印技术的应用研究[J].中国材料进展,2014,33(6):376-382.ZENG G,HAN Z Y,LIANG S J,et al.Research on the application of 3D printing technology for metal parts[J].Materials China,2014,33(6):376-382.(in Chinese)
参考文献 2
顾冬冬,张红梅,张晗,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):24-47.GU D D,ZHANG H M,ZHANG H,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Lasers,2020,47(5):24-47.(in Chinese)
参考文献 3
LE C G,FISCHER M,PIQUARD R,D’ACUNTO A,et al.Micro cutting of Ti-6Al-4V parts produced by SLM process[J].Procedia CIRP,2017,58:228-232.
参考文献 4
高航,彭灿,王宣平.航空增材制造复杂结构件表面光整加工技术研究及进展[J].航空制造技术,2019,62(9):14-22.GAO H,PENG C,WANG X P.Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J].Aeronautical Manufacturing Technology,2019,62(9):14-22.(in Chinese)
参考文献 5
杨晶晶.激光选区熔化成形 Ti-6Al-4V 合金的组织演变及调控[D].武汉:华中科技大学,2017.YANG J J.Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)
参考文献 6
SHIPIEY H,MCDONNEL D,CULLETON M,et al.Optimisation of process parameters to address fundamental challenges during Selective Laser melting of Ti-6Al-4V:A review[J].International Journal of Machine Tools and Manufacture,2018,128:1-20.
参考文献 7
LIU S Y,SHIN Y C.Additive manufacturing of Ti-6Al-4V alloy:a review[J].Materials & Design,2019,164:107552.
参考文献 8
TENG X,ZHANG G X,LIANG J Z,et al.Parameter optimization and microhardness experiment of AlSi10Mg alloy prepared by selective laser melting[J].Materials Research Express,2019,6(8):086592.
参考文献 9
张桂香.雾化快凝磁性磨料制备及其磁力光整加工性能研究[D].南京:南京航空航天大学,2012.ZHANG G X.Study on preparation of magnetic abrasives by gas atomization with rapid solidification and their finishing performance[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)
参考文献 10
ZOU Y,XIE H,DONG C,et al.Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field[J].Int J Adv Manuf Technol,2018,5(97):2193–2202.
参考文献 11
陈燕,张广彬,韩冰,等.磁力研磨法对陶瓷管内表面超精密抛光技术的试验研究[J].摩擦学学报,2015,35(2):131-137.CHEN Y,ZHANG G B,HAN B,et al.Experimental investigation of magnetic abrasive finishing for super precision polishing of inner surface of the ceramic tube[J].Tribology,2015,35(2):131-137.(in Chinese)
参考文献 12
BEAUCAMP A T,NAMBA Y,CHARLTON P,et al.Finishing of additively manufactured titanium alloy by shape adaptive grinding(SAG)[J].Surface Topography:Metrology and Properties,2015,3(2):024001.
参考文献 13
LIANG C,HU Y,LIU Ning,et al.Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting[J].Metals,MDPI AG,2020,10(2):191.
参考文献 14
ŁYCZKOWSKA E,SZYMCZYK P,DYBAŁA B,et al.Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J].Archiv.Civ.Mech.Eng,2014,14:586-594.
参考文献 15
张飞,马腾,杨光,等.选区激光熔化TC4粉末制备及成形工艺研究[J].河北工业科技,2019,36(2):98-102.ZHANG F,MA T,YANG G,et al.Study on preparation and forming process of TC4 titanium alloy powder with selective laser melting[J].Hebei Journal of Industrial Science and Technology,2019,36(2):98-102.(in Chinese)
参考文献 16
许德,高华兵,董涛,等.增材制造用金属粉末研究进展[J].中国有色金属学报,2021,31(2):245-257.XU D,GAO H B,DONG T,et al.Research progress of metal powder for additive manufacturing[J].The Chinese Journal of Nonferrous Metals,2021,31(2):245-257.(in Chinese)
参考文献 17
张萍萍,张桂香.平面磁力研磨装置及磁极设计[J].山东理工大学学报(自然科学版),2011,25(6):67-70.ZHANG P P,ZHANG G X.Design of a plane magnetic abrasive finishing device and the magnetic pole[J].Journal of Shandong University of Technology(Natural Science Edition),2011,25(6):67-70.(in Chinese)
参考文献 18
ZHANG G X,ZHAO Y G,ZHAO D B,et al.Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification[J].Scripta Materialia,2011,5(65):416-419.
参考文献 19
GAO Y W,ZHAO Y G,ZHANG G X.Preparation of Al2O3 magnetic abrasives by gas-solid two-phase double-stage atomization and rapid solidification[J].Materials Letters,2018,215:300-304.
参考文献 20
JIANG L Z,CHANG T Y,ZHU P X,ZHANG G X,et al.Influence of process conditions on preparation of CBN/Fe-based spherical magnetic abrasive via gas atomization[J].Ceramics International,2021,22(47):31367-31374.
参考文献 21
梁伟,张桂香,张鹏,等.磁力研磨光整加工 ZrO2 陶瓷材料试验研究[J].表面技术,2018,47(9):310-316.LIANG W,ZHANG G X,ZHANG P,et al.Experim ental research on magnetic abrasive finishing for ZrO2 ceramic materials[J].Surface Technology,2018,47(9):310-316.(in Chinese)
参考文献 22
杜嘉静,张桂香,朱培鑫,等.加工间隙对CBN磁性磨料研磨904L不锈钢表面完整性的影响[J].表面技术,2021,50(6):338-346.DU J J,ZHANG G X,ZHU P X,et al.Influence of machining gap on surface integrity of 904L stainless steel finished by CBN magnetic abrasive particles[J].Surface Technology,2021,50(6):338-346.(in Chinese)
参考文献 23
徐红玉,刘玉会,卜敏,等.高速冷滚打成形花键表面加工硬化试验[J].锻压技术,2017,42(3):165-169.XU H Y,LIU Y H,BU M,et al.Experiment on surface work-hardening of spline by high speed cold roll-beating[J].Forging & Stamping Technology,2017,42(3):165-169.(in Chinese)
参考文献 24
樊鹏,潘家腾,葛一铭,等.激光增材制造 TC4/TC11 钛合金梯度材料残余应力的有限元分析[J].中国激光,2021,48(18):110-118.FAN P,PAN J T,GE Y M,et al.Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J].Chinese Journal of Lasers,2021,48(18):110-118.(in Chinese)
目录contents

    摘要

    为了研究磁力光整加工工艺对 SLM 制备的 TC4 钛合金表面完整性的影响,采用响应曲面法对钛合金试样进行三因素三水平的响应曲面分析试验。首先使用数控成形磨床对 SLM 制备的 TC4 钛合金试样进行磨削加工,磨削加工将钛合金试样表面粗糙度从 6 μm(SLM 成形后)下降到约 0.6 μm,使带有球状体和凹坑等缺陷的粗糙表面演化为有划痕和孔隙的细表面。然后在不同的磁力光整加工工艺参数下,利用 XK7136C 数控铣床改造的磁力光整加工系统,采用雾化法制备的新型 Al2O3 / 铁基球形磁性磨料对钛合金试样进行磁力光整加工,分析加工后钛合金试样的粗糙度、表面形貌以及残余应力,并确定最佳工艺参数。结果表明:当磁力光整加工工艺参数分别为主轴转速 1000.00 r / min,加工间隙 1.50 mm,进给速度 15.00 mm / min 时,磁力光整加工效果最好,钛合金试样表面粗糙度由初始的 0.6 μm 降低到 0.065 μm,试样表面均匀,划痕和表面缺陷被有效去除,达到接近镜面效果。试样表面的残余应力由最初的拉应力+297.4 MPa 转变为压应力−237.8 MPa。利用磨削加工和磁力光整加工技术对 SLM 制备的 TC4 钛合金试样进行光整加工,可有效改善工件表面完整性,提高工件表面质量。

    Abstract

    To study the influence of the magnetic finishing process on the surface integrity of TC4 titanium alloy prepared by selective laser melting (SLM), response surface analysis (RSA) tests of three factors and levels were conducted on TC4 titanium alloy samples prepared by SLM using the response surface method. The effects of various test factors on the surface integrity were analyzed, and the optimal processing parameters of TC4 titanium alloy prepared by magnetic finishing SLM were determined. TC4 powder of 15-53 μm diameter was used as SLM forming material, and the samples were prepared using a 67° rotating scanning strategy of 30 μm thickness on SLM®125HL equipment. After sample preparation, prior to the magnetic finishing process, the TC4 titanium alloy sample prepared by SLM was rough ground using a CNC forming grinder. The grinding process reduces the sample surface roughness from 6 μm (after SLM forming) to approximately 0.6 μm. The rough surface with defects such as spheroids and pits evolved into a fine surface with scratches and pores. Subsequently, under different magnetic finishing process parameters, on the magnetic finishing system modified by a XK7136C CNC milling machine, the new Al2O3 / iron-based spherical magnetic abrasive prepared using an atomization method was adsorbed on the slotted magnetic pole, and the magnetic finishing process test was conducted on the rough ground sample. The RSA method involving three factors and levels was utilized in the test. A total of 17 groups of tests were conducted, 5 groups of which were focused on the center test. The test processing parameters were optimized according to the Box-Behnken analysis principle from the RSA method, and the sample surface roughness was measured and analyzed using observational instruments such as a hand-held roughness meter, metallographic microscope, and a white light interferometer. The surface morphology change throughout processing was subsequently observed. The change of residual stress on the sample surface before and after machining was detected using a stress tester. By analyzing surface roughness changes, surface morphology and residual stress of the samples before and after processing, the optimal process parameters for TC4 titanium alloy prepared by magnetic finishing SLM were obtained. Verification results demonstrate that the obtained optimal test parameters are true and effective. Under optimal process parameters, that is, when the precise magnetic finishing process parameters are: spindle speed 1000.00 r / min, machining gap 1.50 mm, and feed rate 15.00 mm / min, the magnetic finishing effect is the best. The surface roughness of the TC4 titanium alloy sample prepared by SLM, increases from the initial Ra of 0.6 μm to 0.065 μm. The sample surface is uniform, and scratches and surface defects are effectively removed, to achieve a mirror like effect. Among the three magnetic finishing process parameters, the machining gap, feed and spindle speed have the greatest impact on the sample surface integrity. The residual stress on the TC4 Titanium Alloy Specimen surface prepared by SLM changed from an initial tensile stress of +297.4 MPa to a compressive stress of −237.8 MPa. Test results demonstrate that using the RSA method, the sample is polished by grinding and magnetic finishing technology, and the influence of various factors on the surface roughness of the specimen after magnetic polishing is obtained. Finally, the optimal magnetic polishing process parameters are obtained, the workpiece surface roughness is effectively reduced, and the residual stress on the workpiece surface changed from the initial tensile stress to the compressive stress, therefore, this process effectively improves the surface integrity and quality of the workpiece.

  • 0 前言

  • TC4 合金是一种典型的 α+β 型双相钛合金,是使用范围最广泛的钛合金,其化学式为 Ti-6Al4V。该合金因其优异的力学性能、良好的生物相容性和较高的耐腐蚀性而广泛应用于航空航天、海洋船舶、汽车以及医疗领域[1-2]

  • 选区激光熔化(Selective laser melting,SLM) 技术是金属增材制造(Additive manufacturing,AM) 的一种,这种技术在成形过程中无需任何刀具或夹具,可以直接制造用传统加工方法无法制造的复杂金属零件,极大地缩短了零件的制造周期[2-4]。因此可直接用 TC4 粉末材料生产高性能的三维(3D) TC4 合金零件,使用该方法生产的 TC4 合金零件尺寸精度较大,致密度相对较好,抗拉强度和延展率也超过铸件[5]。虽然与传统的加工方法相比 SLM 具有明显的优势,但是通过 SLM 制备的零件常存在表面质量差、不符合使用要求等问题[6-7]

  • 目前,在大多数实际应用中,需要 SLM 零件具有较高的表面质量和较长的疲劳寿命[8]。这就需要对 SLM 零件进行表面处理。

  • 磁力研磨(Magnetic abrasive finishing,MAF) 技术因其具有良好的柔性、自适应性、可控性、无须进行工具磨损补偿以及效率高等诸多优点,作为工件的最终加工对工件表面质量的提高有着重要影响。MAF 通过让自由磁性磨料在磁极的磁场作用下沿磁感线排列形成柔性磁力刷,使其压覆在工件表面,利用磨料与工件的相对运动实现工件表面材料的微去除。由于磁性磨料颗粒具有良好的“自适应性”和“自锐性”,因此 MAF 可应用于平面、圆柱内外表面、齿轮齿面等复杂曲面以及微小零件等各种场合,是一种提高零件表面质量的有效方法[9-11]

  • 国内外对提高SLM TC4 钛合金材料表面质量进行了诸多研究,如 BEAUCAMP 等[12]使用具有一定柔性的球状弹性抛光头对 SLM TC4 钛合金零件的自由曲面进行了自适应磨削,LIANG 等[13]使用激光抛光技术有效修复 SLM TC4 钛合金零件表面的裂缝和微孔,ŁYCZKOWSKA 等[14]使用氢氟酸和硝酸作为抛光液对多孔复杂结构的 SLM TC4 钛合金零件进行化学抛光,高航等[4]采用自研磨料介质对航空增材制造钛合金阵列异型斜孔格栅进行了磨料流抛光试验等。这些方法对提高 SLM TC4 钛合金材料表面质量均有不同程度的效果。然而,利用 MAF 技术改善 SLM TC4 钛合金零件表面质量的研究相对较少。

  • 本文将 SLM 制备的 TC4 试样经过磨削加工和磁力光整加工,在 SLM 试样的侧面(平行于构建方向)进行试验,采用改造后的数控铣床作为加工平台,使用磁力研磨的方式对 SLM 制备的 TC4 试样表面进行光整加工,利用响应曲面法(RSM)对磁力光整加工工艺进行优化,探究了磁力研磨技术对 SLM 制备的 TC4 试样表面质量的影响,可为后续对该材料进行光整加工提供参考。

  • 1 试验准备

  • 1.1 试验装置

  • 采用粒径为 15~53 μm 的 TC4 粉末作为 SLM 成形材料,通过扫描电子显微镜(SEM)观察粉末的微观结构,如图1 所示,粉体的球形度较高,流动性较好,满足 SLM 成形要求[15-16]。利用能谱仪 (EDS)分析了 TC4 粉末的化学成分,化学元素含量(质量分数)如表1 所示。该粉末纯度较高,无其他杂质元素。

  • 图1 TC4 粉末的 SEM 照片

  • Fig.1 SEM photos of TC4 powder

  • 表1 TC4 金属粉末化学成分(质量分数 / wt.%)

  • Table1 Chemical compositions of the TC4 powders (wt.%)

  • 选择 SLM®125HL 设备(SLM®250HL,SLM Solutions GmbH,Germany)作为 AM 成形设备,如图2 所示。

  • 图2 SLM®125HL 设备

  • Fig.2 SLM ® 125 hl device

  • 采用 67°旋转扫描策略,铺粉层厚为 30 μm 制备试样,SLM 试样如图3 所示。SLM 成形过程复杂,成形参数在试样不同位置略有不同。SLM 试样内部成型参数,功率为 275 W,速度为 1.1 m / s,焦点为 0 mm,每层扫描一次。填充轮廓体积成型参数,功率为 150 W,速度为 550 mm / s,焦点为 0 mm。边界体积成型参数,功率为 100 W,速度为 450 mm / s,焦点为 0 mm。

  • 图3 SLM TC4 零件

  • Fig.3 SLM TC4 parts

  • 图4 为磁力光整加工系统。利用 XK7136C 数控铣床改造的 MAF 装置进行 MAF 试验。将试样装夹固定在工作台上,把磁极安装在与主轴相连的连杆上,使磁性磨料吸附在磁极上,运行相应程序便可对零件进行 MAF 加工。在加工过程中,磁极随主轴旋转。磁极为钕铁硼永磁材料,因钕铁硼材料的高脆性和高硬度,使用线切割的方法在钕铁硼磁极上加工出“*”形沟槽,沟槽宽度为 2 mm,深度为 2 mm,磁极的最大直径为 28 mm,采用轴向磁化,如图4c 所示。磁极的凹槽可以使磁极表面产生不均匀的磁场,形成磁场梯度,相关文献[17]表明, “*”形开槽磁极与未开槽磁极相比工作表面具有更高的磁场强度,因此有利于增强 MAF 的加工效果。

  • 图4 磁力光整加工系统

  • Fig.4 The MAF system

  • 使用雾化快凝法制备的 Al2O3 W7(100-160 目) 球形磁性磨料进行磁力研磨,如图5 所示,雾化快凝法制备的磁性磨料球形度更高,使用寿命更长,磨料表面微小陶瓷颗粒分布较为均匀,MAF 加工效果更好[18-21]

  • 图5 Al2O3 / 铁基球形磁性磨粒 SEM 图

  • Fig.5 SEM of Al2O3 / iron-based spherical magnetic abrasive particles

  • 根据响应曲面法中的 Box-Behnken 分析法原理,分别以主轴转速(X1)、进给速度(X2)和加工间隙(X3)为因素,以表面粗糙度(Y)为响应值。进行了三因素三水平的响应曲面分析试验。共有 17 组试验,其中包括 5 组中心试验,用于重复试验来估计误差。RSM 试验测试因素和水平见表2。其他 MAF 加工参数见表3。

  • 表2 响应曲面实验设计的因素水平表

  • Table2 Factors and levels for response surface design

  • 表3 MAF 加工工艺参数

  • Table3 MAF Process Parameters

  • 1.2 试验步骤

  • 首先,使用白光干涉仪( MicroXAM-100,KLA-TENCOR CorpoRation,USA)检测零件表面形貌,SLM 试样表面粗糙度约为 Ra 6 μm,MAF 前,采用数控成形磨床(SMART-B818III,CHEVALIER,China)进行磨削,将 SLM 试样表面粗糙度降至约 Ra 0.6 μm。TC4 零件的磨削加工参数如表4 所示。

  • 表4 TC4 试样的磨削(GP)工艺参数

  • Table4 TC4 samples grinding process (GP) parameters

  • 采用 MB132 水基类研磨液和 Fe-Al2O3 磁性磨料进行 MAF 湿研磨,每次 MAF 后将试样放置在装有无水乙醇的烧杯中,使用超声波清洗机 (SK2210HP,KUDOS,China)清洗 10 min,去除试样表面的碎屑等杂质;将试样放置于金相显微镜 (Axio Lab A,Carl Zeiss AG,Germany)上观察零件的表面形貌;使用表面粗糙度仪(TR-200,TIME, China)测量试样的被加工表面的表面粗糙度,随机测量 5 个点的表面粗糙度后求平均值;试样表面的残余应力由 Stresstech Xstress 3000 G2R 型 X 射线应力分析仪测量。

  • 2 结果与讨论

  • 2.1 试验结果

  • MAF后,工件在各水平下的响应值如表5所示。

  • 表5 Box-Behnken 中心组合试验设计及试验结果

  • Table5 Scheme and test results of Box-Behnken central composite experiments

  • 根据拟合公式(1)的模型建立二次线性回归方程,用以评估各因素对表面粗糙度的影响:

  • Ra=β0+i=1n βiXi+i=1n βiiXi2+ijn βijXiXj
    (1)
  • 式中,β0 表示常量;βi表示线性相关系数;βii 表示二次线性相关系数;βij表示交互相关系数。

  • 通过 Design-Expert V8.0.6 软件,由式(1)可以得到二次响应曲面模型的方程如式(2)所示。

  • Y=0.07-7.5×10-4X1-0.01X2+4.75×10-3X3+4.5×10-3X1X2+5×10-4X1X3-5.5×10-3X2X3+0.017X120.011X22+5.8×10-3X32
    (2)
  • 从图6 中可以看出,试验所得实际值与模型预测值较吻合。图7 中的点随机分布,没有呈现出一定的规律性,这说明标准化残差与预测值无关,证明了拟合所得的二次响应回归方程有效。

  • 图6 预测值与实际值的对比

  • Fig.6 Comparison of predicted and actual values

  • 图7 预测值与残差的变化趋势

  • Fig.7 Trend of predicted value and residual

  • 为判断响应曲面模型的有效性,进一步对建立的二次响应回归方程(2)进行方差分析,结果见表6。从表中可以看出,建立的二次响应回归方程对结果的影响显著。失拟项的 P 为 0.075 2>0.05,表明差异性较显著,对建立的模型有利,表明无失拟因素,建立的回归方程有效。

  • 经软件分析,得出校正决定系数 Radj 2 为 0.944 9,说明在这次 MAF 中影响表面粗糙度的因素有 94.49%来自所选定的 3 个因素,其中影响最大的是加工间隙,其次是进给速度,最后是主轴转速。

  • 表6 回归模型的方差分析及显著性检验

  • Table6 Variance analysis and significance test for the regression model

  • 2.2 响应曲面分析

  • 从图8 中可以看出,随着主轴转速的增大,磁极吸附磨料的带动性增强,Ra 减小;当主轴转速过大时,磁性磨料受到的离心力增大,向边缘分散的趋势增强,从而使磁性磨料偏离磁感线,不能实现对工件的有效加工,研磨效率降低,Ra 增大。因此,主轴转速不能过大,也不能过小。进给速度决定了磁性磨料在固定时间内对工件材料的划擦次数,进给速度太大,则对试样的研磨加工时间太短,研磨效率较低,Ra 增大。加工间隙如果太大,磁性磨料形成的磁力研磨刷不能完全压覆在试样表面,无法实现对工件的有效加工,研磨不充分,Ra 较大;加工间隙太小,磁性磨料与试样表面过分接触,则会导致 MAF 失去其柔性磁力研磨刷自适应加工的特点,正面压力过大,不利于试样 Ra 的降低[22]

  • 图8 各因素交互作用时与试样表面粗糙度(Y)的响应曲面

  • Fig.8 Response surface with the surface roughness (Y) of the sample when various factors interact

  • 采用响应曲面分析拟合得到 SLM 制备的 TC4 试样 MAF 的较佳工艺参数为:主轴转速 994.34 r / min,加工间隙 1.62 mm,进给速度 13.93 mm / min。基于控铣床录入参数的可行性,将各参数取整如下:主轴转速 1 000.00 r / min,加工间隙 1.50 mm,进给速度 15.00 mm / min。

  • 2.3 最优参数的试验验证

  • 为确定上述参数是否为最佳,进行如表7 所示的对比试验,基于之前的研磨试验,将研磨时间设定为 80 min,每隔 4 min 测量一次工件的表面粗糙度,结果如图9 所示。

  • 表7 试验验证结果

  • Table7 Proof test results

  • 从图9 中可以看出,随着研磨时间的延长,试样的表面粗糙度均呈现先迅速后缓慢下降的趋势,当试样的表面粗糙度降低到一定程度后,又呈上升趋势,在之后的加工过程中呈现出小幅度波动的现象,并且粗糙度不再出现明显下降。从图9 中可知,在试验 19 的条件下,研磨效率较快,研磨的试样的表面粗糙度可以达到最低,为 Ra 0.065 μm。确定试验 19 为最优工艺条件。

  • 图9 不同工艺参数下磁力光整加工后试样表面粗糙度随时间的变化

  • Fig.9 Variation of sample surface roughness with time after magnetic finishing under different process parameters

  • 2.4 最佳工艺条件下的 MAF 效果

  • SLM 制备的零件表面形貌不规则,存在“阶梯效应”“球化效应”和粉末黏附造成的缺陷层,零件内部存在孔隙。经磨削加工后可以快速有效去除零件表面因熔化叠加产生的“阶梯效应”,但磨削加工会产生大量毛刺和划痕[23]

  • 图10 为 SLM 制备的 TC4 钛合金试样各时期的金相显微照片,磁力光整加工前(图10b)试样表面存在大量毛刺和划痕,表面粗糙度较高,磁力光整加工 45 min 后(图10d),试样表面毛刺和划痕等缺陷被有效去除。

  • 图10 SLM 制备的 TC4 钛合金试样各阶段的金相显微照片

  • Fig.10 Metallographic micrographs of TC4 titanium alloy samples prepared by SLM at various stages

  • 图11 为 SLM 制备的 TC4 钛合金试样各时期的三维形貌变化和粗糙度变化图,从图11 中可以明显看出试样表面最初布满尖刺和凹坑,磁力光整加工 30 min 后获得表面一致性较好的平整表面,但仍存在凹坑等缺陷,加工 45 min 后表面形貌得到很好的改善,表面粗糙度明显降低。

  • 图11 SLM 制备的 TC4 钛合金试样各阶段的 3D 表面形貌变化

  • Fig.11 3D surface morphology changes of TC4 titanium alloy samples prepared by SLM

  • 图12 为 SLM 制备的 TC4 钛合金试样各时期的外观照片,可以清晰地看到试样表面的变化,经过磁力光整加工后试样表面变得光滑、平整,几乎接近镜面效果。

  • 图12 SLM 制备的 TC4 钛合金试样各阶段的镜面效果照片

  • Fig.12 Mirror effect photos of TC4 titanium alloy samples prepared by SLM at various stages

  • 2.5 试样表面残余应力研磨前后对比

  • 采用 Stresstech Xstress 3000 G2R 型 X 射线应力分析仪对试样表面的残余应力进行测试,靶材为 Ti 靶,管电压为 30 kV,管电流为 7 mA,曝光时间 60 s,测量方法为侧倾固定 ψ 法,倾斜角度 ψ 依次选取 0°、−30°、−45°、30°、45°。不同加工时间下的试样表面残余应力平均值如图13 所示。

  • 通常情况下 SLM 制备的零件易产生拉应力[24],但在实际应用过程中,压应力的产生会很好地加强工件的抗蠕变与抗疲劳能力,从而提高工件的性能和疲劳寿命。研磨前,工件表面的平均残余应力为 297.4 MPa;研磨 30 min 后,工件表面的平均残余应力为−57.3 MPa;研磨 45 min 后,工件表面的平均残余应力为−237.8 MPa,残余应力较加工前变化很大,由拉应力变为压应力。这是因为工件在加工过程中,当加工间隙适中时,研磨压力较大,经磨料的反复挤压摩擦后,工件表面的拉应力逐渐转变为压应力,随着加工时间的增加,压应力逐渐增大,工件的抗疲劳性能也逐渐增强。

  • 图13 工件表面的残余应力变化

  • Fig.13 Variation of residual stress on workpiece surface

  • 3 结论

  • (1)采用磨削加工与磁力研磨加工结合的光整加工方法,可以有效解决 SLM 制备的 TC4 钛合金构件表面质量差的问题。磨削加工后,在主轴转速为 1 000.00 r / min、加工间隙为 1.50 mm、进给速度为 15.00 mm / min 的条件下,加工 30 min 后,获得表面一致性较好的平整表面,粗糙度 Ra 由初始的 0.6 μm 快速降低到 0.147 μm,而后随加工时间的增加缓慢降低,48 min 后达到 0.065 μm,获得平整光滑的表面。

  • (2)基于响应曲面法得出各因素对 SLM 制备的 TC4 钛合金磁力光整加工后表面粗糙度的影响大小顺序为:加工间隙>进给速度>主轴转速。表明在 MAF 中加工间隙的大小对工件的表面粗糙度影响最大。

  • (3)SLM 制备的TC4 钛合金经磁力光整加工后,试样表面残余应力由最初的拉应力(+297.4 MPa) 转变为压应力(−237.8 MPa),磁力光整加工有效改善了工件的表面应力状态,提高了工件表面质量。

  • 参考文献

    • [1] 曾光,韩志宇,梁书锦,等.金属零件3D打印技术的应用研究[J].中国材料进展,2014,33(6):376-382.ZENG G,HAN Z Y,LIANG S J,et al.Research on the application of 3D printing technology for metal parts[J].Materials China,2014,33(6):376-382.(in Chinese)

    • [2] 顾冬冬,张红梅,张晗,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):24-47.GU D D,ZHANG H M,ZHANG H,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Lasers,2020,47(5):24-47.(in Chinese)

    • [3] LE C G,FISCHER M,PIQUARD R,D’ACUNTO A,et al.Micro cutting of Ti-6Al-4V parts produced by SLM process[J].Procedia CIRP,2017,58:228-232.

    • [4] 高航,彭灿,王宣平.航空增材制造复杂结构件表面光整加工技术研究及进展[J].航空制造技术,2019,62(9):14-22.GAO H,PENG C,WANG X P.Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J].Aeronautical Manufacturing Technology,2019,62(9):14-22.(in Chinese)

    • [5] 杨晶晶.激光选区熔化成形 Ti-6Al-4V 合金的组织演变及调控[D].武汉:华中科技大学,2017.YANG J J.Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)

    • [6] SHIPIEY H,MCDONNEL D,CULLETON M,et al.Optimisation of process parameters to address fundamental challenges during Selective Laser melting of Ti-6Al-4V:A review[J].International Journal of Machine Tools and Manufacture,2018,128:1-20.

    • [7] LIU S Y,SHIN Y C.Additive manufacturing of Ti-6Al-4V alloy:a review[J].Materials & Design,2019,164:107552.

    • [8] TENG X,ZHANG G X,LIANG J Z,et al.Parameter optimization and microhardness experiment of AlSi10Mg alloy prepared by selective laser melting[J].Materials Research Express,2019,6(8):086592.

    • [9] 张桂香.雾化快凝磁性磨料制备及其磁力光整加工性能研究[D].南京:南京航空航天大学,2012.ZHANG G X.Study on preparation of magnetic abrasives by gas atomization with rapid solidification and their finishing performance[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)

    • [10] ZOU Y,XIE H,DONG C,et al.Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field[J].Int J Adv Manuf Technol,2018,5(97):2193–2202.

    • [11] 陈燕,张广彬,韩冰,等.磁力研磨法对陶瓷管内表面超精密抛光技术的试验研究[J].摩擦学学报,2015,35(2):131-137.CHEN Y,ZHANG G B,HAN B,et al.Experimental investigation of magnetic abrasive finishing for super precision polishing of inner surface of the ceramic tube[J].Tribology,2015,35(2):131-137.(in Chinese)

    • [12] BEAUCAMP A T,NAMBA Y,CHARLTON P,et al.Finishing of additively manufactured titanium alloy by shape adaptive grinding(SAG)[J].Surface Topography:Metrology and Properties,2015,3(2):024001.

    • [13] LIANG C,HU Y,LIU Ning,et al.Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting[J].Metals,MDPI AG,2020,10(2):191.

    • [14] ŁYCZKOWSKA E,SZYMCZYK P,DYBAŁA B,et al.Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J].Archiv.Civ.Mech.Eng,2014,14:586-594.

    • [15] 张飞,马腾,杨光,等.选区激光熔化TC4粉末制备及成形工艺研究[J].河北工业科技,2019,36(2):98-102.ZHANG F,MA T,YANG G,et al.Study on preparation and forming process of TC4 titanium alloy powder with selective laser melting[J].Hebei Journal of Industrial Science and Technology,2019,36(2):98-102.(in Chinese)

    • [16] 许德,高华兵,董涛,等.增材制造用金属粉末研究进展[J].中国有色金属学报,2021,31(2):245-257.XU D,GAO H B,DONG T,et al.Research progress of metal powder for additive manufacturing[J].The Chinese Journal of Nonferrous Metals,2021,31(2):245-257.(in Chinese)

    • [17] 张萍萍,张桂香.平面磁力研磨装置及磁极设计[J].山东理工大学学报(自然科学版),2011,25(6):67-70.ZHANG P P,ZHANG G X.Design of a plane magnetic abrasive finishing device and the magnetic pole[J].Journal of Shandong University of Technology(Natural Science Edition),2011,25(6):67-70.(in Chinese)

    • [18] ZHANG G X,ZHAO Y G,ZHAO D B,et al.Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification[J].Scripta Materialia,2011,5(65):416-419.

    • [19] GAO Y W,ZHAO Y G,ZHANG G X.Preparation of Al2O3 magnetic abrasives by gas-solid two-phase double-stage atomization and rapid solidification[J].Materials Letters,2018,215:300-304.

    • [20] JIANG L Z,CHANG T Y,ZHU P X,ZHANG G X,et al.Influence of process conditions on preparation of CBN/Fe-based spherical magnetic abrasive via gas atomization[J].Ceramics International,2021,22(47):31367-31374.

    • [21] 梁伟,张桂香,张鹏,等.磁力研磨光整加工 ZrO2 陶瓷材料试验研究[J].表面技术,2018,47(9):310-316.LIANG W,ZHANG G X,ZHANG P,et al.Experim ental research on magnetic abrasive finishing for ZrO2 ceramic materials[J].Surface Technology,2018,47(9):310-316.(in Chinese)

    • [22] 杜嘉静,张桂香,朱培鑫,等.加工间隙对CBN磁性磨料研磨904L不锈钢表面完整性的影响[J].表面技术,2021,50(6):338-346.DU J J,ZHANG G X,ZHU P X,et al.Influence of machining gap on surface integrity of 904L stainless steel finished by CBN magnetic abrasive particles[J].Surface Technology,2021,50(6):338-346.(in Chinese)

    • [23] 徐红玉,刘玉会,卜敏,等.高速冷滚打成形花键表面加工硬化试验[J].锻压技术,2017,42(3):165-169.XU H Y,LIU Y H,BU M,et al.Experiment on surface work-hardening of spline by high speed cold roll-beating[J].Forging & Stamping Technology,2017,42(3):165-169.(in Chinese)

    • [24] 樊鹏,潘家腾,葛一铭,等.激光增材制造 TC4/TC11 钛合金梯度材料残余应力的有限元分析[J].中国激光,2021,48(18):110-118.FAN P,PAN J T,GE Y M,et al.Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J].Chinese Journal of Lasers,2021,48(18):110-118.(in Chinese)

  • 参考文献

    • [1] 曾光,韩志宇,梁书锦,等.金属零件3D打印技术的应用研究[J].中国材料进展,2014,33(6):376-382.ZENG G,HAN Z Y,LIANG S J,et al.Research on the application of 3D printing technology for metal parts[J].Materials China,2014,33(6):376-382.(in Chinese)

    • [2] 顾冬冬,张红梅,张晗,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):24-47.GU D D,ZHANG H M,ZHANG H,et al.Laser additive manufacturing of high-performance metallic aerospace components[J].Chinese Journal of Lasers,2020,47(5):24-47.(in Chinese)

    • [3] LE C G,FISCHER M,PIQUARD R,D’ACUNTO A,et al.Micro cutting of Ti-6Al-4V parts produced by SLM process[J].Procedia CIRP,2017,58:228-232.

    • [4] 高航,彭灿,王宣平.航空增材制造复杂结构件表面光整加工技术研究及进展[J].航空制造技术,2019,62(9):14-22.GAO H,PENG C,WANG X P.Research progress on surface finishing technology of aeronautical complex structural parts manufactured by additive manufacturing[J].Aeronautical Manufacturing Technology,2019,62(9):14-22.(in Chinese)

    • [5] 杨晶晶.激光选区熔化成形 Ti-6Al-4V 合金的组织演变及调控[D].武汉:华中科技大学,2017.YANG J J.Microstructural evolution and control of Ti-6Al-4V alloy produced by selective laser melting[D].Wuhan:Huazhong University of Science and Technology,2017.(in Chinese)

    • [6] SHIPIEY H,MCDONNEL D,CULLETON M,et al.Optimisation of process parameters to address fundamental challenges during Selective Laser melting of Ti-6Al-4V:A review[J].International Journal of Machine Tools and Manufacture,2018,128:1-20.

    • [7] LIU S Y,SHIN Y C.Additive manufacturing of Ti-6Al-4V alloy:a review[J].Materials & Design,2019,164:107552.

    • [8] TENG X,ZHANG G X,LIANG J Z,et al.Parameter optimization and microhardness experiment of AlSi10Mg alloy prepared by selective laser melting[J].Materials Research Express,2019,6(8):086592.

    • [9] 张桂香.雾化快凝磁性磨料制备及其磁力光整加工性能研究[D].南京:南京航空航天大学,2012.ZHANG G X.Study on preparation of magnetic abrasives by gas atomization with rapid solidification and their finishing performance[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.(in Chinese)

    • [10] ZOU Y,XIE H,DONG C,et al.Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field[J].Int J Adv Manuf Technol,2018,5(97):2193–2202.

    • [11] 陈燕,张广彬,韩冰,等.磁力研磨法对陶瓷管内表面超精密抛光技术的试验研究[J].摩擦学学报,2015,35(2):131-137.CHEN Y,ZHANG G B,HAN B,et al.Experimental investigation of magnetic abrasive finishing for super precision polishing of inner surface of the ceramic tube[J].Tribology,2015,35(2):131-137.(in Chinese)

    • [12] BEAUCAMP A T,NAMBA Y,CHARLTON P,et al.Finishing of additively manufactured titanium alloy by shape adaptive grinding(SAG)[J].Surface Topography:Metrology and Properties,2015,3(2):024001.

    • [13] LIANG C,HU Y,LIU Ning,et al.Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting[J].Metals,MDPI AG,2020,10(2):191.

    • [14] ŁYCZKOWSKA E,SZYMCZYK P,DYBAŁA B,et al.Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing[J].Archiv.Civ.Mech.Eng,2014,14:586-594.

    • [15] 张飞,马腾,杨光,等.选区激光熔化TC4粉末制备及成形工艺研究[J].河北工业科技,2019,36(2):98-102.ZHANG F,MA T,YANG G,et al.Study on preparation and forming process of TC4 titanium alloy powder with selective laser melting[J].Hebei Journal of Industrial Science and Technology,2019,36(2):98-102.(in Chinese)

    • [16] 许德,高华兵,董涛,等.增材制造用金属粉末研究进展[J].中国有色金属学报,2021,31(2):245-257.XU D,GAO H B,DONG T,et al.Research progress of metal powder for additive manufacturing[J].The Chinese Journal of Nonferrous Metals,2021,31(2):245-257.(in Chinese)

    • [17] 张萍萍,张桂香.平面磁力研磨装置及磁极设计[J].山东理工大学学报(自然科学版),2011,25(6):67-70.ZHANG P P,ZHANG G X.Design of a plane magnetic abrasive finishing device and the magnetic pole[J].Journal of Shandong University of Technology(Natural Science Edition),2011,25(6):67-70.(in Chinese)

    • [18] ZHANG G X,ZHAO Y G,ZHAO D B,et al.Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification[J].Scripta Materialia,2011,5(65):416-419.

    • [19] GAO Y W,ZHAO Y G,ZHANG G X.Preparation of Al2O3 magnetic abrasives by gas-solid two-phase double-stage atomization and rapid solidification[J].Materials Letters,2018,215:300-304.

    • [20] JIANG L Z,CHANG T Y,ZHU P X,ZHANG G X,et al.Influence of process conditions on preparation of CBN/Fe-based spherical magnetic abrasive via gas atomization[J].Ceramics International,2021,22(47):31367-31374.

    • [21] 梁伟,张桂香,张鹏,等.磁力研磨光整加工 ZrO2 陶瓷材料试验研究[J].表面技术,2018,47(9):310-316.LIANG W,ZHANG G X,ZHANG P,et al.Experim ental research on magnetic abrasive finishing for ZrO2 ceramic materials[J].Surface Technology,2018,47(9):310-316.(in Chinese)

    • [22] 杜嘉静,张桂香,朱培鑫,等.加工间隙对CBN磁性磨料研磨904L不锈钢表面完整性的影响[J].表面技术,2021,50(6):338-346.DU J J,ZHANG G X,ZHU P X,et al.Influence of machining gap on surface integrity of 904L stainless steel finished by CBN magnetic abrasive particles[J].Surface Technology,2021,50(6):338-346.(in Chinese)

    • [23] 徐红玉,刘玉会,卜敏,等.高速冷滚打成形花键表面加工硬化试验[J].锻压技术,2017,42(3):165-169.XU H Y,LIU Y H,BU M,et al.Experiment on surface work-hardening of spline by high speed cold roll-beating[J].Forging & Stamping Technology,2017,42(3):165-169.(in Chinese)

    • [24] 樊鹏,潘家腾,葛一铭,等.激光增材制造 TC4/TC11 钛合金梯度材料残余应力的有限元分析[J].中国激光,2021,48(18):110-118.FAN P,PAN J T,GE Y M,et al.Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J].Chinese Journal of Lasers,2021,48(18):110-118.(in Chinese)

  • 手机扫一扫看