en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周愁庭,男,1998年出生,硕士研究生。主要研究方向为冷喷涂增材制造的沉积及断裂行为分析。E-mail:513515327@qq.com

通讯作者:

马玉娥,女,1975年出生,博士,教授,博士生研究生导师。主要研究方向为结构力学与结构强度。E-mail:ma.yu.e@nwpu.edu.cn

中图分类号:TG174

DOI:10.11933/j.issn.1007−9289.20220426001

参考文献 1
ASSADI H,KREYE H,GäRTNER F,et al.Cold spraying—A materials perspective[J].Acta Materialia,2016,116:382-407.
参考文献 2
吴洪键,李文波,邓春明,等.冷喷涂增材制造关键技术[J].中国表面工程,2020,33(4):1-15.WU Hongjian,LI Wenbo,DENG Chunming,et al.Key techniques of cold spray additive manufacturing[J].China Surface Engineering,2020,33(4):1-15.(in Chinese)
参考文献 3
HUSSAIN T,MCCARTNEY D G,SHIPWAY P H,et al.Bonding mechanisms in cold spraying:The contributions of metallurgical and mechanical components[J].Journal of Thermal Spray Technology,2009,18(3):364-79.
参考文献 4
ASSADI H,GäRTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-94.
参考文献 5
HASSANI-GANGARAJ M,VEYSSET D,CHAMPAGNE V K,et al.Adiabatic shear instability is not necessary for adhesion in cold spray[J].Acta Materialia,2018,158:430-9.
参考文献 6
黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wen-ya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)
参考文献 7
黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)
参考文献 8
周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings[J].China Surface Engineering,2020,33(2):1-14.(in Chinese)
参考文献 9
LEK J Y,BHOWMIK A,TAN A W Y,et al.Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates[J].Applied Surface Science,2018,459:492-504.
参考文献 10
MCGEE R C V,SHE Y,NARDI A,et al.Enhancement of Ti-6Al-4V powder surface properties for cold spray deposition using fluidized Gas-Nitriding technique[J].Materials Letters,2021,290(5):129429.
参考文献 11
BORUAH D,AHMAD B,LEE T L,et al.Evaluation of residual stresses induced by cold spraying of Ti-6Al-4V on Ti-6Al-4V substrates[J].Surface and Coatings Technology,2019,374:591-602.
参考文献 12
BHOWMIK A,WEI-YEE TAN A,SUN W,et al.On the heat-treatment induced evolution of residual stress and remarkable enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings[J].Results in Materials,2020,7:100119.
参考文献 13
SONG X,EVERAERTS J,ZHAI W,et al.Residual stresses in single particle splat of metal cold spray process – Numerical simulation and direct measurement[J].Materials Letters,2018,230:152-6.
参考文献 14
巫湘坤,周香林,王建国,等.冷喷涂过程中能量变化及沉积行为的模拟研究[J].金属学报,2010,46(4):385-389.WU Xiangkun,ZHOU Xianglin,WANG Jianguo,et al.Numerical investigation on energy balance and deposition behavior during cold spraying[J].Acat Metallurgica Sinica,2010,46(4):385-389.(in Chinese)
参考文献 15
YU M,LI W Y,WANG F F,et al.Finite element simulation of impacting behavior of particles in cold spraying by Eulerian approach[J].Journal of Thermal Spray Technology,2011,21(3-4):745-52.
参考文献 16
GNANASEKARAN B,LIU G-R,FU Y,et al.A Smoothed Particle Hydrodynamics(SPH)procedure for simulating cold spray process — A study using particles[J].Surface and Coatings Technology,2019,377:124812.
参考文献 17
RAHMATI S,ZúñIGA A,JODOIN B,et al.Deformation of copper particles upon impact:A molecular dynamics study of cold spray[J].Computational Materials Science,2020,171:109219.
参考文献 18
YIN S,WANG X F,LI W Y,et al.Numerical investigation on effects of interactions between particles on coating formation in cold spraying[J].Journal of Thermal Spray Technology,2009,18(4):686-693.
参考文献 19
LIN E,CHEN Q,OZDEMIR O C,et al.Effects of interface bonding on the residual stresses in cold-Sprayed Al-6061:A numerical Investigation[J].Journal of Thermal Spray Technology,2019,28(3):472-483.
参考文献 20
GHELICHI R,BAGHERIFARD S,MACDONALD D,et al.Experimental and numerical study of residual stress evolution in cold spray coating[J].Applied Surface Science,2014,288:26-33.
参考文献 21
SONG X,NG K L,CHEA J M K,et al.Coupled Eulerian-Lagrangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction[J].Surface and Coatings Technology,2020,385125433.
参考文献 22
LI W,YANG K,ZHANG D,et al.Residual stress analysis of cold-sprayed copper coatings by numerical simulation[J].Journal of Thermal Spray Technology,2015,25(1-2):131-42.
参考文献 23
FARDAN A,BERNDT C C,AHMED R.Numerical modelling of particle impact and residual stresses in cold sprayed coatings:A review[J].Surface and Coatings Technology,2021,409:126835.
参考文献 24
LI W Y,YANG K,YIN S,et al.Numerical analysis of cold spray particles impacting behavior by the Eulerian method:A review[J].Journal of Thermal Spray Technology,2016,25(8):1441-1460.
参考文献 25
SPENCER K,LUZIN V,MATTHEWS N,et al.Residual stresses in cold spray Al coatings:The effect of alloying and of process parameters[J].Surface and Coatings Technology,2012,206(19-20):4249-4255.
参考文献 26
SALEH M,LUZIN V,SPENCER K.Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods[J].Surface and Coatings Technology,2014,252:15-28.
参考文献 27
SUHONEN T,VARIS T,DOSTA S,et al.Residual stress development in cold sprayed Al,Cu and Ti coatings[J].Acta Materialia,2013,61(17):6329-6337.
参考文献 28
CAVALIERE P,SILVELLO A.Processing conditions affecting residual stresses and fatigue properties of cold spray deposits[J].International Journal of Advanced Manufacturing Technology,2015,81(9-12):1857-1862.
参考文献 29
WONG W,IRISSOU E,VO P,et al.Cold spray forming of inconel 718[J].Journal of Thermal Spray Technology,2013,22(2-3):413-421.
参考文献 30
SANSOUCY E,KIM G E,MORAN A L,et al.Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):651-660.
参考文献 31
BHATTIPROLU V S,JOHNSON K W,OZDEMIRO C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2017,335:1-12.
参考文献 32
BENSON D J,OKAZAWA S.Contact in a multi-material Eulerian finite element formulation[J].Computer Methods in Applied Mechanics and Engineering,2004,193(39-41):4277-4298.
参考文献 33
LI W Y,JIANG R R,HUANG C J,et al.Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J].Materials & Design(1980-2015),2015,65:757-61.
目录contents

    摘要

    冷喷涂涂层具有喷涂温度低、沉积效率高和结合强度高等特性,在航空航天等工业领域具有广阔的应用前景,但关于喷涂参数对涂层孔隙率和残余应力影响的研究较少。考虑送粉速度和涂层厚度的影响,建立不同颗粒密度和数量的随机分布颗粒冲击模型,采用 Eulerian 法模拟 TC4(Ti-Al-4V)涂层的孔隙率和残余应力分布规律。结果表明,此方法能够很好地预测颗粒的沉积行为,揭示颗粒的原位夯实致密化效应,获得冷喷涂涂层的孔隙率和残余应力分布规律。颗粒密度减小,孔隙率略有降低;颗粒数量增加,孔隙率减小;当颗粒温度在一定范围(523~823K)时,孔隙率随温度上升呈线性降低。同时,不同颗粒密度和数量的模型获得的残余应力分布规律相似。计算结果可为冷喷涂涂层在航空航天等工业领域中的应用提供理论和数据支持。

    Abstract

    Cold-sprayed coatings have a low spraying temperature, high deposition efficiency, and high bonding strength, which have broad application prospects in aerospace and other industrial fields. Porosity and residual stresses are important parameters that affect the mechanical properties of coatings. However, only a few studies have been conducted on the effects of spraying parameters on the porosity and residual stresses of coatings. In the actual cold-spraying process, the increase in the powder feeding rate decreases the gap between particles during particle deposition. The initial coating layers are affected by the repeated impact of the subsequently deposited particles, and the coating thickness increases with the increase in the number of deposited particles. Therefore, the powder feeding rate and coating thickness can be equated with the density and number of particles to study their effects on the porosity and residual stresses of coatings. The particle diameters of general metal powders follow the Rosin–Rammler distribution. The diameter difference between particles was set as 1 μm; thus, the proportion of particles under each diameter can be calculated. According to the actual particle diameter distribution, multiparticle impact models with different densities and number of particles were generated by Python Script. Then, the Eulerian method was used to simulate the porosity and residual stress distribution of TC4 (Ti-Al-4V) coatings. Five groups of models were calculated, and the results were compared and analyzed. This method can effectively predict the deposition behavior of particles; reveal the effects of in-situ compaction and densification of particles; and determine the porosity and residual stress distribution of cold-sprayed coatings. When the particles were deposited, the deformation at the interface was much larger than that inside the particles. Overall, the temperatures of the initial coating layers were higher than those of the upper layers. The particle deformation of the initial coating layers was larger and the particles were more densely distributed. To further explore the effects of different parameters on the porosity, the porosity was calculated by extracting 100 μm × 100 μm × 30 μm squares from the center of each coating. It was found that the porosity slightly decreased with the decrease in the particle density. As the number of particles increased, the porosity decreased, indicating that increasing the number of deposited particles could lead to repeated impacts on the initial layers. By changing the temperature of the particles in the model (523–823 K), it was found that the porosity linearly decreased as the temperature increased. This indicates that increasing the particle temperature can improve the coating performance. However, the residual stress distributions were similar for models with different densities and number of particles. There were mainly compressive residual stresses in the coatings, along with tensile residual stresses that were mainly on the substrates. The maximum residual stress was found at the interface between the substrates and coatings. The residual stress distribution trend was basically the same when the particle temperature was changed. The calculated results are in good agreement with previous experimental studies, indicating that the model effectively simulated the multiparticle deposition behavior of cold spraying. The results reveal the porosity formation law and residual stresses of the coatings, and provide theoretical support for future studies on the influence of spraying parameters on the mechanical properties of coatings and the application of cold-sprayed coatings in aerospace and other industrial fields.

  • 0 前言

  • 冷喷涂(Cold spraying,CS)作为一种独特的固态粉末沉积工艺,因在表面涂层、增材制造及固体修复方面有广泛的应用前景,近年来受到了广泛关注。该技术利用压缩空气将金属颗粒(5~100 μm)加速至超音速(300~1 200 m / s),然后撞击基体并与之发生结合,最终形成涂层[1-2]。与传统热喷涂不同,在冷喷涂的沉积过程中,塑性变形是其升温的主要原因,且温度始终低于熔点。基体与粒子之间的结合主要为机械结合,而在温度过高时,局部会出现冶金结合[3]。在低温、高速的情况下撞击,接触界面会发生绝热剪切失稳 (Adiabatic shear instability,ASI)。多数人认为这是颗粒与基体发生结合的原因,并根据该理论来计算颗粒的临界速度[4]。但是也存在不同的意见, HASSANI-GANGARAJ 等 [5]认为绝热剪切失稳不是颗粒结合的必要条件,而是由应力波释放诱导材料射流形成而使颗粒发生结合。在航空航天领域,冷喷涂技术可以用来制备特殊功能涂层,直接制造或修复复杂结构、形状的航空航天部件 [6-8]。TC4(Ti-6Al-4V)材料作为一种高强度钛合金,广泛应用于飞行器结构制造。LEK 等 [9]和 MCGEE 等[10]通过制备 TC4 涂层,并观察其微观结构演变和性能,指出涂层的微观结构与原料的微观粉末结构明显不同,并通过改变沉积条件可以改善涂层的硬度和孔隙率。BORUAH 等[11]、 BHOWMIK 等[12]和 SONG 等[13]对 TC4 涂层的残余应力进行了测量,指出在微观水平下的残余应力比宏观情况下大很多,且通过热处理可以有效消除涂层的残余应力并增加结合强度。

  • 近年来,研究人员采用 Lagrangian 法和 Eulerian 等数值方法研究冷喷涂沉积过程。 ASSADI 等[4]率先使用 Larangian 法计算 Cu 颗粒的沉积行为,并获得颗粒的临界速度。巫湘坤等[14] 使用该方法计算了 Al、Cu、Ni 和 Ti 颗粒的沉积行为,获得颗粒在沉积过程中的能量变化。YU 等[15]和 GNANASEKARAN 等[16]分别采用 Eulerian 法和光滑粒子流体动力学算法计算 Cu 颗粒在不同速度、冲击角、尺寸下颗粒的沉积行为。同时, GNANASEKARAN 等[16]还建立多颗粒的三维模型进行计算,获得了多颗粒沉积的形貌。 RAHMATI 等[17]采用分子动力学计算不同尺寸下颗粒撞击基体时,原子间的相互作用,获得三个不同变形阶段相关的位错活动。YIN 等[18]和 LIN 等[19]考虑颗粒间的相互作用和颗粒界面结合的影响,计算多颗粒的沉积作用,并获得涂层的残余应力分布。最近,研究人员采用随机分布颗粒来模拟冷喷涂沉积过程[20-22]。GHELICHI 等[20]采用 Lagrangian 法计算 Al 合金涂层的残余应力分布,获得较好的结果。 SONG 等 [21] 采用耦合 Eulerian-Lagrangian(CEL)算法计算获得冷喷涂涂层的孔隙分布情况。LI 等[22]通过 Eulerian 切片的建模方式来减少计算量,并计算在不同冲击速度下,涂层的残余应力分布。FARDAN 等[23]和 LI 等[24]分别综述冷喷涂沉积行为的数值计算方法,指出采用 Eulerian 法模拟获得的粒子碰撞结果与试验观察结果相吻合;在残余应力方面,指出喷丸强化应力和热应力是影响冷喷涂残余应力的主要因素。残余应力的大小主要取决于基体 / 涂层材料的组合,但表面处理也会影响涂层的最终应力[25-27]。SUHONEN 等[27]测量并获得 Al、Cu 和 Ti 涂层的残余应力分布,指出由于塑性变形和喷丸作用,冷喷涂过程中产生的残余应力是压缩的,但也形成中性和拉伸的残余应力。同时,沉积过程中,颗粒的不完全结合会使涂层产生孔隙。这些孔隙会充当损伤起始位点,严重影响涂层的疲劳、断裂等力学性能。已经表明,增加颗粒在撞击时的能量可以减少孔隙率[28-29]。SANSOUCY 等[30]还将冷喷涂材料初始层中孔隙率的降低的原因归于沉积过程中的反复冲击。BHATTIPROLU 等[31]在 TC4 的冷喷涂研究中,得出通过增加颗粒速度可显著降低孔隙率,而增加颗粒温度可略微降低孔隙率。

  • 由于冷喷涂过程复杂,颗粒尺寸小、变形大、沉积迅速,现有试验研究和数值方法存在一定的局限性。在 Lagrangian 算法中,网格易随材料的变形发生畸变,从而使计算结果不收敛,同时也难以统计涂层的孔隙率。光滑粒子流体动力学算法可以有效避免网格畸变问题,但没有严重变形时,该算法则不如其他算法准确。分子动力学算法可以用来研究沉积过程的微观机制,但是在尺度上很难突破纳米级。Eulerian 算法可以使颗粒与基体之间发生结合,且不存在网格畸变的问题,相对更合适于冷喷涂沉积过程计算[23]。在以往的数值研究中,多考虑温度和颗粒速度的影响,研究的颗粒较少且按规律分布,并不能完全反应涂层真实的形成过程。在实际过程中,送粉速度和涂层厚度也会对涂层中的残余应力和孔隙率产生影响。因此,为更深入研究冷喷涂涂层的孔隙率和残余应力规律,本文采用 Eulerian 法分别建立不同颗粒密度和数量的随机颗粒冲击模型来预测TC4涂层的孔隙率和残余应力分布,并探究了不同温度的影响作用机制。

  • 1 有限元模型

  • 1.1 材料参数

  • TC4 颗粒和基体的弹性模量(E)和泊松比(v)是温度的函数,如图1 所示;其相关的热力学材料参数取自文献[9],见表1。

  • 图1 物性参数随温度变化[9]

  • Fig.1 Variation of physical parameters with temperature[9]

  • 表1 TC4 热力学参数[9]

  • Table1 TC4 Thermal and mechanical parameters[9]

  • 颗粒的沉积行为是一个动态冲击过程,响应非常复杂,包括非线性压力响应、大应变和应变速率硬化、热软化、损伤失效等。Johnson-Cook 模型常被用来描述大应变、高应变率、高温情况下金属的失效过程。现用其来描述粒子冲击过程中的失效行为[23]

  • σy=A+Bεn1+Clnε*1-T*m
    (1)
  • T*=T-T0Tm-T0
    (2)
  • 式中,σ y 为屈服应力(MPa),ABCnm 为与材料相关的常数,ε 是有效塑性应变, ε* 是相对于参考应变率归一化的有效塑性应变率。T0Tm 为材料的参考温度(通常为室温)和融化温度。相关参数如表2。

  • 表2 TC4 的 Johnson-Cook 模型参数[9]

  • Table2 Johnson-Cook model parameter of TC4[9]

  • 1.2 多颗粒的 Eulerian 模型

  • Eulerian 描述中,将物理量表示为空间位置和时间的函数[32]。物质和空间的时间导数关系为:

  • dϕdt=ϕt+v(ϕ)
    (3)
  • 动量、质量和能量守恒方程如下:

  • dρdt+ρv=0
    (4)
  • ρdvdt=σ+ρb
    (5)
  • dEdt=(σv)+ρbv
    (6)
  • 式中,φ 是任意解变量,v 是材料速度(m / s),ρ 是密度(kg / m3),σ 是 Cauchy’ s 应力,b 是体力,E 是单位体积的总能量。在求解时,将变形的网格移动到原始的固定网格中,并计算相邻单元之间传输的材料体积。然后调整 Lagrangian 解变量,如质量、能量、动量、应力等,以通过传输算法解释相邻元素之间的材料流动。因此,在有限元分析过程中, Eulerian 网格刻画在空间上,材料在网格中流动。这使得网格不发生畸变,适用于大变形分析。基于ABAQUS 平台,采用 Eulerian 法分析颗粒在不同温度下的沉积行为。因其内置的接触模型,可以使粒子与基体发生结合,从而能够准确预测颗粒沉积后的形貌。

  • 冷喷涂技术利用压缩空气将原料粉末加速至超音速,然后撞击基体并与之发生结合,形成涂层,可建立以下的三维模型来模拟多颗粒的沉积行为。如图2a 所示,在一个长方体的 Eulerian 域中,底部为基体,不同尺寸的颗粒随机分布于上方并以高速向下冲击,最终形成涂层。该模型比较复杂,计算时间长,必须在保证计算精确的基础上尽可能减少计算量,在粒子分布区域和基体上撞击的部分区域采用更小的网格。根据文献[21],当网格为 2 μm 时,孔隙率趋于收敛,因此在本文的研究中,冲击区域的网格尺寸设为 2 μm,其余区域可适当放大,如图2b 所示。为简化模型,现假设不同尺寸的颗粒速度和温度均为定值。

  • 图2 随机多颗粒模型

  • Fig.2 Random multi-particle model

  • 根据原料粉末的实际情况,一般假设颗粒尺寸服从 Rosin-Rammler 分布,表述为:

  • Y=1-exp-Dd-n
    (7)
  • 式中,Y 是颗粒累计重量百分数,D 是颗粒直径,nR-R 系数,d-R-R 直径。取粒度分布(PSD) (D10=20,D50=34,D90=44),设颗粒间的直径梯度差为 1 μm,并计算每个直径下的颗粒占比,即生成概率。利用 Python 程序按概率生成直径为 15~45 μm 的颗粒。随机生成的不同数量颗粒直径分布如图3 所示。

  • 图3 颗粒的直径分布

  • Fig.3 Diameter distribution of particles

  • 对每个颗粒分配空间坐标,有如下要求:① 颗粒间距离大于 0,即不发生重合;② 颗粒分布于一定范围内,不能超过 Eulerian 域。因此,当生成第 i 个颗粒的坐标时,存在以下约束条件:

  • xi-xn2+yi-yn2+zi-zn212>di+dn2
    (8)
  • 式中,n=1,23i-1d为颗粒直径。xyz 之间相互独立,有 xminxixmaxyminyiymaxZminziZmax。若生成的坐标不符合以上要求,则重新生成一组坐标,直至符合条件后进入下一颗粒的坐标生成。

  • 在实际冷喷涂过程中,随着送粉速度增大,在发生沉积时,颗粒间的间隙越小,颗粒密度越大。同时,随后沉积的颗粒反复冲击对涂层的初始层存在一定影响,且随着沉积的颗粒增多,涂层厚度增加,这一影响逐渐增大。为探究送粉速度和涂层厚度对涂层的孔隙率及残余应力的影响趋势,在数值模拟方面,生成如表所示的 5 组颗粒分布模型。其中,颗粒横向范围分布一致,为 100 μm×100 μm,纵向随颗粒的数量的变化而变化,如表3 所示。其中 A、D、E 三组的颗粒密度相同,颗粒数量不同,见图3;A、B、C 三组的颗粒数量相同,密度不同,如图4 所示。

  • 表3 有限元模型参数

  • Table3 Parameters of Finite element model

  • 图4 不同的颗粒密度

  • Fig.4 Different particle densities

  • 2 结果与讨论

  • 2.1 沉积状态

  • 为更真实反映冷喷涂过程,建立三维 Eulerian 模型,采用随机分布的多颗粒冲击基体,设颗粒的速度为 700 m / s,基体温度为 298 K,颗粒预热温度为 623 K。图5a 显示了模型初始时刻的状态,颗粒随机分布于基体上方;在 800 ns 时,系统中的动能趋于 0,可认为颗粒已完全沉积于基体上,如图5b 所示,所有颗粒与基体发生结合,并形成一定厚度的涂层。由于发生时间短,沉积过程可认为是一个绝热的过程,热量几乎来自于材料的塑性热,同时,在颗粒发生撞击时,界面上发生的变形远大于颗粒内部。图6 显示了 5 组模型的温度分布,等效塑性应变分布情况与之类似。可以看出,在颗粒间的结合界面上的温度高于其他区域,说明在此处的变形更大,获得的热量更多;从整体来看,初始层的温度会高于上层,且颗粒分布更为密集,这是由于在冷喷涂过程中存在原位夯实致密化效应,随后沉积的颗粒会对基材和先前沉积的颗粒有喷丸强化作用,从而使得下层的颗粒变形更大,温度上升更高,颗粒间的结合也更为紧密[33]。图6 A、B、C 显示了相同颗粒数量、不同颗粒密度的沉积结果。对比可以发现,不同颗粒密度对温度的影响并不大,在模型局部出现高温,C 组温度最高,B 组最低,二者之间的最大温度相差 65 K;从温度分布判断,相较其余两组,在 C 组涂层的中心区域,颗粒分布更加致密。对比图6A、D、E 可以发现,随着颗粒数量增加,涂层厚度增加,D、E 两组的温度高于 A 组,且形成的涂层更为致密。

  • 图5 涂层形貌

  • Fig.5 Morphology of Coating

  • 图6 800 ns 时温度分布(623 K)

  • Fig.6 Temperature distribution at 800 ns (623 K)

  • 2.2 对孔隙率的影响

  • 球形的颗粒不可能完全填满涂层,孔隙不可避免地存在于涂层中,会严重影响涂层的力学性能。图7a 显示了真实 TC4 涂层的微观形貌,可以发现,孔隙随机分布于颗粒间的结合界面上[9],其尺寸、大小存在一定随机性。图7b 的计算结果与真实情况类似,为了进一步统计涂层中的孔隙率,可以在每个涂层的底部中心区域的提取大小为 100 μm× 100 μm×30 μm 的方块来统计孔隙率。图8 显示了方块中的孔隙分布情况,图中所示为空气的体积分数占比,值为 1 代表单元内全为空气,值为 0 代表单元内占满物质。在后处理时,可将值为 1 的区域进行删除,获得孔隙分布的直观情况。当颗粒的温度为 623 K 时,孔隙率大小如表4 所示。对比 A、B、 C 三组可以发现,随着颗粒密度的减小,孔隙率会略有降低。A、D 两组结果显示,颗粒数量增加 50 颗,涂层厚度增加,孔隙率几乎没有变化。但是,当颗粒数量继续增加至 200 颗时,孔隙率相较而言下降明显。这样的结果表明,后沉积的颗粒会对底层涂层的孔隙率产生影响,随着上层颗粒的反复冲击,初始层的颗粒变形更大,孔隙率会有所降低。

  • 为进一步探究孔隙率的变化规律,保持颗粒速度不变,改变颗粒的温度(523 K、623 K、723 K、 823 K),获得 5 组模型的孔隙率随温度变化情况。如图9 所示,随着温度上升,所有模型的孔隙率略有减小,且几乎呈现线性变化。这是由于高温更容易使颗粒发生变形,从而使得颗粒在沉积过程中更容易填满孔隙,BHATTIPROLU 等 [31]也获得相似的结论。同时,可以发现,A、D 两组的孔隙率较为接近,且最大;B、C 两组的孔隙率较为接近,其次; E 的孔隙率一直保持最低,且随温度的变化率最小,当颗粒温度为 823K 时,只有 5.42%。说明增加颗粒的沉积数量,能够对初始层进行反复冲击,获得的孔隙率更小。

  • 图7 涂层截面

  • Fig.7 Section of coating

  • 图8 颗粒温度为 623K 时孔隙分布

  • Fig.8 Pore distribution at particle temperature of 623 K

  • 表4 孔隙率统计

  • Table4 Porosity statistics

  • 图9 孔隙率随温度变化(523~823 K)

  • Fig.9 Porosity changes with temperature (523-823 K)

  • 2.3 对残余应力的影响

  • CS 过程所产生的残余应力包括冲击造成的喷丸应力,由受基材限制的受冲击颗粒的收缩引起的淬火应力,以及热膨胀引起的热应力。其中,喷丸应力是最主要的应力,而淬火应力和热应力随着温度上升,占比逐渐升高[23]。喷丸效应会引起残余压应力。由于目前的计算并不能完全消除系统中的剩余弹性能,且计算时间较短,并不能使得系统温度降至室温。因此,为减小以上的影响,在 800 ns 时,颗粒完全沉积于基体上,可继续延长分析步时长至 4 000 ns。绘制残余应力曲线时,可取 5 个时间点,提取涂层中心沿厚度方向的残余应力,并计算平均值,从而获得涂层及基体上的残余应力曲线。如图10 所示,在 x 轴上,0 表示结合界面,正值为涂层,负值表示基体。图10a 显示了不同颗粒密度的残余应力曲线。可以发现,三条曲线的分布形式基本相同,在基体与涂层的结合界面上,残余应力出现峰值; 在基体上,残余应力呈现下降趋势,后趋于稳定,主要呈现为拉应力;在涂层上,主要呈现为压应力,且残余应力在骤降后呈现波动的趋势,最终在涂层顶部趋于 0。这主要由于计算获得的涂层仍然是微观层面,颗粒界面和颗粒内部的变形相差较大,从而对结果影响较大。对比 A、B、C 三条曲线,可以发现 A、B 两组的残余应力结果相似,而 C 组的残余应力波动更大,最大应力为 456 MPa,最小值为–214 MPa。图10b 显示了不同颗粒数量的涂层残余应力分布,可以看出 D、E 两组的残余应力分布趋势与 A 类似。涂层内部存在残余压应力和残余拉应力,它们分布不均匀以保持力平衡。随着颗粒数量增多,涂层厚度增加。可以发现,在涂层上层,主要表现为残余压应力,而在涂层下层,主要为残余拉应力。其中,在结合界面处,D 的残余应力最大,为 597 MPa,在涂层上,D、E 的最大残余应力分别为 200 MPa、 213 MPa。对比 A、C、E 三组模型,颗粒在不同温度下的残余应力情况,如图11 所示,改变颗粒的温度,在结合界面上的残余应力值有一定波动,而在涂层区域残余应力分布趋势基本一致。表明颗粒的温度在 523~823 K 范围内,对涂层中残余应力的分布趋势影响较小。

  • 图10 颗粒温度为 623 K 时残余应力分布

  • Fig.10 Residual stress distribution at particle preheating temperature of 623 K

  • 图11 残余应力随温度变化(523~823 K)

  • Fig.11 Variation of residual stress with temperature (523-823 K)

  • 3 结论

  • 通过建立不同颗粒密度和数量的随机颗粒模型计算了冷喷涂 TC4 涂层的孔隙率和残余应力分布,主要结论为:

  • (1)基于 Eulerian 法,建立不同的随机多颗粒模型,将送粉速度和涂层厚度等同于颗粒密度和颗粒数量,得到 TC4 涂层孔隙率和残余应力规律,揭示了颗粒间的原位夯实致密化效应,进而验证随机多颗粒冷喷涂模型的有效性。

  • (2)颗粒密度减小,孔隙率略有降低;颗粒数量增加,初始层孔隙率减小;颗粒温度在 523~823 K 范围内,孔隙率随温度上升呈线性降低。同时,不同颗粒密度和数量的模型获得的残余应力分布规律相似。

  • (3)冷喷涂涂层的强度受工艺参数中送粉速度和涂层厚度影响,随机多颗粒模型揭示了涂层的孔隙和残余应力形成规律,为以后研究喷涂参数的影响提供了一定参考。

  • 参考文献

    • [1] ASSADI H,KREYE H,GäRTNER F,et al.Cold spraying—A materials perspective[J].Acta Materialia,2016,116:382-407.

    • [2] 吴洪键,李文波,邓春明,等.冷喷涂增材制造关键技术[J].中国表面工程,2020,33(4):1-15.WU Hongjian,LI Wenbo,DENG Chunming,et al.Key techniques of cold spray additive manufacturing[J].China Surface Engineering,2020,33(4):1-15.(in Chinese)

    • [3] HUSSAIN T,MCCARTNEY D G,SHIPWAY P H,et al.Bonding mechanisms in cold spraying:The contributions of metallurgical and mechanical components[J].Journal of Thermal Spray Technology,2009,18(3):364-79.

    • [4] ASSADI H,GäRTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-94.

    • [5] HASSANI-GANGARAJ M,VEYSSET D,CHAMPAGNE V K,et al.Adiabatic shear instability is not necessary for adhesion in cold spray[J].Acta Materialia,2018,158:430-9.

    • [6] 黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wen-ya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)

    • [7] 黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)

    • [8] 周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings[J].China Surface Engineering,2020,33(2):1-14.(in Chinese)

    • [9] LEK J Y,BHOWMIK A,TAN A W Y,et al.Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates[J].Applied Surface Science,2018,459:492-504.

    • [10] MCGEE R C V,SHE Y,NARDI A,et al.Enhancement of Ti-6Al-4V powder surface properties for cold spray deposition using fluidized Gas-Nitriding technique[J].Materials Letters,2021,290(5):129429.

    • [11] BORUAH D,AHMAD B,LEE T L,et al.Evaluation of residual stresses induced by cold spraying of Ti-6Al-4V on Ti-6Al-4V substrates[J].Surface and Coatings Technology,2019,374:591-602.

    • [12] BHOWMIK A,WEI-YEE TAN A,SUN W,et al.On the heat-treatment induced evolution of residual stress and remarkable enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings[J].Results in Materials,2020,7:100119.

    • [13] SONG X,EVERAERTS J,ZHAI W,et al.Residual stresses in single particle splat of metal cold spray process – Numerical simulation and direct measurement[J].Materials Letters,2018,230:152-6.

    • [14] 巫湘坤,周香林,王建国,等.冷喷涂过程中能量变化及沉积行为的模拟研究[J].金属学报,2010,46(4):385-389.WU Xiangkun,ZHOU Xianglin,WANG Jianguo,et al.Numerical investigation on energy balance and deposition behavior during cold spraying[J].Acat Metallurgica Sinica,2010,46(4):385-389.(in Chinese)

    • [15] YU M,LI W Y,WANG F F,et al.Finite element simulation of impacting behavior of particles in cold spraying by Eulerian approach[J].Journal of Thermal Spray Technology,2011,21(3-4):745-52.

    • [16] GNANASEKARAN B,LIU G-R,FU Y,et al.A Smoothed Particle Hydrodynamics(SPH)procedure for simulating cold spray process — A study using particles[J].Surface and Coatings Technology,2019,377:124812.

    • [17] RAHMATI S,ZúñIGA A,JODOIN B,et al.Deformation of copper particles upon impact:A molecular dynamics study of cold spray[J].Computational Materials Science,2020,171:109219.

    • [18] YIN S,WANG X F,LI W Y,et al.Numerical investigation on effects of interactions between particles on coating formation in cold spraying[J].Journal of Thermal Spray Technology,2009,18(4):686-693.

    • [19] LIN E,CHEN Q,OZDEMIR O C,et al.Effects of interface bonding on the residual stresses in cold-Sprayed Al-6061:A numerical Investigation[J].Journal of Thermal Spray Technology,2019,28(3):472-483.

    • [20] GHELICHI R,BAGHERIFARD S,MACDONALD D,et al.Experimental and numerical study of residual stress evolution in cold spray coating[J].Applied Surface Science,2014,288:26-33.

    • [21] SONG X,NG K L,CHEA J M K,et al.Coupled Eulerian-Lagrangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction[J].Surface and Coatings Technology,2020,385125433.

    • [22] LI W,YANG K,ZHANG D,et al.Residual stress analysis of cold-sprayed copper coatings by numerical simulation[J].Journal of Thermal Spray Technology,2015,25(1-2):131-42.

    • [23] FARDAN A,BERNDT C C,AHMED R.Numerical modelling of particle impact and residual stresses in cold sprayed coatings:A review[J].Surface and Coatings Technology,2021,409:126835.

    • [24] LI W Y,YANG K,YIN S,et al.Numerical analysis of cold spray particles impacting behavior by the Eulerian method:A review[J].Journal of Thermal Spray Technology,2016,25(8):1441-1460.

    • [25] SPENCER K,LUZIN V,MATTHEWS N,et al.Residual stresses in cold spray Al coatings:The effect of alloying and of process parameters[J].Surface and Coatings Technology,2012,206(19-20):4249-4255.

    • [26] SALEH M,LUZIN V,SPENCER K.Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods[J].Surface and Coatings Technology,2014,252:15-28.

    • [27] SUHONEN T,VARIS T,DOSTA S,et al.Residual stress development in cold sprayed Al,Cu and Ti coatings[J].Acta Materialia,2013,61(17):6329-6337.

    • [28] CAVALIERE P,SILVELLO A.Processing conditions affecting residual stresses and fatigue properties of cold spray deposits[J].International Journal of Advanced Manufacturing Technology,2015,81(9-12):1857-1862.

    • [29] WONG W,IRISSOU E,VO P,et al.Cold spray forming of inconel 718[J].Journal of Thermal Spray Technology,2013,22(2-3):413-421.

    • [30] SANSOUCY E,KIM G E,MORAN A L,et al.Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):651-660.

    • [31] BHATTIPROLU V S,JOHNSON K W,OZDEMIRO C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2017,335:1-12.

    • [32] BENSON D J,OKAZAWA S.Contact in a multi-material Eulerian finite element formulation[J].Computer Methods in Applied Mechanics and Engineering,2004,193(39-41):4277-4298.

    • [33] LI W Y,JIANG R R,HUANG C J,et al.Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J].Materials & Design(1980-2015),2015,65:757-61.

  • 参考文献

    • [1] ASSADI H,KREYE H,GäRTNER F,et al.Cold spraying—A materials perspective[J].Acta Materialia,2016,116:382-407.

    • [2] 吴洪键,李文波,邓春明,等.冷喷涂增材制造关键技术[J].中国表面工程,2020,33(4):1-15.WU Hongjian,LI Wenbo,DENG Chunming,et al.Key techniques of cold spray additive manufacturing[J].China Surface Engineering,2020,33(4):1-15.(in Chinese)

    • [3] HUSSAIN T,MCCARTNEY D G,SHIPWAY P H,et al.Bonding mechanisms in cold spraying:The contributions of metallurgical and mechanical components[J].Journal of Thermal Spray Technology,2009,18(3):364-79.

    • [4] ASSADI H,GäRTNER F,STOLTENHOFF T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51(15):4379-94.

    • [5] HASSANI-GANGARAJ M,VEYSSET D,CHAMPAGNE V K,et al.Adiabatic shear instability is not necessary for adhesion in cold spray[J].Acta Materialia,2018,158:430-9.

    • [6] 黄春杰,殷硕,李文亚,等.冷喷涂技术及其系统的研究现状与展望[J].表面技术,2021,50(7):1-23.HUANG Chunjie,YIN Shuo,LI Wen-ya,et al.Cold spray technology and its system:research status and prospect[J].Surface Technology,2021,50(7):1-23.(in Chinese)

    • [7] 黄仁忠,孙文,郭双全,等.冷喷涂技术的研究进展与应用[J].中国表面工程,2020,33(4):16-25.HUANG Renzhong,SUN Wen,GUO Shuangquan,et al.Research developments and applications of cold spray technology[J].China Surface Engineering,2020,33(4):16-25.(in Chinese)

    • [8] 周红霞,李成新,李长久.冷喷涂制备钛及钛合金涂层研究进展[J].中国表面工程,2020,33(2):1-14.ZHOU Hongxia,LI Chengxin,LI Changjiu.Research progress of cold sprayed Ti and Ti alloy coatings[J].China Surface Engineering,2020,33(2):1-14.(in Chinese)

    • [9] LEK J Y,BHOWMIK A,TAN A W Y,et al.Understanding the microstructural evolution of cold sprayed Ti-6Al-4V coatings on Ti-6Al-4V substrates[J].Applied Surface Science,2018,459:492-504.

    • [10] MCGEE R C V,SHE Y,NARDI A,et al.Enhancement of Ti-6Al-4V powder surface properties for cold spray deposition using fluidized Gas-Nitriding technique[J].Materials Letters,2021,290(5):129429.

    • [11] BORUAH D,AHMAD B,LEE T L,et al.Evaluation of residual stresses induced by cold spraying of Ti-6Al-4V on Ti-6Al-4V substrates[J].Surface and Coatings Technology,2019,374:591-602.

    • [12] BHOWMIK A,WEI-YEE TAN A,SUN W,et al.On the heat-treatment induced evolution of residual stress and remarkable enhancement of adhesion strength of cold sprayed Ti-6Al-4V coatings[J].Results in Materials,2020,7:100119.

    • [13] SONG X,EVERAERTS J,ZHAI W,et al.Residual stresses in single particle splat of metal cold spray process – Numerical simulation and direct measurement[J].Materials Letters,2018,230:152-6.

    • [14] 巫湘坤,周香林,王建国,等.冷喷涂过程中能量变化及沉积行为的模拟研究[J].金属学报,2010,46(4):385-389.WU Xiangkun,ZHOU Xianglin,WANG Jianguo,et al.Numerical investigation on energy balance and deposition behavior during cold spraying[J].Acat Metallurgica Sinica,2010,46(4):385-389.(in Chinese)

    • [15] YU M,LI W Y,WANG F F,et al.Finite element simulation of impacting behavior of particles in cold spraying by Eulerian approach[J].Journal of Thermal Spray Technology,2011,21(3-4):745-52.

    • [16] GNANASEKARAN B,LIU G-R,FU Y,et al.A Smoothed Particle Hydrodynamics(SPH)procedure for simulating cold spray process — A study using particles[J].Surface and Coatings Technology,2019,377:124812.

    • [17] RAHMATI S,ZúñIGA A,JODOIN B,et al.Deformation of copper particles upon impact:A molecular dynamics study of cold spray[J].Computational Materials Science,2020,171:109219.

    • [18] YIN S,WANG X F,LI W Y,et al.Numerical investigation on effects of interactions between particles on coating formation in cold spraying[J].Journal of Thermal Spray Technology,2009,18(4):686-693.

    • [19] LIN E,CHEN Q,OZDEMIR O C,et al.Effects of interface bonding on the residual stresses in cold-Sprayed Al-6061:A numerical Investigation[J].Journal of Thermal Spray Technology,2019,28(3):472-483.

    • [20] GHELICHI R,BAGHERIFARD S,MACDONALD D,et al.Experimental and numerical study of residual stress evolution in cold spray coating[J].Applied Surface Science,2014,288:26-33.

    • [21] SONG X,NG K L,CHEA J M K,et al.Coupled Eulerian-Lagrangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction[J].Surface and Coatings Technology,2020,385125433.

    • [22] LI W,YANG K,ZHANG D,et al.Residual stress analysis of cold-sprayed copper coatings by numerical simulation[J].Journal of Thermal Spray Technology,2015,25(1-2):131-42.

    • [23] FARDAN A,BERNDT C C,AHMED R.Numerical modelling of particle impact and residual stresses in cold sprayed coatings:A review[J].Surface and Coatings Technology,2021,409:126835.

    • [24] LI W Y,YANG K,YIN S,et al.Numerical analysis of cold spray particles impacting behavior by the Eulerian method:A review[J].Journal of Thermal Spray Technology,2016,25(8):1441-1460.

    • [25] SPENCER K,LUZIN V,MATTHEWS N,et al.Residual stresses in cold spray Al coatings:The effect of alloying and of process parameters[J].Surface and Coatings Technology,2012,206(19-20):4249-4255.

    • [26] SALEH M,LUZIN V,SPENCER K.Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods[J].Surface and Coatings Technology,2014,252:15-28.

    • [27] SUHONEN T,VARIS T,DOSTA S,et al.Residual stress development in cold sprayed Al,Cu and Ti coatings[J].Acta Materialia,2013,61(17):6329-6337.

    • [28] CAVALIERE P,SILVELLO A.Processing conditions affecting residual stresses and fatigue properties of cold spray deposits[J].International Journal of Advanced Manufacturing Technology,2015,81(9-12):1857-1862.

    • [29] WONG W,IRISSOU E,VO P,et al.Cold spray forming of inconel 718[J].Journal of Thermal Spray Technology,2013,22(2-3):413-421.

    • [30] SANSOUCY E,KIM G E,MORAN A L,et al.Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process[J].Journal of Thermal Spray Technology,2007,16(5-6):651-660.

    • [31] BHATTIPROLU V S,JOHNSON K W,OZDEMIRO C,et al.Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions[J].Surface & Coatings Technology,2017,335:1-12.

    • [32] BENSON D J,OKAZAWA S.Contact in a multi-material Eulerian finite element formulation[J].Computer Methods in Applied Mechanics and Engineering,2004,193(39-41):4277-4298.

    • [33] LI W Y,JIANG R R,HUANG C J,et al.Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J].Materials & Design(1980-2015),2015,65:757-61.

  • 手机扫一扫看