en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵云,男,1986年出生,博士后。主要研究方向为薄膜制备及表征技术。E-mail:zhaoyun211314@126.com

通讯作者:

陈迪,男,1987年出生,博士,副研究员。主要研究方向为固态离子学。E-mail:dichen@tsinghua.edu.cn

中图分类号:TB34

DOI:10.11933/j.issn.1007−9289.20220419001

参考文献 1
杨明刚,吕晨,刘慧,等.钛种植体表面CuO和 Nb2O5 共掺杂 TiO2 涂层的制备及抗菌性能和生物相容性[J].中国表面工程,2019,32(5):22-29.YANG Minggang,LÜ Chen,LIU Hui,et al.Preparation of CuO and Nb2O5 Co-doped TiO2 coating on Titanium implants and its antibacterial properties and biocompatibility[J].China Surface Engineering,2019,32(5):22-29.(in Chinese)
参考文献 2
LIU H,FENG Y W,SHAO J J,et al.Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis[J].Nano Energy,2020,70:104499.
参考文献 3
ZHAO W,HE L N,FENG X J,et al.Deposition and characterization of epitaxial Ta-doped TiO2 films for ultraviolet photoelectric detectors[J].Ceramics International,2018,44(17):21114-21119.
参考文献 4
ZHANG J L,WU Y M,XING M Y,et al.Development of modified N doped TiO2 photocatalyst with metals,nonmetals and metal oxides[J].Energy & Environmental Science,2010,3(6):715-726.
参考文献 5
XIU Z Y,GUO M J,ZHAO T Y,et al.Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications[J].Chemical Engineering Journal,2020,382:123011.
参考文献 6
ZHANG W,HE H L,LI H Z,et al.Visible-light responsive TiO2-based materials for efficient solar energy utilization[J].Advanced Energy Materials,2021,11(15):2003303.
参考文献 7
WU S Q,HU H Y,LIN Y,et al.Visible light photocatalytic degradation of tetracycline over TiO2[J].Chemical Engineering Journal,2020,382:122842.
参考文献 8
BASAVARAJAPPA P S,PATIL S B,GANGANAGAPPA N,et al.Recent progress in metal-doped TiO2,non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J].International Journal of Hydrogen Energy,2020,45(13):7764-7778.
参考文献 9
KUMARAVEL V,MATHEW S,BARTLETT J,et al.Photocatalytic hydrogen production using metal doped TiO2:A review of recent advances[J].Applied Catalysis B:Environmental,2019,244:1021-1064.
参考文献 10
许美贤,刘佳孟,李文奕,等.Au 负载N掺杂 TiO2纳米管阵列的制备及其性能[J].中国表面工程,2020,33(1):84-90.XU Meixian,LIU Jiameng,LI Wenyi,et al.Preparation and properties of Au-supported N-doped TiO2 nanotube arrays[J].China Surface Engineering,2020,33(1):84-90.(in Chinese)
参考文献 11
BAYATI M R,JOSHI S,MOLAEI R,et al.Ultrafast switching in wetting properties of TiO2/YSZ/Si(001)epitaxial heterostructures induced by laser irradiation[J].Journal of Applied Physics,2013,113(6):063706.
参考文献 12
LIU X,ZHANG Y,MATSUSHIMA S,et al.Photocatalytic oxidation process for treatment of gas phase benzene using Ti3+ self-doped TiO2 microsphere with sea urchin-like structure[J].Chemical Engineering Journal,2020,402:126220.
参考文献 13
LI J Y,ZHANG S F,YANG J,et al.Improved SERS sensitivity of TiO2 nanorod films by annealing in vacuum[J].Vacuum,2021,194:110579.
参考文献 14
PANT B,PARK M,PARK S J.Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities[J].Coatings,2019,9(10):613-622.
参考文献 15
ALIAS S S,HARUN Z,LATIF I S A.Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes[J].Journal of Materials Science,2018,53(16):11534-11552.
参考文献 16
BAYATI M R,GUPTA P,MOLAEI R,et al.Phase tuning,thin film epitaxy,interfacial modeling,and properties of YSZ-buffered TiO2 on Si(001)substrate[J].Crystal growth & design,2012,12(9):4535-4544.
参考文献 17
CHEN D,GUAN Z,ZHANG D,et al.Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2-x[J].Nature Catalysis,2020,3(2):116-124.
参考文献 18
GALINAKI H,RYLL T,REIBISCH P,et al.Temperature-dependent 2-D to 3-D growth transition of ultra-thin Pt films deposited by PLD[J].Acta Materialia,2013,61(9):3297-3303.
参考文献 19
LV K L,YU J G,CUI L Z,et al.Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity[J].Journal of alloys and compounds,2011,509(13):4557-4562.
参考文献 20
BAYATI M R,DING J,LEE Y F,et al.Defect mediated photocatalytic decomposition of 4-chlorophenol on epitaxial rutile thin films under visible and UV illumination[J].Journal of Physics:Condensed Matter,2012,24(39):395005.
参考文献 21
HAYLE S T,GONFA G G.Synthesis and characterization of titanium oxide nanomaterials using sol-gel method[J].American Journal of Nanoscience and Nanotechnology,2014,2(1):1.
参考文献 22
KUSUMAWARDANI C,INDIANA K.NARSITO.Synthesis of nanocrystalline N-doped TiO2 and its application on high efficiency of dye-sensitized solar cells[J].Science Journal UBU,2010,1(1):1-8.
参考文献 23
ZONG H X,ZHAO T,ZHOU G D,et al.Revisiting structural and photocatalytic properties of g-C3N4/TiO2:is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst?[J].Catalysis Today,2019,335:252-261.
参考文献 24
ANITHA B,KHADAR M A.Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals:Role of defect states[J].Solid State Sciences,2020,108:106392.
参考文献 25
PEREVALOV T V,GRITSENKO V A.Electronic structure of TiO2 rutile with oxygen vacancies:Ab initio simulations and comparison with the experiment[J].Journal of Experimental and Theoretical Physics,2011,112(2):310-316.
参考文献 26
ZHUANG J D,DAI W X,TIAN Q F,et al.Photocatalytic degradation of RhB over TiO2 bilayer films:effect of defects and their location[J].Langmuir,2010,26(12):9686-9694.
目录contents

    摘要

    提升在可见光区间的抗菌效率一直是二氧化钛(TiO2)抗菌性能研究的重要方向。采用脉冲激光沉积(PLD)制备 TiO2 薄膜,并通过氢还原热处理的方法提升 TiO2 表面的氧空位浓度从而增强其抗菌性能。结果发现,在以单晶氧化钇稳定的氧化锆(YSZ)为衬底时,生长的 TiO2 薄膜为高度择优取向的锐钛矿相。生长温度越高,锐钛矿相的 XRD 衍射峰越强,薄膜越致密。将在 600 ℃下生长的 350 nm 厚的 TiO2薄膜进行抗菌性能测试,发现其抗菌率约为 86%。对样品进一步在 4% H2氛围下进行还原处理,发现其抗菌率提升到约为 97%。通过 XPS、UV-Visible 和 PL 测试,发现 TiO2经过还原热处理后在其表面形成更多的氧空位,在 TiO2带隙中形成氧空位缺陷能级,导致在可见光区域吸光性能增强,使其具有更高的抗菌性能。通过氢还原过程调控材料的缺陷组成,并研究 TiO2 薄膜的光催化抗菌性能及抗菌机理。这种简易的调控 TiO2 光吸收的方法可为规模生长提供技术可行性。

    Abstract

    Titanium dioxide (TiO2) has good photocatalytic activity and can degrade environmental pollutants by oxidation. It has been used in photocatalysis, on antibacterial, antifouling and self-cleaning surfaces, and ultraviolet (UV) detectors. However, it predominantly absorbs UV light and has low absorption of visible light. Improving antibacterial efficiency in the visible light region has consistently been a key research direction for TiO2 antibacterial properties. Currently, to improve TiO2 photocatalytic efficiency under visible light, multiple schemes have been proposed, such as metal or non-metal doping, and laser surface or vacuum heat treatment. These methods introduce point defects in the TiO2 lattice, and narrow the band gap by changing the semiconductor energy band and introducing impurities or defect energy levels in the band gap, thus enhancing visible light absorption. To better understand the TiO2 antibacterial mechanism, it is necessary to accurately control its morphology, composition, and crystal structure. Thin film materials adequately meet these requirements. Recently, pulsed laser deposition (PLD) has become a widely adopted film deposition technology owing to its simple system setup, wide range of deposition conditions, material selection and ability to prepare high-quality repeatable films. In this study, TiO2 thin films are prepared using PLD, and the oxygen vacancy concentration on the TiO2 surface is increased by hydrogen reduction heat treatment to enhance its antibacterial properties. Results demonstrate that the TiO2 films grown on a single crystal yttria stabilized zirconia (YSZ) substrate are the highly preferred anatase phase, and the higher the growth temperature, the stronger the X-ray diffraction (XRD) peak of the anatase phase and the denser the film. The antibacterial properties of 350 nm thick TiO2 film grown at 600 ℃ were measured and it was identified that the antibacterial rate is approximately 86%. The sample was further reduced in a 4% H2 atmosphere, and it was confirmed that the antibacterial rate increased to approximately 97%. Test results demonstrate that through X-ray photoelectron spectroscopy (XPS), a UV-visible spectrophotometer (UV-visible) and a laser Raman spectrometer (PL), additional oxygen vacancies formed on the TiO2 surface after reduction heat treatment, and oxygen vacancy defect energy levels formed in the TiO2 band gap. This resulted in enhanced light absorption in the visible region and higher antibacterial performance. The material defect is controlled by the hydrogen reduction process, and the TiO2 thin film photocatalytic antibacterial property and antibacterial mechanism were studied. This straightforward method for regulating TiO2 light absorption provides technical feasibility for scale growth.

  • 0 前言

  • 二氧化钛(TiO2)具有良好的光催化活性,能对环境污染物进行氧化降解,已被用于光催化及抗菌[1]、防污和自清洁表面[2]、紫外探测器[3]等,但其主要吸收紫外光,对可见光吸收低[4]。因此,有必要开发一种可在可见光和 / 或太阳光照射下应用的高效的光催化系统[5-7],并应用于抗菌领域。目前,为了提高 TiO2 在可见光下的光催化效率,已经提出多种方案,如金属或非金属掺杂[8-10]、激光表面处理[11]或真空热处理[12-13]等。这些方法在 TiO2晶格中引入点缺陷,通过改变半导体的能带,在带隙内引入杂质或缺陷能级而导致带隙变窄,增强了可见光的吸收。然而前两种方法会对 TiO2 的颜色产生影响,而后一种方法需要大型真空炉,不太适合大规模生产。因此,需要一种较为简易的调控 TiO2光吸收的方法。

  • 为了更好地研究 TiO2 抗菌机理,需要精确地控制其形貌、成分和晶体结构。薄膜材料能够很好地满足这些要求。目前已有多种技术来制备光催化 TiO2 薄膜,例如溶胶凝胶法[14]、浸渍涂覆法[15]等,但是制备的 TiO2 薄膜的光催化活性和薄膜质量的可重复性并不高。近年来,脉冲激光沉积(PLD) 方法由于具有系统设置简单、沉积条件范围宽、材料选择范围广及能够制备高质量的可重复性薄膜等优点,已成为一种广泛应用的薄膜沉积技术[16-17]

  • 本文采用 PLD 方法,在单晶氧化钇稳定的氧化锆(YSZ,取向为(001))衬底上,沉积具有高度择优取向的锐钛矿型 TiO2 薄膜,之后对薄膜样品在 4%的 H2 氛围进行氢还原热处理,使其表面形成更多的氧空位缺陷,进而在 TiO2的能带中形成氧空位缺陷能级,增强了对可见光的吸收,从而提高了TiO2 薄膜的抗菌性能。

  • 1 试验准备

  • 1.1 样品制备

  • 沉积 TiO2 薄膜采用的 PLD 装置(Surface,Germany)和还原热处理装置示意图如图1 所示。

  • 图1 带有自动激光能量校准器的脉冲激光沉积装置和还原热处理装置示意图

  • Fig.1 Schematic diagram of pulsed laser deposition device with automatic laser energy calibrator and reduction heat treatment device

  • 试验过程中采用 KrF 准分子激光器(Coherent COMPex 102F,USA),波长为 248 nm,脉冲持续时间为 20 ns,频率为 10 Hz 的脉冲激光溅射旋转的 TiO2 靶材(纯度为 99.99%),靶材转速为 30 r / min,靶材上激光光斑的面积为 1.86 mm2,激光光斑的功率密度为 3 J / cm2,系统通过衰减器自动校准激光的能量密度,确保生长的 TiO2 薄膜质量的可重复性。YSZ 衬底与靶材的距离为 60 mm。背底真空为0.9 mPa,沉积TiO2薄膜时的氧压为10 Pa,沉积结束后样品在 100 Pa 的氧压下在腔室中冷却到室温。

  • 采用自主搭建的热处理装置对样品进行还原热处理。该装置采用电脑远程控制,热处理腔室内部置入热电偶,能精确测定和校准样品的温度,并通过气体质量流量计精确控制流经腔室内的还原气体的流量。

  • 1.2 物性表征

  • 采用台阶仪(KLA-Tencor P7 Surface Profiler,USA)测试薄膜的厚度。用 X 射线衍射(XRD,Rigaku Smartlab,Japan)对薄膜的晶体结构和晶体取向进行 2θ / ω 扫描。采用 X 射线光电子能谱(XPS,Thermo Scientific ESCALAB Xi,USA)测试薄膜表面的元素组成和化学计量,结合能为 284.8 eV 的 C(1s)峰位作为校准峰位。采用原子力显微镜(AFM,Bruker Dimension FastScan,HongKong)测试薄膜的表面形貌。采用紫外可见分光光度计(UV-Visible,Lambda1050,Perkinelmer,USA)研究薄膜的吸光性质。采用激光拉曼光谱仪(PL,LabRAM HR Evolution,Horiba,France)测试样品的室温光致发光(PL)光谱,PL 的激发波长为 325 nm。

  • 1.3 抗菌性能检测

  • 采用革兰氏阴性的大肠杆菌(E.coli)评价样品的抗菌能力。样品在与细菌共培养前用 75%的酒精灭菌 4 遍,每遍 30 min。在灭菌后的样品表面上滴加 30 μL 的细菌悬浮液(细菌浓度 107 CFU / mL),在光照(荧光灯 15 W,光源距离样品 25 cm)12 h 后将样品连带菌液放入 5 mL 的生理盐水中,使细菌完全从样品表面脱落,取 1 mL 的液体用 9 mL 生理盐水稀释 10 倍,之后取 100 μL 稀释后的菌液滴加在标准琼脂板上,并用塑料涂布棒均匀的将菌液涂布开,将琼脂培养皿放入培养箱中,并在 37℃ 继续培养 16~18 h。根据国标 GB/T4789.2 计算细菌菌落个数,抗菌测试大致流程和测试光照装置如图2 所示,其中光照装置包括:1 荧光光源,2 塑料培养皿,3 塑料贴膜,4 在表面接种细菌的待测试样品,5 玻璃垫片,6 湿润的滤纸。最后依照下式计算样品的抗菌率:

  • R=B-CB×100%
    (1)
  • 式中,R 为抗菌率,B 为对照组样品对应的菌落个数,C 为试验组样品对应的菌落个数。

  • 图2 抗菌测试的大致过程

  • Fig.2 General process of antibacterial testing

  • 2 结果与讨论

  • 2.1 形貌表征

  • TiO2 薄膜生长时衬底的温度分别为 350℃、 450℃、500℃和 600℃,腔室中气体(O2)压力为 10 Pa。采用 AFM 对不同温度下生长的 TiO2 薄膜表面形貌进行表征。如图3 所示,沉积薄膜时衬底的温度越高,表面越均匀致密,这主要是由于薄膜在生长过程中,原子会经历一个沉积和扩散的过程,而衬底的温度对扩散的速率具有重要的影响[18]。在 600℃生长的薄膜,晶粒大小均匀,排列紧密,可见在这个衬底温度下沉积薄膜是比较理想的。

  • 图3 在不同温度下生长的 TiO2 薄膜的 AFM 表面形貌

  • Fig.3 AFM surface morphology of TiO2 films grown at different temperature

  • 2.2 结构分析

  • 用 X 射线衍射分析薄膜的相结构,图4 为用 PLD 方法制备的不同温度下生长的 TiO2 薄膜的 XRD 谱图。可以看到单晶 YSZ 衬底为(001)取向,在其上生长的 TiO2薄膜均为锐钛矿相 a,且具有高度的择优取向,为锐钛矿相 a 的(004)峰,以及强度较弱的锐钛矿相 a 的(211)峰,除此之外并无其他取向的衍射峰。因此,可以推断锐钛矿型 TiO2 薄膜的正方结构保持了垂直于基体 YSZ 表面(001) 的取向,具有明显的外延生长性质。锐钛矿相是一种适合 TiO2光催化的相结构[19]。对锐钛矿相的衍射峰放大发现,在 350℃生长的 TiO2 薄膜并没有出现明显的衍射峰,由于薄膜生长温度太低,生长的 TiO2 薄膜结晶质量差。随着沉积 TiO2薄膜的温度逐渐升高,其衍射峰的强度逐渐增大,说明薄膜的结晶质量逐渐提高。这些结果表明,用以 TiO2 为靶材的 PLD 法制备的薄膜的结晶度与薄膜的生长温度密切相关。

  • XRD 和 AFM 测试结果说明相邻的晶粒在晶体学上是近似连续的。众所周知,光生电子-空穴对 (e--h+)的复合、捕获和转移之间的竞争决定了半导体光催化的整体效率。晶界可以作为电荷的复合中心,能够散射或捕获光能产生的电子和空穴,因此减少晶界和生长单晶薄膜能使 TiO2 薄膜具有高的光催化活性[20]

  • 图4 采用 PLD 方法在不同温度下生长的沉积在 YSZ(001)衬底上的 TiO2 薄膜的 XRD 2θ/ω 扫描图谱

  • Fig.4 XRD 2θ/ω spectrum of TiO2 thin films deposited on YSZ (001) substrate grown by PLD method at different temperature

  • 图5 为在 600℃沉积的厚度为 350 nm 的 TiO2 薄膜的高分辨率 XPS Ti(2p)和 O(1s)核能级结合能谱图。结合能为 458.9 eV 和 464.6 eV 的峰分别为 Ti2p 的 2p3/2 和 2p1/2。O(1s)分裂为结合能分别为 529.8 eV 和 530.8 eV 的两个峰。低能量的 529.8 eV 峰为 Ti-O-Ti 中的氧,对应 TiO2 薄膜晶体结构中的晶格氧,高能量的 530.8 eV 峰为环境大气中的 H2O 和羟基(-OH)化合物游离附着在 TiO2 薄膜表面缺陷(即氧空位)上的氧[13],羟基与薄膜表面氧空位偶联,水分子随后通过氢键与这些基团相互作用。529.8 eV 峰代表完美的锐钛矿相 TiO2 薄膜结构,而 530.8 eV 峰代表 TiO2 薄膜的无序结构,而这种结构缺陷会影响 TiO2 薄膜的物理和化学性质[16]

  • 图5 在 600℃沉积的 TiO2薄膜的 XPS 高分辨 Ti(2p)和 O(1s)核能级结合能谱图

  • Fig.5 XPS high-resolution Ti (2p) and O (1s) core level binding energy spectra of TiO2 film deposited at 600℃

  • 2.3 还原热处理后的光学性质

  • 氧空位是 TiO2 中重要的内在缺陷,在 TiO2 中的形成可以用下列反应式来描述[20]

  • OO×VO+2e-+12O2
    (2)
  • 氧空位晶格缺陷的浓度与氧分压的关系如下:

  • VOαpO2-1/2
    (3)
  • 从这些方程可以得出,氢气还原气氛对 TiO2 晶体结构中氧空位的形成起着重要作用。因此,对在 600℃生长的 TiO2 薄膜样品,在 600℃、 4% H2(4% H2+96% N2)的氛围下进行 8 h 的还原热处理。

  • 图6 为 TiO2 薄膜在还原热处理前后光学性质的变化。如图6 的 UV-Visible 所示,TiO2 薄膜在氢还原热处理后在可见光区域的吸光性能增强,原始 TiO2 薄膜的吸收边在~387 nm,而经过还原热处理后,其吸收边在~415 nm,吸收边出现明显的红移,说明还原热处理后的 TiO2 薄膜具有更窄的带隙。根据下式确定 TiO2 薄膜的能带带隙(Eg)值[21-22]

  • Eg=1240λeV
    (4)
  • 式中,Eg 为能带带隙(eV),λ 为光谱中吸收边的波长(nm)。由式(4)计算得到 TiO2 薄膜经过还原热处理后带隙值明显减小,从 3.20 eV 减小到 2.99 eV。

  • 图6 TiO2薄膜在还原热处理前后的 UV-Visible 透射光谱

  • Fig.6 UV-visible transmission spectra of TiO2 film before and after reduction heat treatment

  • 2.4 抗菌检测结果

  • TiO2薄膜在还原热处理前后对大肠杆菌(E.coli) 的抗菌活性如图7 所示。在普通荧光灯的照射下, TiO2 薄膜的菌落明显少于对照组,而还原热处理后的 TiO2薄膜的菌落少于未热处理的 TiO2薄膜,TiO2 薄膜的抗菌率约为 86%,而还原热处理后的 TiO2 薄膜的抗菌率约为 97%,抗菌能力显著增强(根据 JC / T897—2014 的标准,抗菌率应≥90%)。

  • 图7 大肠杆菌(E.coli)菌落培养

  • Fig.7 Escherichia coli colony culture

  • 2.5 抗菌机理分析

  • 为了解释 TiO2薄膜在还原热处理后抗菌性能提升的机理,需要先了解光催化反应的原理。在这种反应中,首先,半导体被能量大于半导体带隙能的光激发(hν≥Eg)。然后,电子从价带被激发到导带,从而在价带中产生空穴。这个过程产生了电子-空穴对(e-h+),这是光催化应用的先决条件。随后,光生 e-h+ 对与被吸附的水和氧分子发生化学反应,生成高能和非常活跃的·OH 和·O2 自由基,作为强氧化剂和还原剂,它们具有显著的化学活性,能够有效分解有机和无机分子[20]。在上述机理中,e-h+ 对的产生和分离是关键步骤。

  • 光致发光光谱(PL)是一种有效检测样品缺陷态的方法[23]。图8 为 TiO2薄膜在还原热处理前后的室温 PL 谱。波长约 415 nm 的发射峰为氧空位能级[24]。在 TiO2 带隙中形成的浅能级缺陷态能够促进电子向表面扩散,有助于 e 和 h+ 的分离。可以看到经过还原热处理后的 TiO2 薄膜的发射峰明显强于未经过热处理的 TiO2 薄膜。高的 PL 强度,说明存在大量的缺陷态,氧空位缺陷态促进载流子的捕获并降低复合速率。

  • 图8 TiO2 薄膜在还原热处理前后的 PL 光谱

  • Fig.8 PL spectra of TiO2 films before and after reduction heat treatment

  • 通过 XPS 对薄膜近表面氧空位浓度进行近似的半定量分析。图9 为 TiO2 薄膜经过还原热处理前后的 O(1s)谱图。如前所述,高能量的 A 峰代表环境大气中的 H2O 和羟基(-OH)化合物游离附着在 TiO2 薄膜表面缺陷(即氧空位)上的氧,低能量的 B 峰代表晶格中的氧[13]。在氢还原热处理后 A 峰占比从 21%增加到 25%,B 峰占比从 79%减少到 75%。这表明氢还原热处理后,近表面区域的氧空位缺陷含量增加。

  • 图9 TiO2薄膜在还原热处理前后的 XPS 高分辨率 O(1s)核能级结合能谱图。

  • Fig.9 XPS high-resolution O (1s) core level binding energy spectra of TiO2 films before and after reduction heat treatment

  • 当氧空位形成时,氧空位缺陷在 TiO2 的能带内引入了能级,提高了 TiO2在可见光区的吸光度[2025],如图10 所示。因此 TiO2 薄膜在可见光下激发并产生更多的 e-h+ 对。缺陷无论位于表面还是界面,均被认为是功能电子的陷阱,减少了电子和空穴的复合[26],从而提高了 TiO2 薄膜的光活性。氧空位可以形成缺陷中心作为电子陷阱,从而促进电荷转移[2024]。因此,缺陷可以降低 e-h+ 对的复合速率,且 TiO2 表面缺陷浓度越高,载流子的分离程度越高,从而进一步提高光催化活性。

  • 图10 TiO2薄膜经过还原热处理后的光激发示意图

  • Fig.10 Schematic diagram of excitation of TiO2 film after reduction heat treatment

  • 根据文献[20]和本文研究结果提出还原 TiO2 薄膜的抗菌反应:

  • TiO2+hvh++e-
    (5)
  • h++H2OH++OH
    (6)
  • OH+细菌
    (7)
  • VO++e-
    (8)
  • e-+O2O2-
    (9)
  • O2-+细菌 还原反应杀菌
    (10)
  • 从上述结果可以得出,具有高度择优取向的锐钛矿型的 TiO2 薄膜,在经过还原热处理后,形成氧空位缺陷能级,导致 TiO2 薄膜的带隙变窄,对可见光的吸收能力增强,在 TiO2 的导带和价带中分别产生更多的 e-h+ 对,并形成更多的具有强氧化还原性能的氧自由基团,使其具有更强的抗菌性能。

  • 3 结论

  • 采用脉冲激光沉积制备 TiO2 薄膜,并对薄膜进行还原热处理,研究薄膜在可见光下抗菌性能提升的机理,得到如下结论:

  • (1)以高纯 TiO2 为靶材,单晶 YSZ(001)为衬底,在氧气氛围中制备高度择优取向的锐钛矿型 TiO2 薄膜。

  • (2)在普通荧光灯的照射下,经过在 H2 氛围中还原热处理的 TiO2 薄膜的抗菌能力高于原始 TiO2 薄膜。

  • (3)TiO2 薄膜经过还原热处理后,形成氧空位的浅能级缺陷,能在可见光区域具有较强的激发,导致抗菌能力显著增强,展示出一种较为简易的提升 TiO2抗菌性能的方法。

  • 参考文献

    • [1] 杨明刚,吕晨,刘慧,等.钛种植体表面CuO和 Nb2O5 共掺杂 TiO2 涂层的制备及抗菌性能和生物相容性[J].中国表面工程,2019,32(5):22-29.YANG Minggang,LÜ Chen,LIU Hui,et al.Preparation of CuO and Nb2O5 Co-doped TiO2 coating on Titanium implants and its antibacterial properties and biocompatibility[J].China Surface Engineering,2019,32(5):22-29.(in Chinese)

    • [2] LIU H,FENG Y W,SHAO J J,et al.Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis[J].Nano Energy,2020,70:104499.

    • [3] ZHAO W,HE L N,FENG X J,et al.Deposition and characterization of epitaxial Ta-doped TiO2 films for ultraviolet photoelectric detectors[J].Ceramics International,2018,44(17):21114-21119.

    • [4] ZHANG J L,WU Y M,XING M Y,et al.Development of modified N doped TiO2 photocatalyst with metals,nonmetals and metal oxides[J].Energy & Environmental Science,2010,3(6):715-726.

    • [5] XIU Z Y,GUO M J,ZHAO T Y,et al.Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications[J].Chemical Engineering Journal,2020,382:123011.

    • [6] ZHANG W,HE H L,LI H Z,et al.Visible-light responsive TiO2-based materials for efficient solar energy utilization[J].Advanced Energy Materials,2021,11(15):2003303.

    • [7] WU S Q,HU H Y,LIN Y,et al.Visible light photocatalytic degradation of tetracycline over TiO2[J].Chemical Engineering Journal,2020,382:122842.

    • [8] BASAVARAJAPPA P S,PATIL S B,GANGANAGAPPA N,et al.Recent progress in metal-doped TiO2,non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J].International Journal of Hydrogen Energy,2020,45(13):7764-7778.

    • [9] KUMARAVEL V,MATHEW S,BARTLETT J,et al.Photocatalytic hydrogen production using metal doped TiO2:A review of recent advances[J].Applied Catalysis B:Environmental,2019,244:1021-1064.

    • [10] 许美贤,刘佳孟,李文奕,等.Au 负载N掺杂 TiO2纳米管阵列的制备及其性能[J].中国表面工程,2020,33(1):84-90.XU Meixian,LIU Jiameng,LI Wenyi,et al.Preparation and properties of Au-supported N-doped TiO2 nanotube arrays[J].China Surface Engineering,2020,33(1):84-90.(in Chinese)

    • [11] BAYATI M R,JOSHI S,MOLAEI R,et al.Ultrafast switching in wetting properties of TiO2/YSZ/Si(001)epitaxial heterostructures induced by laser irradiation[J].Journal of Applied Physics,2013,113(6):063706.

    • [12] LIU X,ZHANG Y,MATSUSHIMA S,et al.Photocatalytic oxidation process for treatment of gas phase benzene using Ti3+ self-doped TiO2 microsphere with sea urchin-like structure[J].Chemical Engineering Journal,2020,402:126220.

    • [13] LI J Y,ZHANG S F,YANG J,et al.Improved SERS sensitivity of TiO2 nanorod films by annealing in vacuum[J].Vacuum,2021,194:110579.

    • [14] PANT B,PARK M,PARK S J.Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities[J].Coatings,2019,9(10):613-622.

    • [15] ALIAS S S,HARUN Z,LATIF I S A.Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes[J].Journal of Materials Science,2018,53(16):11534-11552.

    • [16] BAYATI M R,GUPTA P,MOLAEI R,et al.Phase tuning,thin film epitaxy,interfacial modeling,and properties of YSZ-buffered TiO2 on Si(001)substrate[J].Crystal growth & design,2012,12(9):4535-4544.

    • [17] CHEN D,GUAN Z,ZHANG D,et al.Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2-x[J].Nature Catalysis,2020,3(2):116-124.

    • [18] GALINAKI H,RYLL T,REIBISCH P,et al.Temperature-dependent 2-D to 3-D growth transition of ultra-thin Pt films deposited by PLD[J].Acta Materialia,2013,61(9):3297-3303.

    • [19] LV K L,YU J G,CUI L Z,et al.Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity[J].Journal of alloys and compounds,2011,509(13):4557-4562.

    • [20] BAYATI M R,DING J,LEE Y F,et al.Defect mediated photocatalytic decomposition of 4-chlorophenol on epitaxial rutile thin films under visible and UV illumination[J].Journal of Physics:Condensed Matter,2012,24(39):395005.

    • [21] HAYLE S T,GONFA G G.Synthesis and characterization of titanium oxide nanomaterials using sol-gel method[J].American Journal of Nanoscience and Nanotechnology,2014,2(1):1.

    • [22] KUSUMAWARDANI C,INDIANA K.NARSITO.Synthesis of nanocrystalline N-doped TiO2 and its application on high efficiency of dye-sensitized solar cells[J].Science Journal UBU,2010,1(1):1-8.

    • [23] ZONG H X,ZHAO T,ZHOU G D,et al.Revisiting structural and photocatalytic properties of g-C3N4/TiO2:is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst?[J].Catalysis Today,2019,335:252-261.

    • [24] ANITHA B,KHADAR M A.Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals:Role of defect states[J].Solid State Sciences,2020,108:106392.

    • [25] PEREVALOV T V,GRITSENKO V A.Electronic structure of TiO2 rutile with oxygen vacancies:Ab initio simulations and comparison with the experiment[J].Journal of Experimental and Theoretical Physics,2011,112(2):310-316.

    • [26] ZHUANG J D,DAI W X,TIAN Q F,et al.Photocatalytic degradation of RhB over TiO2 bilayer films:effect of defects and their location[J].Langmuir,2010,26(12):9686-9694.

  • 参考文献

    • [1] 杨明刚,吕晨,刘慧,等.钛种植体表面CuO和 Nb2O5 共掺杂 TiO2 涂层的制备及抗菌性能和生物相容性[J].中国表面工程,2019,32(5):22-29.YANG Minggang,LÜ Chen,LIU Hui,et al.Preparation of CuO and Nb2O5 Co-doped TiO2 coating on Titanium implants and its antibacterial properties and biocompatibility[J].China Surface Engineering,2019,32(5):22-29.(in Chinese)

    • [2] LIU H,FENG Y W,SHAO J J,et al.Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis[J].Nano Energy,2020,70:104499.

    • [3] ZHAO W,HE L N,FENG X J,et al.Deposition and characterization of epitaxial Ta-doped TiO2 films for ultraviolet photoelectric detectors[J].Ceramics International,2018,44(17):21114-21119.

    • [4] ZHANG J L,WU Y M,XING M Y,et al.Development of modified N doped TiO2 photocatalyst with metals,nonmetals and metal oxides[J].Energy & Environmental Science,2010,3(6):715-726.

    • [5] XIU Z Y,GUO M J,ZHAO T Y,et al.Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications[J].Chemical Engineering Journal,2020,382:123011.

    • [6] ZHANG W,HE H L,LI H Z,et al.Visible-light responsive TiO2-based materials for efficient solar energy utilization[J].Advanced Energy Materials,2021,11(15):2003303.

    • [7] WU S Q,HU H Y,LIN Y,et al.Visible light photocatalytic degradation of tetracycline over TiO2[J].Chemical Engineering Journal,2020,382:122842.

    • [8] BASAVARAJAPPA P S,PATIL S B,GANGANAGAPPA N,et al.Recent progress in metal-doped TiO2,non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J].International Journal of Hydrogen Energy,2020,45(13):7764-7778.

    • [9] KUMARAVEL V,MATHEW S,BARTLETT J,et al.Photocatalytic hydrogen production using metal doped TiO2:A review of recent advances[J].Applied Catalysis B:Environmental,2019,244:1021-1064.

    • [10] 许美贤,刘佳孟,李文奕,等.Au 负载N掺杂 TiO2纳米管阵列的制备及其性能[J].中国表面工程,2020,33(1):84-90.XU Meixian,LIU Jiameng,LI Wenyi,et al.Preparation and properties of Au-supported N-doped TiO2 nanotube arrays[J].China Surface Engineering,2020,33(1):84-90.(in Chinese)

    • [11] BAYATI M R,JOSHI S,MOLAEI R,et al.Ultrafast switching in wetting properties of TiO2/YSZ/Si(001)epitaxial heterostructures induced by laser irradiation[J].Journal of Applied Physics,2013,113(6):063706.

    • [12] LIU X,ZHANG Y,MATSUSHIMA S,et al.Photocatalytic oxidation process for treatment of gas phase benzene using Ti3+ self-doped TiO2 microsphere with sea urchin-like structure[J].Chemical Engineering Journal,2020,402:126220.

    • [13] LI J Y,ZHANG S F,YANG J,et al.Improved SERS sensitivity of TiO2 nanorod films by annealing in vacuum[J].Vacuum,2021,194:110579.

    • [14] PANT B,PARK M,PARK S J.Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities[J].Coatings,2019,9(10):613-622.

    • [15] ALIAS S S,HARUN Z,LATIF I S A.Characterization and performance of porous photocatalytic ceramic membranes coated with TiO2 via different dip-coating routes[J].Journal of Materials Science,2018,53(16):11534-11552.

    • [16] BAYATI M R,GUPTA P,MOLAEI R,et al.Phase tuning,thin film epitaxy,interfacial modeling,and properties of YSZ-buffered TiO2 on Si(001)substrate[J].Crystal growth & design,2012,12(9):4535-4544.

    • [17] CHEN D,GUAN Z,ZHANG D,et al.Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0.1Ce0.9O2-x[J].Nature Catalysis,2020,3(2):116-124.

    • [18] GALINAKI H,RYLL T,REIBISCH P,et al.Temperature-dependent 2-D to 3-D growth transition of ultra-thin Pt films deposited by PLD[J].Acta Materialia,2013,61(9):3297-3303.

    • [19] LV K L,YU J G,CUI L Z,et al.Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity[J].Journal of alloys and compounds,2011,509(13):4557-4562.

    • [20] BAYATI M R,DING J,LEE Y F,et al.Defect mediated photocatalytic decomposition of 4-chlorophenol on epitaxial rutile thin films under visible and UV illumination[J].Journal of Physics:Condensed Matter,2012,24(39):395005.

    • [21] HAYLE S T,GONFA G G.Synthesis and characterization of titanium oxide nanomaterials using sol-gel method[J].American Journal of Nanoscience and Nanotechnology,2014,2(1):1.

    • [22] KUSUMAWARDANI C,INDIANA K.NARSITO.Synthesis of nanocrystalline N-doped TiO2 and its application on high efficiency of dye-sensitized solar cells[J].Science Journal UBU,2010,1(1):1-8.

    • [23] ZONG H X,ZHAO T,ZHOU G D,et al.Revisiting structural and photocatalytic properties of g-C3N4/TiO2:is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst?[J].Catalysis Today,2019,335:252-261.

    • [24] ANITHA B,KHADAR M A.Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals:Role of defect states[J].Solid State Sciences,2020,108:106392.

    • [25] PEREVALOV T V,GRITSENKO V A.Electronic structure of TiO2 rutile with oxygen vacancies:Ab initio simulations and comparison with the experiment[J].Journal of Experimental and Theoretical Physics,2011,112(2):310-316.

    • [26] ZHUANG J D,DAI W X,TIAN Q F,et al.Photocatalytic degradation of RhB over TiO2 bilayer films:effect of defects and their location[J].Langmuir,2010,26(12):9686-9694.

  • 手机扫一扫看