en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王雨豪,男,1998年出生,硕士。主要研究方向为机械摩擦磨损。E-mail:anlxqaq@gmail.com

通讯作者:

陈文刚,男,教授,博士研究生导师。主要研究方向为机械摩擦磨损。E-mail:chenwengang999@163.com

中图分类号:TH117;TH117

DOI:10.11933/j.issn.1007−9289.20220314001

参考文献 1
FRANC J P,MICHEL J M.Fundamentals of cavitation[M].Dordrecht,Boston,London:Kluwer Academic Publishers,2004.
参考文献 2
RAYLEIGH L.VIII.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.
参考文献 3
PLESSET M S.The dynamics of cavitation bubbles[J].Mech,1949,16:277-282.
参考文献 4
NOLTINGK B E,NEPPIRAS E A.Cavitation produced by ultrasonics[J].Proceedings of the Physical Society.Section B,1950,63(9):674.
参考文献 5
李根生,沈晓明,施立德,等.空化和空蚀机理及其影响因素[J].石油大学学报(自然科学版),1997(1):97-102.LI Gensheng,SHEN Xiaoming,SHI Lide,et al.The mechanism of cavitation and cavitation and its influencing factors[J].Journal of the University of Petroleum,1997(1):97-102.(in Chinese)
参考文献 6
陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation research[J].China Basic Science,2010,12(6):3-7.(in Chinese)
参考文献 7
MAROM E M,MARTINEZ C H,TRUONG M T,et al.Tumor cavitation during therapy with antiangiogenesis agents in patients with lung cancer[J].Journal of Thoracic Oncology,2008,3(4):351-357
参考文献 8
HU S,ZHANG X,UNGER M,et al.Focused ultrasound-induced cavitation sensitizes cancer cells to radiation therapy and hyperthermia[J].Cells,2020,9:2595.
参考文献 9
GEVARI M T,AYDEMIR G,GHARIB G,et al.Local carpet bombardment of immobilized cancer cells with hydrodynamic cavitation[J].IEEE Access,2021,9:14983-14991
参考文献 10
LANG R J.Ultrasonic atomization of liquids[J].The journal of the acoustical society of America,1962,34(1):6-8
参考文献 11
KAMAMOTO K,KIYAMA A,TAGAWA Y,et al.Ouzo column under impact:formation of emulsion jet and oil-lubricated droplet[J].Langmuir,2021,37(6):2056-2064.
参考文献 12
ORTHABER U,ZEVNIK J,DULAR M.Cavitation bubble collapse in a vicinity of a liquid-liquid interface-basic research into emulsification process[J].Ultrasonics Sonochemistry,2020,68:105224.
参考文献 13
OHL C D,ARORA M,DIJKINK R,et al.Surface cleaning from laser-induced cavitation bubbles[J].Applied physics letters,2006,89(7):074102.
参考文献 14
UCHIDA T.Quantitative evaluation of ultrasonic cleaning ability using acoustic cavitation signal[J].Japanese Journal of Applied Physics,2021,60(SD):SDDD04.
参考文献 15
SCHOVANEC P,JASIKOVA D,KOTEK M,et al.Sterilization of biofilm in foam using a single cavitation bubble[C]//MATEC Web of Conferences.EDP Sciences,Piešt’any,Slovakia,2020,328:05003.
参考文献 16
CHECO H M,JARAMILLO A,JAI M,et al.Texture-induced cavitation bubbles and friction reduction in the Elrod-Adams model[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,229(4):478-492.
参考文献 17
BIANCOFIORE L,GIACOPINI M,DINI D.Interplay between wall slip and cavitation:A complementary variable approach[J].Tribology International,2019,137:324-339.
参考文献 18
KIU S K,YUSUP S,SOON C V,et al.Lubricant enhancement via hydrodynamic and acoustic cavitation[J].Procedia Engineering,2016,148:57-63.
参考文献 19
BAI L,YAN J,ZENG Z.Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,592:124606.
参考文献 20
BORKENT B M,ARORA M,OHL C D.Reproducible cavitation activity in water-particle suspensions[J].The Journal of the Acoustical Society of America,2007,121(3):1406-1412.
参考文献 21
SARAC B E,STEPHENS D S,EISENER J,et al.Cavitation bubble dynamics and sonochemiluminescence activity inside sonicated submerged flow tubes[J].Chemical Engineering and Processing-Process Intensification,2020,150:107872.
参考文献 22
LUTHER S,METTIN R,KOCH P,et al.Observation of acoustic cavitation bubbles at 2250 frames per second[J].Ultrasonics Sonochemistry,2001,8(3):159-162.
参考文献 23
LI Z,XU Z,ZHAO D,et al.Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface[J].Ultrasonics Sonochemistry,2021,71:105356.
参考文献 24
LONG J,ELICEIRI M H,OUYANG Y,et al.Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J].Optics and Lasers in Engineering,2021,137:106334.
参考文献 25
VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.
参考文献 26
SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.
参考文献 27
ZHONG X,ESHRAGHI J,VLACHOS P,et al.A model for a laser-induced cavitation bubble[J].International Journal of Multiphase Flow,2020,132:103433.
参考文献 28
ASKAR’ YAN G A,PROKHOROV A M,CHANTURIYA G F,et al.The effects of a laser beam in a liquid[J].Sov.Phys.JETP,1963,17(6):1463-1465.
参考文献 29
PODBEVŠEK D,LOKAR Ž,PODOBNIKAR J,et al.Experimental evaluation of methodologies for single transient cavitation bubble generation in liquids[J].Experiments in Fluids,2021,62(8):1-28.
参考文献 30
KLASEBOER E,KHOO B C.A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods[J].Engineering Analysis with Boundary Elements,2006,30(1):59-71.
参考文献 31
YANG Y,SHAN M,KAN X,et al.Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM[J].Ultrasonics sonochemistry,2020,62:104873.
参考文献 32
KOCH M,ROSSELLÓ J M,LECHNER C,et al.Realistic prediction and analysis of cavitation bubble dynamics via optical ray-tracing of the corresponding numerical simulations[J].Physics,2020:10171.
参考文献 33
VANHILLE C.Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field[J].Ultrasonics Sonochemistry,2020,63:104972.
参考文献 34
HUNTER K S,GEERS T L.Pressure and velocity fields produced by an underwater explosion[J].The Journal of the Acoustical Society of America,2004,115(4):1483-1496.
参考文献 35
PROSPERETTI A.A generalization of the Rayleigh– Plesset equation of bubble dynamics[J].The Physics of Fluids,1982,25(3):409-410.
参考文献 36
METTIN R,AKHATOV I,PARLITZ U,et al.Bjerknes forces between small cavitation bubbles in a strong acoustic field[J].Physical Review E,1997,56(3):2924.
参考文献 37
KOCH M,LECHNER C,REUTER F,et al.Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method,using OpenFOAM[J].Computers & Fluids,2016,126:71-90.
参考文献 38
KOUKOUVINIS P,GAVAISES M,SUPPONEN O,et al.Numerical simulation of a collapsing bubble subject to gravity[J].Physics of Fluids,2016,28(3):032110.
参考文献 39
DULAR M,POŽAR T,ZEVNIK J.High speed observation of damage created by a collapse of a single cavitation bubble[J].Wear,2019,418:13-23
参考文献 40
OUALHA K,AMAR M B,MICHAU A,et al.Observation of cavitation in exocentric T-mixer[J].Chemical Engineering Journal,2017,321:146-150.
参考文献 41
CHEW L W,KLASEBOER E,Ohl S W,et al.Interaction of two differently sized oscillating bubbles in a free field[J].Physical Review E,2011,84(6):066307.
参考文献 42
FONG S W,ADHIKARI D,KLASEBOER E,et al.Interactions of multiple spark-generated bubbles with phase differences[J].Experiments in Fluids,2009,46(4):705-724
参考文献 43
XU W L,LI J B,LUO J,et al.Effect of a single air bubble on the collapse direction and collapse noise of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,120:110218.
参考文献 44
LI J B,XU W L,ZHAI Y W,et al.Influence of multiple air bubbles on the collapse strength of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,123:110328.
参考文献 45
KLING C L,HAMMITT F G.A photographic study of spark-induced cavitation bubble collapse[J].Basic Eng,1972,94:825-833.
参考文献 46
ITO Y,OBA R.A limit in Separation-Bubble role on cavitation-inception[C]//ASME Cavitation and Polyphase Flow Forum.New Orleans,Louisiana,1982:9-11.
参考文献 47
OHL C D,LINDAU O,Lauterborn W.Luminescence from spherically and aspherically collapsing laser induced bubbles[J].Physical Review Letters,1998,80(2):393-396.
参考文献 48
周明明,康灿,刘海霞,等.ASTM G134 装置的射流空化模拟与空蚀机理分析[J].中国表面工程,2018,31(6):133-142.ZHOU Mingming,KANG Can,LIU Haixia,et al.Waterjet cavitation simulation and erosion mechanism analysis of astm g134 device[J].China Surface Engineering.2018,31(6):133-142.(in Chinese)
参考文献 49
KIYAMA A,SHIMAZAKI T,GORDILLO J M,et al.The direction of the microjet produced by the collapse of a cavitation bubble locatedin between a wall and a free surface[J].Physical Review Fluids,2021,6(8):083601.
参考文献 50
KOCH M,ROSSELLÓ J M,LECHNER C,et al.Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment[J].Experiments in Fluids,2021,62(3):1-19.
参考文献 51
LIU W.Bubble dynamics in a compressible viscous liquid[D].Brimingham:University of Birmingham,2018.
参考文献 52
XU M,JI C,ZOU J,et al.Particle removal by a single cavitation bubble[J].Science China Physics,Mechanics and Astronomy,2014,57(4):668-673.
参考文献 53
NAZARI-MAHROO H,PASANDIDEH K,NAVID H A,et al.Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble[J].Ultrasonics,2020,102:106034.
参考文献 54
LEBON G S B,TZANAKIS I,PERICLEOUS K,et al.Experimental and numerical investigation of acoustic pressures in different liquids[J].Ultrasonics Sonochemistry,2018,42:411-421.
参考文献 55
IDA M,NAOE T,FUTAKAWA M.Direct observation and theoretical study of cavitation bubbles in liquid mercury[J].Physical Review E,2007,75(4):046304.
参考文献 56
VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.
参考文献 57
TOMITA Y,ROBINSON P B,TONG R P,et al.Growth and collapse of cavitation bubbles near a curved rigid boundary[J].Journal of Fluid Mechanics,2002,466:259-283.
参考文献 58
ZHANG Y,QIU X,ZHANG X,et al.Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall[J].Ultrasonics Sonochemistry,2020,67:105157.
参考文献 59
SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.
参考文献 60
CUI P,ZHANG A M,WANG S,et al.Ice breaking by a collapsing bubble[J].Journal of Fluid Mechanics,2018,841:287-309.
参考文献 61
BRUJAN E A,NAHEN K,SCHMIDT P,et al.Dynamics of laser-induced cavitation bubbles near elastic boundaries:influence of the elastic modulus[J].Journal of Fluid Mechanics,2001,433:283-314.
参考文献 62
TOMITA Y,KODAMA T.Interaction of laser-induced cavitation bubbles with composite surfaces[J].Journal of Applied Physics,2003,94(5):2809-2816.
参考文献 63
GREGORČIČ P,PETKOVŠEK R,MOŽINA J.Investigation of a cavitation bubble between a rigid boundary and a free surface[J].Journal of Applied Physics,2007,102(9):094904.
参考文献 64
TOMITA Y,SHIMA A.Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J].Journal of Fluid Mechanics,1986,169:535-564.
参考文献 65
PHILIPP A,LAUTERBORN W.Cavitation erosion by single laser-produced bubbles[J].Journal of Fluid Mechanics,1998,361:75-116.
参考文献 66
李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)
参考文献 67
赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)
参考文献 68
PUTIGNANO C,PARENTE G,PROFITO F J,et al.Laser microtextured surfaces for friction reduction:does the pattern matter?[J].Materials,2020,13:4915.
参考文献 69
BERTOCCHI L,DINI D,GIACOPINI M,et al.Fluid film lubrication in the presence of cavitation:a mass-conserving two-dimensional formulation for compressible,piezoviscous and non-Newtonian fluids[J].Tribology International,2013,67:61-71.
参考文献 70
GONZALEZ-AVILA S R,NGUYEN D M,ARUNACHALAM S,et al.Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces(GEMS)[J/OL].Science Advances,2020,6(13):eaax6192 [2020-03-27].https://doi.org/10.1126/sciadv.aax6192.
参考文献 71
SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:an experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.
参考文献 72
MENG F M,WANG W Z,HU Y Z,et al.Numerical analysis of combined influences of inter-asperity cavitation and elastic deformation on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2007,221(7):815-827.
参考文献 73
MENG F M,CEN S Q,HU Y Z,et al.On elastic deformation,inter-asperity cavitation and lubricant thermal effects on flow factors[J].Tribology international,2009,42(2):260-274.
参考文献 74
MENG F M,QIN D T,CHEN H B,et al.Study on combined influence of inter-asperity cavitation and elastic deformation of non-Gaussian surfaces on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(6):1039-1048.
参考文献 75
孟凡明,王战江.微造型表面上气穴发生机理初步研究[J].摩擦学学报,2011,31(2):137-143.MENG F M,WANG Zhanjiang.Preliminary study on mechanism for occurrence of cavitation on a textured surface[J].Tribology,2011,31(2):137-143.(in Chinese)
参考文献 76
HARP S R,SALANT R F.An average flow model of rough surface lubrication with inter-asperity cavitation[J].J.Trib.,2001,123(1):134-143.
参考文献 77
QIU Y,KHONSARI M.On the prediction of cavitation in dimples using a mass-conservative algorithm[J].Journal of Tribology,2009,131(4):54-65.
参考文献 78
DOBRICA M B,FILLON M,PASCOVICI M D,et al.Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2010,224(8):737-750.
参考文献 79
张瑜,陈国定,王琳,等.空化与惯性效应耦合作用下的非对称表面微织构滑块承载力分析[J].西北工业大学学报,2017,35(6):1026-1032.ZHANG Yu,CHEN Guoding,WANG Lin,et al.Analysis of bearing capacity of asymmetrical surface micro-textured slider under the coupling effect of cavitation and inertia[J].Journal of Northwestern Polytechnical University,2017,35(6):1026-1032.(in Chinese)
参考文献 80
王丽丽,郭少辉,尹国校,等.计入空化效应的表面微织构滑动轴承特性分析[J].润滑与密封,2018,43(5):65-69.WANG Lili,GUO Shaohui,YIN Guoxiao,et al.Research on micro-textured journal bearing characteristics considering the effect of cavitation[J].Lubrication Engineering,2018,43(5):65-69.(in Chinese)
参考文献 81
方勋.考虑空化效应的表面微织构摩擦副润滑性能研究[D].大连:大连海事大学,2020.FANG Xun.Effect of micro-texture on lubrication performance of friction pair considering cavitation phenomenon[D].Dalian:Dalian Maritime University,2020.(in Chinese)
参考文献 82
程香平,康林萍,张友亮,等.菱形孔织构端面的润滑性能研究[J].江西科学,2016,34(6):829-833.CHEN Xiangping,KANG Linping,ZHANG Youliang,et al.Study on lubrication performance of end faces with diamond macro-pores[J].Jiangxi Science,2016,34(6):829-833.(in Chinese)
参考文献 83
QIU Y,KHONSARI M.Experimental investigation of tribological performance of laser textured stainless steel rings[J].Tribology International,2011,44(5):635-644.
参考文献 84
YAN X L,YAN Z J,LIU D N,et al.Simulation study and experimental verification of surface texture induced cavitation effect[C]//IOP Conference Series:Materials Science and Engineering,Wuhan,Hubei,2019-10-26,2019,504(1).
参考文献 85
WANG J,YAN Z,FANG X,et al.Observation and experimental investigation on cavitation effect of friction pair surface texture[J].Lubrication Science,2020,32(8):404-414.
参考文献 86
KORKUT E,ATLAR M.An experimental investigation of the effect of foul release coating application on performance,noise and cavitation characteristics of marine propellers[J].Ocean Engineering,2012,41:1-12.
参考文献 87
何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)
参考文献 88
HU H X,JIANG S L,TAO Y S,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.
参考文献 89
PARK I C,KIM S J.Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method[J].Applied Surface Science,2019,477:37-43.
参考文献 90
YUPING W,PINGHUA L,CHENGLIN C,et al.Cavitation erosion characteristics of a Fe–Cr–Si–B–Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.
参考文献 91
KRELLA A K,CZYŻNIEWSKI A,GILEWICZ A,et al.Cavitation erosion of CrN/CrCN multilayer coating[J].Wear,2017,386:80-89.
参考文献 92
KRELLA A,CZYŻNIEWSKI A.Cavitation erosion resistance of Cr–N coating deposited on stainless steel[J].Wear,2006,260(11-12):1324-1332.
参考文献 93
CHENG F,JIANG S.Cavitation erosion resistance of diamond-like carbon coating on stainless steel[J].Applied Surface Science,2014,292:16-26.
参考文献 94
CHENG F,JIANG S,LIANG J.Cavitation erosion resistance of microarc oxidation coating on aluminium alloy[J].Applied Surface Science,2013,280:287-296.
参考文献 95
KRELLA A,CZYZNIEWSKI A.Influence of the substrate hardness on the cavitation erosion resistance of TiN coating[J].Wear,2007,263(1-6):395-401.
参考文献 96
CHAHINE G L,GNANASKANDAN A,MANSOURI A,et al.Interaction of a cavitation bubble with a polymeric coating-scaling fluid and material dynamics[J].International Journal of Multiphase Flow,2019,112:155-169.
参考文献 97
ZHANG Y,QIAN Z,JI B,et al.A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J].Renewable and Sustainable Energy Reviews,2016,56:303-318.
参考文献 98
ZHANG Y,CHEN F,ZHANG Y,et al.Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle[J].Experimental Thermal and Fluid Science,2018,98:645-661.
参考文献 99
ZHANG L,BELOVA V,WANG H,et al.Controlled cavitation at nano/microparticle surfaces[J].Chemistry of Materials,2014,26(7):2244-2248.
参考文献 100
WU S,ZUO Z,STONE H A,et al.Motion of a free-settling spherical particle driven by a laser-induced bubble[J].Physical Review Letters,2017,119(8):084501.
参考文献 101
LÜ L,ZHANG Y,ZHANG Y.Experimental investigations of the particle motions induced by a laser-generated cavitation bubble[J].Ultrasonics Sonochemistry,2019,56:63-76.
参考文献 102
BORKENT B M,ARORA M,OHL C D,et al.The acceleration of solid particles subjected to cavitation nucleation[J].Journal of Fluid Mechanics,2008,610:157-182.
参考文献 103
ZEVNIK J,DULAR M.Cavitation bubble interaction with a rigid spherical particle on a microscale[J].Ultrasonics Sonochemistry,2020,69:105252.
参考文献 104
ZHANG Y,XIE X,ZHANG Y,et al.Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall[J].Experimental Thermal and Fluid Science,2019,105:289-306.
参考文献 105
ZHANG Y,XIE X,ZHANG Y.High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall[J].Journal of Hydrodynamics,2018,30(6):1012-1021.
参考文献 106
ZHOU Z A,XU Z,Finch J A,et al.Role of hydrodynamic cavitation in fine particle flotation[J].International Journal of Mineral Processing,1997,51(1-4):139-149.
参考文献 107
LI S,ZHANG A M,WANG S,et al.Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow[J].Physics of Fluids,2018,30(8):082111.
参考文献 108
仇友昌.基于分类器的液体内微小异物检测技术[D].成都:电子科技大学,2018.CHOU Youchang.The detection technology of small foreign substance in liquid based on classifier[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese)
参考文献 109
赵谦,李蓉蓉,钱渠,等.基于ARM的坩埚气泡动态智能检测系统[J].仪表技术与传感器,2021(4):97-101.ZHAO Qian,LI Rongrong,QIAN Qu,et al.Dynamic intelligent detection system for crucible bubbles based on ARM[J].Instrument Technique and Sensor,2021(4):97-101.(in Chinese)
目录contents

    摘要

    随着对空化现象的不断探索,已经有较多研究结果表明空化作用对摩擦副的减摩抗磨性能有促进作用,但由于空化现象的复杂性及难以直接观测,目前对其机理尚未取得共性结论,仍须进行深入研究。通过概述近年来对空化现象所做的相关研究,归纳气泡在溃灭过程中对壁面的空蚀损伤机理等,引出三种适用于基体表面的热门减摩方法,包括表面微织构、表面涂层和添加颗粒物。重点综述三种方法在不同结构、材料、形状、尺寸、分布方式等下对空化气泡行为轨迹的影响,以及在与其他效应相耦合下空化效应所起到的减摩效果,对相关研究进行整体归纳,并指出其中存在的问题和不足。最后提出搭建一个自动化试验装置,用于观测模拟水利机械装置工作过程中液体介质接触表面所产生的空化气泡溃灭的过程,填补该过程中气泡行为轨迹观测的欠缺,为表面空化减摩的研究奠定基础。

    Abstract

    Surface damage caused by the cavitation phenomenon is the predominant cause of wear and aging of mechanical equipment. Cavitation damage caused by this phenomenon was identified as early as the 19th century, however, limited by the scientific and technological level of that time, cavitation theory was not systematically considered until the early 20th century, and a single bubble dynamic model was established. Cavitation phenomenon research has also made significant progress owing to the development of high-speed cameras and computer technology. For example, high-speed cameras are used to track and observe bubble behavior trajectory in the cavitation process, and computers are used to simulate the numerical model. Both complement and promote each other, which plays a pivotal role in studying the cavitation phenomenon. With continuous exploration of this topic in recent years, although the cavitation phenomenon and direct observation of bubble behavioral trajectories is complex, research results have increasingly demonstrated that cavitation bubbles reduce friction and produce lubrication under certain conditions. Thus far the lubrication effect mechanism produced by the cavitation effect has not reached general conclusions, therefore, further in-depth research is required. Related research on the cavitation phenomenon was systematically summarized in this study, which includes observation of the entire process from cavitation bubble generation to bubble breakup and interaction. The causes and impact of microfluidic formation is elaborate, the influence of the different liquid mediums are explored. Simultaneously, the bubble breaking process at the wall of different shapes alongside the cavitation erosion damage mechanism is summarized. Based on the summary of bubble behavior trajectory research, the special lubrication effects produced by several traditional friction reduction methods applied to the matrix surface under the coupling effect of the cavitation effect are introduced. This includes the surface micro-texture, surface coating, adding particles, the effects of three methods on the behavior trajectories of cavitation bubbles under different structures, materials, shapes, sizes, and distribution modes, and the friction-reducing effects of the cavitation effects coupled with other effects are predominantly reviewed. First, considering the surface microtexture, the researchers through the method of bionic and creative design designed much different structure shapes and sizes of texture structure of anti-friction lubrication research. Related research results demonstrated that the cavitation bubble in some special cases produces the lubricating effect, this phenomenon is known as the dynamic pressure effect. It guides subsequent research on the friction-reducing lubrication effect of new micro-textures, including behavior trajectory of cavitation bubbles near the micro-textures, and mechanism research on the friction-reducing lubrication effect. Second, an overview is presented of early stage surface coatings, and those predominantly focused on the corrosion resistance of materials used, by constantly updating coating preparation technology and combining it with surface texture research, the resistance and impact of cavitation damage by different materials and coating structures was studied. Last, an overview is presented on adding particulate matter, as this has a significant impact on the cavitation phenomenon under certain conditions, and also interacts with the behavior trajectory of cavitation bubbles. Relevant studies are summarized and current challenges elucidated. Finally, a discussion is presented on how to build a highly automated bubble simulation experiment device. This device could be used to observe the simulated working process of water conservancy machinery on a liquid medium contact surface produced by the cavitation bubble breaking process. Subsequently, based on experimental results of three types of anti-friction, to help fill the gap in bubble behavior trajectory observation, the foundation may be laid for the study of surface cavitation friction reduction.

  • 0 前言

  • 自 19 世纪开始,人们在船舶螺旋桨叶片上发现了一些奇怪的损伤坑,随后又在某些水利机械装置中发现了类似的情况。随着研究的深入和科学技术的提高,研究人员发现相关损伤是由空化现象所引起的空蚀损伤。虽然其危害性一直受到科研人员的高度重视,但空化现象是一个汇集了光学、流体力学、材料学、热力学、摩擦学、化学等众多学科知识的问题,从单一角度出发很难追寻到其内在的规律,这也使得对相关现象的试验研究难以展开,对其形成机理、破坏机制仍存在着较多的疑惑。

  • 对于水力机械而言,根据 FRANC 等[1]对空化产生机理的分析,在工作时会引起液体介质的温度升高,从而导致气体溶解度下降,使得气体溢出,或者当液体介质流速加快时,基体表面与流体介质的接触面上的压力会减小(Bernoulli effect),也会使得气体溶解度下降气体溢出,溢出的气泡随着液体介质的流动不断累积变大,最终当液体温度下降或流速降低时,在气泡的表面产生压力差导致气泡溃灭,从而产生空化现象。由于空化现象涉及范围比较广,许多研究者在不同场景中对其进行了相关的研究分析,随着研究的深入,研究者发现空化现象在一些特殊的耦合作用下能起到一定的润滑效果,相关研究包括表面微织构和表面涂层的结构形态,以及添加颗粒物与空化气泡之间的相互作用所产生的减摩效果,但是相关机械装置特殊的密闭性以及复杂的内部环境,使得相关研究一直处于仿真模拟阶段,直接试验观测研究较为稀少。通过以上分析,搭建一个仿真试验观测平台对空化效应的润滑效果和润滑机理进行研究是十分必要的。

  • 1 空化现象研究进展

  • 1.1 早期研究

  • 船舶螺旋桨和水利机械装置等使用一段时间后会出现一定程度的性能下降甚至损坏,并且发现其表面有很多肉眼可见的凹坑或者裂缝,19 世纪末, PARSONS 在观测到螺旋桨的磨损后首次提出了空化的概念。到 1917 年时 RAYLEIGH[2]建立了单气泡动力学模型,系统地提出了空化理论,PLESSET[3] 又在其基础上对液体的可压缩性加以完善,考虑了液体性质和蒸汽含量的影响修改了气泡方程。之后 NOLTINGK 等[4]又将液体的表面张力和黏度的影响引入方程,进一步将方程完善,从而得到著名的 Rayleigh-Plesset 方程,由此形成了空化气泡动力学基础。

  • 1.2 近代研究

  • 由于空化试验的研究成本巨大,各种数值模拟技术成为研究空化气泡动力学的主要方法。近代以来,随着相关科学理论的不断完善和观测技术的不断优化提升,研究者们开始利用高速摄像机来观测研究气泡的形成到坍塌的全过程,将观测试验与数值模拟进行结合,观测试验为数值模拟提供事实依据,数值模拟又能对观测中所忽略的因素进行补充分析。对空化气泡溃灭过程的观测后人们发现了微射流的存在,通过进一步的研究后发现,气泡溃灭时本身对于边界的损伤是很小的,而在坍缩过程中由压力差所造成的射流带有很高的初速度,当其向边界冲击时,会使边界表面产生脆性断裂,随着机械装置使用年限的增加,不仅其表面受到空蚀损伤出现大大小小的凹坑,久而久之,还会使得表面出现裂痕等,在某些场景中,基体表面受到微射流冲击发生脆性断裂后脱落的杂质颗粒又掉入液体介质中产生更加复杂的空化磨损现象,加重基体表面的磨损,从而使机械装置性能下降,能量利用率降低。尽管研究者们已经对微射流进行了深入的分析,但是由于其容易受到周围环境的影响,例如液体的黏度、周围其他气泡以及微小颗粒的干扰等,使得相关研究结论难以取得普遍性,国内一些研究者[5-6] 也对空化初生和空蚀破坏的机理及其产生条件和影响因素进行了总结。随着不断对空化现象进行深入的研究后,研究者们发现空化现象也并非百害而无一利,如在医学方面对癌症的治疗[7-9]、化学应用[10-12]、超声清洗[13-14]、空化杀菌[15]等等。

  • 近年来在减摩润滑的研究中对空化现象也进行了很多正向的利用,结合特殊的表面结构和添加颗粒物在相关作用力的耦合下发现了空化气泡的溃灭过程中所起到的润滑作用,例如 CHECO 等[16]通过对其设计的轴承表面微纹理在结构单元处形成的空化气泡利用 Elrod-Adams 模型进行了数值分析,发现了纹理单元空化气泡的出现阻止了局部负压峰值的出现起到了至关重要的作用,而负压峰值会抵消表面纹理凹坑处产生的正升力,通过这种方式产生的额外升力增加间隙减少摩擦,不仅与其他作者提出的机理一致,而且进一步证实了特殊的表面纹理及织构在结合空化气泡达到减摩效果的积极作用。 BIANCOFIORE 等[17]建立了一个数值模型对表面纹理和滑移效应或者两者耦合的作用下空化现象所产生的润滑效果进行预测,结果表明在轴承特定区域制造特殊的表面纹理不仅能对轴承性能产生显著影响,降低摩擦系数减少滑动区域,而且相关测试表面纹理通过传统工艺也能实现加工,对基体表面构建表面纹理和表面织构的系列数值研究不仅为空化效应的减摩润滑提供了理论支持,而且为具体的试验观测提供了参考。在流体介质中添加颗粒物不仅能改善流体的性质还能增加其润滑性能,目前一些研究已经发现由于添加颗粒物的尺寸微小,与空化现象所产生的气泡能产生多种有利的相互作用,例如 KIU 等[18]搭建了一套由流体动力空化单元、声空化单元、隔膜泵、压力表和搅拌器组成的试验装置,用于研究如何长时间维持添加颗粒物在润滑剂中分散的稳定性并提升润滑性能,通过添加纳米颗粒物调节润滑剂的黏度,利用空化气泡在溃灭过程中微射流所产生的巨大冲击力击碎颗粒物实现颗粒物更小的尺寸,而气泡溃灭过程中释放的能量又能增强均质化并提高悬浮稳定性。

  • 2 空化气泡相关研究进展

  • 2.1 空化研究中常用的气泡生成方法

  • 由于自然中发生的空化现象较为复杂,难以对其进行直接的研究分析,通过不断的试验研究后根据研究背景的不同,相关研究者们提出了多种实用的模拟空化气泡生成的方法并不断进行改进,推动了各学科对空化现象的研究进展。常见的几种生成气泡的方式有电火花放电[19]、声波脉冲[20-23]以及激光脉冲[24-27],其中使用激光脉冲产生空化气泡的方式出现的时间比较晚,由 ASKAR'YAN 等[28]于 1963 年首次提到。利用电火花放电生成气泡,其生成设备简单、成本低廉且能精准控制气泡生成的核点,但是无法控制生成气泡的尺寸,电极直径要足够小,生成的气泡最大直径应该要比电极直径大 20 倍以上才不会对研究产生干扰,电极一般选用铜丝,因为铜丝导电性导热性强熔点高且经济实惠。利用声波产生气泡一般是用于材料化学和生物医学研究方面,其能在不产生干扰流动的情况下生成气泡,但是气泡生成核点的控制能力较差。利用激光脉冲生成气泡的研究用途也十分广泛,并且可以精准的控制气泡生成核点对系统本身没有干扰,但是设备成本相对较高。

  • PODBEVŠEK 等[29]改进了管阻法(Tube arrest method)并给出改进后的装置图(图1)。与传统配置相比该装置得到一些优化改良:首先,使用压缩空气来驱动管道而不是弹簧驱动,这项改进使得冲击速度可控,不会像弹簧驱动那样有明显的反弹,并且成本没有过多增加;此外,行程长度也可以调整,可以通过驱动压力或者行程距离来检测管道在撞击前的速度,由于成核点是气泡动力学的一个关键特征,文中还讨论了成核点。在装置中,在管的底部安装了一个较短的成核棒,使液体和壁面速度相等,虽然这样做会有些妨碍观测,但在顶部悬浮形核棒有助于气泡形状的形成。液体容器采用亚克力玻璃,为液体容器提供了刚度、透明度和冲击强度之间的最佳平衡。

  • 图1 管阻法试验装置[29]

  • Fig.1 Tube arrest experimental setup[29]

  • 电火花放电和激光脉冲法由于能对气泡核点生成位置能进行精确的控制,多用于单个气泡的模拟,对试验场景中气泡的行为轨迹进行观测和分析研究,声波脉冲多用于空化气泡群和空化云的研究分析。管阻法与发动机活塞等冲击机械的工作原理有相似之处,未来发动机气缸壁与活塞表面的空化研究可借鉴该装置进行相应改造用于观测发生在相关表面处的空化过程。试验中可根据具体研究中气泡形成的方式对模拟气泡生成的方法进行选择运用。

  • 2.2 空化气泡行为轨迹的研究与观测

  • 数值模拟是研究空化现象的一种常用方法,早期通过数值模拟进行的相关研究尽管取得了一定的进展,但是忽略了一些影响因素,导致最终模拟结果与实际结果之间产生了较大的偏差,要研究空化现象就必须对空化气泡进行细致的分析,而直接的试验观测是研究者深入了解该现象的最佳途径。随着近代科技的发展,高速摄影技术趋于成熟,从 19 世纪 70 年代开始,国外已经就有学者利用高速摄像机对空化气泡初生到溃灭的行为轨迹过程进行记录,从而使得模拟试验结果能够与真实试验结果进行比对,进一步将数值模型中忽略的因素加以完善。现在数值模拟与试验相结合已经成为很多研究者在不同场景中对空化现象进行研究的主要手段。

  • KLASEBOER等[30]基于Rayleigh-Plesset方程通过考虑重力、表面张力等因素,将 Rayleigh-Plesset 方程拓展更加适配于真实气泡(非球对称气泡),为后续研究提供了验证气泡动力学数值方案准确性的框架。 YANG 等[31] 进一步在 Rayleigh-Plesset 方程基础上推导,采用赝势和 MRT-LBM 对空化气泡坍塌过程中的热力学效应进行了研究,模拟结果满足气泡坍缩的最高温度方程,并且发现气泡尺寸与溃灭过程释放的能量息息相关,同时还对气泡在固体壁面附近溃灭的热力学特征进行了研究,对后续的研究工作指出了一些具有价值的研究因素和方向。由于气-液交界面处产生的折射或全反射现象会对试验中观测空化气泡的图像产生很大的影响,KOCH 等[32]在基于单个气泡的试验与数值两相流模拟过程中加入光线追踪,将数值结果可视化的与试验图像进行特殊的混合,通过分析光线路径将数值模拟插入光线追踪引擎来优化试验观测,观测结果更加清晰,不仅能精确推断出气泡的大小,还能对溃灭过程射流速度进行修正,研究在试验与仿真中取得了良好的一致性和互通性,为后续对气泡溃灭轨迹的研究提供了有效的指导。VANHILLE [33]基于超声空化,利用非线性声压场评估 Bjerknes 力场(当流体中物体同相振荡时彼此吸引,而当其反向振荡时相互排斥的作用力称为 Bjerknes 力)并预测气泡的后续运动,数值模型给出的结果在某些稳定的空化框架下与实际观测到的数据具有一致性。许多研究通过数值模拟与试验相结合的方法对气泡的行为轨迹进行了详细的分析[34-38],在模拟中采用边界积分法(Boundary Integral Method)、任意拉格朗日-欧拉法(Arbitrary Lagrangian-Eulerian Method)、边界元法(Boundary Element Method)等对 Rayleigh-Plesset 方程进行了推广和完善,利用相关方法改进模型对不同环境下的气泡动力学模拟表现出了良好的准确性和鲁棒性。由于模型和数学理论不断完善,目前空化研究中数值模拟已经成为完善和验证试验结论不可或缺的部分。

  • 为了弄清楚气泡的行为轨迹,许多研究者对单个气泡的生成到溃灭进行观测[39-40],对其全过程进行了研究。但是在现实中气泡溃灭过程要复杂的多,气泡并非单一存在,不仅需要考虑气泡与气泡之间尺寸、距离、不同排列位置的相互影响,还需要考虑两个气泡之间的合并、相互指向或远离的微射流以及弹射器效应等众多影响[41-44]。通过与试验测得的气泡半径进行拟合,找到了模型中一些未知的物理参数,这些研究从不同的方向对空化气泡进行了试验观测,对气泡的溃灭过程进行了深入的研究分析。图2 中分别展示了三种不同生成方式下的气泡轨迹观测图(图2a 为电火花放电,2b 声波脉冲,2c 激光脉冲),以及气泡之间相互作用影响的行为轨迹观测(图2d~2f)。

  • 图2 气泡行为轨迹的观测

  • Fig.2 photographic study of cavitation bubble: (a) Spark-induced bubble collapse process[19]; (b) Ultrasonic bubble collapse process [23]; (c) Laser-induced bubble collapse process [39]; (d-f) Interaction between bubbles[44].

  • KLING 等[45]等利用高速摄像机对Venturi管中空泡溃灭过程进行观测,从该过程中发现气泡的溃灭会引起微射流,ITO 等[46]利用高速摄像机观测 Venturi管中空泡的初生及溃灭等现象,并且间断性地观测到了气泡溃灭过程中有微射流的产生。OHL 等[47]采用 2080 万帧每秒的高速摄影技术研究近壁面空泡的空化空蚀现象,发现空泡溃灭时距离壁面较远一侧空泡面收缩速度较快,从而向内坍塌,形成微射流损伤壁面。周明明等[48]利用 ASTM G134 射流空蚀试验台与 CFD 模型对空蚀腔内空化区域和试样表面的空蚀形貌进行分析,指出空化与速度之间的关系,最后结果发现试样受损后使得接触距离增加,并且表面间产生的液膜对空化气泡的轨迹有着缓冲的作用。KIYAMA 等[49]提出一个基于图像法的简化理论模型,该模型预测了在自由界面和刚性壁之间产生的空化气泡内爆后产生的微射流的方向,理论预测已经通过一项试验研究得到验证,并且微射流冲击固体边界是空化诱导损伤的主要来源之一。KOCH 等[50]将数值结果的可视化与试验图像的可视化进行特殊的混合,可以大大提高可比性。然后可以直接将试验照片与模拟图像进行比较。反之,通过对插入的两相物体进行数值模拟,在虚拟设置中分析光线路径,可以优化试验观测结果。通过光线追踪,在数字化版本的试验装置中照亮有限体积模拟的数值气泡,可以直接将其与试验进行比较,最终得到的结果非常一致(图3)。

  • 图3 数值模拟气泡与试验气泡的比较[50]

  • Fig.3 Comparison of numerical modeling and experiment of cavitation bubble[50]

  • 通过研究者们对不同液体介质中所发生的空化现象进行研究观测后发现,不同的液体性质,包括液体粘性[51]、表面张力[52]、液体密度[53]以及不同液体之间空化气泡运动方式[54],对气泡的溃灭过程及微射流的形成和冲击有着巨大的影响。液体的透明度也是一个非常关键的问题,常规研究下为了方便观测,研究人员会选择透明液体来作为试验材料。然而很多情况下要研究的液体并非透明便于观测,IDA 等[55]通过透明玻璃墙,利用高速摄像机对液汞在机械冲击作用下产生的空化气泡进行了直接观测,试验中考虑了气泡与气泡、气泡与壁面之间的作用关系,并对试验结果进行了理论研究,尽管研究者也表明试验中仍有不足之处,但是为这种难以直接观测的液体的空化现象的研究做出了指导。

  • 对于水利机械装置而言,在工作过程中始终伴随着温度和压力的变化,这便为气泡的生成和溃灭提供了必要条件。气泡在溃灭时由表面坍塌速度不一致从而产生压力差进而形成微射流,由于微射流在初生时带有巨大的初速度,所以当其朝边界表面冲击时表面便会发生脆性断裂,久而久之便在边界表面形成空蚀坑,研究空化气泡对于边界的损伤也是十分必要的。有很多有关空化气泡对边界表面的研究,包括边界面形状、材料和大小对气泡溃灭的影响。

  • 对较为常见的刚性平面,VOGEL 等[56]等在固体边界附近通过使用激光脉冲来生成空化气泡,研究了气泡的动力学特征及其与边界之间的距离关系,研究结果展示了微射流与反射流在固体边界附近气泡动力学的一般特征,并与之前所提出的数值计算结果吻合。TOMITA 等[57]详细研究了弯曲刚性边界附近空化气泡的行为轨迹,从理论上运用两种方法来获得空化气泡在弯曲边界附近的运动规律:一种是利用图像理论来探索参数 ξ (当同等大小的气泡位于刚性边界附近时,气泡的运动受到边界表面曲率的显著影响,其特征是参数 ξ,当 ξ<1 时,出现凸壁,当 ξ>1 时出现凹壁,当 ξ=1 时出现平壁)对气泡质心的影响;另一种是利用边界积分方法来获得气泡形状随时间推移的详细特征,包括液体微射流的形成。ZHANG 等[58]和 SENEGAČNIK 等[59]利用高速摄影系统对激光诱导的空泡在刚性尖锐壁面附近(90°)的坍塌轨迹进行了试验观测研究(图4),发现当气泡靠近边缘时,气泡界面靠近边缘的运动将受到限制,气泡中部形成清晰的颈部,当气泡距边缘中等距离时,气泡界面不同方向的膨胀或收缩差异会减小,在坍塌过程中形成橄榄状气泡,当气泡远离边缘时,气泡呈近似球形。还有其他很多边界的研究,例如冰面[60]、弹性表面[61]、复合表面[62]、自由表面[63]等。TOMITA 等[64]对静态流体中单个气泡破裂产生脉冲压力的机理进行了详细试验研究,试验中使用了利于观测损伤的软材料铟试样作为固体边界,通过改变气泡生成核点位置到铟试样表面距离观测试样表面损伤情况,如图5 所示。研究结果表明气泡溃灭的模式取决于与边界的接近程度,局部高压可能是由于微小气泡具有足够大振幅和急剧上升的压力波之间相互作用的结果,损伤坑是由附着的气泡与冲击波相互作用造成的,当附着的气泡受到来自与气泡对称轴不同方向的冲击波的冲击时,由于倾斜液体射流的冲击,随后的损伤坑表现出显著的特征。 PHILIPP 等[65]利用激光脉冲生成单个气泡对铝试样边界进行损伤分析,详细解释了气泡溃灭过程中各种能量形式对边界的损伤过程,还使用三种材料,黄铜以及两种钢材(Mild steel、Ferrite austenic duplex steel)进行了抗侵蚀试验。相关研究对气泡溃灭过程中气泡的行为轨迹以及所受的环境影响、气泡之间的相互影响,气泡与边界之间的相互作用、微射流与边界之间的相互作用等进行了细致研究,充分展示了气泡的行为轨迹,为后续的研究奠定了基础。

  • 图4 气泡在 90°尖锐表面处的行为轨迹[59]

  • Fig.4 Observation of behavior trajectory of cavitation bubbles on 90° sharp surface [59]

  • 图5 铟试样在显微镜下的损伤坑[64]

  • Fig.5 Damage patterns produced on indium specimens and microscopic observations of damage pits[64]

  • 3 材料表面改性减摩性能研究中的空化作用

  • 3.1 表面织构与涂层在减摩效果中的空化作用

  • 通过对气泡溃灭过程的观测,研究者们发现固体边界的材料对气泡的行为轨迹并无较大影响,微织构作为一种改善表面摩擦性能的研究方向,近些年来也吸引了众多研究者的目光,国内也有学者对微织构进行了总结和研究[66-67]。PUTIGNANO 等[68] 在润滑条件下测试了几种微织构(轴对称和定向织构)的摩擦性能。BERTOCCHI 等[69]利用其他研究者提出雷诺方程的质量守恒公式,成功应用于解决纹理轴承在一维不可压缩流体发生空化现象的问题研究,并已扩展到包括流体可压缩性的影响等方面,也被应用于二维问题的分析,还研究了几种不同结构的空化区演变和接触压力分布,可作为相关研究的基准。GONZALEZ-AVILA 等[70] 通过研究如何在无涂层的情况下使固液界面能够捕获空气形成气膜来降低表面的空蚀损伤,结合仿生学从两种昆虫体毛的特殊结构中获得了启发(图6),在二氧化硅的表面构建蘑菇状结构(图7)进行试验研究,在一些情况下可以改变气泡的行为轨迹,从而减少空化气泡带来的损伤。SCARAGGI 等[71]介绍了两种不同几何形状的润滑激光表面织构(LST)微结构摩擦因数的测量方法,一个由正方形的微孔晶格构成,另一个由一系列微槽构成。研究发现,当织构由正方形微孔晶格组成时,在整个润滑状态范围内摩擦值显著降低,当织构由微槽组成时,表现出完全不同的行为,油很容易沿着平行微管道流动,导致接触表面之间的空隙减小,于是摩擦因数激增。表面微织构技术对改性表面的润滑性能有明显的提高,目前对于表面微织构的摩擦行为和减摩机制等已经有很多相关研究,然而微织构凹坑在液体介质中的惯性效应和表面产生的空化效应的影响较为复杂,所以仍然存在深入性和系统性不够的问题,围绕相关因素展开试验研究是近年研究热点。

  • 图6 两种代表性昆虫的角质层和细毛电子显微扫描照片[70]

  • Fig.6 Representative scanning electron micrographs of cuticles and fine hairs on the mesothorax of two kinds of insect [70]

  • 图7 蘑菇状仿生结构电子显微镜照片[70]

  • Fig.7 Scanning electron micrographs of silica-GEMS[70]

  • 随着相关研究的深入,孟凡明等[72-75](微造型表面上气穴发生机理初步研究)在 HARP 等[76]的研究基础上考虑了表面间因彼此接触和油膜动压作用而引起的弹性变形,微织构造型幅值、位置等因素对空化发生的影响,研究表明在考虑表面微织构对摩擦副润滑性能的影响时,应该考虑空化现象的作用。QIU 等[77]通过高速摄像机在试验中观察到制有特殊表面织构的推力轴承润滑油中存在的空化现象,使用几种空化模型进行数值模拟计算后的结果均反映出空化效应具有降低承载能力的现象。 DOBRICA 等[78]对微织构滑块轴承的润滑性能进行了相关数值计算研究,通过油膜厚度和压力分布的数值计算结果证实了空化效应对轴承承载能力确实具有抑制作用。张瑜等[79]结合了润滑油的空化效应与惯性效应等效应的耦合作用,对非对称表面微织构滑块轴承的承载能力开展了数值分析,详细研究了表面微织构几何特征对滑块承载能力、空化效应以及惯性效应的影响。通过进行有无考虑空化效应与惯性效应耦合的对比试验分析得到,空化效应与惯性效应的耦合作用对滑块承载能力有着较为明显的影响。空化效应和惯性效应对滑块承载力产生相反的作用,惯性效应能够提高滑块承载力,空化效应降低了滑块承载力,但相较于二者均不考虑的情况,二者的耦合作用提高了滑块的承载力。王丽丽等[80]研究表明考虑空化现象下,一些特殊位置和形状结构的表面织构在抑制空化区域产生和减弱空化效应上有一定积极的作用。方勋[81]在研究对表面微织构摩擦副润滑性能中指出,空化效应对于织构化而言是一种特殊的表面承载机制,能显著的改善摩擦副表面的润滑性能,微织构的分布位置、转速、宽度、深度和织构间距等对润滑性能有着极大的影响。程香平等[82]利用自制磨损测试试验台对菱形织构进行研究指出,当速度达到一定程度时,由于温度升高液体介质开始蒸发,或者由于低压液体介质中溶解的气体开始释放随即产生空化现象,空化区中压力降低摩擦因数逐渐达到最高点,随着速度不断增大,空化区域也会持续增大,基体表面带有织构的凹坑将气体捕获并为其提供无剪切边界条件,因此在气液交界处所产生的界面滑移长度会增加,滑移效应也会增强进而提高减摩性。QIU 等[83]使用 LRI-1a 通用摩擦器进行可视化试验后也得出结论空化行为与速度有关。YAN 等[84]研究指出,表面微织构可以有效改善摩擦副的润滑状态,诱导的油膜空化效应对油膜轴承有积极影响,转速越大改善越好。WANG 等[85]试验研究了表面织构引起的空化效应对摩擦副润滑性能的影响,利用可视化试验装置收集空化图,如图8 所示,分析不同织构形态、尺寸参数和分布模式在空化效应下所产生的润滑效果,结果指出润滑效果在一定范围内随着速度增加而增加,并且受到结构形状和分布模式影响。

  • 图8 微织构空化润滑效应观测图[85]

  • Fig.8 Pictures of specimens with different condition[85]

  • 表面涂层技术最初主要用于海洋防污[86],目的是防止船舶表面或者螺旋桨污垢附着,将阻力降至最低。随着对涂层作用以及材料的研究不断深入,许多研究者开始将表面涂层用于空蚀损伤的研究。因为不同的使用场景和表面材料的性质,如耐热性、耐腐蚀性等,对构建涂层的方法有着各种限制和要求,这就需要不断地完善和优化涂层加工的技术。何志远等[87]针对铝合金材料表面对一些复合材料和新兴材料的激光熔覆进行了总结,HU 等[88]在试验中所采用的冷喷涂技术相较于传统的涂层技术(如火焰、电弧、等离子喷涂等)而言能在低热情况下对材料进行喷涂,使得涂层技术运用面得到了拓展,尽管大部分涂层材料的化学成分和力学性能与基础表面相似,但涂层材料的选择仍然是一个关键性的问题。PARK 等[89]对 Ni-P 涂层的工艺进行了优化,并研究了铁表面在 Ni-P 涂层保护下于海水中所受空蚀损伤的机理。YUPING 等[90]使用热喷涂技术制备了 Fe-Cr-Si-B-Mn 涂层,在淡水中评估了涂层的抗空蚀性。KRELLA 等[91]详细分析了 CrN / CrCN 多层涂层的空蚀损伤机理,并观测出空化过程中的微射流冲击导致涂层发生脆性断裂。KRELLA 等[92]使用阴极电弧法在不锈钢表面上沉积 Cr-N 涂层进行抗空蚀性的研究,并对涂层损伤进行了电镜观测(图9),最终的研究结果表明,硬质涂层系统气蚀率低的主要原因是获得了较高的基体硬度和较高的涂层附着力。相关涂层材料的减摩研究[93-96]涉及各个方面,在不同环境中运用均起到了良好的减摩效果,并且能显著降低空蚀作用对基体表面的损伤。

  • 通过以上研究可以看出,气泡的行为轨迹与边界表面的材料无关,材料性质仅对气泡溃灭侵蚀的耐受强度有影响,而表面的形状结构却对气泡的轨迹有着很大的影响。特殊的表面结构使得液体介质流经结构表面时发生压力发散和收敛,压力发散使得液体介质局部压力降低,产生空化现象以限制压力进一步降低,如图10 所示,A 处附近液体介质的油膜压力最多降低至空化压力,而 C 处附近的液体介质并不会产生空化现象,故而使压力持续提高,从而增加了承载能力,证实了耦合作用下的空化效应在特殊结构表面所产生的润滑效果,为后续减摩研究奠定了基础。

  • 图9 表面涂层的空蚀损伤观测[92]

  • Fig.9 Cavitation damages of Cr–N coating at different cavitation intensities[92]

  • 图10 动压效应原理图

  • Fig.10 Dynamic pressure effect schematic diagram.

  • 3.2 固体颗粒物减摩作用中的空化作用

  • 随着对固体颗粒物在一些场景中所展现出优异的减摩效果,在液体介质中添加固体颗粒物增加润滑性成为了一个热门的研究方向,研究内容涵盖了添加颗粒物的材料类型、尺寸、形状等[97-98]特征。随着对颗粒物研究的深入,研究者发现颗粒物会增加空化核的数量,因此也会增加空化气泡的数量,并对空化现象产生影响,例如 ZHANG 等[99]利用不同材料不同尺寸的颗粒物进行了试验,结果发现添加颗粒物不仅影响而且促进了空化气泡的形成,所以如何合理利用空化现象与添加颗粒物之间的相互作用以增强其减摩润滑效果是目前研究的重要方向。WU 等[100]在研究中分别使用三种材料(聚苯乙烯、聚甲基丙烯酸甲酯、二氧化硅)做成添加颗粒进行试验研究,对激光诱导的气泡和自由沉降粒子的动力学进行试验研究,观测不同材料粒子与空化气泡之间的相互影响,发现四种不同的行为。此外,建立了一个力平衡模型来考虑气泡和粒子的动力学,合理预测了粒子的最大速度以及单个粒子与气泡间产生推动的条件,并指出高速粒子喷射现象可能是含有颗粒物液体介质中空化侵蚀增强的因果机制之一。LÜ 等[101]发现空化气泡与颗粒物之间的距离对颗粒物的运动轨迹有着较大的影响,一定范围内,两者之间距离较近时由于微射流的冲击,颗粒物会被推出一段距离,而距离较远时,又会被吸引。 BORKENT 等[102]使用高速摄像机记录了单个粒子的空化事件和动力学实例(图11),当空化气泡最终坍塌时,粒子会被溃灭过程中产生的压力差推出较远的距离。ZEVNIK 等[103]采用了纯数值方法研究单个空化气泡在球状粒子附近的行为,并确定气泡对施加在球状粒子上的机械载荷的影响。ZHANG 等[104-105]通过激光在粒子和壁面之间生成单个气泡进行试验观测记录(图12),设立无粒子时气泡轨迹为对照试验,通过改变粒子的大小、距离壁面的距离以及距离粒子的距离进行试验,证实了颗粒大小及距离对气泡的行为轨迹有很大影响。ZHOU 等[106]研究流体动力空化辅助浮选时发现空化气泡对颗粒物有吸附作用,但是对尺寸较小的颗粒物吸附能力较差,分析其原因可能是颗粒物质量较低(惯性较低)没有足够的动能破坏颗粒和气泡之间的中间液膜。LI 等[107]通过试验和数值模拟研究了悬浮球形颗粒与附着在颗粒表面的近半球形气泡之间的复杂相互作用,对气泡和颗粒物的整个行为轨迹进行了记录(图13),深入讨论了颗粒-气泡尺寸比和颗粒-液体密度比对该过程的影响,最后在一个特殊临界值时发现粒子在很短的时间内被加速到最大速度;然后开始逐渐减速,直到气泡-粒子分离,之后分离位置周围的液体被向内拉并在轴上碰撞,在气泡和粒子之间形成一个局部的高压区域,即使在气泡坍缩阶段,粒子也会再次速。

  • 图11 单个粒子的空化过程实例[102]

  • Fig.11 Example of a cavitation event on a particle and the successive dynamics[102]

  • 通过以上研究可以看出,气泡的行为轨迹与颗粒物的材料也没有关系,颗粒尺度大小会对气泡的坍塌形式和坍塌方向产生影响,但是除一些特殊的位置外,对气泡的坍缩过程、气泡边界的运动、气泡质心的位置等动力学行为没有明显的影响。由于相关研究为简化模型以及颗粒物的尺寸较小难以进行特殊加工,对颗粒物的形状多采用标准球体进行研究,而一些不规则形状对气泡的影响研究仍然较少。所以当颗粒物与气泡在一定距离内时,可通过颗粒物来改变空化气泡的溃灭方向或吸收空化气泡从而减轻边界表面上的空化侵蚀。

  • 图12 粒子与刚性壁面间空化气泡的行为轨迹观测[101]

  • Fig.12 High-speed photographs of the bubble dynamics between a rigid wall and a spherical particle[101]

  • 图13 粒子与气泡相互作用的试验图像与数值模拟的比较[104]

  • Fig.13 Comparison of the bubble-particle interaction between experimental images and numerical simulations[104]

  • 4 空化气泡行为轨迹可视化试验设备的研究进展及优化方案

  • 很多微小的观测目标用肉眼来观测是十分困难的,机器视觉技术的发展给了人们一种很好的解决办法,通过结合神经网络开发出智能化的检测平台,可以代替人工完成一些肉眼很难识别的工作,并且通过对各个系统的整合实现了设备的自动化。例如仇友昌[108]在研究中为了检测微小异物,用工业摄像机对检测目标进行拍摄,利用 LabVIEW 对镜头等进行机械控制,将所采集到的图像运用 LIBSVM 工具箱中的 SVM 分类器对检测到的可疑目标区域进行识别,筛选出含有异物的检测目标(如图14)。赵谦等[109]制作了一套检测石英坩埚质量的智能设备,在制作单晶硅的过程中,石英坩埚长时间处于高温状态下,其内表层的气泡容易破裂,将气泡中的气体以及其他杂质引入硅液中,使得拉制出的单晶硅结构发生变化,通过机器视觉技术,将采集到的气泡进行分析处理,研制出一种气泡动态智能检测平台。

  • 由于产生空化现象的相关水利机械装置大多处于一个相对封闭的状态,难以直接对内部直接观测,并且空化气泡十分微小(微米级),溃灭时间极短(微秒级),这就对用于试验观测的摄像机以及场景还原程度要求较高,同时为了观测与在不同液体介质中机械装置所产生的空化气泡的行为轨迹以及气泡溃灭时产生的微射流对不同形状和材料的边界损伤过程,表面微织构和表面涂层的结构形状以及分布等等情况下空化效应所产生的减摩效果,表面材料的抗空蚀性能等,很多研究者在进行气泡行为轨迹观测研究时都自主搭建了观测装置,通过对机械装置进行模拟还原,对气泡行为轨迹进行研究分析 (图15 所示)。

  • 图14 微小气泡检测设备图[108]

  • Fig.14 Detection equipment for tiny air bubbles[108]

  • 图15 气泡行为轨迹观测设备示意图[5860]

  • Fig.15 Diagram of observation setup for cavitation bubble collapse[58, 60]

  • 5 结论与展望

  • 5.1 结论

  • (1)对表面改性结构和颗粒物与空化气泡相互作用所产生减摩润滑的机理已经进行了很多研究,针对不同应用场景均取得了较多的理论突破,当前主要的目标应是对空化作用润滑效果的机理进行完善,得出一个具有普遍性和共通性的结论,使得空化效应能够在实际工作和生产中发挥出更多正向的作用。

  • (2)目前对空化效应所产生的润滑效果多是通过数值模型进行推广来完善相关理论,由于现实生活中的空化效应较为复杂,单纯依赖数值模拟的试验模型,试验中往往会产生一些不切实际的结果,要结合实际试验观测结果进行对比,进一步弥补模拟试验中的误差。通过对材料表面改性研究分析可以得知,材料本身对空化气泡的行为轨迹并无较大影响,其影响多在于对空蚀损伤的耐受程度,而材料的结构以及尺寸大小等性质与气泡的行为轨迹有着密切的关联。目前空化效应润滑效果的研究涵盖了许多方面,不过多数限于单个气泡或者数个可控气泡的轨迹研究,这对于了解其机理而言是必不可少的,但是对于实际应用而言还远远不够,并且相关观测设备均具有一定的局限性和缺陷,还需要进一步的扩展和完善。

  • 5.2 展望

  • (1)构建一个自动化观测空化现象的试验平台,尽可能真实地还原相关水利机械装置与液体介质接触表面所处的工作环境,并对其所产生的空化现象以及气泡行为轨迹进行系统的观测研究。利用图像识别系统,将在运用各种减摩方法时所产生的空化气泡以及溃灭时所产生的微射流进行自动识别分类。观测与研究表面微织构、表面涂层以及添加颗粒物等减摩方法在空化效应作用下对气泡行为轨迹的影响和相互作用,充分完善空化效应的减摩润滑机理。

  • (2)表面微织构便于加工,目前已经有大量研究者基于其形状、结构等进行的空化效应减摩润滑研究,而表面涂层以及颗粒物由于较难对相关因素进行控制,比如具有特殊结构的表面涂层和颗粒物、特殊形状的颗粒物等,因此空化效应在其表面所产生的气泡行为轨迹以及润滑机理等仍然值得探索,最终使其既能达到良好的减摩效果又能在实际工程中广泛运用。

  • 参考文献

    • [1] FRANC J P,MICHEL J M.Fundamentals of cavitation[M].Dordrecht,Boston,London:Kluwer Academic Publishers,2004.

    • [2] RAYLEIGH L.VIII.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.

    • [3] PLESSET M S.The dynamics of cavitation bubbles[J].Mech,1949,16:277-282.

    • [4] NOLTINGK B E,NEPPIRAS E A.Cavitation produced by ultrasonics[J].Proceedings of the Physical Society.Section B,1950,63(9):674.

    • [5] 李根生,沈晓明,施立德,等.空化和空蚀机理及其影响因素[J].石油大学学报(自然科学版),1997(1):97-102.LI Gensheng,SHEN Xiaoming,SHI Lide,et al.The mechanism of cavitation and cavitation and its influencing factors[J].Journal of the University of Petroleum,1997(1):97-102.(in Chinese)

    • [6] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation research[J].China Basic Science,2010,12(6):3-7.(in Chinese)

    • [7] MAROM E M,MARTINEZ C H,TRUONG M T,et al.Tumor cavitation during therapy with antiangiogenesis agents in patients with lung cancer[J].Journal of Thoracic Oncology,2008,3(4):351-357

    • [8] HU S,ZHANG X,UNGER M,et al.Focused ultrasound-induced cavitation sensitizes cancer cells to radiation therapy and hyperthermia[J].Cells,2020,9:2595.

    • [9] GEVARI M T,AYDEMIR G,GHARIB G,et al.Local carpet bombardment of immobilized cancer cells with hydrodynamic cavitation[J].IEEE Access,2021,9:14983-14991

    • [10] LANG R J.Ultrasonic atomization of liquids[J].The journal of the acoustical society of America,1962,34(1):6-8

    • [11] KAMAMOTO K,KIYAMA A,TAGAWA Y,et al.Ouzo column under impact:formation of emulsion jet and oil-lubricated droplet[J].Langmuir,2021,37(6):2056-2064.

    • [12] ORTHABER U,ZEVNIK J,DULAR M.Cavitation bubble collapse in a vicinity of a liquid-liquid interface-basic research into emulsification process[J].Ultrasonics Sonochemistry,2020,68:105224.

    • [13] OHL C D,ARORA M,DIJKINK R,et al.Surface cleaning from laser-induced cavitation bubbles[J].Applied physics letters,2006,89(7):074102.

    • [14] UCHIDA T.Quantitative evaluation of ultrasonic cleaning ability using acoustic cavitation signal[J].Japanese Journal of Applied Physics,2021,60(SD):SDDD04.

    • [15] SCHOVANEC P,JASIKOVA D,KOTEK M,et al.Sterilization of biofilm in foam using a single cavitation bubble[C]//MATEC Web of Conferences.EDP Sciences,Piešt’any,Slovakia,2020,328:05003.

    • [16] CHECO H M,JARAMILLO A,JAI M,et al.Texture-induced cavitation bubbles and friction reduction in the Elrod-Adams model[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,229(4):478-492.

    • [17] BIANCOFIORE L,GIACOPINI M,DINI D.Interplay between wall slip and cavitation:A complementary variable approach[J].Tribology International,2019,137:324-339.

    • [18] KIU S K,YUSUP S,SOON C V,et al.Lubricant enhancement via hydrodynamic and acoustic cavitation[J].Procedia Engineering,2016,148:57-63.

    • [19] BAI L,YAN J,ZENG Z.Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,592:124606.

    • [20] BORKENT B M,ARORA M,OHL C D.Reproducible cavitation activity in water-particle suspensions[J].The Journal of the Acoustical Society of America,2007,121(3):1406-1412.

    • [21] SARAC B E,STEPHENS D S,EISENER J,et al.Cavitation bubble dynamics and sonochemiluminescence activity inside sonicated submerged flow tubes[J].Chemical Engineering and Processing-Process Intensification,2020,150:107872.

    • [22] LUTHER S,METTIN R,KOCH P,et al.Observation of acoustic cavitation bubbles at 2250 frames per second[J].Ultrasonics Sonochemistry,2001,8(3):159-162.

    • [23] LI Z,XU Z,ZHAO D,et al.Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface[J].Ultrasonics Sonochemistry,2021,71:105356.

    • [24] LONG J,ELICEIRI M H,OUYANG Y,et al.Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J].Optics and Lasers in Engineering,2021,137:106334.

    • [25] VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.

    • [26] SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.

    • [27] ZHONG X,ESHRAGHI J,VLACHOS P,et al.A model for a laser-induced cavitation bubble[J].International Journal of Multiphase Flow,2020,132:103433.

    • [28] ASKAR’ YAN G A,PROKHOROV A M,CHANTURIYA G F,et al.The effects of a laser beam in a liquid[J].Sov.Phys.JETP,1963,17(6):1463-1465.

    • [29] PODBEVŠEK D,LOKAR Ž,PODOBNIKAR J,et al.Experimental evaluation of methodologies for single transient cavitation bubble generation in liquids[J].Experiments in Fluids,2021,62(8):1-28.

    • [30] KLASEBOER E,KHOO B C.A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods[J].Engineering Analysis with Boundary Elements,2006,30(1):59-71.

    • [31] YANG Y,SHAN M,KAN X,et al.Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM[J].Ultrasonics sonochemistry,2020,62:104873.

    • [32] KOCH M,ROSSELLÓ J M,LECHNER C,et al.Realistic prediction and analysis of cavitation bubble dynamics via optical ray-tracing of the corresponding numerical simulations[J].Physics,2020:10171.

    • [33] VANHILLE C.Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field[J].Ultrasonics Sonochemistry,2020,63:104972.

    • [34] HUNTER K S,GEERS T L.Pressure and velocity fields produced by an underwater explosion[J].The Journal of the Acoustical Society of America,2004,115(4):1483-1496.

    • [35] PROSPERETTI A.A generalization of the Rayleigh– Plesset equation of bubble dynamics[J].The Physics of Fluids,1982,25(3):409-410.

    • [36] METTIN R,AKHATOV I,PARLITZ U,et al.Bjerknes forces between small cavitation bubbles in a strong acoustic field[J].Physical Review E,1997,56(3):2924.

    • [37] KOCH M,LECHNER C,REUTER F,et al.Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method,using OpenFOAM[J].Computers & Fluids,2016,126:71-90.

    • [38] KOUKOUVINIS P,GAVAISES M,SUPPONEN O,et al.Numerical simulation of a collapsing bubble subject to gravity[J].Physics of Fluids,2016,28(3):032110.

    • [39] DULAR M,POŽAR T,ZEVNIK J.High speed observation of damage created by a collapse of a single cavitation bubble[J].Wear,2019,418:13-23

    • [40] OUALHA K,AMAR M B,MICHAU A,et al.Observation of cavitation in exocentric T-mixer[J].Chemical Engineering Journal,2017,321:146-150.

    • [41] CHEW L W,KLASEBOER E,Ohl S W,et al.Interaction of two differently sized oscillating bubbles in a free field[J].Physical Review E,2011,84(6):066307.

    • [42] FONG S W,ADHIKARI D,KLASEBOER E,et al.Interactions of multiple spark-generated bubbles with phase differences[J].Experiments in Fluids,2009,46(4):705-724

    • [43] XU W L,LI J B,LUO J,et al.Effect of a single air bubble on the collapse direction and collapse noise of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,120:110218.

    • [44] LI J B,XU W L,ZHAI Y W,et al.Influence of multiple air bubbles on the collapse strength of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,123:110328.

    • [45] KLING C L,HAMMITT F G.A photographic study of spark-induced cavitation bubble collapse[J].Basic Eng,1972,94:825-833.

    • [46] ITO Y,OBA R.A limit in Separation-Bubble role on cavitation-inception[C]//ASME Cavitation and Polyphase Flow Forum.New Orleans,Louisiana,1982:9-11.

    • [47] OHL C D,LINDAU O,Lauterborn W.Luminescence from spherically and aspherically collapsing laser induced bubbles[J].Physical Review Letters,1998,80(2):393-396.

    • [48] 周明明,康灿,刘海霞,等.ASTM G134 装置的射流空化模拟与空蚀机理分析[J].中国表面工程,2018,31(6):133-142.ZHOU Mingming,KANG Can,LIU Haixia,et al.Waterjet cavitation simulation and erosion mechanism analysis of astm g134 device[J].China Surface Engineering.2018,31(6):133-142.(in Chinese)

    • [49] KIYAMA A,SHIMAZAKI T,GORDILLO J M,et al.The direction of the microjet produced by the collapse of a cavitation bubble locatedin between a wall and a free surface[J].Physical Review Fluids,2021,6(8):083601.

    • [50] KOCH M,ROSSELLÓ J M,LECHNER C,et al.Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment[J].Experiments in Fluids,2021,62(3):1-19.

    • [51] LIU W.Bubble dynamics in a compressible viscous liquid[D].Brimingham:University of Birmingham,2018.

    • [52] XU M,JI C,ZOU J,et al.Particle removal by a single cavitation bubble[J].Science China Physics,Mechanics and Astronomy,2014,57(4):668-673.

    • [53] NAZARI-MAHROO H,PASANDIDEH K,NAVID H A,et al.Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble[J].Ultrasonics,2020,102:106034.

    • [54] LEBON G S B,TZANAKIS I,PERICLEOUS K,et al.Experimental and numerical investigation of acoustic pressures in different liquids[J].Ultrasonics Sonochemistry,2018,42:411-421.

    • [55] IDA M,NAOE T,FUTAKAWA M.Direct observation and theoretical study of cavitation bubbles in liquid mercury[J].Physical Review E,2007,75(4):046304.

    • [56] VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.

    • [57] TOMITA Y,ROBINSON P B,TONG R P,et al.Growth and collapse of cavitation bubbles near a curved rigid boundary[J].Journal of Fluid Mechanics,2002,466:259-283.

    • [58] ZHANG Y,QIU X,ZHANG X,et al.Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall[J].Ultrasonics Sonochemistry,2020,67:105157.

    • [59] SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.

    • [60] CUI P,ZHANG A M,WANG S,et al.Ice breaking by a collapsing bubble[J].Journal of Fluid Mechanics,2018,841:287-309.

    • [61] BRUJAN E A,NAHEN K,SCHMIDT P,et al.Dynamics of laser-induced cavitation bubbles near elastic boundaries:influence of the elastic modulus[J].Journal of Fluid Mechanics,2001,433:283-314.

    • [62] TOMITA Y,KODAMA T.Interaction of laser-induced cavitation bubbles with composite surfaces[J].Journal of Applied Physics,2003,94(5):2809-2816.

    • [63] GREGORČIČ P,PETKOVŠEK R,MOŽINA J.Investigation of a cavitation bubble between a rigid boundary and a free surface[J].Journal of Applied Physics,2007,102(9):094904.

    • [64] TOMITA Y,SHIMA A.Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J].Journal of Fluid Mechanics,1986,169:535-564.

    • [65] PHILIPP A,LAUTERBORN W.Cavitation erosion by single laser-produced bubbles[J].Journal of Fluid Mechanics,1998,361:75-116.

    • [66] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [67] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [68] PUTIGNANO C,PARENTE G,PROFITO F J,et al.Laser microtextured surfaces for friction reduction:does the pattern matter?[J].Materials,2020,13:4915.

    • [69] BERTOCCHI L,DINI D,GIACOPINI M,et al.Fluid film lubrication in the presence of cavitation:a mass-conserving two-dimensional formulation for compressible,piezoviscous and non-Newtonian fluids[J].Tribology International,2013,67:61-71.

    • [70] GONZALEZ-AVILA S R,NGUYEN D M,ARUNACHALAM S,et al.Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces(GEMS)[J/OL].Science Advances,2020,6(13):eaax6192 [2020-03-27].https://doi.org/10.1126/sciadv.aax6192.

    • [71] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:an experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [72] MENG F M,WANG W Z,HU Y Z,et al.Numerical analysis of combined influences of inter-asperity cavitation and elastic deformation on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2007,221(7):815-827.

    • [73] MENG F M,CEN S Q,HU Y Z,et al.On elastic deformation,inter-asperity cavitation and lubricant thermal effects on flow factors[J].Tribology international,2009,42(2):260-274.

    • [74] MENG F M,QIN D T,CHEN H B,et al.Study on combined influence of inter-asperity cavitation and elastic deformation of non-Gaussian surfaces on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(6):1039-1048.

    • [75] 孟凡明,王战江.微造型表面上气穴发生机理初步研究[J].摩擦学学报,2011,31(2):137-143.MENG F M,WANG Zhanjiang.Preliminary study on mechanism for occurrence of cavitation on a textured surface[J].Tribology,2011,31(2):137-143.(in Chinese)

    • [76] HARP S R,SALANT R F.An average flow model of rough surface lubrication with inter-asperity cavitation[J].J.Trib.,2001,123(1):134-143.

    • [77] QIU Y,KHONSARI M.On the prediction of cavitation in dimples using a mass-conservative algorithm[J].Journal of Tribology,2009,131(4):54-65.

    • [78] DOBRICA M B,FILLON M,PASCOVICI M D,et al.Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2010,224(8):737-750.

    • [79] 张瑜,陈国定,王琳,等.空化与惯性效应耦合作用下的非对称表面微织构滑块承载力分析[J].西北工业大学学报,2017,35(6):1026-1032.ZHANG Yu,CHEN Guoding,WANG Lin,et al.Analysis of bearing capacity of asymmetrical surface micro-textured slider under the coupling effect of cavitation and inertia[J].Journal of Northwestern Polytechnical University,2017,35(6):1026-1032.(in Chinese)

    • [80] 王丽丽,郭少辉,尹国校,等.计入空化效应的表面微织构滑动轴承特性分析[J].润滑与密封,2018,43(5):65-69.WANG Lili,GUO Shaohui,YIN Guoxiao,et al.Research on micro-textured journal bearing characteristics considering the effect of cavitation[J].Lubrication Engineering,2018,43(5):65-69.(in Chinese)

    • [81] 方勋.考虑空化效应的表面微织构摩擦副润滑性能研究[D].大连:大连海事大学,2020.FANG Xun.Effect of micro-texture on lubrication performance of friction pair considering cavitation phenomenon[D].Dalian:Dalian Maritime University,2020.(in Chinese)

    • [82] 程香平,康林萍,张友亮,等.菱形孔织构端面的润滑性能研究[J].江西科学,2016,34(6):829-833.CHEN Xiangping,KANG Linping,ZHANG Youliang,et al.Study on lubrication performance of end faces with diamond macro-pores[J].Jiangxi Science,2016,34(6):829-833.(in Chinese)

    • [83] QIU Y,KHONSARI M.Experimental investigation of tribological performance of laser textured stainless steel rings[J].Tribology International,2011,44(5):635-644.

    • [84] YAN X L,YAN Z J,LIU D N,et al.Simulation study and experimental verification of surface texture induced cavitation effect[C]//IOP Conference Series:Materials Science and Engineering,Wuhan,Hubei,2019-10-26,2019,504(1).

    • [85] WANG J,YAN Z,FANG X,et al.Observation and experimental investigation on cavitation effect of friction pair surface texture[J].Lubrication Science,2020,32(8):404-414.

    • [86] KORKUT E,ATLAR M.An experimental investigation of the effect of foul release coating application on performance,noise and cavitation characteristics of marine propellers[J].Ocean Engineering,2012,41:1-12.

    • [87] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [88] HU H X,JIANG S L,TAO Y S,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.

    • [89] PARK I C,KIM S J.Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method[J].Applied Surface Science,2019,477:37-43.

    • [90] YUPING W,PINGHUA L,CHENGLIN C,et al.Cavitation erosion characteristics of a Fe–Cr–Si–B–Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.

    • [91] KRELLA A K,CZYŻNIEWSKI A,GILEWICZ A,et al.Cavitation erosion of CrN/CrCN multilayer coating[J].Wear,2017,386:80-89.

    • [92] KRELLA A,CZYŻNIEWSKI A.Cavitation erosion resistance of Cr–N coating deposited on stainless steel[J].Wear,2006,260(11-12):1324-1332.

    • [93] CHENG F,JIANG S.Cavitation erosion resistance of diamond-like carbon coating on stainless steel[J].Applied Surface Science,2014,292:16-26.

    • [94] CHENG F,JIANG S,LIANG J.Cavitation erosion resistance of microarc oxidation coating on aluminium alloy[J].Applied Surface Science,2013,280:287-296.

    • [95] KRELLA A,CZYZNIEWSKI A.Influence of the substrate hardness on the cavitation erosion resistance of TiN coating[J].Wear,2007,263(1-6):395-401.

    • [96] CHAHINE G L,GNANASKANDAN A,MANSOURI A,et al.Interaction of a cavitation bubble with a polymeric coating-scaling fluid and material dynamics[J].International Journal of Multiphase Flow,2019,112:155-169.

    • [97] ZHANG Y,QIAN Z,JI B,et al.A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J].Renewable and Sustainable Energy Reviews,2016,56:303-318.

    • [98] ZHANG Y,CHEN F,ZHANG Y,et al.Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle[J].Experimental Thermal and Fluid Science,2018,98:645-661.

    • [99] ZHANG L,BELOVA V,WANG H,et al.Controlled cavitation at nano/microparticle surfaces[J].Chemistry of Materials,2014,26(7):2244-2248.

    • [100] WU S,ZUO Z,STONE H A,et al.Motion of a free-settling spherical particle driven by a laser-induced bubble[J].Physical Review Letters,2017,119(8):084501.

    • [101] LÜ L,ZHANG Y,ZHANG Y.Experimental investigations of the particle motions induced by a laser-generated cavitation bubble[J].Ultrasonics Sonochemistry,2019,56:63-76.

    • [102] BORKENT B M,ARORA M,OHL C D,et al.The acceleration of solid particles subjected to cavitation nucleation[J].Journal of Fluid Mechanics,2008,610:157-182.

    • [103] ZEVNIK J,DULAR M.Cavitation bubble interaction with a rigid spherical particle on a microscale[J].Ultrasonics Sonochemistry,2020,69:105252.

    • [104] ZHANG Y,XIE X,ZHANG Y,et al.Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall[J].Experimental Thermal and Fluid Science,2019,105:289-306.

    • [105] ZHANG Y,XIE X,ZHANG Y.High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall[J].Journal of Hydrodynamics,2018,30(6):1012-1021.

    • [106] ZHOU Z A,XU Z,Finch J A,et al.Role of hydrodynamic cavitation in fine particle flotation[J].International Journal of Mineral Processing,1997,51(1-4):139-149.

    • [107] LI S,ZHANG A M,WANG S,et al.Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow[J].Physics of Fluids,2018,30(8):082111.

    • [108] 仇友昌.基于分类器的液体内微小异物检测技术[D].成都:电子科技大学,2018.CHOU Youchang.The detection technology of small foreign substance in liquid based on classifier[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese)

    • [109] 赵谦,李蓉蓉,钱渠,等.基于ARM的坩埚气泡动态智能检测系统[J].仪表技术与传感器,2021(4):97-101.ZHAO Qian,LI Rongrong,QIAN Qu,et al.Dynamic intelligent detection system for crucible bubbles based on ARM[J].Instrument Technique and Sensor,2021(4):97-101.(in Chinese)

  • 参考文献

    • [1] FRANC J P,MICHEL J M.Fundamentals of cavitation[M].Dordrecht,Boston,London:Kluwer Academic Publishers,2004.

    • [2] RAYLEIGH L.VIII.On the pressure developed in a liquid during the collapse of a spherical cavity[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1917,34(200):94-98.

    • [3] PLESSET M S.The dynamics of cavitation bubbles[J].Mech,1949,16:277-282.

    • [4] NOLTINGK B E,NEPPIRAS E A.Cavitation produced by ultrasonics[J].Proceedings of the Physical Society.Section B,1950,63(9):674.

    • [5] 李根生,沈晓明,施立德,等.空化和空蚀机理及其影响因素[J].石油大学学报(自然科学版),1997(1):97-102.LI Gensheng,SHEN Xiaoming,SHI Lide,et al.The mechanism of cavitation and cavitation and its influencing factors[J].Journal of the University of Petroleum,1997(1):97-102.(in Chinese)

    • [6] 陈大融.空化与空蚀研究[J].中国基础科学,2010,12(6):3-7.CHEN Darong.Cavitation and cavitation research[J].China Basic Science,2010,12(6):3-7.(in Chinese)

    • [7] MAROM E M,MARTINEZ C H,TRUONG M T,et al.Tumor cavitation during therapy with antiangiogenesis agents in patients with lung cancer[J].Journal of Thoracic Oncology,2008,3(4):351-357

    • [8] HU S,ZHANG X,UNGER M,et al.Focused ultrasound-induced cavitation sensitizes cancer cells to radiation therapy and hyperthermia[J].Cells,2020,9:2595.

    • [9] GEVARI M T,AYDEMIR G,GHARIB G,et al.Local carpet bombardment of immobilized cancer cells with hydrodynamic cavitation[J].IEEE Access,2021,9:14983-14991

    • [10] LANG R J.Ultrasonic atomization of liquids[J].The journal of the acoustical society of America,1962,34(1):6-8

    • [11] KAMAMOTO K,KIYAMA A,TAGAWA Y,et al.Ouzo column under impact:formation of emulsion jet and oil-lubricated droplet[J].Langmuir,2021,37(6):2056-2064.

    • [12] ORTHABER U,ZEVNIK J,DULAR M.Cavitation bubble collapse in a vicinity of a liquid-liquid interface-basic research into emulsification process[J].Ultrasonics Sonochemistry,2020,68:105224.

    • [13] OHL C D,ARORA M,DIJKINK R,et al.Surface cleaning from laser-induced cavitation bubbles[J].Applied physics letters,2006,89(7):074102.

    • [14] UCHIDA T.Quantitative evaluation of ultrasonic cleaning ability using acoustic cavitation signal[J].Japanese Journal of Applied Physics,2021,60(SD):SDDD04.

    • [15] SCHOVANEC P,JASIKOVA D,KOTEK M,et al.Sterilization of biofilm in foam using a single cavitation bubble[C]//MATEC Web of Conferences.EDP Sciences,Piešt’any,Slovakia,2020,328:05003.

    • [16] CHECO H M,JARAMILLO A,JAI M,et al.Texture-induced cavitation bubbles and friction reduction in the Elrod-Adams model[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,229(4):478-492.

    • [17] BIANCOFIORE L,GIACOPINI M,DINI D.Interplay between wall slip and cavitation:A complementary variable approach[J].Tribology International,2019,137:324-339.

    • [18] KIU S K,YUSUP S,SOON C V,et al.Lubricant enhancement via hydrodynamic and acoustic cavitation[J].Procedia Engineering,2016,148:57-63.

    • [19] BAI L,YAN J,ZENG Z.Cinematographic observation of the deformation of an antibubble when a spark-induced cavitation bubble oscillates in its vicinity[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,592:124606.

    • [20] BORKENT B M,ARORA M,OHL C D.Reproducible cavitation activity in water-particle suspensions[J].The Journal of the Acoustical Society of America,2007,121(3):1406-1412.

    • [21] SARAC B E,STEPHENS D S,EISENER J,et al.Cavitation bubble dynamics and sonochemiluminescence activity inside sonicated submerged flow tubes[J].Chemical Engineering and Processing-Process Intensification,2020,150:107872.

    • [22] LUTHER S,METTIN R,KOCH P,et al.Observation of acoustic cavitation bubbles at 2250 frames per second[J].Ultrasonics Sonochemistry,2001,8(3):159-162.

    • [23] LI Z,XU Z,ZHAO D,et al.Ultrasonic cavitation at liquid/solid interface in a thin Ga–In liquid layer with free surface[J].Ultrasonics Sonochemistry,2021,71:105356.

    • [24] LONG J,ELICEIRI M H,OUYANG Y,et al.Effects of immersion depth on the dynamics of cavitation bubbles generated during ns laser ablation of submerged targets[J].Optics and Lasers in Engineering,2021,137:106334.

    • [25] VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.

    • [26] SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.

    • [27] ZHONG X,ESHRAGHI J,VLACHOS P,et al.A model for a laser-induced cavitation bubble[J].International Journal of Multiphase Flow,2020,132:103433.

    • [28] ASKAR’ YAN G A,PROKHOROV A M,CHANTURIYA G F,et al.The effects of a laser beam in a liquid[J].Sov.Phys.JETP,1963,17(6):1463-1465.

    • [29] PODBEVŠEK D,LOKAR Ž,PODOBNIKAR J,et al.Experimental evaluation of methodologies for single transient cavitation bubble generation in liquids[J].Experiments in Fluids,2021,62(8):1-28.

    • [30] KLASEBOER E,KHOO B C.A modified Rayleigh–Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods[J].Engineering Analysis with Boundary Elements,2006,30(1):59-71.

    • [31] YANG Y,SHAN M,KAN X,et al.Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM[J].Ultrasonics sonochemistry,2020,62:104873.

    • [32] KOCH M,ROSSELLÓ J M,LECHNER C,et al.Realistic prediction and analysis of cavitation bubble dynamics via optical ray-tracing of the corresponding numerical simulations[J].Physics,2020:10171.

    • [33] VANHILLE C.Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field[J].Ultrasonics Sonochemistry,2020,63:104972.

    • [34] HUNTER K S,GEERS T L.Pressure and velocity fields produced by an underwater explosion[J].The Journal of the Acoustical Society of America,2004,115(4):1483-1496.

    • [35] PROSPERETTI A.A generalization of the Rayleigh– Plesset equation of bubble dynamics[J].The Physics of Fluids,1982,25(3):409-410.

    • [36] METTIN R,AKHATOV I,PARLITZ U,et al.Bjerknes forces between small cavitation bubbles in a strong acoustic field[J].Physical Review E,1997,56(3):2924.

    • [37] KOCH M,LECHNER C,REUTER F,et al.Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method,using OpenFOAM[J].Computers & Fluids,2016,126:71-90.

    • [38] KOUKOUVINIS P,GAVAISES M,SUPPONEN O,et al.Numerical simulation of a collapsing bubble subject to gravity[J].Physics of Fluids,2016,28(3):032110.

    • [39] DULAR M,POŽAR T,ZEVNIK J.High speed observation of damage created by a collapse of a single cavitation bubble[J].Wear,2019,418:13-23

    • [40] OUALHA K,AMAR M B,MICHAU A,et al.Observation of cavitation in exocentric T-mixer[J].Chemical Engineering Journal,2017,321:146-150.

    • [41] CHEW L W,KLASEBOER E,Ohl S W,et al.Interaction of two differently sized oscillating bubbles in a free field[J].Physical Review E,2011,84(6):066307.

    • [42] FONG S W,ADHIKARI D,KLASEBOER E,et al.Interactions of multiple spark-generated bubbles with phase differences[J].Experiments in Fluids,2009,46(4):705-724

    • [43] XU W L,LI J B,LUO J,et al.Effect of a single air bubble on the collapse direction and collapse noise of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,120:110218.

    • [44] LI J B,XU W L,ZHAI Y W,et al.Influence of multiple air bubbles on the collapse strength of a cavitation bubble[J].Experimental Thermal and Fluid Science,2021,123:110328.

    • [45] KLING C L,HAMMITT F G.A photographic study of spark-induced cavitation bubble collapse[J].Basic Eng,1972,94:825-833.

    • [46] ITO Y,OBA R.A limit in Separation-Bubble role on cavitation-inception[C]//ASME Cavitation and Polyphase Flow Forum.New Orleans,Louisiana,1982:9-11.

    • [47] OHL C D,LINDAU O,Lauterborn W.Luminescence from spherically and aspherically collapsing laser induced bubbles[J].Physical Review Letters,1998,80(2):393-396.

    • [48] 周明明,康灿,刘海霞,等.ASTM G134 装置的射流空化模拟与空蚀机理分析[J].中国表面工程,2018,31(6):133-142.ZHOU Mingming,KANG Can,LIU Haixia,et al.Waterjet cavitation simulation and erosion mechanism analysis of astm g134 device[J].China Surface Engineering.2018,31(6):133-142.(in Chinese)

    • [49] KIYAMA A,SHIMAZAKI T,GORDILLO J M,et al.The direction of the microjet produced by the collapse of a cavitation bubble locatedin between a wall and a free surface[J].Physical Review Fluids,2021,6(8):083601.

    • [50] KOCH M,ROSSELLÓ J M,LECHNER C,et al.Theory-assisted optical ray tracing to extract cavitation-bubble shapes from experiment[J].Experiments in Fluids,2021,62(3):1-19.

    • [51] LIU W.Bubble dynamics in a compressible viscous liquid[D].Brimingham:University of Birmingham,2018.

    • [52] XU M,JI C,ZOU J,et al.Particle removal by a single cavitation bubble[J].Science China Physics,Mechanics and Astronomy,2014,57(4):668-673.

    • [53] NAZARI-MAHROO H,PASANDIDEH K,NAVID H A,et al.Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble[J].Ultrasonics,2020,102:106034.

    • [54] LEBON G S B,TZANAKIS I,PERICLEOUS K,et al.Experimental and numerical investigation of acoustic pressures in different liquids[J].Ultrasonics Sonochemistry,2018,42:411-421.

    • [55] IDA M,NAOE T,FUTAKAWA M.Direct observation and theoretical study of cavitation bubbles in liquid mercury[J].Physical Review E,2007,75(4):046304.

    • [56] VOGEL A,LAUTERBORN W,TIMM R.Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].Journal of Fluid Mechanics,1989,206:299-338.

    • [57] TOMITA Y,ROBINSON P B,TONG R P,et al.Growth and collapse of cavitation bubbles near a curved rigid boundary[J].Journal of Fluid Mechanics,2002,466:259-283.

    • [58] ZHANG Y,QIU X,ZHANG X,et al.Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall[J].Ultrasonics Sonochemistry,2020,67:105157.

    • [59] SENEGAČNIK M,KUNIMOTO K,YAMAGUCHI S,et al.Dynamics of laser-induced cavitation bubble during expansion over sharp-edge geometry submerged in liquid–an inside view by diffuse illumination[J].Ultrasonics Sonochemistry,2021,73:105460.

    • [60] CUI P,ZHANG A M,WANG S,et al.Ice breaking by a collapsing bubble[J].Journal of Fluid Mechanics,2018,841:287-309.

    • [61] BRUJAN E A,NAHEN K,SCHMIDT P,et al.Dynamics of laser-induced cavitation bubbles near elastic boundaries:influence of the elastic modulus[J].Journal of Fluid Mechanics,2001,433:283-314.

    • [62] TOMITA Y,KODAMA T.Interaction of laser-induced cavitation bubbles with composite surfaces[J].Journal of Applied Physics,2003,94(5):2809-2816.

    • [63] GREGORČIČ P,PETKOVŠEK R,MOŽINA J.Investigation of a cavitation bubble between a rigid boundary and a free surface[J].Journal of Applied Physics,2007,102(9):094904.

    • [64] TOMITA Y,SHIMA A.Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J].Journal of Fluid Mechanics,1986,169:535-564.

    • [65] PHILIPP A,LAUTERBORN W.Cavitation erosion by single laser-produced bubbles[J].Journal of Fluid Mechanics,1998,361:75-116.

    • [66] 李强,刘清磊,杜玉晶,等.织构化表面优化设计及应用的研究进展[J].中国表面工程,2021,34(6):59-73.LI Qiang,LIU Qinglei,DU Yujing,et al.Advances in optimization design and application of textured surfaces[J].China Surface Engineering,2021,34(6):59-73.(in Chinese)

    • [67] 赵章行,龙威,任璞,等.表面织构类型对摩擦副减摩性能的影响分析[J].中国表面工程,2022,35(1):173-182.ZHAO Zhangxing,LONG Wei,REN Pu,et al.Analysis of influence of surface texture type on lubrication and friction reduction performance of friction pair[J].China Surface Engineering,2022,35(1):173-182.(in Chinese)

    • [68] PUTIGNANO C,PARENTE G,PROFITO F J,et al.Laser microtextured surfaces for friction reduction:does the pattern matter?[J].Materials,2020,13:4915.

    • [69] BERTOCCHI L,DINI D,GIACOPINI M,et al.Fluid film lubrication in the presence of cavitation:a mass-conserving two-dimensional formulation for compressible,piezoviscous and non-Newtonian fluids[J].Tribology International,2013,67:61-71.

    • [70] GONZALEZ-AVILA S R,NGUYEN D M,ARUNACHALAM S,et al.Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces(GEMS)[J/OL].Science Advances,2020,6(13):eaax6192 [2020-03-27].https://doi.org/10.1126/sciadv.aax6192.

    • [71] SCARAGGI M,MEZZAPESA F P,CARBONE G,et al.Friction properties of lubricated laser-microtexturedsurfaces:an experimental study from boundary-to hydrodynamic-lubrication[J].Tribology Letters,2013,49(1):117-125.

    • [72] MENG F M,WANG W Z,HU Y Z,et al.Numerical analysis of combined influences of inter-asperity cavitation and elastic deformation on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2007,221(7):815-827.

    • [73] MENG F M,CEN S Q,HU Y Z,et al.On elastic deformation,inter-asperity cavitation and lubricant thermal effects on flow factors[J].Tribology international,2009,42(2):260-274.

    • [74] MENG F M,QIN D T,CHEN H B,et al.Study on combined influence of inter-asperity cavitation and elastic deformation of non-Gaussian surfaces on flow factors[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2008,222(6):1039-1048.

    • [75] 孟凡明,王战江.微造型表面上气穴发生机理初步研究[J].摩擦学学报,2011,31(2):137-143.MENG F M,WANG Zhanjiang.Preliminary study on mechanism for occurrence of cavitation on a textured surface[J].Tribology,2011,31(2):137-143.(in Chinese)

    • [76] HARP S R,SALANT R F.An average flow model of rough surface lubrication with inter-asperity cavitation[J].J.Trib.,2001,123(1):134-143.

    • [77] QIU Y,KHONSARI M.On the prediction of cavitation in dimples using a mass-conservative algorithm[J].Journal of Tribology,2009,131(4):54-65.

    • [78] DOBRICA M B,FILLON M,PASCOVICI M D,et al.Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2010,224(8):737-750.

    • [79] 张瑜,陈国定,王琳,等.空化与惯性效应耦合作用下的非对称表面微织构滑块承载力分析[J].西北工业大学学报,2017,35(6):1026-1032.ZHANG Yu,CHEN Guoding,WANG Lin,et al.Analysis of bearing capacity of asymmetrical surface micro-textured slider under the coupling effect of cavitation and inertia[J].Journal of Northwestern Polytechnical University,2017,35(6):1026-1032.(in Chinese)

    • [80] 王丽丽,郭少辉,尹国校,等.计入空化效应的表面微织构滑动轴承特性分析[J].润滑与密封,2018,43(5):65-69.WANG Lili,GUO Shaohui,YIN Guoxiao,et al.Research on micro-textured journal bearing characteristics considering the effect of cavitation[J].Lubrication Engineering,2018,43(5):65-69.(in Chinese)

    • [81] 方勋.考虑空化效应的表面微织构摩擦副润滑性能研究[D].大连:大连海事大学,2020.FANG Xun.Effect of micro-texture on lubrication performance of friction pair considering cavitation phenomenon[D].Dalian:Dalian Maritime University,2020.(in Chinese)

    • [82] 程香平,康林萍,张友亮,等.菱形孔织构端面的润滑性能研究[J].江西科学,2016,34(6):829-833.CHEN Xiangping,KANG Linping,ZHANG Youliang,et al.Study on lubrication performance of end faces with diamond macro-pores[J].Jiangxi Science,2016,34(6):829-833.(in Chinese)

    • [83] QIU Y,KHONSARI M.Experimental investigation of tribological performance of laser textured stainless steel rings[J].Tribology International,2011,44(5):635-644.

    • [84] YAN X L,YAN Z J,LIU D N,et al.Simulation study and experimental verification of surface texture induced cavitation effect[C]//IOP Conference Series:Materials Science and Engineering,Wuhan,Hubei,2019-10-26,2019,504(1).

    • [85] WANG J,YAN Z,FANG X,et al.Observation and experimental investigation on cavitation effect of friction pair surface texture[J].Lubrication Science,2020,32(8):404-414.

    • [86] KORKUT E,ATLAR M.An experimental investigation of the effect of foul release coating application on performance,noise and cavitation characteristics of marine propellers[J].Ocean Engineering,2012,41:1-12.

    • [87] 何志远,贺文雄,杨海峰,等.铝合金表面激光熔覆研究进展[J].中国表面工程,2021,34(6):33-44.HE Zhiyuan,HE Wenxiong,YANG Haifeng,et al.Research progress in laser cladding on aluminum alloy surface[J].China Surface Engineering,2021,34(6):33-44.(in Chinese)

    • [88] HU H X,JIANG S L,TAO Y S,et al.Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating[J].Nuclear Engineering and Design,2011,241(12):4929-4937.

    • [89] PARK I C,KIM S J.Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method[J].Applied Surface Science,2019,477:37-43.

    • [90] YUPING W,PINGHUA L,CHENGLIN C,et al.Cavitation erosion characteristics of a Fe–Cr–Si–B–Mn coating fabricated by high velocity oxy-fuel(HVOF)thermal spray[J].Materials Letters,2007,61(8-9):1867-1872.

    • [91] KRELLA A K,CZYŻNIEWSKI A,GILEWICZ A,et al.Cavitation erosion of CrN/CrCN multilayer coating[J].Wear,2017,386:80-89.

    • [92] KRELLA A,CZYŻNIEWSKI A.Cavitation erosion resistance of Cr–N coating deposited on stainless steel[J].Wear,2006,260(11-12):1324-1332.

    • [93] CHENG F,JIANG S.Cavitation erosion resistance of diamond-like carbon coating on stainless steel[J].Applied Surface Science,2014,292:16-26.

    • [94] CHENG F,JIANG S,LIANG J.Cavitation erosion resistance of microarc oxidation coating on aluminium alloy[J].Applied Surface Science,2013,280:287-296.

    • [95] KRELLA A,CZYZNIEWSKI A.Influence of the substrate hardness on the cavitation erosion resistance of TiN coating[J].Wear,2007,263(1-6):395-401.

    • [96] CHAHINE G L,GNANASKANDAN A,MANSOURI A,et al.Interaction of a cavitation bubble with a polymeric coating-scaling fluid and material dynamics[J].International Journal of Multiphase Flow,2019,112:155-169.

    • [97] ZHANG Y,QIAN Z,JI B,et al.A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J].Renewable and Sustainable Energy Reviews,2016,56:303-318.

    • [98] ZHANG Y,CHEN F,ZHANG Y,et al.Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle[J].Experimental Thermal and Fluid Science,2018,98:645-661.

    • [99] ZHANG L,BELOVA V,WANG H,et al.Controlled cavitation at nano/microparticle surfaces[J].Chemistry of Materials,2014,26(7):2244-2248.

    • [100] WU S,ZUO Z,STONE H A,et al.Motion of a free-settling spherical particle driven by a laser-induced bubble[J].Physical Review Letters,2017,119(8):084501.

    • [101] LÜ L,ZHANG Y,ZHANG Y.Experimental investigations of the particle motions induced by a laser-generated cavitation bubble[J].Ultrasonics Sonochemistry,2019,56:63-76.

    • [102] BORKENT B M,ARORA M,OHL C D,et al.The acceleration of solid particles subjected to cavitation nucleation[J].Journal of Fluid Mechanics,2008,610:157-182.

    • [103] ZEVNIK J,DULAR M.Cavitation bubble interaction with a rigid spherical particle on a microscale[J].Ultrasonics Sonochemistry,2020,69:105252.

    • [104] ZHANG Y,XIE X,ZHANG Y,et al.Experimental study of influences of a particle on the collapsing dynamics of a laser-induced cavitation bubble near a solid wall[J].Experimental Thermal and Fluid Science,2019,105:289-306.

    • [105] ZHANG Y,XIE X,ZHANG Y.High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall[J].Journal of Hydrodynamics,2018,30(6):1012-1021.

    • [106] ZHOU Z A,XU Z,Finch J A,et al.Role of hydrodynamic cavitation in fine particle flotation[J].International Journal of Mineral Processing,1997,51(1-4):139-149.

    • [107] LI S,ZHANG A M,WANG S,et al.Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow[J].Physics of Fluids,2018,30(8):082111.

    • [108] 仇友昌.基于分类器的液体内微小异物检测技术[D].成都:电子科技大学,2018.CHOU Youchang.The detection technology of small foreign substance in liquid based on classifier[D].Chengdu:University of Electronic Science and Technology of China,2018.(in Chinese)

    • [109] 赵谦,李蓉蓉,钱渠,等.基于ARM的坩埚气泡动态智能检测系统[J].仪表技术与传感器,2021(4):97-101.ZHAO Qian,LI Rongrong,QIAN Qu,et al.Dynamic intelligent detection system for crucible bubbles based on ARM[J].Instrument Technique and Sensor,2021(4):97-101.(in Chinese)

  • 手机扫一扫看